xref: /openbmc/linux/fs/exec.c (revision 94c7b6fc)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63 
64 #include <trace/events/task.h>
65 #include "internal.h"
66 
67 #include <trace/events/sched.h>
68 
69 int suid_dumpable = 0;
70 
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73 
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 	BUG_ON(!fmt);
77 	if (WARN_ON(!fmt->load_binary))
78 		return;
79 	write_lock(&binfmt_lock);
80 	insert ? list_add(&fmt->lh, &formats) :
81 		 list_add_tail(&fmt->lh, &formats);
82 	write_unlock(&binfmt_lock);
83 }
84 
85 EXPORT_SYMBOL(__register_binfmt);
86 
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89 	write_lock(&binfmt_lock);
90 	list_del(&fmt->lh);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(unregister_binfmt);
95 
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98 	module_put(fmt->module);
99 }
100 
101 #ifdef CONFIG_USELIB
102 /*
103  * Note that a shared library must be both readable and executable due to
104  * security reasons.
105  *
106  * Also note that we take the address to load from from the file itself.
107  */
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 {
110 	struct linux_binfmt *fmt;
111 	struct file *file;
112 	struct filename *tmp = getname(library);
113 	int error = PTR_ERR(tmp);
114 	static const struct open_flags uselib_flags = {
115 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
116 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
117 		.intent = LOOKUP_OPEN,
118 		.lookup_flags = LOOKUP_FOLLOW,
119 	};
120 
121 	if (IS_ERR(tmp))
122 		goto out;
123 
124 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
125 	putname(tmp);
126 	error = PTR_ERR(file);
127 	if (IS_ERR(file))
128 		goto out;
129 
130 	error = -EINVAL;
131 	if (!S_ISREG(file_inode(file)->i_mode))
132 		goto exit;
133 
134 	error = -EACCES;
135 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136 		goto exit;
137 
138 	fsnotify_open(file);
139 
140 	error = -ENOEXEC;
141 
142 	read_lock(&binfmt_lock);
143 	list_for_each_entry(fmt, &formats, lh) {
144 		if (!fmt->load_shlib)
145 			continue;
146 		if (!try_module_get(fmt->module))
147 			continue;
148 		read_unlock(&binfmt_lock);
149 		error = fmt->load_shlib(file);
150 		read_lock(&binfmt_lock);
151 		put_binfmt(fmt);
152 		if (error != -ENOEXEC)
153 			break;
154 	}
155 	read_unlock(&binfmt_lock);
156 exit:
157 	fput(file);
158 out:
159   	return error;
160 }
161 #endif /* #ifdef CONFIG_USELIB */
162 
163 #ifdef CONFIG_MMU
164 /*
165  * The nascent bprm->mm is not visible until exec_mmap() but it can
166  * use a lot of memory, account these pages in current->mm temporary
167  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168  * change the counter back via acct_arg_size(0).
169  */
170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
171 {
172 	struct mm_struct *mm = current->mm;
173 	long diff = (long)(pages - bprm->vma_pages);
174 
175 	if (!mm || !diff)
176 		return;
177 
178 	bprm->vma_pages = pages;
179 	add_mm_counter(mm, MM_ANONPAGES, diff);
180 }
181 
182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
183 		int write)
184 {
185 	struct page *page;
186 	int ret;
187 
188 #ifdef CONFIG_STACK_GROWSUP
189 	if (write) {
190 		ret = expand_downwards(bprm->vma, pos);
191 		if (ret < 0)
192 			return NULL;
193 	}
194 #endif
195 	ret = get_user_pages(current, bprm->mm, pos,
196 			1, write, 1, &page, NULL);
197 	if (ret <= 0)
198 		return NULL;
199 
200 	if (write) {
201 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202 		struct rlimit *rlim;
203 
204 		acct_arg_size(bprm, size / PAGE_SIZE);
205 
206 		/*
207 		 * We've historically supported up to 32 pages (ARG_MAX)
208 		 * of argument strings even with small stacks
209 		 */
210 		if (size <= ARG_MAX)
211 			return page;
212 
213 		/*
214 		 * Limit to 1/4-th the stack size for the argv+env strings.
215 		 * This ensures that:
216 		 *  - the remaining binfmt code will not run out of stack space,
217 		 *  - the program will have a reasonable amount of stack left
218 		 *    to work from.
219 		 */
220 		rlim = current->signal->rlim;
221 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
222 			put_page(page);
223 			return NULL;
224 		}
225 	}
226 
227 	return page;
228 }
229 
230 static void put_arg_page(struct page *page)
231 {
232 	put_page(page);
233 }
234 
235 static void free_arg_page(struct linux_binprm *bprm, int i)
236 {
237 }
238 
239 static void free_arg_pages(struct linux_binprm *bprm)
240 {
241 }
242 
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244 		struct page *page)
245 {
246 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 }
248 
249 static int __bprm_mm_init(struct linux_binprm *bprm)
250 {
251 	int err;
252 	struct vm_area_struct *vma = NULL;
253 	struct mm_struct *mm = bprm->mm;
254 
255 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
256 	if (!vma)
257 		return -ENOMEM;
258 
259 	down_write(&mm->mmap_sem);
260 	vma->vm_mm = mm;
261 
262 	/*
263 	 * Place the stack at the largest stack address the architecture
264 	 * supports. Later, we'll move this to an appropriate place. We don't
265 	 * use STACK_TOP because that can depend on attributes which aren't
266 	 * configured yet.
267 	 */
268 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269 	vma->vm_end = STACK_TOP_MAX;
270 	vma->vm_start = vma->vm_end - PAGE_SIZE;
271 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273 	INIT_LIST_HEAD(&vma->anon_vma_chain);
274 
275 	err = insert_vm_struct(mm, vma);
276 	if (err)
277 		goto err;
278 
279 	mm->stack_vm = mm->total_vm = 1;
280 	up_write(&mm->mmap_sem);
281 	bprm->p = vma->vm_end - sizeof(void *);
282 	return 0;
283 err:
284 	up_write(&mm->mmap_sem);
285 	bprm->vma = NULL;
286 	kmem_cache_free(vm_area_cachep, vma);
287 	return err;
288 }
289 
290 static bool valid_arg_len(struct linux_binprm *bprm, long len)
291 {
292 	return len <= MAX_ARG_STRLEN;
293 }
294 
295 #else
296 
297 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
298 {
299 }
300 
301 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
302 		int write)
303 {
304 	struct page *page;
305 
306 	page = bprm->page[pos / PAGE_SIZE];
307 	if (!page && write) {
308 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
309 		if (!page)
310 			return NULL;
311 		bprm->page[pos / PAGE_SIZE] = page;
312 	}
313 
314 	return page;
315 }
316 
317 static void put_arg_page(struct page *page)
318 {
319 }
320 
321 static void free_arg_page(struct linux_binprm *bprm, int i)
322 {
323 	if (bprm->page[i]) {
324 		__free_page(bprm->page[i]);
325 		bprm->page[i] = NULL;
326 	}
327 }
328 
329 static void free_arg_pages(struct linux_binprm *bprm)
330 {
331 	int i;
332 
333 	for (i = 0; i < MAX_ARG_PAGES; i++)
334 		free_arg_page(bprm, i);
335 }
336 
337 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
338 		struct page *page)
339 {
340 }
341 
342 static int __bprm_mm_init(struct linux_binprm *bprm)
343 {
344 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
345 	return 0;
346 }
347 
348 static bool valid_arg_len(struct linux_binprm *bprm, long len)
349 {
350 	return len <= bprm->p;
351 }
352 
353 #endif /* CONFIG_MMU */
354 
355 /*
356  * Create a new mm_struct and populate it with a temporary stack
357  * vm_area_struct.  We don't have enough context at this point to set the stack
358  * flags, permissions, and offset, so we use temporary values.  We'll update
359  * them later in setup_arg_pages().
360  */
361 static int bprm_mm_init(struct linux_binprm *bprm)
362 {
363 	int err;
364 	struct mm_struct *mm = NULL;
365 
366 	bprm->mm = mm = mm_alloc();
367 	err = -ENOMEM;
368 	if (!mm)
369 		goto err;
370 
371 	err = init_new_context(current, mm);
372 	if (err)
373 		goto err;
374 
375 	err = __bprm_mm_init(bprm);
376 	if (err)
377 		goto err;
378 
379 	return 0;
380 
381 err:
382 	if (mm) {
383 		bprm->mm = NULL;
384 		mmdrop(mm);
385 	}
386 
387 	return err;
388 }
389 
390 struct user_arg_ptr {
391 #ifdef CONFIG_COMPAT
392 	bool is_compat;
393 #endif
394 	union {
395 		const char __user *const __user *native;
396 #ifdef CONFIG_COMPAT
397 		const compat_uptr_t __user *compat;
398 #endif
399 	} ptr;
400 };
401 
402 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
403 {
404 	const char __user *native;
405 
406 #ifdef CONFIG_COMPAT
407 	if (unlikely(argv.is_compat)) {
408 		compat_uptr_t compat;
409 
410 		if (get_user(compat, argv.ptr.compat + nr))
411 			return ERR_PTR(-EFAULT);
412 
413 		return compat_ptr(compat);
414 	}
415 #endif
416 
417 	if (get_user(native, argv.ptr.native + nr))
418 		return ERR_PTR(-EFAULT);
419 
420 	return native;
421 }
422 
423 /*
424  * count() counts the number of strings in array ARGV.
425  */
426 static int count(struct user_arg_ptr argv, int max)
427 {
428 	int i = 0;
429 
430 	if (argv.ptr.native != NULL) {
431 		for (;;) {
432 			const char __user *p = get_user_arg_ptr(argv, i);
433 
434 			if (!p)
435 				break;
436 
437 			if (IS_ERR(p))
438 				return -EFAULT;
439 
440 			if (i >= max)
441 				return -E2BIG;
442 			++i;
443 
444 			if (fatal_signal_pending(current))
445 				return -ERESTARTNOHAND;
446 			cond_resched();
447 		}
448 	}
449 	return i;
450 }
451 
452 /*
453  * 'copy_strings()' copies argument/environment strings from the old
454  * processes's memory to the new process's stack.  The call to get_user_pages()
455  * ensures the destination page is created and not swapped out.
456  */
457 static int copy_strings(int argc, struct user_arg_ptr argv,
458 			struct linux_binprm *bprm)
459 {
460 	struct page *kmapped_page = NULL;
461 	char *kaddr = NULL;
462 	unsigned long kpos = 0;
463 	int ret;
464 
465 	while (argc-- > 0) {
466 		const char __user *str;
467 		int len;
468 		unsigned long pos;
469 
470 		ret = -EFAULT;
471 		str = get_user_arg_ptr(argv, argc);
472 		if (IS_ERR(str))
473 			goto out;
474 
475 		len = strnlen_user(str, MAX_ARG_STRLEN);
476 		if (!len)
477 			goto out;
478 
479 		ret = -E2BIG;
480 		if (!valid_arg_len(bprm, len))
481 			goto out;
482 
483 		/* We're going to work our way backwords. */
484 		pos = bprm->p;
485 		str += len;
486 		bprm->p -= len;
487 
488 		while (len > 0) {
489 			int offset, bytes_to_copy;
490 
491 			if (fatal_signal_pending(current)) {
492 				ret = -ERESTARTNOHAND;
493 				goto out;
494 			}
495 			cond_resched();
496 
497 			offset = pos % PAGE_SIZE;
498 			if (offset == 0)
499 				offset = PAGE_SIZE;
500 
501 			bytes_to_copy = offset;
502 			if (bytes_to_copy > len)
503 				bytes_to_copy = len;
504 
505 			offset -= bytes_to_copy;
506 			pos -= bytes_to_copy;
507 			str -= bytes_to_copy;
508 			len -= bytes_to_copy;
509 
510 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
511 				struct page *page;
512 
513 				page = get_arg_page(bprm, pos, 1);
514 				if (!page) {
515 					ret = -E2BIG;
516 					goto out;
517 				}
518 
519 				if (kmapped_page) {
520 					flush_kernel_dcache_page(kmapped_page);
521 					kunmap(kmapped_page);
522 					put_arg_page(kmapped_page);
523 				}
524 				kmapped_page = page;
525 				kaddr = kmap(kmapped_page);
526 				kpos = pos & PAGE_MASK;
527 				flush_arg_page(bprm, kpos, kmapped_page);
528 			}
529 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
530 				ret = -EFAULT;
531 				goto out;
532 			}
533 		}
534 	}
535 	ret = 0;
536 out:
537 	if (kmapped_page) {
538 		flush_kernel_dcache_page(kmapped_page);
539 		kunmap(kmapped_page);
540 		put_arg_page(kmapped_page);
541 	}
542 	return ret;
543 }
544 
545 /*
546  * Like copy_strings, but get argv and its values from kernel memory.
547  */
548 int copy_strings_kernel(int argc, const char *const *__argv,
549 			struct linux_binprm *bprm)
550 {
551 	int r;
552 	mm_segment_t oldfs = get_fs();
553 	struct user_arg_ptr argv = {
554 		.ptr.native = (const char __user *const  __user *)__argv,
555 	};
556 
557 	set_fs(KERNEL_DS);
558 	r = copy_strings(argc, argv, bprm);
559 	set_fs(oldfs);
560 
561 	return r;
562 }
563 EXPORT_SYMBOL(copy_strings_kernel);
564 
565 #ifdef CONFIG_MMU
566 
567 /*
568  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
569  * the binfmt code determines where the new stack should reside, we shift it to
570  * its final location.  The process proceeds as follows:
571  *
572  * 1) Use shift to calculate the new vma endpoints.
573  * 2) Extend vma to cover both the old and new ranges.  This ensures the
574  *    arguments passed to subsequent functions are consistent.
575  * 3) Move vma's page tables to the new range.
576  * 4) Free up any cleared pgd range.
577  * 5) Shrink the vma to cover only the new range.
578  */
579 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
580 {
581 	struct mm_struct *mm = vma->vm_mm;
582 	unsigned long old_start = vma->vm_start;
583 	unsigned long old_end = vma->vm_end;
584 	unsigned long length = old_end - old_start;
585 	unsigned long new_start = old_start - shift;
586 	unsigned long new_end = old_end - shift;
587 	struct mmu_gather tlb;
588 
589 	BUG_ON(new_start > new_end);
590 
591 	/*
592 	 * ensure there are no vmas between where we want to go
593 	 * and where we are
594 	 */
595 	if (vma != find_vma(mm, new_start))
596 		return -EFAULT;
597 
598 	/*
599 	 * cover the whole range: [new_start, old_end)
600 	 */
601 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
602 		return -ENOMEM;
603 
604 	/*
605 	 * move the page tables downwards, on failure we rely on
606 	 * process cleanup to remove whatever mess we made.
607 	 */
608 	if (length != move_page_tables(vma, old_start,
609 				       vma, new_start, length, false))
610 		return -ENOMEM;
611 
612 	lru_add_drain();
613 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
614 	if (new_end > old_start) {
615 		/*
616 		 * when the old and new regions overlap clear from new_end.
617 		 */
618 		free_pgd_range(&tlb, new_end, old_end, new_end,
619 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
620 	} else {
621 		/*
622 		 * otherwise, clean from old_start; this is done to not touch
623 		 * the address space in [new_end, old_start) some architectures
624 		 * have constraints on va-space that make this illegal (IA64) -
625 		 * for the others its just a little faster.
626 		 */
627 		free_pgd_range(&tlb, old_start, old_end, new_end,
628 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
629 	}
630 	tlb_finish_mmu(&tlb, old_start, old_end);
631 
632 	/*
633 	 * Shrink the vma to just the new range.  Always succeeds.
634 	 */
635 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
636 
637 	return 0;
638 }
639 
640 /*
641  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
642  * the stack is optionally relocated, and some extra space is added.
643  */
644 int setup_arg_pages(struct linux_binprm *bprm,
645 		    unsigned long stack_top,
646 		    int executable_stack)
647 {
648 	unsigned long ret;
649 	unsigned long stack_shift;
650 	struct mm_struct *mm = current->mm;
651 	struct vm_area_struct *vma = bprm->vma;
652 	struct vm_area_struct *prev = NULL;
653 	unsigned long vm_flags;
654 	unsigned long stack_base;
655 	unsigned long stack_size;
656 	unsigned long stack_expand;
657 	unsigned long rlim_stack;
658 
659 #ifdef CONFIG_STACK_GROWSUP
660 	/* Limit stack size */
661 	stack_base = rlimit_max(RLIMIT_STACK);
662 	if (stack_base > STACK_SIZE_MAX)
663 		stack_base = STACK_SIZE_MAX;
664 
665 	/* Make sure we didn't let the argument array grow too large. */
666 	if (vma->vm_end - vma->vm_start > stack_base)
667 		return -ENOMEM;
668 
669 	stack_base = PAGE_ALIGN(stack_top - stack_base);
670 
671 	stack_shift = vma->vm_start - stack_base;
672 	mm->arg_start = bprm->p - stack_shift;
673 	bprm->p = vma->vm_end - stack_shift;
674 #else
675 	stack_top = arch_align_stack(stack_top);
676 	stack_top = PAGE_ALIGN(stack_top);
677 
678 	if (unlikely(stack_top < mmap_min_addr) ||
679 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
680 		return -ENOMEM;
681 
682 	stack_shift = vma->vm_end - stack_top;
683 
684 	bprm->p -= stack_shift;
685 	mm->arg_start = bprm->p;
686 #endif
687 
688 	if (bprm->loader)
689 		bprm->loader -= stack_shift;
690 	bprm->exec -= stack_shift;
691 
692 	down_write(&mm->mmap_sem);
693 	vm_flags = VM_STACK_FLAGS;
694 
695 	/*
696 	 * Adjust stack execute permissions; explicitly enable for
697 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
698 	 * (arch default) otherwise.
699 	 */
700 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
701 		vm_flags |= VM_EXEC;
702 	else if (executable_stack == EXSTACK_DISABLE_X)
703 		vm_flags &= ~VM_EXEC;
704 	vm_flags |= mm->def_flags;
705 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
706 
707 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
708 			vm_flags);
709 	if (ret)
710 		goto out_unlock;
711 	BUG_ON(prev != vma);
712 
713 	/* Move stack pages down in memory. */
714 	if (stack_shift) {
715 		ret = shift_arg_pages(vma, stack_shift);
716 		if (ret)
717 			goto out_unlock;
718 	}
719 
720 	/* mprotect_fixup is overkill to remove the temporary stack flags */
721 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
722 
723 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
724 	stack_size = vma->vm_end - vma->vm_start;
725 	/*
726 	 * Align this down to a page boundary as expand_stack
727 	 * will align it up.
728 	 */
729 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
730 #ifdef CONFIG_STACK_GROWSUP
731 	if (stack_size + stack_expand > rlim_stack)
732 		stack_base = vma->vm_start + rlim_stack;
733 	else
734 		stack_base = vma->vm_end + stack_expand;
735 #else
736 	if (stack_size + stack_expand > rlim_stack)
737 		stack_base = vma->vm_end - rlim_stack;
738 	else
739 		stack_base = vma->vm_start - stack_expand;
740 #endif
741 	current->mm->start_stack = bprm->p;
742 	ret = expand_stack(vma, stack_base);
743 	if (ret)
744 		ret = -EFAULT;
745 
746 out_unlock:
747 	up_write(&mm->mmap_sem);
748 	return ret;
749 }
750 EXPORT_SYMBOL(setup_arg_pages);
751 
752 #endif /* CONFIG_MMU */
753 
754 static struct file *do_open_exec(struct filename *name)
755 {
756 	struct file *file;
757 	int err;
758 	static const struct open_flags open_exec_flags = {
759 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
760 		.acc_mode = MAY_EXEC | MAY_OPEN,
761 		.intent = LOOKUP_OPEN,
762 		.lookup_flags = LOOKUP_FOLLOW,
763 	};
764 
765 	file = do_filp_open(AT_FDCWD, name, &open_exec_flags);
766 	if (IS_ERR(file))
767 		goto out;
768 
769 	err = -EACCES;
770 	if (!S_ISREG(file_inode(file)->i_mode))
771 		goto exit;
772 
773 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
774 		goto exit;
775 
776 	fsnotify_open(file);
777 
778 	err = deny_write_access(file);
779 	if (err)
780 		goto exit;
781 
782 out:
783 	return file;
784 
785 exit:
786 	fput(file);
787 	return ERR_PTR(err);
788 }
789 
790 struct file *open_exec(const char *name)
791 {
792 	struct filename tmp = { .name = name };
793 	return do_open_exec(&tmp);
794 }
795 EXPORT_SYMBOL(open_exec);
796 
797 int kernel_read(struct file *file, loff_t offset,
798 		char *addr, unsigned long count)
799 {
800 	mm_segment_t old_fs;
801 	loff_t pos = offset;
802 	int result;
803 
804 	old_fs = get_fs();
805 	set_fs(get_ds());
806 	/* The cast to a user pointer is valid due to the set_fs() */
807 	result = vfs_read(file, (void __user *)addr, count, &pos);
808 	set_fs(old_fs);
809 	return result;
810 }
811 
812 EXPORT_SYMBOL(kernel_read);
813 
814 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
815 {
816 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
817 	if (res > 0)
818 		flush_icache_range(addr, addr + len);
819 	return res;
820 }
821 EXPORT_SYMBOL(read_code);
822 
823 static int exec_mmap(struct mm_struct *mm)
824 {
825 	struct task_struct *tsk;
826 	struct mm_struct *old_mm, *active_mm;
827 
828 	/* Notify parent that we're no longer interested in the old VM */
829 	tsk = current;
830 	old_mm = current->mm;
831 	mm_release(tsk, old_mm);
832 
833 	if (old_mm) {
834 		sync_mm_rss(old_mm);
835 		/*
836 		 * Make sure that if there is a core dump in progress
837 		 * for the old mm, we get out and die instead of going
838 		 * through with the exec.  We must hold mmap_sem around
839 		 * checking core_state and changing tsk->mm.
840 		 */
841 		down_read(&old_mm->mmap_sem);
842 		if (unlikely(old_mm->core_state)) {
843 			up_read(&old_mm->mmap_sem);
844 			return -EINTR;
845 		}
846 	}
847 	task_lock(tsk);
848 	active_mm = tsk->active_mm;
849 	tsk->mm = mm;
850 	tsk->active_mm = mm;
851 	activate_mm(active_mm, mm);
852 	tsk->mm->vmacache_seqnum = 0;
853 	vmacache_flush(tsk);
854 	task_unlock(tsk);
855 	if (old_mm) {
856 		up_read(&old_mm->mmap_sem);
857 		BUG_ON(active_mm != old_mm);
858 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
859 		mm_update_next_owner(old_mm);
860 		mmput(old_mm);
861 		return 0;
862 	}
863 	mmdrop(active_mm);
864 	return 0;
865 }
866 
867 /*
868  * This function makes sure the current process has its own signal table,
869  * so that flush_signal_handlers can later reset the handlers without
870  * disturbing other processes.  (Other processes might share the signal
871  * table via the CLONE_SIGHAND option to clone().)
872  */
873 static int de_thread(struct task_struct *tsk)
874 {
875 	struct signal_struct *sig = tsk->signal;
876 	struct sighand_struct *oldsighand = tsk->sighand;
877 	spinlock_t *lock = &oldsighand->siglock;
878 
879 	if (thread_group_empty(tsk))
880 		goto no_thread_group;
881 
882 	/*
883 	 * Kill all other threads in the thread group.
884 	 */
885 	spin_lock_irq(lock);
886 	if (signal_group_exit(sig)) {
887 		/*
888 		 * Another group action in progress, just
889 		 * return so that the signal is processed.
890 		 */
891 		spin_unlock_irq(lock);
892 		return -EAGAIN;
893 	}
894 
895 	sig->group_exit_task = tsk;
896 	sig->notify_count = zap_other_threads(tsk);
897 	if (!thread_group_leader(tsk))
898 		sig->notify_count--;
899 
900 	while (sig->notify_count) {
901 		__set_current_state(TASK_KILLABLE);
902 		spin_unlock_irq(lock);
903 		schedule();
904 		if (unlikely(__fatal_signal_pending(tsk)))
905 			goto killed;
906 		spin_lock_irq(lock);
907 	}
908 	spin_unlock_irq(lock);
909 
910 	/*
911 	 * At this point all other threads have exited, all we have to
912 	 * do is to wait for the thread group leader to become inactive,
913 	 * and to assume its PID:
914 	 */
915 	if (!thread_group_leader(tsk)) {
916 		struct task_struct *leader = tsk->group_leader;
917 
918 		sig->notify_count = -1;	/* for exit_notify() */
919 		for (;;) {
920 			threadgroup_change_begin(tsk);
921 			write_lock_irq(&tasklist_lock);
922 			if (likely(leader->exit_state))
923 				break;
924 			__set_current_state(TASK_KILLABLE);
925 			write_unlock_irq(&tasklist_lock);
926 			threadgroup_change_end(tsk);
927 			schedule();
928 			if (unlikely(__fatal_signal_pending(tsk)))
929 				goto killed;
930 		}
931 
932 		/*
933 		 * The only record we have of the real-time age of a
934 		 * process, regardless of execs it's done, is start_time.
935 		 * All the past CPU time is accumulated in signal_struct
936 		 * from sister threads now dead.  But in this non-leader
937 		 * exec, nothing survives from the original leader thread,
938 		 * whose birth marks the true age of this process now.
939 		 * When we take on its identity by switching to its PID, we
940 		 * also take its birthdate (always earlier than our own).
941 		 */
942 		tsk->start_time = leader->start_time;
943 		tsk->real_start_time = leader->real_start_time;
944 
945 		BUG_ON(!same_thread_group(leader, tsk));
946 		BUG_ON(has_group_leader_pid(tsk));
947 		/*
948 		 * An exec() starts a new thread group with the
949 		 * TGID of the previous thread group. Rehash the
950 		 * two threads with a switched PID, and release
951 		 * the former thread group leader:
952 		 */
953 
954 		/* Become a process group leader with the old leader's pid.
955 		 * The old leader becomes a thread of the this thread group.
956 		 * Note: The old leader also uses this pid until release_task
957 		 *       is called.  Odd but simple and correct.
958 		 */
959 		tsk->pid = leader->pid;
960 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
961 		transfer_pid(leader, tsk, PIDTYPE_PGID);
962 		transfer_pid(leader, tsk, PIDTYPE_SID);
963 
964 		list_replace_rcu(&leader->tasks, &tsk->tasks);
965 		list_replace_init(&leader->sibling, &tsk->sibling);
966 
967 		tsk->group_leader = tsk;
968 		leader->group_leader = tsk;
969 
970 		tsk->exit_signal = SIGCHLD;
971 		leader->exit_signal = -1;
972 
973 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
974 		leader->exit_state = EXIT_DEAD;
975 
976 		/*
977 		 * We are going to release_task()->ptrace_unlink() silently,
978 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
979 		 * the tracer wont't block again waiting for this thread.
980 		 */
981 		if (unlikely(leader->ptrace))
982 			__wake_up_parent(leader, leader->parent);
983 		write_unlock_irq(&tasklist_lock);
984 		threadgroup_change_end(tsk);
985 
986 		release_task(leader);
987 	}
988 
989 	sig->group_exit_task = NULL;
990 	sig->notify_count = 0;
991 
992 no_thread_group:
993 	/* we have changed execution domain */
994 	tsk->exit_signal = SIGCHLD;
995 
996 	exit_itimers(sig);
997 	flush_itimer_signals();
998 
999 	if (atomic_read(&oldsighand->count) != 1) {
1000 		struct sighand_struct *newsighand;
1001 		/*
1002 		 * This ->sighand is shared with the CLONE_SIGHAND
1003 		 * but not CLONE_THREAD task, switch to the new one.
1004 		 */
1005 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1006 		if (!newsighand)
1007 			return -ENOMEM;
1008 
1009 		atomic_set(&newsighand->count, 1);
1010 		memcpy(newsighand->action, oldsighand->action,
1011 		       sizeof(newsighand->action));
1012 
1013 		write_lock_irq(&tasklist_lock);
1014 		spin_lock(&oldsighand->siglock);
1015 		rcu_assign_pointer(tsk->sighand, newsighand);
1016 		spin_unlock(&oldsighand->siglock);
1017 		write_unlock_irq(&tasklist_lock);
1018 
1019 		__cleanup_sighand(oldsighand);
1020 	}
1021 
1022 	BUG_ON(!thread_group_leader(tsk));
1023 	return 0;
1024 
1025 killed:
1026 	/* protects against exit_notify() and __exit_signal() */
1027 	read_lock(&tasklist_lock);
1028 	sig->group_exit_task = NULL;
1029 	sig->notify_count = 0;
1030 	read_unlock(&tasklist_lock);
1031 	return -EAGAIN;
1032 }
1033 
1034 char *get_task_comm(char *buf, struct task_struct *tsk)
1035 {
1036 	/* buf must be at least sizeof(tsk->comm) in size */
1037 	task_lock(tsk);
1038 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1039 	task_unlock(tsk);
1040 	return buf;
1041 }
1042 EXPORT_SYMBOL_GPL(get_task_comm);
1043 
1044 /*
1045  * These functions flushes out all traces of the currently running executable
1046  * so that a new one can be started
1047  */
1048 
1049 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1050 {
1051 	task_lock(tsk);
1052 	trace_task_rename(tsk, buf);
1053 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1054 	task_unlock(tsk);
1055 	perf_event_comm(tsk, exec);
1056 }
1057 
1058 int flush_old_exec(struct linux_binprm * bprm)
1059 {
1060 	int retval;
1061 
1062 	/*
1063 	 * Make sure we have a private signal table and that
1064 	 * we are unassociated from the previous thread group.
1065 	 */
1066 	retval = de_thread(current);
1067 	if (retval)
1068 		goto out;
1069 
1070 	set_mm_exe_file(bprm->mm, bprm->file);
1071 	/*
1072 	 * Release all of the old mmap stuff
1073 	 */
1074 	acct_arg_size(bprm, 0);
1075 	retval = exec_mmap(bprm->mm);
1076 	if (retval)
1077 		goto out;
1078 
1079 	bprm->mm = NULL;		/* We're using it now */
1080 
1081 	set_fs(USER_DS);
1082 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1083 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1084 	flush_thread();
1085 	current->personality &= ~bprm->per_clear;
1086 
1087 	return 0;
1088 
1089 out:
1090 	return retval;
1091 }
1092 EXPORT_SYMBOL(flush_old_exec);
1093 
1094 void would_dump(struct linux_binprm *bprm, struct file *file)
1095 {
1096 	if (inode_permission(file_inode(file), MAY_READ) < 0)
1097 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1098 }
1099 EXPORT_SYMBOL(would_dump);
1100 
1101 void setup_new_exec(struct linux_binprm * bprm)
1102 {
1103 	arch_pick_mmap_layout(current->mm);
1104 
1105 	/* This is the point of no return */
1106 	current->sas_ss_sp = current->sas_ss_size = 0;
1107 
1108 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1109 		set_dumpable(current->mm, SUID_DUMP_USER);
1110 	else
1111 		set_dumpable(current->mm, suid_dumpable);
1112 
1113 	perf_event_exec();
1114 	__set_task_comm(current, kbasename(bprm->filename), true);
1115 
1116 	/* Set the new mm task size. We have to do that late because it may
1117 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1118 	 * some architectures like powerpc
1119 	 */
1120 	current->mm->task_size = TASK_SIZE;
1121 
1122 	/* install the new credentials */
1123 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1124 	    !gid_eq(bprm->cred->gid, current_egid())) {
1125 		current->pdeath_signal = 0;
1126 	} else {
1127 		would_dump(bprm, bprm->file);
1128 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1129 			set_dumpable(current->mm, suid_dumpable);
1130 	}
1131 
1132 	/* An exec changes our domain. We are no longer part of the thread
1133 	   group */
1134 	current->self_exec_id++;
1135 	flush_signal_handlers(current, 0);
1136 	do_close_on_exec(current->files);
1137 }
1138 EXPORT_SYMBOL(setup_new_exec);
1139 
1140 /*
1141  * Prepare credentials and lock ->cred_guard_mutex.
1142  * install_exec_creds() commits the new creds and drops the lock.
1143  * Or, if exec fails before, free_bprm() should release ->cred and
1144  * and unlock.
1145  */
1146 int prepare_bprm_creds(struct linux_binprm *bprm)
1147 {
1148 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1149 		return -ERESTARTNOINTR;
1150 
1151 	bprm->cred = prepare_exec_creds();
1152 	if (likely(bprm->cred))
1153 		return 0;
1154 
1155 	mutex_unlock(&current->signal->cred_guard_mutex);
1156 	return -ENOMEM;
1157 }
1158 
1159 static void free_bprm(struct linux_binprm *bprm)
1160 {
1161 	free_arg_pages(bprm);
1162 	if (bprm->cred) {
1163 		mutex_unlock(&current->signal->cred_guard_mutex);
1164 		abort_creds(bprm->cred);
1165 	}
1166 	if (bprm->file) {
1167 		allow_write_access(bprm->file);
1168 		fput(bprm->file);
1169 	}
1170 	/* If a binfmt changed the interp, free it. */
1171 	if (bprm->interp != bprm->filename)
1172 		kfree(bprm->interp);
1173 	kfree(bprm);
1174 }
1175 
1176 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1177 {
1178 	/* If a binfmt changed the interp, free it first. */
1179 	if (bprm->interp != bprm->filename)
1180 		kfree(bprm->interp);
1181 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1182 	if (!bprm->interp)
1183 		return -ENOMEM;
1184 	return 0;
1185 }
1186 EXPORT_SYMBOL(bprm_change_interp);
1187 
1188 /*
1189  * install the new credentials for this executable
1190  */
1191 void install_exec_creds(struct linux_binprm *bprm)
1192 {
1193 	security_bprm_committing_creds(bprm);
1194 
1195 	commit_creds(bprm->cred);
1196 	bprm->cred = NULL;
1197 
1198 	/*
1199 	 * Disable monitoring for regular users
1200 	 * when executing setuid binaries. Must
1201 	 * wait until new credentials are committed
1202 	 * by commit_creds() above
1203 	 */
1204 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1205 		perf_event_exit_task(current);
1206 	/*
1207 	 * cred_guard_mutex must be held at least to this point to prevent
1208 	 * ptrace_attach() from altering our determination of the task's
1209 	 * credentials; any time after this it may be unlocked.
1210 	 */
1211 	security_bprm_committed_creds(bprm);
1212 	mutex_unlock(&current->signal->cred_guard_mutex);
1213 }
1214 EXPORT_SYMBOL(install_exec_creds);
1215 
1216 /*
1217  * determine how safe it is to execute the proposed program
1218  * - the caller must hold ->cred_guard_mutex to protect against
1219  *   PTRACE_ATTACH
1220  */
1221 static void check_unsafe_exec(struct linux_binprm *bprm)
1222 {
1223 	struct task_struct *p = current, *t;
1224 	unsigned n_fs;
1225 
1226 	if (p->ptrace) {
1227 		if (p->ptrace & PT_PTRACE_CAP)
1228 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1229 		else
1230 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1231 	}
1232 
1233 	/*
1234 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1235 	 * mess up.
1236 	 */
1237 	if (current->no_new_privs)
1238 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1239 
1240 	t = p;
1241 	n_fs = 1;
1242 	spin_lock(&p->fs->lock);
1243 	rcu_read_lock();
1244 	while_each_thread(p, t) {
1245 		if (t->fs == p->fs)
1246 			n_fs++;
1247 	}
1248 	rcu_read_unlock();
1249 
1250 	if (p->fs->users > n_fs)
1251 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1252 	else
1253 		p->fs->in_exec = 1;
1254 	spin_unlock(&p->fs->lock);
1255 }
1256 
1257 /*
1258  * Fill the binprm structure from the inode.
1259  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1260  *
1261  * This may be called multiple times for binary chains (scripts for example).
1262  */
1263 int prepare_binprm(struct linux_binprm *bprm)
1264 {
1265 	struct inode *inode = file_inode(bprm->file);
1266 	umode_t mode = inode->i_mode;
1267 	int retval;
1268 
1269 
1270 	/* clear any previous set[ug]id data from a previous binary */
1271 	bprm->cred->euid = current_euid();
1272 	bprm->cred->egid = current_egid();
1273 
1274 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1275 	    !current->no_new_privs &&
1276 	    kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1277 	    kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1278 		/* Set-uid? */
1279 		if (mode & S_ISUID) {
1280 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1281 			bprm->cred->euid = inode->i_uid;
1282 		}
1283 
1284 		/* Set-gid? */
1285 		/*
1286 		 * If setgid is set but no group execute bit then this
1287 		 * is a candidate for mandatory locking, not a setgid
1288 		 * executable.
1289 		 */
1290 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1291 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1292 			bprm->cred->egid = inode->i_gid;
1293 		}
1294 	}
1295 
1296 	/* fill in binprm security blob */
1297 	retval = security_bprm_set_creds(bprm);
1298 	if (retval)
1299 		return retval;
1300 	bprm->cred_prepared = 1;
1301 
1302 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1303 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1304 }
1305 
1306 EXPORT_SYMBOL(prepare_binprm);
1307 
1308 /*
1309  * Arguments are '\0' separated strings found at the location bprm->p
1310  * points to; chop off the first by relocating brpm->p to right after
1311  * the first '\0' encountered.
1312  */
1313 int remove_arg_zero(struct linux_binprm *bprm)
1314 {
1315 	int ret = 0;
1316 	unsigned long offset;
1317 	char *kaddr;
1318 	struct page *page;
1319 
1320 	if (!bprm->argc)
1321 		return 0;
1322 
1323 	do {
1324 		offset = bprm->p & ~PAGE_MASK;
1325 		page = get_arg_page(bprm, bprm->p, 0);
1326 		if (!page) {
1327 			ret = -EFAULT;
1328 			goto out;
1329 		}
1330 		kaddr = kmap_atomic(page);
1331 
1332 		for (; offset < PAGE_SIZE && kaddr[offset];
1333 				offset++, bprm->p++)
1334 			;
1335 
1336 		kunmap_atomic(kaddr);
1337 		put_arg_page(page);
1338 
1339 		if (offset == PAGE_SIZE)
1340 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1341 	} while (offset == PAGE_SIZE);
1342 
1343 	bprm->p++;
1344 	bprm->argc--;
1345 	ret = 0;
1346 
1347 out:
1348 	return ret;
1349 }
1350 EXPORT_SYMBOL(remove_arg_zero);
1351 
1352 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1353 /*
1354  * cycle the list of binary formats handler, until one recognizes the image
1355  */
1356 int search_binary_handler(struct linux_binprm *bprm)
1357 {
1358 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1359 	struct linux_binfmt *fmt;
1360 	int retval;
1361 
1362 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1363 	if (bprm->recursion_depth > 5)
1364 		return -ELOOP;
1365 
1366 	retval = security_bprm_check(bprm);
1367 	if (retval)
1368 		return retval;
1369 
1370 	retval = -ENOENT;
1371  retry:
1372 	read_lock(&binfmt_lock);
1373 	list_for_each_entry(fmt, &formats, lh) {
1374 		if (!try_module_get(fmt->module))
1375 			continue;
1376 		read_unlock(&binfmt_lock);
1377 		bprm->recursion_depth++;
1378 		retval = fmt->load_binary(bprm);
1379 		bprm->recursion_depth--;
1380 		if (retval >= 0 || retval != -ENOEXEC ||
1381 		    bprm->mm == NULL || bprm->file == NULL) {
1382 			put_binfmt(fmt);
1383 			return retval;
1384 		}
1385 		read_lock(&binfmt_lock);
1386 		put_binfmt(fmt);
1387 	}
1388 	read_unlock(&binfmt_lock);
1389 
1390 	if (need_retry && retval == -ENOEXEC) {
1391 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1392 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1393 			return retval;
1394 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1395 			return retval;
1396 		need_retry = false;
1397 		goto retry;
1398 	}
1399 
1400 	return retval;
1401 }
1402 EXPORT_SYMBOL(search_binary_handler);
1403 
1404 static int exec_binprm(struct linux_binprm *bprm)
1405 {
1406 	pid_t old_pid, old_vpid;
1407 	int ret;
1408 
1409 	/* Need to fetch pid before load_binary changes it */
1410 	old_pid = current->pid;
1411 	rcu_read_lock();
1412 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1413 	rcu_read_unlock();
1414 
1415 	ret = search_binary_handler(bprm);
1416 	if (ret >= 0) {
1417 		audit_bprm(bprm);
1418 		trace_sched_process_exec(current, old_pid, bprm);
1419 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1420 		proc_exec_connector(current);
1421 	}
1422 
1423 	return ret;
1424 }
1425 
1426 /*
1427  * sys_execve() executes a new program.
1428  */
1429 static int do_execve_common(struct filename *filename,
1430 				struct user_arg_ptr argv,
1431 				struct user_arg_ptr envp)
1432 {
1433 	struct linux_binprm *bprm;
1434 	struct file *file;
1435 	struct files_struct *displaced;
1436 	int retval;
1437 
1438 	if (IS_ERR(filename))
1439 		return PTR_ERR(filename);
1440 
1441 	/*
1442 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1443 	 * set*uid() to execve() because too many poorly written programs
1444 	 * don't check setuid() return code.  Here we additionally recheck
1445 	 * whether NPROC limit is still exceeded.
1446 	 */
1447 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1448 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1449 		retval = -EAGAIN;
1450 		goto out_ret;
1451 	}
1452 
1453 	/* We're below the limit (still or again), so we don't want to make
1454 	 * further execve() calls fail. */
1455 	current->flags &= ~PF_NPROC_EXCEEDED;
1456 
1457 	retval = unshare_files(&displaced);
1458 	if (retval)
1459 		goto out_ret;
1460 
1461 	retval = -ENOMEM;
1462 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1463 	if (!bprm)
1464 		goto out_files;
1465 
1466 	retval = prepare_bprm_creds(bprm);
1467 	if (retval)
1468 		goto out_free;
1469 
1470 	check_unsafe_exec(bprm);
1471 	current->in_execve = 1;
1472 
1473 	file = do_open_exec(filename);
1474 	retval = PTR_ERR(file);
1475 	if (IS_ERR(file))
1476 		goto out_unmark;
1477 
1478 	sched_exec();
1479 
1480 	bprm->file = file;
1481 	bprm->filename = bprm->interp = filename->name;
1482 
1483 	retval = bprm_mm_init(bprm);
1484 	if (retval)
1485 		goto out_unmark;
1486 
1487 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1488 	if ((retval = bprm->argc) < 0)
1489 		goto out;
1490 
1491 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1492 	if ((retval = bprm->envc) < 0)
1493 		goto out;
1494 
1495 	retval = prepare_binprm(bprm);
1496 	if (retval < 0)
1497 		goto out;
1498 
1499 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1500 	if (retval < 0)
1501 		goto out;
1502 
1503 	bprm->exec = bprm->p;
1504 	retval = copy_strings(bprm->envc, envp, bprm);
1505 	if (retval < 0)
1506 		goto out;
1507 
1508 	retval = copy_strings(bprm->argc, argv, bprm);
1509 	if (retval < 0)
1510 		goto out;
1511 
1512 	retval = exec_binprm(bprm);
1513 	if (retval < 0)
1514 		goto out;
1515 
1516 	/* execve succeeded */
1517 	current->fs->in_exec = 0;
1518 	current->in_execve = 0;
1519 	acct_update_integrals(current);
1520 	task_numa_free(current);
1521 	free_bprm(bprm);
1522 	putname(filename);
1523 	if (displaced)
1524 		put_files_struct(displaced);
1525 	return retval;
1526 
1527 out:
1528 	if (bprm->mm) {
1529 		acct_arg_size(bprm, 0);
1530 		mmput(bprm->mm);
1531 	}
1532 
1533 out_unmark:
1534 	current->fs->in_exec = 0;
1535 	current->in_execve = 0;
1536 
1537 out_free:
1538 	free_bprm(bprm);
1539 
1540 out_files:
1541 	if (displaced)
1542 		reset_files_struct(displaced);
1543 out_ret:
1544 	putname(filename);
1545 	return retval;
1546 }
1547 
1548 int do_execve(struct filename *filename,
1549 	const char __user *const __user *__argv,
1550 	const char __user *const __user *__envp)
1551 {
1552 	struct user_arg_ptr argv = { .ptr.native = __argv };
1553 	struct user_arg_ptr envp = { .ptr.native = __envp };
1554 	return do_execve_common(filename, argv, envp);
1555 }
1556 
1557 #ifdef CONFIG_COMPAT
1558 static int compat_do_execve(struct filename *filename,
1559 	const compat_uptr_t __user *__argv,
1560 	const compat_uptr_t __user *__envp)
1561 {
1562 	struct user_arg_ptr argv = {
1563 		.is_compat = true,
1564 		.ptr.compat = __argv,
1565 	};
1566 	struct user_arg_ptr envp = {
1567 		.is_compat = true,
1568 		.ptr.compat = __envp,
1569 	};
1570 	return do_execve_common(filename, argv, envp);
1571 }
1572 #endif
1573 
1574 void set_binfmt(struct linux_binfmt *new)
1575 {
1576 	struct mm_struct *mm = current->mm;
1577 
1578 	if (mm->binfmt)
1579 		module_put(mm->binfmt->module);
1580 
1581 	mm->binfmt = new;
1582 	if (new)
1583 		__module_get(new->module);
1584 }
1585 EXPORT_SYMBOL(set_binfmt);
1586 
1587 /*
1588  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1589  */
1590 void set_dumpable(struct mm_struct *mm, int value)
1591 {
1592 	unsigned long old, new;
1593 
1594 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1595 		return;
1596 
1597 	do {
1598 		old = ACCESS_ONCE(mm->flags);
1599 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1600 	} while (cmpxchg(&mm->flags, old, new) != old);
1601 }
1602 
1603 SYSCALL_DEFINE3(execve,
1604 		const char __user *, filename,
1605 		const char __user *const __user *, argv,
1606 		const char __user *const __user *, envp)
1607 {
1608 	return do_execve(getname(filename), argv, envp);
1609 }
1610 #ifdef CONFIG_COMPAT
1611 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1612 	const compat_uptr_t __user *, argv,
1613 	const compat_uptr_t __user *, envp)
1614 {
1615 	return compat_do_execve(getname(filename), argv, envp);
1616 }
1617 #endif
1618