xref: /openbmc/linux/fs/exec.c (revision 9f380456)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include <asm/exec.h>
63 
64 #include <trace/events/task.h>
65 #include "internal.h"
66 
67 #include <trace/events/sched.h>
68 
69 int core_uses_pid;
70 char core_pattern[CORENAME_MAX_SIZE] = "core";
71 unsigned int core_pipe_limit;
72 int suid_dumpable = 0;
73 
74 struct core_name {
75 	char *corename;
76 	int used, size;
77 };
78 static atomic_t call_count = ATOMIC_INIT(1);
79 
80 /* The maximal length of core_pattern is also specified in sysctl.c */
81 
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84 
85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 	BUG_ON(!fmt);
88 	write_lock(&binfmt_lock);
89 	insert ? list_add(&fmt->lh, &formats) :
90 		 list_add_tail(&fmt->lh, &formats);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(__register_binfmt);
95 
96 void unregister_binfmt(struct linux_binfmt * fmt)
97 {
98 	write_lock(&binfmt_lock);
99 	list_del(&fmt->lh);
100 	write_unlock(&binfmt_lock);
101 }
102 
103 EXPORT_SYMBOL(unregister_binfmt);
104 
105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107 	module_put(fmt->module);
108 }
109 
110 /*
111  * Note that a shared library must be both readable and executable due to
112  * security reasons.
113  *
114  * Also note that we take the address to load from from the file itself.
115  */
116 SYSCALL_DEFINE1(uselib, const char __user *, library)
117 {
118 	struct file *file;
119 	char *tmp = getname(library);
120 	int error = PTR_ERR(tmp);
121 	static const struct open_flags uselib_flags = {
122 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
124 		.intent = LOOKUP_OPEN
125 	};
126 
127 	if (IS_ERR(tmp))
128 		goto out;
129 
130 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
131 	putname(tmp);
132 	error = PTR_ERR(file);
133 	if (IS_ERR(file))
134 		goto out;
135 
136 	error = -EINVAL;
137 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
138 		goto exit;
139 
140 	error = -EACCES;
141 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
142 		goto exit;
143 
144 	fsnotify_open(file);
145 
146 	error = -ENOEXEC;
147 	if(file->f_op) {
148 		struct linux_binfmt * fmt;
149 
150 		read_lock(&binfmt_lock);
151 		list_for_each_entry(fmt, &formats, lh) {
152 			if (!fmt->load_shlib)
153 				continue;
154 			if (!try_module_get(fmt->module))
155 				continue;
156 			read_unlock(&binfmt_lock);
157 			error = fmt->load_shlib(file);
158 			read_lock(&binfmt_lock);
159 			put_binfmt(fmt);
160 			if (error != -ENOEXEC)
161 				break;
162 		}
163 		read_unlock(&binfmt_lock);
164 	}
165 exit:
166 	fput(file);
167 out:
168   	return error;
169 }
170 
171 #ifdef CONFIG_MMU
172 /*
173  * The nascent bprm->mm is not visible until exec_mmap() but it can
174  * use a lot of memory, account these pages in current->mm temporary
175  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
176  * change the counter back via acct_arg_size(0).
177  */
178 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
179 {
180 	struct mm_struct *mm = current->mm;
181 	long diff = (long)(pages - bprm->vma_pages);
182 
183 	if (!mm || !diff)
184 		return;
185 
186 	bprm->vma_pages = pages;
187 	add_mm_counter(mm, MM_ANONPAGES, diff);
188 }
189 
190 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
191 		int write)
192 {
193 	struct page *page;
194 	int ret;
195 
196 #ifdef CONFIG_STACK_GROWSUP
197 	if (write) {
198 		ret = expand_downwards(bprm->vma, pos);
199 		if (ret < 0)
200 			return NULL;
201 	}
202 #endif
203 	ret = get_user_pages(current, bprm->mm, pos,
204 			1, write, 1, &page, NULL);
205 	if (ret <= 0)
206 		return NULL;
207 
208 	if (write) {
209 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
210 		struct rlimit *rlim;
211 
212 		acct_arg_size(bprm, size / PAGE_SIZE);
213 
214 		/*
215 		 * We've historically supported up to 32 pages (ARG_MAX)
216 		 * of argument strings even with small stacks
217 		 */
218 		if (size <= ARG_MAX)
219 			return page;
220 
221 		/*
222 		 * Limit to 1/4-th the stack size for the argv+env strings.
223 		 * This ensures that:
224 		 *  - the remaining binfmt code will not run out of stack space,
225 		 *  - the program will have a reasonable amount of stack left
226 		 *    to work from.
227 		 */
228 		rlim = current->signal->rlim;
229 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
230 			put_page(page);
231 			return NULL;
232 		}
233 	}
234 
235 	return page;
236 }
237 
238 static void put_arg_page(struct page *page)
239 {
240 	put_page(page);
241 }
242 
243 static void free_arg_page(struct linux_binprm *bprm, int i)
244 {
245 }
246 
247 static void free_arg_pages(struct linux_binprm *bprm)
248 {
249 }
250 
251 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
252 		struct page *page)
253 {
254 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
255 }
256 
257 static int __bprm_mm_init(struct linux_binprm *bprm)
258 {
259 	int err;
260 	struct vm_area_struct *vma = NULL;
261 	struct mm_struct *mm = bprm->mm;
262 
263 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
264 	if (!vma)
265 		return -ENOMEM;
266 
267 	down_write(&mm->mmap_sem);
268 	vma->vm_mm = mm;
269 
270 	/*
271 	 * Place the stack at the largest stack address the architecture
272 	 * supports. Later, we'll move this to an appropriate place. We don't
273 	 * use STACK_TOP because that can depend on attributes which aren't
274 	 * configured yet.
275 	 */
276 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
277 	vma->vm_end = STACK_TOP_MAX;
278 	vma->vm_start = vma->vm_end - PAGE_SIZE;
279 	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
280 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
281 	INIT_LIST_HEAD(&vma->anon_vma_chain);
282 
283 	err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
284 	if (err)
285 		goto err;
286 
287 	err = insert_vm_struct(mm, vma);
288 	if (err)
289 		goto err;
290 
291 	mm->stack_vm = mm->total_vm = 1;
292 	up_write(&mm->mmap_sem);
293 	bprm->p = vma->vm_end - sizeof(void *);
294 	return 0;
295 err:
296 	up_write(&mm->mmap_sem);
297 	bprm->vma = NULL;
298 	kmem_cache_free(vm_area_cachep, vma);
299 	return err;
300 }
301 
302 static bool valid_arg_len(struct linux_binprm *bprm, long len)
303 {
304 	return len <= MAX_ARG_STRLEN;
305 }
306 
307 #else
308 
309 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
310 {
311 }
312 
313 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
314 		int write)
315 {
316 	struct page *page;
317 
318 	page = bprm->page[pos / PAGE_SIZE];
319 	if (!page && write) {
320 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
321 		if (!page)
322 			return NULL;
323 		bprm->page[pos / PAGE_SIZE] = page;
324 	}
325 
326 	return page;
327 }
328 
329 static void put_arg_page(struct page *page)
330 {
331 }
332 
333 static void free_arg_page(struct linux_binprm *bprm, int i)
334 {
335 	if (bprm->page[i]) {
336 		__free_page(bprm->page[i]);
337 		bprm->page[i] = NULL;
338 	}
339 }
340 
341 static void free_arg_pages(struct linux_binprm *bprm)
342 {
343 	int i;
344 
345 	for (i = 0; i < MAX_ARG_PAGES; i++)
346 		free_arg_page(bprm, i);
347 }
348 
349 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
350 		struct page *page)
351 {
352 }
353 
354 static int __bprm_mm_init(struct linux_binprm *bprm)
355 {
356 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
357 	return 0;
358 }
359 
360 static bool valid_arg_len(struct linux_binprm *bprm, long len)
361 {
362 	return len <= bprm->p;
363 }
364 
365 #endif /* CONFIG_MMU */
366 
367 /*
368  * Create a new mm_struct and populate it with a temporary stack
369  * vm_area_struct.  We don't have enough context at this point to set the stack
370  * flags, permissions, and offset, so we use temporary values.  We'll update
371  * them later in setup_arg_pages().
372  */
373 int bprm_mm_init(struct linux_binprm *bprm)
374 {
375 	int err;
376 	struct mm_struct *mm = NULL;
377 
378 	bprm->mm = mm = mm_alloc();
379 	err = -ENOMEM;
380 	if (!mm)
381 		goto err;
382 
383 	err = init_new_context(current, mm);
384 	if (err)
385 		goto err;
386 
387 	err = __bprm_mm_init(bprm);
388 	if (err)
389 		goto err;
390 
391 	return 0;
392 
393 err:
394 	if (mm) {
395 		bprm->mm = NULL;
396 		mmdrop(mm);
397 	}
398 
399 	return err;
400 }
401 
402 struct user_arg_ptr {
403 #ifdef CONFIG_COMPAT
404 	bool is_compat;
405 #endif
406 	union {
407 		const char __user *const __user *native;
408 #ifdef CONFIG_COMPAT
409 		compat_uptr_t __user *compat;
410 #endif
411 	} ptr;
412 };
413 
414 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
415 {
416 	const char __user *native;
417 
418 #ifdef CONFIG_COMPAT
419 	if (unlikely(argv.is_compat)) {
420 		compat_uptr_t compat;
421 
422 		if (get_user(compat, argv.ptr.compat + nr))
423 			return ERR_PTR(-EFAULT);
424 
425 		return compat_ptr(compat);
426 	}
427 #endif
428 
429 	if (get_user(native, argv.ptr.native + nr))
430 		return ERR_PTR(-EFAULT);
431 
432 	return native;
433 }
434 
435 /*
436  * count() counts the number of strings in array ARGV.
437  */
438 static int count(struct user_arg_ptr argv, int max)
439 {
440 	int i = 0;
441 
442 	if (argv.ptr.native != NULL) {
443 		for (;;) {
444 			const char __user *p = get_user_arg_ptr(argv, i);
445 
446 			if (!p)
447 				break;
448 
449 			if (IS_ERR(p))
450 				return -EFAULT;
451 
452 			if (i++ >= max)
453 				return -E2BIG;
454 
455 			if (fatal_signal_pending(current))
456 				return -ERESTARTNOHAND;
457 			cond_resched();
458 		}
459 	}
460 	return i;
461 }
462 
463 /*
464  * 'copy_strings()' copies argument/environment strings from the old
465  * processes's memory to the new process's stack.  The call to get_user_pages()
466  * ensures the destination page is created and not swapped out.
467  */
468 static int copy_strings(int argc, struct user_arg_ptr argv,
469 			struct linux_binprm *bprm)
470 {
471 	struct page *kmapped_page = NULL;
472 	char *kaddr = NULL;
473 	unsigned long kpos = 0;
474 	int ret;
475 
476 	while (argc-- > 0) {
477 		const char __user *str;
478 		int len;
479 		unsigned long pos;
480 
481 		ret = -EFAULT;
482 		str = get_user_arg_ptr(argv, argc);
483 		if (IS_ERR(str))
484 			goto out;
485 
486 		len = strnlen_user(str, MAX_ARG_STRLEN);
487 		if (!len)
488 			goto out;
489 
490 		ret = -E2BIG;
491 		if (!valid_arg_len(bprm, len))
492 			goto out;
493 
494 		/* We're going to work our way backwords. */
495 		pos = bprm->p;
496 		str += len;
497 		bprm->p -= len;
498 
499 		while (len > 0) {
500 			int offset, bytes_to_copy;
501 
502 			if (fatal_signal_pending(current)) {
503 				ret = -ERESTARTNOHAND;
504 				goto out;
505 			}
506 			cond_resched();
507 
508 			offset = pos % PAGE_SIZE;
509 			if (offset == 0)
510 				offset = PAGE_SIZE;
511 
512 			bytes_to_copy = offset;
513 			if (bytes_to_copy > len)
514 				bytes_to_copy = len;
515 
516 			offset -= bytes_to_copy;
517 			pos -= bytes_to_copy;
518 			str -= bytes_to_copy;
519 			len -= bytes_to_copy;
520 
521 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
522 				struct page *page;
523 
524 				page = get_arg_page(bprm, pos, 1);
525 				if (!page) {
526 					ret = -E2BIG;
527 					goto out;
528 				}
529 
530 				if (kmapped_page) {
531 					flush_kernel_dcache_page(kmapped_page);
532 					kunmap(kmapped_page);
533 					put_arg_page(kmapped_page);
534 				}
535 				kmapped_page = page;
536 				kaddr = kmap(kmapped_page);
537 				kpos = pos & PAGE_MASK;
538 				flush_arg_page(bprm, kpos, kmapped_page);
539 			}
540 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
541 				ret = -EFAULT;
542 				goto out;
543 			}
544 		}
545 	}
546 	ret = 0;
547 out:
548 	if (kmapped_page) {
549 		flush_kernel_dcache_page(kmapped_page);
550 		kunmap(kmapped_page);
551 		put_arg_page(kmapped_page);
552 	}
553 	return ret;
554 }
555 
556 /*
557  * Like copy_strings, but get argv and its values from kernel memory.
558  */
559 int copy_strings_kernel(int argc, const char *const *__argv,
560 			struct linux_binprm *bprm)
561 {
562 	int r;
563 	mm_segment_t oldfs = get_fs();
564 	struct user_arg_ptr argv = {
565 		.ptr.native = (const char __user *const  __user *)__argv,
566 	};
567 
568 	set_fs(KERNEL_DS);
569 	r = copy_strings(argc, argv, bprm);
570 	set_fs(oldfs);
571 
572 	return r;
573 }
574 EXPORT_SYMBOL(copy_strings_kernel);
575 
576 #ifdef CONFIG_MMU
577 
578 /*
579  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
580  * the binfmt code determines where the new stack should reside, we shift it to
581  * its final location.  The process proceeds as follows:
582  *
583  * 1) Use shift to calculate the new vma endpoints.
584  * 2) Extend vma to cover both the old and new ranges.  This ensures the
585  *    arguments passed to subsequent functions are consistent.
586  * 3) Move vma's page tables to the new range.
587  * 4) Free up any cleared pgd range.
588  * 5) Shrink the vma to cover only the new range.
589  */
590 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
591 {
592 	struct mm_struct *mm = vma->vm_mm;
593 	unsigned long old_start = vma->vm_start;
594 	unsigned long old_end = vma->vm_end;
595 	unsigned long length = old_end - old_start;
596 	unsigned long new_start = old_start - shift;
597 	unsigned long new_end = old_end - shift;
598 	struct mmu_gather tlb;
599 
600 	BUG_ON(new_start > new_end);
601 
602 	/*
603 	 * ensure there are no vmas between where we want to go
604 	 * and where we are
605 	 */
606 	if (vma != find_vma(mm, new_start))
607 		return -EFAULT;
608 
609 	/*
610 	 * cover the whole range: [new_start, old_end)
611 	 */
612 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
613 		return -ENOMEM;
614 
615 	/*
616 	 * move the page tables downwards, on failure we rely on
617 	 * process cleanup to remove whatever mess we made.
618 	 */
619 	if (length != move_page_tables(vma, old_start,
620 				       vma, new_start, length))
621 		return -ENOMEM;
622 
623 	lru_add_drain();
624 	tlb_gather_mmu(&tlb, mm, 0);
625 	if (new_end > old_start) {
626 		/*
627 		 * when the old and new regions overlap clear from new_end.
628 		 */
629 		free_pgd_range(&tlb, new_end, old_end, new_end,
630 			vma->vm_next ? vma->vm_next->vm_start : 0);
631 	} else {
632 		/*
633 		 * otherwise, clean from old_start; this is done to not touch
634 		 * the address space in [new_end, old_start) some architectures
635 		 * have constraints on va-space that make this illegal (IA64) -
636 		 * for the others its just a little faster.
637 		 */
638 		free_pgd_range(&tlb, old_start, old_end, new_end,
639 			vma->vm_next ? vma->vm_next->vm_start : 0);
640 	}
641 	tlb_finish_mmu(&tlb, new_end, old_end);
642 
643 	/*
644 	 * Shrink the vma to just the new range.  Always succeeds.
645 	 */
646 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
647 
648 	return 0;
649 }
650 
651 /*
652  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
653  * the stack is optionally relocated, and some extra space is added.
654  */
655 int setup_arg_pages(struct linux_binprm *bprm,
656 		    unsigned long stack_top,
657 		    int executable_stack)
658 {
659 	unsigned long ret;
660 	unsigned long stack_shift;
661 	struct mm_struct *mm = current->mm;
662 	struct vm_area_struct *vma = bprm->vma;
663 	struct vm_area_struct *prev = NULL;
664 	unsigned long vm_flags;
665 	unsigned long stack_base;
666 	unsigned long stack_size;
667 	unsigned long stack_expand;
668 	unsigned long rlim_stack;
669 
670 #ifdef CONFIG_STACK_GROWSUP
671 	/* Limit stack size to 1GB */
672 	stack_base = rlimit_max(RLIMIT_STACK);
673 	if (stack_base > (1 << 30))
674 		stack_base = 1 << 30;
675 
676 	/* Make sure we didn't let the argument array grow too large. */
677 	if (vma->vm_end - vma->vm_start > stack_base)
678 		return -ENOMEM;
679 
680 	stack_base = PAGE_ALIGN(stack_top - stack_base);
681 
682 	stack_shift = vma->vm_start - stack_base;
683 	mm->arg_start = bprm->p - stack_shift;
684 	bprm->p = vma->vm_end - stack_shift;
685 #else
686 	stack_top = arch_align_stack(stack_top);
687 	stack_top = PAGE_ALIGN(stack_top);
688 
689 	if (unlikely(stack_top < mmap_min_addr) ||
690 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
691 		return -ENOMEM;
692 
693 	stack_shift = vma->vm_end - stack_top;
694 
695 	bprm->p -= stack_shift;
696 	mm->arg_start = bprm->p;
697 #endif
698 
699 	if (bprm->loader)
700 		bprm->loader -= stack_shift;
701 	bprm->exec -= stack_shift;
702 
703 	down_write(&mm->mmap_sem);
704 	vm_flags = VM_STACK_FLAGS;
705 
706 	/*
707 	 * Adjust stack execute permissions; explicitly enable for
708 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
709 	 * (arch default) otherwise.
710 	 */
711 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
712 		vm_flags |= VM_EXEC;
713 	else if (executable_stack == EXSTACK_DISABLE_X)
714 		vm_flags &= ~VM_EXEC;
715 	vm_flags |= mm->def_flags;
716 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
717 
718 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
719 			vm_flags);
720 	if (ret)
721 		goto out_unlock;
722 	BUG_ON(prev != vma);
723 
724 	/* Move stack pages down in memory. */
725 	if (stack_shift) {
726 		ret = shift_arg_pages(vma, stack_shift);
727 		if (ret)
728 			goto out_unlock;
729 	}
730 
731 	/* mprotect_fixup is overkill to remove the temporary stack flags */
732 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
733 
734 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
735 	stack_size = vma->vm_end - vma->vm_start;
736 	/*
737 	 * Align this down to a page boundary as expand_stack
738 	 * will align it up.
739 	 */
740 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
741 #ifdef CONFIG_STACK_GROWSUP
742 	if (stack_size + stack_expand > rlim_stack)
743 		stack_base = vma->vm_start + rlim_stack;
744 	else
745 		stack_base = vma->vm_end + stack_expand;
746 #else
747 	if (stack_size + stack_expand > rlim_stack)
748 		stack_base = vma->vm_end - rlim_stack;
749 	else
750 		stack_base = vma->vm_start - stack_expand;
751 #endif
752 	current->mm->start_stack = bprm->p;
753 	ret = expand_stack(vma, stack_base);
754 	if (ret)
755 		ret = -EFAULT;
756 
757 out_unlock:
758 	up_write(&mm->mmap_sem);
759 	return ret;
760 }
761 EXPORT_SYMBOL(setup_arg_pages);
762 
763 #endif /* CONFIG_MMU */
764 
765 struct file *open_exec(const char *name)
766 {
767 	struct file *file;
768 	int err;
769 	static const struct open_flags open_exec_flags = {
770 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
771 		.acc_mode = MAY_EXEC | MAY_OPEN,
772 		.intent = LOOKUP_OPEN
773 	};
774 
775 	file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
776 	if (IS_ERR(file))
777 		goto out;
778 
779 	err = -EACCES;
780 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
781 		goto exit;
782 
783 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
784 		goto exit;
785 
786 	fsnotify_open(file);
787 
788 	err = deny_write_access(file);
789 	if (err)
790 		goto exit;
791 
792 out:
793 	return file;
794 
795 exit:
796 	fput(file);
797 	return ERR_PTR(err);
798 }
799 EXPORT_SYMBOL(open_exec);
800 
801 int kernel_read(struct file *file, loff_t offset,
802 		char *addr, unsigned long count)
803 {
804 	mm_segment_t old_fs;
805 	loff_t pos = offset;
806 	int result;
807 
808 	old_fs = get_fs();
809 	set_fs(get_ds());
810 	/* The cast to a user pointer is valid due to the set_fs() */
811 	result = vfs_read(file, (void __user *)addr, count, &pos);
812 	set_fs(old_fs);
813 	return result;
814 }
815 
816 EXPORT_SYMBOL(kernel_read);
817 
818 static int exec_mmap(struct mm_struct *mm)
819 {
820 	struct task_struct *tsk;
821 	struct mm_struct * old_mm, *active_mm;
822 
823 	/* Notify parent that we're no longer interested in the old VM */
824 	tsk = current;
825 	old_mm = current->mm;
826 	sync_mm_rss(old_mm);
827 	mm_release(tsk, old_mm);
828 
829 	if (old_mm) {
830 		/*
831 		 * Make sure that if there is a core dump in progress
832 		 * for the old mm, we get out and die instead of going
833 		 * through with the exec.  We must hold mmap_sem around
834 		 * checking core_state and changing tsk->mm.
835 		 */
836 		down_read(&old_mm->mmap_sem);
837 		if (unlikely(old_mm->core_state)) {
838 			up_read(&old_mm->mmap_sem);
839 			return -EINTR;
840 		}
841 	}
842 	task_lock(tsk);
843 	active_mm = tsk->active_mm;
844 	tsk->mm = mm;
845 	tsk->active_mm = mm;
846 	activate_mm(active_mm, mm);
847 	task_unlock(tsk);
848 	arch_pick_mmap_layout(mm);
849 	if (old_mm) {
850 		up_read(&old_mm->mmap_sem);
851 		BUG_ON(active_mm != old_mm);
852 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
853 		mm_update_next_owner(old_mm);
854 		mmput(old_mm);
855 		return 0;
856 	}
857 	mmdrop(active_mm);
858 	return 0;
859 }
860 
861 /*
862  * This function makes sure the current process has its own signal table,
863  * so that flush_signal_handlers can later reset the handlers without
864  * disturbing other processes.  (Other processes might share the signal
865  * table via the CLONE_SIGHAND option to clone().)
866  */
867 static int de_thread(struct task_struct *tsk)
868 {
869 	struct signal_struct *sig = tsk->signal;
870 	struct sighand_struct *oldsighand = tsk->sighand;
871 	spinlock_t *lock = &oldsighand->siglock;
872 
873 	if (thread_group_empty(tsk))
874 		goto no_thread_group;
875 
876 	/*
877 	 * Kill all other threads in the thread group.
878 	 */
879 	spin_lock_irq(lock);
880 	if (signal_group_exit(sig)) {
881 		/*
882 		 * Another group action in progress, just
883 		 * return so that the signal is processed.
884 		 */
885 		spin_unlock_irq(lock);
886 		return -EAGAIN;
887 	}
888 
889 	sig->group_exit_task = tsk;
890 	sig->notify_count = zap_other_threads(tsk);
891 	if (!thread_group_leader(tsk))
892 		sig->notify_count--;
893 
894 	while (sig->notify_count) {
895 		__set_current_state(TASK_UNINTERRUPTIBLE);
896 		spin_unlock_irq(lock);
897 		schedule();
898 		spin_lock_irq(lock);
899 	}
900 	spin_unlock_irq(lock);
901 
902 	/*
903 	 * At this point all other threads have exited, all we have to
904 	 * do is to wait for the thread group leader to become inactive,
905 	 * and to assume its PID:
906 	 */
907 	if (!thread_group_leader(tsk)) {
908 		struct task_struct *leader = tsk->group_leader;
909 
910 		sig->notify_count = -1;	/* for exit_notify() */
911 		for (;;) {
912 			write_lock_irq(&tasklist_lock);
913 			if (likely(leader->exit_state))
914 				break;
915 			__set_current_state(TASK_UNINTERRUPTIBLE);
916 			write_unlock_irq(&tasklist_lock);
917 			schedule();
918 		}
919 
920 		/*
921 		 * The only record we have of the real-time age of a
922 		 * process, regardless of execs it's done, is start_time.
923 		 * All the past CPU time is accumulated in signal_struct
924 		 * from sister threads now dead.  But in this non-leader
925 		 * exec, nothing survives from the original leader thread,
926 		 * whose birth marks the true age of this process now.
927 		 * When we take on its identity by switching to its PID, we
928 		 * also take its birthdate (always earlier than our own).
929 		 */
930 		tsk->start_time = leader->start_time;
931 
932 		BUG_ON(!same_thread_group(leader, tsk));
933 		BUG_ON(has_group_leader_pid(tsk));
934 		/*
935 		 * An exec() starts a new thread group with the
936 		 * TGID of the previous thread group. Rehash the
937 		 * two threads with a switched PID, and release
938 		 * the former thread group leader:
939 		 */
940 
941 		/* Become a process group leader with the old leader's pid.
942 		 * The old leader becomes a thread of the this thread group.
943 		 * Note: The old leader also uses this pid until release_task
944 		 *       is called.  Odd but simple and correct.
945 		 */
946 		detach_pid(tsk, PIDTYPE_PID);
947 		tsk->pid = leader->pid;
948 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
949 		transfer_pid(leader, tsk, PIDTYPE_PGID);
950 		transfer_pid(leader, tsk, PIDTYPE_SID);
951 
952 		list_replace_rcu(&leader->tasks, &tsk->tasks);
953 		list_replace_init(&leader->sibling, &tsk->sibling);
954 
955 		tsk->group_leader = tsk;
956 		leader->group_leader = tsk;
957 
958 		tsk->exit_signal = SIGCHLD;
959 		leader->exit_signal = -1;
960 
961 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
962 		leader->exit_state = EXIT_DEAD;
963 
964 		/*
965 		 * We are going to release_task()->ptrace_unlink() silently,
966 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
967 		 * the tracer wont't block again waiting for this thread.
968 		 */
969 		if (unlikely(leader->ptrace))
970 			__wake_up_parent(leader, leader->parent);
971 		write_unlock_irq(&tasklist_lock);
972 
973 		release_task(leader);
974 	}
975 
976 	sig->group_exit_task = NULL;
977 	sig->notify_count = 0;
978 
979 no_thread_group:
980 	/* we have changed execution domain */
981 	tsk->exit_signal = SIGCHLD;
982 
983 	exit_itimers(sig);
984 	flush_itimer_signals();
985 
986 	if (atomic_read(&oldsighand->count) != 1) {
987 		struct sighand_struct *newsighand;
988 		/*
989 		 * This ->sighand is shared with the CLONE_SIGHAND
990 		 * but not CLONE_THREAD task, switch to the new one.
991 		 */
992 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
993 		if (!newsighand)
994 			return -ENOMEM;
995 
996 		atomic_set(&newsighand->count, 1);
997 		memcpy(newsighand->action, oldsighand->action,
998 		       sizeof(newsighand->action));
999 
1000 		write_lock_irq(&tasklist_lock);
1001 		spin_lock(&oldsighand->siglock);
1002 		rcu_assign_pointer(tsk->sighand, newsighand);
1003 		spin_unlock(&oldsighand->siglock);
1004 		write_unlock_irq(&tasklist_lock);
1005 
1006 		__cleanup_sighand(oldsighand);
1007 	}
1008 
1009 	BUG_ON(!thread_group_leader(tsk));
1010 	return 0;
1011 }
1012 
1013 /*
1014  * These functions flushes out all traces of the currently running executable
1015  * so that a new one can be started
1016  */
1017 static void flush_old_files(struct files_struct * files)
1018 {
1019 	long j = -1;
1020 	struct fdtable *fdt;
1021 
1022 	spin_lock(&files->file_lock);
1023 	for (;;) {
1024 		unsigned long set, i;
1025 
1026 		j++;
1027 		i = j * __NFDBITS;
1028 		fdt = files_fdtable(files);
1029 		if (i >= fdt->max_fds)
1030 			break;
1031 		set = fdt->close_on_exec[j];
1032 		if (!set)
1033 			continue;
1034 		fdt->close_on_exec[j] = 0;
1035 		spin_unlock(&files->file_lock);
1036 		for ( ; set ; i++,set >>= 1) {
1037 			if (set & 1) {
1038 				sys_close(i);
1039 			}
1040 		}
1041 		spin_lock(&files->file_lock);
1042 
1043 	}
1044 	spin_unlock(&files->file_lock);
1045 }
1046 
1047 char *get_task_comm(char *buf, struct task_struct *tsk)
1048 {
1049 	/* buf must be at least sizeof(tsk->comm) in size */
1050 	task_lock(tsk);
1051 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1052 	task_unlock(tsk);
1053 	return buf;
1054 }
1055 EXPORT_SYMBOL_GPL(get_task_comm);
1056 
1057 void set_task_comm(struct task_struct *tsk, char *buf)
1058 {
1059 	task_lock(tsk);
1060 
1061 	trace_task_rename(tsk, buf);
1062 
1063 	/*
1064 	 * Threads may access current->comm without holding
1065 	 * the task lock, so write the string carefully.
1066 	 * Readers without a lock may see incomplete new
1067 	 * names but are safe from non-terminating string reads.
1068 	 */
1069 	memset(tsk->comm, 0, TASK_COMM_LEN);
1070 	wmb();
1071 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1072 	task_unlock(tsk);
1073 	perf_event_comm(tsk);
1074 }
1075 
1076 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1077 {
1078 	int i, ch;
1079 
1080 	/* Copies the binary name from after last slash */
1081 	for (i = 0; (ch = *(fn++)) != '\0';) {
1082 		if (ch == '/')
1083 			i = 0; /* overwrite what we wrote */
1084 		else
1085 			if (i < len - 1)
1086 				tcomm[i++] = ch;
1087 	}
1088 	tcomm[i] = '\0';
1089 }
1090 
1091 int flush_old_exec(struct linux_binprm * bprm)
1092 {
1093 	int retval;
1094 
1095 	/*
1096 	 * Make sure we have a private signal table and that
1097 	 * we are unassociated from the previous thread group.
1098 	 */
1099 	retval = de_thread(current);
1100 	if (retval)
1101 		goto out;
1102 
1103 	set_mm_exe_file(bprm->mm, bprm->file);
1104 
1105 	filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1106 	/*
1107 	 * Release all of the old mmap stuff
1108 	 */
1109 	acct_arg_size(bprm, 0);
1110 	retval = exec_mmap(bprm->mm);
1111 	if (retval)
1112 		goto out;
1113 
1114 	bprm->mm = NULL;		/* We're using it now */
1115 
1116 	set_fs(USER_DS);
1117 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD);
1118 	flush_thread();
1119 	current->personality &= ~bprm->per_clear;
1120 
1121 	return 0;
1122 
1123 out:
1124 	return retval;
1125 }
1126 EXPORT_SYMBOL(flush_old_exec);
1127 
1128 void would_dump(struct linux_binprm *bprm, struct file *file)
1129 {
1130 	if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1131 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1132 }
1133 EXPORT_SYMBOL(would_dump);
1134 
1135 void setup_new_exec(struct linux_binprm * bprm)
1136 {
1137 	arch_pick_mmap_layout(current->mm);
1138 
1139 	/* This is the point of no return */
1140 	current->sas_ss_sp = current->sas_ss_size = 0;
1141 
1142 	if (current_euid() == current_uid() && current_egid() == current_gid())
1143 		set_dumpable(current->mm, 1);
1144 	else
1145 		set_dumpable(current->mm, suid_dumpable);
1146 
1147 	set_task_comm(current, bprm->tcomm);
1148 
1149 	/* Set the new mm task size. We have to do that late because it may
1150 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1151 	 * some architectures like powerpc
1152 	 */
1153 	current->mm->task_size = TASK_SIZE;
1154 
1155 	/* install the new credentials */
1156 	if (bprm->cred->uid != current_euid() ||
1157 	    bprm->cred->gid != current_egid()) {
1158 		current->pdeath_signal = 0;
1159 	} else {
1160 		would_dump(bprm, bprm->file);
1161 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1162 			set_dumpable(current->mm, suid_dumpable);
1163 	}
1164 
1165 	/*
1166 	 * Flush performance counters when crossing a
1167 	 * security domain:
1168 	 */
1169 	if (!get_dumpable(current->mm))
1170 		perf_event_exit_task(current);
1171 
1172 	/* An exec changes our domain. We are no longer part of the thread
1173 	   group */
1174 
1175 	current->self_exec_id++;
1176 
1177 	flush_signal_handlers(current, 0);
1178 	flush_old_files(current->files);
1179 }
1180 EXPORT_SYMBOL(setup_new_exec);
1181 
1182 /*
1183  * Prepare credentials and lock ->cred_guard_mutex.
1184  * install_exec_creds() commits the new creds and drops the lock.
1185  * Or, if exec fails before, free_bprm() should release ->cred and
1186  * and unlock.
1187  */
1188 int prepare_bprm_creds(struct linux_binprm *bprm)
1189 {
1190 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1191 		return -ERESTARTNOINTR;
1192 
1193 	bprm->cred = prepare_exec_creds();
1194 	if (likely(bprm->cred))
1195 		return 0;
1196 
1197 	mutex_unlock(&current->signal->cred_guard_mutex);
1198 	return -ENOMEM;
1199 }
1200 
1201 void free_bprm(struct linux_binprm *bprm)
1202 {
1203 	free_arg_pages(bprm);
1204 	if (bprm->cred) {
1205 		mutex_unlock(&current->signal->cred_guard_mutex);
1206 		abort_creds(bprm->cred);
1207 	}
1208 	kfree(bprm);
1209 }
1210 
1211 /*
1212  * install the new credentials for this executable
1213  */
1214 void install_exec_creds(struct linux_binprm *bprm)
1215 {
1216 	security_bprm_committing_creds(bprm);
1217 
1218 	commit_creds(bprm->cred);
1219 	bprm->cred = NULL;
1220 	/*
1221 	 * cred_guard_mutex must be held at least to this point to prevent
1222 	 * ptrace_attach() from altering our determination of the task's
1223 	 * credentials; any time after this it may be unlocked.
1224 	 */
1225 	security_bprm_committed_creds(bprm);
1226 	mutex_unlock(&current->signal->cred_guard_mutex);
1227 }
1228 EXPORT_SYMBOL(install_exec_creds);
1229 
1230 /*
1231  * determine how safe it is to execute the proposed program
1232  * - the caller must hold ->cred_guard_mutex to protect against
1233  *   PTRACE_ATTACH
1234  */
1235 static int check_unsafe_exec(struct linux_binprm *bprm)
1236 {
1237 	struct task_struct *p = current, *t;
1238 	unsigned n_fs;
1239 	int res = 0;
1240 
1241 	if (p->ptrace) {
1242 		if (p->ptrace & PT_PTRACE_CAP)
1243 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1244 		else
1245 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1246 	}
1247 
1248 	n_fs = 1;
1249 	spin_lock(&p->fs->lock);
1250 	rcu_read_lock();
1251 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1252 		if (t->fs == p->fs)
1253 			n_fs++;
1254 	}
1255 	rcu_read_unlock();
1256 
1257 	if (p->fs->users > n_fs) {
1258 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1259 	} else {
1260 		res = -EAGAIN;
1261 		if (!p->fs->in_exec) {
1262 			p->fs->in_exec = 1;
1263 			res = 1;
1264 		}
1265 	}
1266 	spin_unlock(&p->fs->lock);
1267 
1268 	return res;
1269 }
1270 
1271 /*
1272  * Fill the binprm structure from the inode.
1273  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1274  *
1275  * This may be called multiple times for binary chains (scripts for example).
1276  */
1277 int prepare_binprm(struct linux_binprm *bprm)
1278 {
1279 	umode_t mode;
1280 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1281 	int retval;
1282 
1283 	mode = inode->i_mode;
1284 	if (bprm->file->f_op == NULL)
1285 		return -EACCES;
1286 
1287 	/* clear any previous set[ug]id data from a previous binary */
1288 	bprm->cred->euid = current_euid();
1289 	bprm->cred->egid = current_egid();
1290 
1291 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1292 		/* Set-uid? */
1293 		if (mode & S_ISUID) {
1294 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1295 			bprm->cred->euid = inode->i_uid;
1296 		}
1297 
1298 		/* Set-gid? */
1299 		/*
1300 		 * If setgid is set but no group execute bit then this
1301 		 * is a candidate for mandatory locking, not a setgid
1302 		 * executable.
1303 		 */
1304 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1305 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1306 			bprm->cred->egid = inode->i_gid;
1307 		}
1308 	}
1309 
1310 	/* fill in binprm security blob */
1311 	retval = security_bprm_set_creds(bprm);
1312 	if (retval)
1313 		return retval;
1314 	bprm->cred_prepared = 1;
1315 
1316 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1317 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1318 }
1319 
1320 EXPORT_SYMBOL(prepare_binprm);
1321 
1322 /*
1323  * Arguments are '\0' separated strings found at the location bprm->p
1324  * points to; chop off the first by relocating brpm->p to right after
1325  * the first '\0' encountered.
1326  */
1327 int remove_arg_zero(struct linux_binprm *bprm)
1328 {
1329 	int ret = 0;
1330 	unsigned long offset;
1331 	char *kaddr;
1332 	struct page *page;
1333 
1334 	if (!bprm->argc)
1335 		return 0;
1336 
1337 	do {
1338 		offset = bprm->p & ~PAGE_MASK;
1339 		page = get_arg_page(bprm, bprm->p, 0);
1340 		if (!page) {
1341 			ret = -EFAULT;
1342 			goto out;
1343 		}
1344 		kaddr = kmap_atomic(page);
1345 
1346 		for (; offset < PAGE_SIZE && kaddr[offset];
1347 				offset++, bprm->p++)
1348 			;
1349 
1350 		kunmap_atomic(kaddr);
1351 		put_arg_page(page);
1352 
1353 		if (offset == PAGE_SIZE)
1354 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1355 	} while (offset == PAGE_SIZE);
1356 
1357 	bprm->p++;
1358 	bprm->argc--;
1359 	ret = 0;
1360 
1361 out:
1362 	return ret;
1363 }
1364 EXPORT_SYMBOL(remove_arg_zero);
1365 
1366 /*
1367  * cycle the list of binary formats handler, until one recognizes the image
1368  */
1369 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1370 {
1371 	unsigned int depth = bprm->recursion_depth;
1372 	int try,retval;
1373 	struct linux_binfmt *fmt;
1374 	pid_t old_pid, old_vpid;
1375 
1376 	retval = security_bprm_check(bprm);
1377 	if (retval)
1378 		return retval;
1379 
1380 	retval = audit_bprm(bprm);
1381 	if (retval)
1382 		return retval;
1383 
1384 	/* Need to fetch pid before load_binary changes it */
1385 	old_pid = current->pid;
1386 	rcu_read_lock();
1387 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1388 	rcu_read_unlock();
1389 
1390 	retval = -ENOENT;
1391 	for (try=0; try<2; try++) {
1392 		read_lock(&binfmt_lock);
1393 		list_for_each_entry(fmt, &formats, lh) {
1394 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1395 			if (!fn)
1396 				continue;
1397 			if (!try_module_get(fmt->module))
1398 				continue;
1399 			read_unlock(&binfmt_lock);
1400 			retval = fn(bprm, regs);
1401 			/*
1402 			 * Restore the depth counter to its starting value
1403 			 * in this call, so we don't have to rely on every
1404 			 * load_binary function to restore it on return.
1405 			 */
1406 			bprm->recursion_depth = depth;
1407 			if (retval >= 0) {
1408 				if (depth == 0) {
1409 					trace_sched_process_exec(current, old_pid, bprm);
1410 					ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1411 				}
1412 				put_binfmt(fmt);
1413 				allow_write_access(bprm->file);
1414 				if (bprm->file)
1415 					fput(bprm->file);
1416 				bprm->file = NULL;
1417 				current->did_exec = 1;
1418 				proc_exec_connector(current);
1419 				return retval;
1420 			}
1421 			read_lock(&binfmt_lock);
1422 			put_binfmt(fmt);
1423 			if (retval != -ENOEXEC || bprm->mm == NULL)
1424 				break;
1425 			if (!bprm->file) {
1426 				read_unlock(&binfmt_lock);
1427 				return retval;
1428 			}
1429 		}
1430 		read_unlock(&binfmt_lock);
1431 #ifdef CONFIG_MODULES
1432 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1433 			break;
1434 		} else {
1435 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1436 			if (printable(bprm->buf[0]) &&
1437 			    printable(bprm->buf[1]) &&
1438 			    printable(bprm->buf[2]) &&
1439 			    printable(bprm->buf[3]))
1440 				break; /* -ENOEXEC */
1441 			if (try)
1442 				break; /* -ENOEXEC */
1443 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1444 		}
1445 #else
1446 		break;
1447 #endif
1448 	}
1449 	return retval;
1450 }
1451 
1452 EXPORT_SYMBOL(search_binary_handler);
1453 
1454 /*
1455  * sys_execve() executes a new program.
1456  */
1457 static int do_execve_common(const char *filename,
1458 				struct user_arg_ptr argv,
1459 				struct user_arg_ptr envp,
1460 				struct pt_regs *regs)
1461 {
1462 	struct linux_binprm *bprm;
1463 	struct file *file;
1464 	struct files_struct *displaced;
1465 	bool clear_in_exec;
1466 	int retval;
1467 	const struct cred *cred = current_cred();
1468 
1469 	/*
1470 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1471 	 * set*uid() to execve() because too many poorly written programs
1472 	 * don't check setuid() return code.  Here we additionally recheck
1473 	 * whether NPROC limit is still exceeded.
1474 	 */
1475 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1476 	    atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1477 		retval = -EAGAIN;
1478 		goto out_ret;
1479 	}
1480 
1481 	/* We're below the limit (still or again), so we don't want to make
1482 	 * further execve() calls fail. */
1483 	current->flags &= ~PF_NPROC_EXCEEDED;
1484 
1485 	retval = unshare_files(&displaced);
1486 	if (retval)
1487 		goto out_ret;
1488 
1489 	retval = -ENOMEM;
1490 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1491 	if (!bprm)
1492 		goto out_files;
1493 
1494 	retval = prepare_bprm_creds(bprm);
1495 	if (retval)
1496 		goto out_free;
1497 
1498 	retval = check_unsafe_exec(bprm);
1499 	if (retval < 0)
1500 		goto out_free;
1501 	clear_in_exec = retval;
1502 	current->in_execve = 1;
1503 
1504 	file = open_exec(filename);
1505 	retval = PTR_ERR(file);
1506 	if (IS_ERR(file))
1507 		goto out_unmark;
1508 
1509 	sched_exec();
1510 
1511 	bprm->file = file;
1512 	bprm->filename = filename;
1513 	bprm->interp = filename;
1514 
1515 	retval = bprm_mm_init(bprm);
1516 	if (retval)
1517 		goto out_file;
1518 
1519 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1520 	if ((retval = bprm->argc) < 0)
1521 		goto out;
1522 
1523 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1524 	if ((retval = bprm->envc) < 0)
1525 		goto out;
1526 
1527 	retval = prepare_binprm(bprm);
1528 	if (retval < 0)
1529 		goto out;
1530 
1531 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1532 	if (retval < 0)
1533 		goto out;
1534 
1535 	bprm->exec = bprm->p;
1536 	retval = copy_strings(bprm->envc, envp, bprm);
1537 	if (retval < 0)
1538 		goto out;
1539 
1540 	retval = copy_strings(bprm->argc, argv, bprm);
1541 	if (retval < 0)
1542 		goto out;
1543 
1544 	retval = search_binary_handler(bprm,regs);
1545 	if (retval < 0)
1546 		goto out;
1547 
1548 	/* execve succeeded */
1549 	current->fs->in_exec = 0;
1550 	current->in_execve = 0;
1551 	acct_update_integrals(current);
1552 	free_bprm(bprm);
1553 	if (displaced)
1554 		put_files_struct(displaced);
1555 	return retval;
1556 
1557 out:
1558 	if (bprm->mm) {
1559 		acct_arg_size(bprm, 0);
1560 		mmput(bprm->mm);
1561 	}
1562 
1563 out_file:
1564 	if (bprm->file) {
1565 		allow_write_access(bprm->file);
1566 		fput(bprm->file);
1567 	}
1568 
1569 out_unmark:
1570 	if (clear_in_exec)
1571 		current->fs->in_exec = 0;
1572 	current->in_execve = 0;
1573 
1574 out_free:
1575 	free_bprm(bprm);
1576 
1577 out_files:
1578 	if (displaced)
1579 		reset_files_struct(displaced);
1580 out_ret:
1581 	return retval;
1582 }
1583 
1584 int do_execve(const char *filename,
1585 	const char __user *const __user *__argv,
1586 	const char __user *const __user *__envp,
1587 	struct pt_regs *regs)
1588 {
1589 	struct user_arg_ptr argv = { .ptr.native = __argv };
1590 	struct user_arg_ptr envp = { .ptr.native = __envp };
1591 	return do_execve_common(filename, argv, envp, regs);
1592 }
1593 
1594 #ifdef CONFIG_COMPAT
1595 int compat_do_execve(char *filename,
1596 	compat_uptr_t __user *__argv,
1597 	compat_uptr_t __user *__envp,
1598 	struct pt_regs *regs)
1599 {
1600 	struct user_arg_ptr argv = {
1601 		.is_compat = true,
1602 		.ptr.compat = __argv,
1603 	};
1604 	struct user_arg_ptr envp = {
1605 		.is_compat = true,
1606 		.ptr.compat = __envp,
1607 	};
1608 	return do_execve_common(filename, argv, envp, regs);
1609 }
1610 #endif
1611 
1612 void set_binfmt(struct linux_binfmt *new)
1613 {
1614 	struct mm_struct *mm = current->mm;
1615 
1616 	if (mm->binfmt)
1617 		module_put(mm->binfmt->module);
1618 
1619 	mm->binfmt = new;
1620 	if (new)
1621 		__module_get(new->module);
1622 }
1623 
1624 EXPORT_SYMBOL(set_binfmt);
1625 
1626 static int expand_corename(struct core_name *cn)
1627 {
1628 	char *old_corename = cn->corename;
1629 
1630 	cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1631 	cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1632 
1633 	if (!cn->corename) {
1634 		kfree(old_corename);
1635 		return -ENOMEM;
1636 	}
1637 
1638 	return 0;
1639 }
1640 
1641 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1642 {
1643 	char *cur;
1644 	int need;
1645 	int ret;
1646 	va_list arg;
1647 
1648 	va_start(arg, fmt);
1649 	need = vsnprintf(NULL, 0, fmt, arg);
1650 	va_end(arg);
1651 
1652 	if (likely(need < cn->size - cn->used - 1))
1653 		goto out_printf;
1654 
1655 	ret = expand_corename(cn);
1656 	if (ret)
1657 		goto expand_fail;
1658 
1659 out_printf:
1660 	cur = cn->corename + cn->used;
1661 	va_start(arg, fmt);
1662 	vsnprintf(cur, need + 1, fmt, arg);
1663 	va_end(arg);
1664 	cn->used += need;
1665 	return 0;
1666 
1667 expand_fail:
1668 	return ret;
1669 }
1670 
1671 static void cn_escape(char *str)
1672 {
1673 	for (; *str; str++)
1674 		if (*str == '/')
1675 			*str = '!';
1676 }
1677 
1678 static int cn_print_exe_file(struct core_name *cn)
1679 {
1680 	struct file *exe_file;
1681 	char *pathbuf, *path;
1682 	int ret;
1683 
1684 	exe_file = get_mm_exe_file(current->mm);
1685 	if (!exe_file) {
1686 		char *commstart = cn->corename + cn->used;
1687 		ret = cn_printf(cn, "%s (path unknown)", current->comm);
1688 		cn_escape(commstart);
1689 		return ret;
1690 	}
1691 
1692 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1693 	if (!pathbuf) {
1694 		ret = -ENOMEM;
1695 		goto put_exe_file;
1696 	}
1697 
1698 	path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1699 	if (IS_ERR(path)) {
1700 		ret = PTR_ERR(path);
1701 		goto free_buf;
1702 	}
1703 
1704 	cn_escape(path);
1705 
1706 	ret = cn_printf(cn, "%s", path);
1707 
1708 free_buf:
1709 	kfree(pathbuf);
1710 put_exe_file:
1711 	fput(exe_file);
1712 	return ret;
1713 }
1714 
1715 /* format_corename will inspect the pattern parameter, and output a
1716  * name into corename, which must have space for at least
1717  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1718  */
1719 static int format_corename(struct core_name *cn, long signr)
1720 {
1721 	const struct cred *cred = current_cred();
1722 	const char *pat_ptr = core_pattern;
1723 	int ispipe = (*pat_ptr == '|');
1724 	int pid_in_pattern = 0;
1725 	int err = 0;
1726 
1727 	cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1728 	cn->corename = kmalloc(cn->size, GFP_KERNEL);
1729 	cn->used = 0;
1730 
1731 	if (!cn->corename)
1732 		return -ENOMEM;
1733 
1734 	/* Repeat as long as we have more pattern to process and more output
1735 	   space */
1736 	while (*pat_ptr) {
1737 		if (*pat_ptr != '%') {
1738 			if (*pat_ptr == 0)
1739 				goto out;
1740 			err = cn_printf(cn, "%c", *pat_ptr++);
1741 		} else {
1742 			switch (*++pat_ptr) {
1743 			/* single % at the end, drop that */
1744 			case 0:
1745 				goto out;
1746 			/* Double percent, output one percent */
1747 			case '%':
1748 				err = cn_printf(cn, "%c", '%');
1749 				break;
1750 			/* pid */
1751 			case 'p':
1752 				pid_in_pattern = 1;
1753 				err = cn_printf(cn, "%d",
1754 					      task_tgid_vnr(current));
1755 				break;
1756 			/* uid */
1757 			case 'u':
1758 				err = cn_printf(cn, "%d", cred->uid);
1759 				break;
1760 			/* gid */
1761 			case 'g':
1762 				err = cn_printf(cn, "%d", cred->gid);
1763 				break;
1764 			/* signal that caused the coredump */
1765 			case 's':
1766 				err = cn_printf(cn, "%ld", signr);
1767 				break;
1768 			/* UNIX time of coredump */
1769 			case 't': {
1770 				struct timeval tv;
1771 				do_gettimeofday(&tv);
1772 				err = cn_printf(cn, "%lu", tv.tv_sec);
1773 				break;
1774 			}
1775 			/* hostname */
1776 			case 'h': {
1777 				char *namestart = cn->corename + cn->used;
1778 				down_read(&uts_sem);
1779 				err = cn_printf(cn, "%s",
1780 					      utsname()->nodename);
1781 				up_read(&uts_sem);
1782 				cn_escape(namestart);
1783 				break;
1784 			}
1785 			/* executable */
1786 			case 'e': {
1787 				char *commstart = cn->corename + cn->used;
1788 				err = cn_printf(cn, "%s", current->comm);
1789 				cn_escape(commstart);
1790 				break;
1791 			}
1792 			case 'E':
1793 				err = cn_print_exe_file(cn);
1794 				break;
1795 			/* core limit size */
1796 			case 'c':
1797 				err = cn_printf(cn, "%lu",
1798 					      rlimit(RLIMIT_CORE));
1799 				break;
1800 			default:
1801 				break;
1802 			}
1803 			++pat_ptr;
1804 		}
1805 
1806 		if (err)
1807 			return err;
1808 	}
1809 
1810 	/* Backward compatibility with core_uses_pid:
1811 	 *
1812 	 * If core_pattern does not include a %p (as is the default)
1813 	 * and core_uses_pid is set, then .%pid will be appended to
1814 	 * the filename. Do not do this for piped commands. */
1815 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1816 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1817 		if (err)
1818 			return err;
1819 	}
1820 out:
1821 	return ispipe;
1822 }
1823 
1824 static int zap_process(struct task_struct *start, int exit_code)
1825 {
1826 	struct task_struct *t;
1827 	int nr = 0;
1828 
1829 	start->signal->flags = SIGNAL_GROUP_EXIT;
1830 	start->signal->group_exit_code = exit_code;
1831 	start->signal->group_stop_count = 0;
1832 
1833 	t = start;
1834 	do {
1835 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1836 		if (t != current && t->mm) {
1837 			sigaddset(&t->pending.signal, SIGKILL);
1838 			signal_wake_up(t, 1);
1839 			nr++;
1840 		}
1841 	} while_each_thread(start, t);
1842 
1843 	return nr;
1844 }
1845 
1846 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1847 				struct core_state *core_state, int exit_code)
1848 {
1849 	struct task_struct *g, *p;
1850 	unsigned long flags;
1851 	int nr = -EAGAIN;
1852 
1853 	spin_lock_irq(&tsk->sighand->siglock);
1854 	if (!signal_group_exit(tsk->signal)) {
1855 		mm->core_state = core_state;
1856 		nr = zap_process(tsk, exit_code);
1857 	}
1858 	spin_unlock_irq(&tsk->sighand->siglock);
1859 	if (unlikely(nr < 0))
1860 		return nr;
1861 
1862 	if (atomic_read(&mm->mm_users) == nr + 1)
1863 		goto done;
1864 	/*
1865 	 * We should find and kill all tasks which use this mm, and we should
1866 	 * count them correctly into ->nr_threads. We don't take tasklist
1867 	 * lock, but this is safe wrt:
1868 	 *
1869 	 * fork:
1870 	 *	None of sub-threads can fork after zap_process(leader). All
1871 	 *	processes which were created before this point should be
1872 	 *	visible to zap_threads() because copy_process() adds the new
1873 	 *	process to the tail of init_task.tasks list, and lock/unlock
1874 	 *	of ->siglock provides a memory barrier.
1875 	 *
1876 	 * do_exit:
1877 	 *	The caller holds mm->mmap_sem. This means that the task which
1878 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1879 	 *	its ->mm.
1880 	 *
1881 	 * de_thread:
1882 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1883 	 *	we must see either old or new leader, this does not matter.
1884 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1885 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1886 	 *	it can't fail.
1887 	 *
1888 	 *	Note also that "g" can be the old leader with ->mm == NULL
1889 	 *	and already unhashed and thus removed from ->thread_group.
1890 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1891 	 *	clear the ->next pointer, we will find the new leader via
1892 	 *	next_thread().
1893 	 */
1894 	rcu_read_lock();
1895 	for_each_process(g) {
1896 		if (g == tsk->group_leader)
1897 			continue;
1898 		if (g->flags & PF_KTHREAD)
1899 			continue;
1900 		p = g;
1901 		do {
1902 			if (p->mm) {
1903 				if (unlikely(p->mm == mm)) {
1904 					lock_task_sighand(p, &flags);
1905 					nr += zap_process(p, exit_code);
1906 					unlock_task_sighand(p, &flags);
1907 				}
1908 				break;
1909 			}
1910 		} while_each_thread(g, p);
1911 	}
1912 	rcu_read_unlock();
1913 done:
1914 	atomic_set(&core_state->nr_threads, nr);
1915 	return nr;
1916 }
1917 
1918 static int coredump_wait(int exit_code, struct core_state *core_state)
1919 {
1920 	struct task_struct *tsk = current;
1921 	struct mm_struct *mm = tsk->mm;
1922 	int core_waiters = -EBUSY;
1923 
1924 	init_completion(&core_state->startup);
1925 	core_state->dumper.task = tsk;
1926 	core_state->dumper.next = NULL;
1927 
1928 	down_write(&mm->mmap_sem);
1929 	if (!mm->core_state)
1930 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1931 	up_write(&mm->mmap_sem);
1932 
1933 	if (core_waiters > 0)
1934 		wait_for_completion(&core_state->startup);
1935 
1936 	return core_waiters;
1937 }
1938 
1939 static void coredump_finish(struct mm_struct *mm)
1940 {
1941 	struct core_thread *curr, *next;
1942 	struct task_struct *task;
1943 
1944 	next = mm->core_state->dumper.next;
1945 	while ((curr = next) != NULL) {
1946 		next = curr->next;
1947 		task = curr->task;
1948 		/*
1949 		 * see exit_mm(), curr->task must not see
1950 		 * ->task == NULL before we read ->next.
1951 		 */
1952 		smp_mb();
1953 		curr->task = NULL;
1954 		wake_up_process(task);
1955 	}
1956 
1957 	mm->core_state = NULL;
1958 }
1959 
1960 /*
1961  * set_dumpable converts traditional three-value dumpable to two flags and
1962  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1963  * these bits are not changed atomically.  So get_dumpable can observe the
1964  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1965  * return either old dumpable or new one by paying attention to the order of
1966  * modifying the bits.
1967  *
1968  * dumpable |   mm->flags (binary)
1969  * old  new | initial interim  final
1970  * ---------+-----------------------
1971  *  0    1  |   00      01      01
1972  *  0    2  |   00      10(*)   11
1973  *  1    0  |   01      00      00
1974  *  1    2  |   01      11      11
1975  *  2    0  |   11      10(*)   00
1976  *  2    1  |   11      11      01
1977  *
1978  * (*) get_dumpable regards interim value of 10 as 11.
1979  */
1980 void set_dumpable(struct mm_struct *mm, int value)
1981 {
1982 	switch (value) {
1983 	case 0:
1984 		clear_bit(MMF_DUMPABLE, &mm->flags);
1985 		smp_wmb();
1986 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1987 		break;
1988 	case 1:
1989 		set_bit(MMF_DUMPABLE, &mm->flags);
1990 		smp_wmb();
1991 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1992 		break;
1993 	case 2:
1994 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1995 		smp_wmb();
1996 		set_bit(MMF_DUMPABLE, &mm->flags);
1997 		break;
1998 	}
1999 }
2000 
2001 static int __get_dumpable(unsigned long mm_flags)
2002 {
2003 	int ret;
2004 
2005 	ret = mm_flags & MMF_DUMPABLE_MASK;
2006 	return (ret >= 2) ? 2 : ret;
2007 }
2008 
2009 int get_dumpable(struct mm_struct *mm)
2010 {
2011 	return __get_dumpable(mm->flags);
2012 }
2013 
2014 static void wait_for_dump_helpers(struct file *file)
2015 {
2016 	struct pipe_inode_info *pipe;
2017 
2018 	pipe = file->f_path.dentry->d_inode->i_pipe;
2019 
2020 	pipe_lock(pipe);
2021 	pipe->readers++;
2022 	pipe->writers--;
2023 
2024 	while ((pipe->readers > 1) && (!signal_pending(current))) {
2025 		wake_up_interruptible_sync(&pipe->wait);
2026 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
2027 		pipe_wait(pipe);
2028 	}
2029 
2030 	pipe->readers--;
2031 	pipe->writers++;
2032 	pipe_unlock(pipe);
2033 
2034 }
2035 
2036 
2037 /*
2038  * umh_pipe_setup
2039  * helper function to customize the process used
2040  * to collect the core in userspace.  Specifically
2041  * it sets up a pipe and installs it as fd 0 (stdin)
2042  * for the process.  Returns 0 on success, or
2043  * PTR_ERR on failure.
2044  * Note that it also sets the core limit to 1.  This
2045  * is a special value that we use to trap recursive
2046  * core dumps
2047  */
2048 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
2049 {
2050 	struct file *rp, *wp;
2051 	struct fdtable *fdt;
2052 	struct coredump_params *cp = (struct coredump_params *)info->data;
2053 	struct files_struct *cf = current->files;
2054 
2055 	wp = create_write_pipe(0);
2056 	if (IS_ERR(wp))
2057 		return PTR_ERR(wp);
2058 
2059 	rp = create_read_pipe(wp, 0);
2060 	if (IS_ERR(rp)) {
2061 		free_write_pipe(wp);
2062 		return PTR_ERR(rp);
2063 	}
2064 
2065 	cp->file = wp;
2066 
2067 	sys_close(0);
2068 	fd_install(0, rp);
2069 	spin_lock(&cf->file_lock);
2070 	fdt = files_fdtable(cf);
2071 	__set_open_fd(0, fdt);
2072 	__clear_close_on_exec(0, fdt);
2073 	spin_unlock(&cf->file_lock);
2074 
2075 	/* and disallow core files too */
2076 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2077 
2078 	return 0;
2079 }
2080 
2081 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
2082 {
2083 	struct core_state core_state;
2084 	struct core_name cn;
2085 	struct mm_struct *mm = current->mm;
2086 	struct linux_binfmt * binfmt;
2087 	const struct cred *old_cred;
2088 	struct cred *cred;
2089 	int retval = 0;
2090 	int flag = 0;
2091 	int ispipe;
2092 	static atomic_t core_dump_count = ATOMIC_INIT(0);
2093 	struct coredump_params cprm = {
2094 		.signr = signr,
2095 		.regs = regs,
2096 		.limit = rlimit(RLIMIT_CORE),
2097 		/*
2098 		 * We must use the same mm->flags while dumping core to avoid
2099 		 * inconsistency of bit flags, since this flag is not protected
2100 		 * by any locks.
2101 		 */
2102 		.mm_flags = mm->flags,
2103 	};
2104 
2105 	audit_core_dumps(signr);
2106 
2107 	binfmt = mm->binfmt;
2108 	if (!binfmt || !binfmt->core_dump)
2109 		goto fail;
2110 	if (!__get_dumpable(cprm.mm_flags))
2111 		goto fail;
2112 
2113 	cred = prepare_creds();
2114 	if (!cred)
2115 		goto fail;
2116 	/*
2117 	 *	We cannot trust fsuid as being the "true" uid of the
2118 	 *	process nor do we know its entire history. We only know it
2119 	 *	was tainted so we dump it as root in mode 2.
2120 	 */
2121 	if (__get_dumpable(cprm.mm_flags) == 2) {
2122 		/* Setuid core dump mode */
2123 		flag = O_EXCL;		/* Stop rewrite attacks */
2124 		cred->fsuid = 0;	/* Dump root private */
2125 	}
2126 
2127 	retval = coredump_wait(exit_code, &core_state);
2128 	if (retval < 0)
2129 		goto fail_creds;
2130 
2131 	old_cred = override_creds(cred);
2132 
2133 	/*
2134 	 * Clear any false indication of pending signals that might
2135 	 * be seen by the filesystem code called to write the core file.
2136 	 */
2137 	clear_thread_flag(TIF_SIGPENDING);
2138 
2139 	ispipe = format_corename(&cn, signr);
2140 
2141  	if (ispipe) {
2142 		int dump_count;
2143 		char **helper_argv;
2144 
2145 		if (ispipe < 0) {
2146 			printk(KERN_WARNING "format_corename failed\n");
2147 			printk(KERN_WARNING "Aborting core\n");
2148 			goto fail_corename;
2149 		}
2150 
2151 		if (cprm.limit == 1) {
2152 			/*
2153 			 * Normally core limits are irrelevant to pipes, since
2154 			 * we're not writing to the file system, but we use
2155 			 * cprm.limit of 1 here as a speacial value. Any
2156 			 * non-1 limit gets set to RLIM_INFINITY below, but
2157 			 * a limit of 0 skips the dump.  This is a consistent
2158 			 * way to catch recursive crashes.  We can still crash
2159 			 * if the core_pattern binary sets RLIM_CORE =  !1
2160 			 * but it runs as root, and can do lots of stupid things
2161 			 * Note that we use task_tgid_vnr here to grab the pid
2162 			 * of the process group leader.  That way we get the
2163 			 * right pid if a thread in a multi-threaded
2164 			 * core_pattern process dies.
2165 			 */
2166 			printk(KERN_WARNING
2167 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
2168 				task_tgid_vnr(current), current->comm);
2169 			printk(KERN_WARNING "Aborting core\n");
2170 			goto fail_unlock;
2171 		}
2172 		cprm.limit = RLIM_INFINITY;
2173 
2174 		dump_count = atomic_inc_return(&core_dump_count);
2175 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2176 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2177 			       task_tgid_vnr(current), current->comm);
2178 			printk(KERN_WARNING "Skipping core dump\n");
2179 			goto fail_dropcount;
2180 		}
2181 
2182 		helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2183 		if (!helper_argv) {
2184 			printk(KERN_WARNING "%s failed to allocate memory\n",
2185 			       __func__);
2186 			goto fail_dropcount;
2187 		}
2188 
2189 		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2190 					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2191 					NULL, &cprm);
2192 		argv_free(helper_argv);
2193 		if (retval) {
2194  			printk(KERN_INFO "Core dump to %s pipe failed\n",
2195 			       cn.corename);
2196 			goto close_fail;
2197  		}
2198 	} else {
2199 		struct inode *inode;
2200 
2201 		if (cprm.limit < binfmt->min_coredump)
2202 			goto fail_unlock;
2203 
2204 		cprm.file = filp_open(cn.corename,
2205 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2206 				 0600);
2207 		if (IS_ERR(cprm.file))
2208 			goto fail_unlock;
2209 
2210 		inode = cprm.file->f_path.dentry->d_inode;
2211 		if (inode->i_nlink > 1)
2212 			goto close_fail;
2213 		if (d_unhashed(cprm.file->f_path.dentry))
2214 			goto close_fail;
2215 		/*
2216 		 * AK: actually i see no reason to not allow this for named
2217 		 * pipes etc, but keep the previous behaviour for now.
2218 		 */
2219 		if (!S_ISREG(inode->i_mode))
2220 			goto close_fail;
2221 		/*
2222 		 * Dont allow local users get cute and trick others to coredump
2223 		 * into their pre-created files.
2224 		 */
2225 		if (inode->i_uid != current_fsuid())
2226 			goto close_fail;
2227 		if (!cprm.file->f_op || !cprm.file->f_op->write)
2228 			goto close_fail;
2229 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2230 			goto close_fail;
2231 	}
2232 
2233 	retval = binfmt->core_dump(&cprm);
2234 	if (retval)
2235 		current->signal->group_exit_code |= 0x80;
2236 
2237 	if (ispipe && core_pipe_limit)
2238 		wait_for_dump_helpers(cprm.file);
2239 close_fail:
2240 	if (cprm.file)
2241 		filp_close(cprm.file, NULL);
2242 fail_dropcount:
2243 	if (ispipe)
2244 		atomic_dec(&core_dump_count);
2245 fail_unlock:
2246 	kfree(cn.corename);
2247 fail_corename:
2248 	coredump_finish(mm);
2249 	revert_creds(old_cred);
2250 fail_creds:
2251 	put_cred(cred);
2252 fail:
2253 	return;
2254 }
2255 
2256 /*
2257  * Core dumping helper functions.  These are the only things you should
2258  * do on a core-file: use only these functions to write out all the
2259  * necessary info.
2260  */
2261 int dump_write(struct file *file, const void *addr, int nr)
2262 {
2263 	return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2264 }
2265 EXPORT_SYMBOL(dump_write);
2266 
2267 int dump_seek(struct file *file, loff_t off)
2268 {
2269 	int ret = 1;
2270 
2271 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2272 		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2273 			return 0;
2274 	} else {
2275 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2276 
2277 		if (!buf)
2278 			return 0;
2279 		while (off > 0) {
2280 			unsigned long n = off;
2281 
2282 			if (n > PAGE_SIZE)
2283 				n = PAGE_SIZE;
2284 			if (!dump_write(file, buf, n)) {
2285 				ret = 0;
2286 				break;
2287 			}
2288 			off -= n;
2289 		}
2290 		free_page((unsigned long)buf);
2291 	}
2292 	return ret;
2293 }
2294 EXPORT_SYMBOL(dump_seek);
2295