xref: /openbmc/linux/fs/exec.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 #include <linux/syscall_user_dispatch.h>
68 
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/tlb.h>
72 
73 #include <trace/events/task.h>
74 #include "internal.h"
75 
76 #include <trace/events/sched.h>
77 
78 static int bprm_creds_from_file(struct linux_binprm *bprm);
79 
80 int suid_dumpable = 0;
81 
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84 
85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 	write_lock(&binfmt_lock);
88 	insert ? list_add(&fmt->lh, &formats) :
89 		 list_add_tail(&fmt->lh, &formats);
90 	write_unlock(&binfmt_lock);
91 }
92 
93 EXPORT_SYMBOL(__register_binfmt);
94 
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 	write_lock(&binfmt_lock);
98 	list_del(&fmt->lh);
99 	write_unlock(&binfmt_lock);
100 }
101 
102 EXPORT_SYMBOL(unregister_binfmt);
103 
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 	module_put(fmt->module);
107 }
108 
109 bool path_noexec(const struct path *path)
110 {
111 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114 
115 #ifdef CONFIG_USELIB
116 /*
117  * Note that a shared library must be both readable and executable due to
118  * security reasons.
119  *
120  * Also note that we take the address to load from from the file itself.
121  */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124 	struct linux_binfmt *fmt;
125 	struct file *file;
126 	struct filename *tmp = getname(library);
127 	int error = PTR_ERR(tmp);
128 	static const struct open_flags uselib_flags = {
129 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 		.acc_mode = MAY_READ | MAY_EXEC,
131 		.intent = LOOKUP_OPEN,
132 		.lookup_flags = LOOKUP_FOLLOW,
133 	};
134 
135 	if (IS_ERR(tmp))
136 		goto out;
137 
138 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 	putname(tmp);
140 	error = PTR_ERR(file);
141 	if (IS_ERR(file))
142 		goto out;
143 
144 	/*
145 	 * may_open() has already checked for this, so it should be
146 	 * impossible to trip now. But we need to be extra cautious
147 	 * and check again at the very end too.
148 	 */
149 	error = -EACCES;
150 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
151 			 path_noexec(&file->f_path)))
152 		goto exit;
153 
154 	fsnotify_open(file);
155 
156 	error = -ENOEXEC;
157 
158 	read_lock(&binfmt_lock);
159 	list_for_each_entry(fmt, &formats, lh) {
160 		if (!fmt->load_shlib)
161 			continue;
162 		if (!try_module_get(fmt->module))
163 			continue;
164 		read_unlock(&binfmt_lock);
165 		error = fmt->load_shlib(file);
166 		read_lock(&binfmt_lock);
167 		put_binfmt(fmt);
168 		if (error != -ENOEXEC)
169 			break;
170 	}
171 	read_unlock(&binfmt_lock);
172 exit:
173 	fput(file);
174 out:
175   	return error;
176 }
177 #endif /* #ifdef CONFIG_USELIB */
178 
179 #ifdef CONFIG_MMU
180 /*
181  * The nascent bprm->mm is not visible until exec_mmap() but it can
182  * use a lot of memory, account these pages in current->mm temporary
183  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184  * change the counter back via acct_arg_size(0).
185  */
186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 {
188 	struct mm_struct *mm = current->mm;
189 	long diff = (long)(pages - bprm->vma_pages);
190 
191 	if (!mm || !diff)
192 		return;
193 
194 	bprm->vma_pages = pages;
195 	add_mm_counter(mm, MM_ANONPAGES, diff);
196 }
197 
198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 		int write)
200 {
201 	struct page *page;
202 	int ret;
203 	unsigned int gup_flags = FOLL_FORCE;
204 
205 #ifdef CONFIG_STACK_GROWSUP
206 	if (write) {
207 		ret = expand_downwards(bprm->vma, pos);
208 		if (ret < 0)
209 			return NULL;
210 	}
211 #endif
212 
213 	if (write)
214 		gup_flags |= FOLL_WRITE;
215 
216 	/*
217 	 * We are doing an exec().  'current' is the process
218 	 * doing the exec and bprm->mm is the new process's mm.
219 	 */
220 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
221 			&page, NULL, NULL);
222 	if (ret <= 0)
223 		return NULL;
224 
225 	if (write)
226 		acct_arg_size(bprm, vma_pages(bprm->vma));
227 
228 	return page;
229 }
230 
231 static void put_arg_page(struct page *page)
232 {
233 	put_page(page);
234 }
235 
236 static void free_arg_pages(struct linux_binprm *bprm)
237 {
238 }
239 
240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241 		struct page *page)
242 {
243 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244 }
245 
246 static int __bprm_mm_init(struct linux_binprm *bprm)
247 {
248 	int err;
249 	struct vm_area_struct *vma = NULL;
250 	struct mm_struct *mm = bprm->mm;
251 
252 	bprm->vma = vma = vm_area_alloc(mm);
253 	if (!vma)
254 		return -ENOMEM;
255 	vma_set_anonymous(vma);
256 
257 	if (mmap_write_lock_killable(mm)) {
258 		err = -EINTR;
259 		goto err_free;
260 	}
261 
262 	/*
263 	 * Place the stack at the largest stack address the architecture
264 	 * supports. Later, we'll move this to an appropriate place. We don't
265 	 * use STACK_TOP because that can depend on attributes which aren't
266 	 * configured yet.
267 	 */
268 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269 	vma->vm_end = STACK_TOP_MAX;
270 	vma->vm_start = vma->vm_end - PAGE_SIZE;
271 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273 
274 	err = insert_vm_struct(mm, vma);
275 	if (err)
276 		goto err;
277 
278 	mm->stack_vm = mm->total_vm = 1;
279 	mmap_write_unlock(mm);
280 	bprm->p = vma->vm_end - sizeof(void *);
281 	return 0;
282 err:
283 	mmap_write_unlock(mm);
284 err_free:
285 	bprm->vma = NULL;
286 	vm_area_free(vma);
287 	return err;
288 }
289 
290 static bool valid_arg_len(struct linux_binprm *bprm, long len)
291 {
292 	return len <= MAX_ARG_STRLEN;
293 }
294 
295 #else
296 
297 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
298 {
299 }
300 
301 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
302 		int write)
303 {
304 	struct page *page;
305 
306 	page = bprm->page[pos / PAGE_SIZE];
307 	if (!page && write) {
308 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
309 		if (!page)
310 			return NULL;
311 		bprm->page[pos / PAGE_SIZE] = page;
312 	}
313 
314 	return page;
315 }
316 
317 static void put_arg_page(struct page *page)
318 {
319 }
320 
321 static void free_arg_page(struct linux_binprm *bprm, int i)
322 {
323 	if (bprm->page[i]) {
324 		__free_page(bprm->page[i]);
325 		bprm->page[i] = NULL;
326 	}
327 }
328 
329 static void free_arg_pages(struct linux_binprm *bprm)
330 {
331 	int i;
332 
333 	for (i = 0; i < MAX_ARG_PAGES; i++)
334 		free_arg_page(bprm, i);
335 }
336 
337 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
338 		struct page *page)
339 {
340 }
341 
342 static int __bprm_mm_init(struct linux_binprm *bprm)
343 {
344 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
345 	return 0;
346 }
347 
348 static bool valid_arg_len(struct linux_binprm *bprm, long len)
349 {
350 	return len <= bprm->p;
351 }
352 
353 #endif /* CONFIG_MMU */
354 
355 /*
356  * Create a new mm_struct and populate it with a temporary stack
357  * vm_area_struct.  We don't have enough context at this point to set the stack
358  * flags, permissions, and offset, so we use temporary values.  We'll update
359  * them later in setup_arg_pages().
360  */
361 static int bprm_mm_init(struct linux_binprm *bprm)
362 {
363 	int err;
364 	struct mm_struct *mm = NULL;
365 
366 	bprm->mm = mm = mm_alloc();
367 	err = -ENOMEM;
368 	if (!mm)
369 		goto err;
370 
371 	/* Save current stack limit for all calculations made during exec. */
372 	task_lock(current->group_leader);
373 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
374 	task_unlock(current->group_leader);
375 
376 	err = __bprm_mm_init(bprm);
377 	if (err)
378 		goto err;
379 
380 	return 0;
381 
382 err:
383 	if (mm) {
384 		bprm->mm = NULL;
385 		mmdrop(mm);
386 	}
387 
388 	return err;
389 }
390 
391 struct user_arg_ptr {
392 #ifdef CONFIG_COMPAT
393 	bool is_compat;
394 #endif
395 	union {
396 		const char __user *const __user *native;
397 #ifdef CONFIG_COMPAT
398 		const compat_uptr_t __user *compat;
399 #endif
400 	} ptr;
401 };
402 
403 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
404 {
405 	const char __user *native;
406 
407 #ifdef CONFIG_COMPAT
408 	if (unlikely(argv.is_compat)) {
409 		compat_uptr_t compat;
410 
411 		if (get_user(compat, argv.ptr.compat + nr))
412 			return ERR_PTR(-EFAULT);
413 
414 		return compat_ptr(compat);
415 	}
416 #endif
417 
418 	if (get_user(native, argv.ptr.native + nr))
419 		return ERR_PTR(-EFAULT);
420 
421 	return native;
422 }
423 
424 /*
425  * count() counts the number of strings in array ARGV.
426  */
427 static int count(struct user_arg_ptr argv, int max)
428 {
429 	int i = 0;
430 
431 	if (argv.ptr.native != NULL) {
432 		for (;;) {
433 			const char __user *p = get_user_arg_ptr(argv, i);
434 
435 			if (!p)
436 				break;
437 
438 			if (IS_ERR(p))
439 				return -EFAULT;
440 
441 			if (i >= max)
442 				return -E2BIG;
443 			++i;
444 
445 			if (fatal_signal_pending(current))
446 				return -ERESTARTNOHAND;
447 			cond_resched();
448 		}
449 	}
450 	return i;
451 }
452 
453 static int count_strings_kernel(const char *const *argv)
454 {
455 	int i;
456 
457 	if (!argv)
458 		return 0;
459 
460 	for (i = 0; argv[i]; ++i) {
461 		if (i >= MAX_ARG_STRINGS)
462 			return -E2BIG;
463 		if (fatal_signal_pending(current))
464 			return -ERESTARTNOHAND;
465 		cond_resched();
466 	}
467 	return i;
468 }
469 
470 static int bprm_stack_limits(struct linux_binprm *bprm)
471 {
472 	unsigned long limit, ptr_size;
473 
474 	/*
475 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
476 	 * (whichever is smaller) for the argv+env strings.
477 	 * This ensures that:
478 	 *  - the remaining binfmt code will not run out of stack space,
479 	 *  - the program will have a reasonable amount of stack left
480 	 *    to work from.
481 	 */
482 	limit = _STK_LIM / 4 * 3;
483 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
484 	/*
485 	 * We've historically supported up to 32 pages (ARG_MAX)
486 	 * of argument strings even with small stacks
487 	 */
488 	limit = max_t(unsigned long, limit, ARG_MAX);
489 	/*
490 	 * We must account for the size of all the argv and envp pointers to
491 	 * the argv and envp strings, since they will also take up space in
492 	 * the stack. They aren't stored until much later when we can't
493 	 * signal to the parent that the child has run out of stack space.
494 	 * Instead, calculate it here so it's possible to fail gracefully.
495 	 */
496 	ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
497 	if (limit <= ptr_size)
498 		return -E2BIG;
499 	limit -= ptr_size;
500 
501 	bprm->argmin = bprm->p - limit;
502 	return 0;
503 }
504 
505 /*
506  * 'copy_strings()' copies argument/environment strings from the old
507  * processes's memory to the new process's stack.  The call to get_user_pages()
508  * ensures the destination page is created and not swapped out.
509  */
510 static int copy_strings(int argc, struct user_arg_ptr argv,
511 			struct linux_binprm *bprm)
512 {
513 	struct page *kmapped_page = NULL;
514 	char *kaddr = NULL;
515 	unsigned long kpos = 0;
516 	int ret;
517 
518 	while (argc-- > 0) {
519 		const char __user *str;
520 		int len;
521 		unsigned long pos;
522 
523 		ret = -EFAULT;
524 		str = get_user_arg_ptr(argv, argc);
525 		if (IS_ERR(str))
526 			goto out;
527 
528 		len = strnlen_user(str, MAX_ARG_STRLEN);
529 		if (!len)
530 			goto out;
531 
532 		ret = -E2BIG;
533 		if (!valid_arg_len(bprm, len))
534 			goto out;
535 
536 		/* We're going to work our way backwords. */
537 		pos = bprm->p;
538 		str += len;
539 		bprm->p -= len;
540 #ifdef CONFIG_MMU
541 		if (bprm->p < bprm->argmin)
542 			goto out;
543 #endif
544 
545 		while (len > 0) {
546 			int offset, bytes_to_copy;
547 
548 			if (fatal_signal_pending(current)) {
549 				ret = -ERESTARTNOHAND;
550 				goto out;
551 			}
552 			cond_resched();
553 
554 			offset = pos % PAGE_SIZE;
555 			if (offset == 0)
556 				offset = PAGE_SIZE;
557 
558 			bytes_to_copy = offset;
559 			if (bytes_to_copy > len)
560 				bytes_to_copy = len;
561 
562 			offset -= bytes_to_copy;
563 			pos -= bytes_to_copy;
564 			str -= bytes_to_copy;
565 			len -= bytes_to_copy;
566 
567 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
568 				struct page *page;
569 
570 				page = get_arg_page(bprm, pos, 1);
571 				if (!page) {
572 					ret = -E2BIG;
573 					goto out;
574 				}
575 
576 				if (kmapped_page) {
577 					flush_kernel_dcache_page(kmapped_page);
578 					kunmap(kmapped_page);
579 					put_arg_page(kmapped_page);
580 				}
581 				kmapped_page = page;
582 				kaddr = kmap(kmapped_page);
583 				kpos = pos & PAGE_MASK;
584 				flush_arg_page(bprm, kpos, kmapped_page);
585 			}
586 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
587 				ret = -EFAULT;
588 				goto out;
589 			}
590 		}
591 	}
592 	ret = 0;
593 out:
594 	if (kmapped_page) {
595 		flush_kernel_dcache_page(kmapped_page);
596 		kunmap(kmapped_page);
597 		put_arg_page(kmapped_page);
598 	}
599 	return ret;
600 }
601 
602 /*
603  * Copy and argument/environment string from the kernel to the processes stack.
604  */
605 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
606 {
607 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
608 	unsigned long pos = bprm->p;
609 
610 	if (len == 0)
611 		return -EFAULT;
612 	if (!valid_arg_len(bprm, len))
613 		return -E2BIG;
614 
615 	/* We're going to work our way backwards. */
616 	arg += len;
617 	bprm->p -= len;
618 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
619 		return -E2BIG;
620 
621 	while (len > 0) {
622 		unsigned int bytes_to_copy = min_t(unsigned int, len,
623 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
624 		struct page *page;
625 		char *kaddr;
626 
627 		pos -= bytes_to_copy;
628 		arg -= bytes_to_copy;
629 		len -= bytes_to_copy;
630 
631 		page = get_arg_page(bprm, pos, 1);
632 		if (!page)
633 			return -E2BIG;
634 		kaddr = kmap_atomic(page);
635 		flush_arg_page(bprm, pos & PAGE_MASK, page);
636 		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
637 		flush_kernel_dcache_page(page);
638 		kunmap_atomic(kaddr);
639 		put_arg_page(page);
640 	}
641 
642 	return 0;
643 }
644 EXPORT_SYMBOL(copy_string_kernel);
645 
646 static int copy_strings_kernel(int argc, const char *const *argv,
647 			       struct linux_binprm *bprm)
648 {
649 	while (argc-- > 0) {
650 		int ret = copy_string_kernel(argv[argc], bprm);
651 		if (ret < 0)
652 			return ret;
653 		if (fatal_signal_pending(current))
654 			return -ERESTARTNOHAND;
655 		cond_resched();
656 	}
657 	return 0;
658 }
659 
660 #ifdef CONFIG_MMU
661 
662 /*
663  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
664  * the binfmt code determines where the new stack should reside, we shift it to
665  * its final location.  The process proceeds as follows:
666  *
667  * 1) Use shift to calculate the new vma endpoints.
668  * 2) Extend vma to cover both the old and new ranges.  This ensures the
669  *    arguments passed to subsequent functions are consistent.
670  * 3) Move vma's page tables to the new range.
671  * 4) Free up any cleared pgd range.
672  * 5) Shrink the vma to cover only the new range.
673  */
674 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
675 {
676 	struct mm_struct *mm = vma->vm_mm;
677 	unsigned long old_start = vma->vm_start;
678 	unsigned long old_end = vma->vm_end;
679 	unsigned long length = old_end - old_start;
680 	unsigned long new_start = old_start - shift;
681 	unsigned long new_end = old_end - shift;
682 	struct mmu_gather tlb;
683 
684 	BUG_ON(new_start > new_end);
685 
686 	/*
687 	 * ensure there are no vmas between where we want to go
688 	 * and where we are
689 	 */
690 	if (vma != find_vma(mm, new_start))
691 		return -EFAULT;
692 
693 	/*
694 	 * cover the whole range: [new_start, old_end)
695 	 */
696 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
697 		return -ENOMEM;
698 
699 	/*
700 	 * move the page tables downwards, on failure we rely on
701 	 * process cleanup to remove whatever mess we made.
702 	 */
703 	if (length != move_page_tables(vma, old_start,
704 				       vma, new_start, length, false))
705 		return -ENOMEM;
706 
707 	lru_add_drain();
708 	tlb_gather_mmu(&tlb, mm);
709 	if (new_end > old_start) {
710 		/*
711 		 * when the old and new regions overlap clear from new_end.
712 		 */
713 		free_pgd_range(&tlb, new_end, old_end, new_end,
714 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
715 	} else {
716 		/*
717 		 * otherwise, clean from old_start; this is done to not touch
718 		 * the address space in [new_end, old_start) some architectures
719 		 * have constraints on va-space that make this illegal (IA64) -
720 		 * for the others its just a little faster.
721 		 */
722 		free_pgd_range(&tlb, old_start, old_end, new_end,
723 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
724 	}
725 	tlb_finish_mmu(&tlb);
726 
727 	/*
728 	 * Shrink the vma to just the new range.  Always succeeds.
729 	 */
730 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
731 
732 	return 0;
733 }
734 
735 /*
736  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
737  * the stack is optionally relocated, and some extra space is added.
738  */
739 int setup_arg_pages(struct linux_binprm *bprm,
740 		    unsigned long stack_top,
741 		    int executable_stack)
742 {
743 	unsigned long ret;
744 	unsigned long stack_shift;
745 	struct mm_struct *mm = current->mm;
746 	struct vm_area_struct *vma = bprm->vma;
747 	struct vm_area_struct *prev = NULL;
748 	unsigned long vm_flags;
749 	unsigned long stack_base;
750 	unsigned long stack_size;
751 	unsigned long stack_expand;
752 	unsigned long rlim_stack;
753 
754 #ifdef CONFIG_STACK_GROWSUP
755 	/* Limit stack size */
756 	stack_base = bprm->rlim_stack.rlim_max;
757 
758 	stack_base = calc_max_stack_size(stack_base);
759 
760 	/* Add space for stack randomization. */
761 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
762 
763 	/* Make sure we didn't let the argument array grow too large. */
764 	if (vma->vm_end - vma->vm_start > stack_base)
765 		return -ENOMEM;
766 
767 	stack_base = PAGE_ALIGN(stack_top - stack_base);
768 
769 	stack_shift = vma->vm_start - stack_base;
770 	mm->arg_start = bprm->p - stack_shift;
771 	bprm->p = vma->vm_end - stack_shift;
772 #else
773 	stack_top = arch_align_stack(stack_top);
774 	stack_top = PAGE_ALIGN(stack_top);
775 
776 	if (unlikely(stack_top < mmap_min_addr) ||
777 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
778 		return -ENOMEM;
779 
780 	stack_shift = vma->vm_end - stack_top;
781 
782 	bprm->p -= stack_shift;
783 	mm->arg_start = bprm->p;
784 #endif
785 
786 	if (bprm->loader)
787 		bprm->loader -= stack_shift;
788 	bprm->exec -= stack_shift;
789 
790 	if (mmap_write_lock_killable(mm))
791 		return -EINTR;
792 
793 	vm_flags = VM_STACK_FLAGS;
794 
795 	/*
796 	 * Adjust stack execute permissions; explicitly enable for
797 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
798 	 * (arch default) otherwise.
799 	 */
800 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
801 		vm_flags |= VM_EXEC;
802 	else if (executable_stack == EXSTACK_DISABLE_X)
803 		vm_flags &= ~VM_EXEC;
804 	vm_flags |= mm->def_flags;
805 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
806 
807 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
808 			vm_flags);
809 	if (ret)
810 		goto out_unlock;
811 	BUG_ON(prev != vma);
812 
813 	if (unlikely(vm_flags & VM_EXEC)) {
814 		pr_warn_once("process '%pD4' started with executable stack\n",
815 			     bprm->file);
816 	}
817 
818 	/* Move stack pages down in memory. */
819 	if (stack_shift) {
820 		ret = shift_arg_pages(vma, stack_shift);
821 		if (ret)
822 			goto out_unlock;
823 	}
824 
825 	/* mprotect_fixup is overkill to remove the temporary stack flags */
826 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
827 
828 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
829 	stack_size = vma->vm_end - vma->vm_start;
830 	/*
831 	 * Align this down to a page boundary as expand_stack
832 	 * will align it up.
833 	 */
834 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
835 #ifdef CONFIG_STACK_GROWSUP
836 	if (stack_size + stack_expand > rlim_stack)
837 		stack_base = vma->vm_start + rlim_stack;
838 	else
839 		stack_base = vma->vm_end + stack_expand;
840 #else
841 	if (stack_size + stack_expand > rlim_stack)
842 		stack_base = vma->vm_end - rlim_stack;
843 	else
844 		stack_base = vma->vm_start - stack_expand;
845 #endif
846 	current->mm->start_stack = bprm->p;
847 	ret = expand_stack(vma, stack_base);
848 	if (ret)
849 		ret = -EFAULT;
850 
851 out_unlock:
852 	mmap_write_unlock(mm);
853 	return ret;
854 }
855 EXPORT_SYMBOL(setup_arg_pages);
856 
857 #else
858 
859 /*
860  * Transfer the program arguments and environment from the holding pages
861  * onto the stack. The provided stack pointer is adjusted accordingly.
862  */
863 int transfer_args_to_stack(struct linux_binprm *bprm,
864 			   unsigned long *sp_location)
865 {
866 	unsigned long index, stop, sp;
867 	int ret = 0;
868 
869 	stop = bprm->p >> PAGE_SHIFT;
870 	sp = *sp_location;
871 
872 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
873 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
874 		char *src = kmap(bprm->page[index]) + offset;
875 		sp -= PAGE_SIZE - offset;
876 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
877 			ret = -EFAULT;
878 		kunmap(bprm->page[index]);
879 		if (ret)
880 			goto out;
881 	}
882 
883 	*sp_location = sp;
884 
885 out:
886 	return ret;
887 }
888 EXPORT_SYMBOL(transfer_args_to_stack);
889 
890 #endif /* CONFIG_MMU */
891 
892 static struct file *do_open_execat(int fd, struct filename *name, int flags)
893 {
894 	struct file *file;
895 	int err;
896 	struct open_flags open_exec_flags = {
897 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
898 		.acc_mode = MAY_EXEC,
899 		.intent = LOOKUP_OPEN,
900 		.lookup_flags = LOOKUP_FOLLOW,
901 	};
902 
903 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
904 		return ERR_PTR(-EINVAL);
905 	if (flags & AT_SYMLINK_NOFOLLOW)
906 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
907 	if (flags & AT_EMPTY_PATH)
908 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
909 
910 	file = do_filp_open(fd, name, &open_exec_flags);
911 	if (IS_ERR(file))
912 		goto out;
913 
914 	/*
915 	 * may_open() has already checked for this, so it should be
916 	 * impossible to trip now. But we need to be extra cautious
917 	 * and check again at the very end too.
918 	 */
919 	err = -EACCES;
920 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
921 			 path_noexec(&file->f_path)))
922 		goto exit;
923 
924 	err = deny_write_access(file);
925 	if (err)
926 		goto exit;
927 
928 	if (name->name[0] != '\0')
929 		fsnotify_open(file);
930 
931 out:
932 	return file;
933 
934 exit:
935 	fput(file);
936 	return ERR_PTR(err);
937 }
938 
939 struct file *open_exec(const char *name)
940 {
941 	struct filename *filename = getname_kernel(name);
942 	struct file *f = ERR_CAST(filename);
943 
944 	if (!IS_ERR(filename)) {
945 		f = do_open_execat(AT_FDCWD, filename, 0);
946 		putname(filename);
947 	}
948 	return f;
949 }
950 EXPORT_SYMBOL(open_exec);
951 
952 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
953     defined(CONFIG_BINFMT_ELF_FDPIC)
954 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
955 {
956 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
957 	if (res > 0)
958 		flush_icache_user_range(addr, addr + len);
959 	return res;
960 }
961 EXPORT_SYMBOL(read_code);
962 #endif
963 
964 /*
965  * Maps the mm_struct mm into the current task struct.
966  * On success, this function returns with exec_update_lock
967  * held for writing.
968  */
969 static int exec_mmap(struct mm_struct *mm)
970 {
971 	struct task_struct *tsk;
972 	struct mm_struct *old_mm, *active_mm;
973 	int ret;
974 
975 	/* Notify parent that we're no longer interested in the old VM */
976 	tsk = current;
977 	old_mm = current->mm;
978 	exec_mm_release(tsk, old_mm);
979 	if (old_mm)
980 		sync_mm_rss(old_mm);
981 
982 	ret = down_write_killable(&tsk->signal->exec_update_lock);
983 	if (ret)
984 		return ret;
985 
986 	if (old_mm) {
987 		/*
988 		 * Make sure that if there is a core dump in progress
989 		 * for the old mm, we get out and die instead of going
990 		 * through with the exec.  We must hold mmap_lock around
991 		 * checking core_state and changing tsk->mm.
992 		 */
993 		mmap_read_lock(old_mm);
994 		if (unlikely(old_mm->core_state)) {
995 			mmap_read_unlock(old_mm);
996 			up_write(&tsk->signal->exec_update_lock);
997 			return -EINTR;
998 		}
999 	}
1000 
1001 	task_lock(tsk);
1002 	membarrier_exec_mmap(mm);
1003 
1004 	local_irq_disable();
1005 	active_mm = tsk->active_mm;
1006 	tsk->active_mm = mm;
1007 	tsk->mm = mm;
1008 	/*
1009 	 * This prevents preemption while active_mm is being loaded and
1010 	 * it and mm are being updated, which could cause problems for
1011 	 * lazy tlb mm refcounting when these are updated by context
1012 	 * switches. Not all architectures can handle irqs off over
1013 	 * activate_mm yet.
1014 	 */
1015 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1016 		local_irq_enable();
1017 	activate_mm(active_mm, mm);
1018 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1019 		local_irq_enable();
1020 	tsk->mm->vmacache_seqnum = 0;
1021 	vmacache_flush(tsk);
1022 	task_unlock(tsk);
1023 	if (old_mm) {
1024 		mmap_read_unlock(old_mm);
1025 		BUG_ON(active_mm != old_mm);
1026 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1027 		mm_update_next_owner(old_mm);
1028 		mmput(old_mm);
1029 		return 0;
1030 	}
1031 	mmdrop(active_mm);
1032 	return 0;
1033 }
1034 
1035 static int de_thread(struct task_struct *tsk)
1036 {
1037 	struct signal_struct *sig = tsk->signal;
1038 	struct sighand_struct *oldsighand = tsk->sighand;
1039 	spinlock_t *lock = &oldsighand->siglock;
1040 
1041 	if (thread_group_empty(tsk))
1042 		goto no_thread_group;
1043 
1044 	/*
1045 	 * Kill all other threads in the thread group.
1046 	 */
1047 	spin_lock_irq(lock);
1048 	if (signal_group_exit(sig)) {
1049 		/*
1050 		 * Another group action in progress, just
1051 		 * return so that the signal is processed.
1052 		 */
1053 		spin_unlock_irq(lock);
1054 		return -EAGAIN;
1055 	}
1056 
1057 	sig->group_exit_task = tsk;
1058 	sig->notify_count = zap_other_threads(tsk);
1059 	if (!thread_group_leader(tsk))
1060 		sig->notify_count--;
1061 
1062 	while (sig->notify_count) {
1063 		__set_current_state(TASK_KILLABLE);
1064 		spin_unlock_irq(lock);
1065 		schedule();
1066 		if (__fatal_signal_pending(tsk))
1067 			goto killed;
1068 		spin_lock_irq(lock);
1069 	}
1070 	spin_unlock_irq(lock);
1071 
1072 	/*
1073 	 * At this point all other threads have exited, all we have to
1074 	 * do is to wait for the thread group leader to become inactive,
1075 	 * and to assume its PID:
1076 	 */
1077 	if (!thread_group_leader(tsk)) {
1078 		struct task_struct *leader = tsk->group_leader;
1079 
1080 		for (;;) {
1081 			cgroup_threadgroup_change_begin(tsk);
1082 			write_lock_irq(&tasklist_lock);
1083 			/*
1084 			 * Do this under tasklist_lock to ensure that
1085 			 * exit_notify() can't miss ->group_exit_task
1086 			 */
1087 			sig->notify_count = -1;
1088 			if (likely(leader->exit_state))
1089 				break;
1090 			__set_current_state(TASK_KILLABLE);
1091 			write_unlock_irq(&tasklist_lock);
1092 			cgroup_threadgroup_change_end(tsk);
1093 			schedule();
1094 			if (__fatal_signal_pending(tsk))
1095 				goto killed;
1096 		}
1097 
1098 		/*
1099 		 * The only record we have of the real-time age of a
1100 		 * process, regardless of execs it's done, is start_time.
1101 		 * All the past CPU time is accumulated in signal_struct
1102 		 * from sister threads now dead.  But in this non-leader
1103 		 * exec, nothing survives from the original leader thread,
1104 		 * whose birth marks the true age of this process now.
1105 		 * When we take on its identity by switching to its PID, we
1106 		 * also take its birthdate (always earlier than our own).
1107 		 */
1108 		tsk->start_time = leader->start_time;
1109 		tsk->start_boottime = leader->start_boottime;
1110 
1111 		BUG_ON(!same_thread_group(leader, tsk));
1112 		/*
1113 		 * An exec() starts a new thread group with the
1114 		 * TGID of the previous thread group. Rehash the
1115 		 * two threads with a switched PID, and release
1116 		 * the former thread group leader:
1117 		 */
1118 
1119 		/* Become a process group leader with the old leader's pid.
1120 		 * The old leader becomes a thread of the this thread group.
1121 		 */
1122 		exchange_tids(tsk, leader);
1123 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1124 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1125 		transfer_pid(leader, tsk, PIDTYPE_SID);
1126 
1127 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1128 		list_replace_init(&leader->sibling, &tsk->sibling);
1129 
1130 		tsk->group_leader = tsk;
1131 		leader->group_leader = tsk;
1132 
1133 		tsk->exit_signal = SIGCHLD;
1134 		leader->exit_signal = -1;
1135 
1136 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1137 		leader->exit_state = EXIT_DEAD;
1138 
1139 		/*
1140 		 * We are going to release_task()->ptrace_unlink() silently,
1141 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1142 		 * the tracer wont't block again waiting for this thread.
1143 		 */
1144 		if (unlikely(leader->ptrace))
1145 			__wake_up_parent(leader, leader->parent);
1146 		write_unlock_irq(&tasklist_lock);
1147 		cgroup_threadgroup_change_end(tsk);
1148 
1149 		release_task(leader);
1150 	}
1151 
1152 	sig->group_exit_task = NULL;
1153 	sig->notify_count = 0;
1154 
1155 no_thread_group:
1156 	/* we have changed execution domain */
1157 	tsk->exit_signal = SIGCHLD;
1158 
1159 	BUG_ON(!thread_group_leader(tsk));
1160 	return 0;
1161 
1162 killed:
1163 	/* protects against exit_notify() and __exit_signal() */
1164 	read_lock(&tasklist_lock);
1165 	sig->group_exit_task = NULL;
1166 	sig->notify_count = 0;
1167 	read_unlock(&tasklist_lock);
1168 	return -EAGAIN;
1169 }
1170 
1171 
1172 /*
1173  * This function makes sure the current process has its own signal table,
1174  * so that flush_signal_handlers can later reset the handlers without
1175  * disturbing other processes.  (Other processes might share the signal
1176  * table via the CLONE_SIGHAND option to clone().)
1177  */
1178 static int unshare_sighand(struct task_struct *me)
1179 {
1180 	struct sighand_struct *oldsighand = me->sighand;
1181 
1182 	if (refcount_read(&oldsighand->count) != 1) {
1183 		struct sighand_struct *newsighand;
1184 		/*
1185 		 * This ->sighand is shared with the CLONE_SIGHAND
1186 		 * but not CLONE_THREAD task, switch to the new one.
1187 		 */
1188 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1189 		if (!newsighand)
1190 			return -ENOMEM;
1191 
1192 		refcount_set(&newsighand->count, 1);
1193 		memcpy(newsighand->action, oldsighand->action,
1194 		       sizeof(newsighand->action));
1195 
1196 		write_lock_irq(&tasklist_lock);
1197 		spin_lock(&oldsighand->siglock);
1198 		rcu_assign_pointer(me->sighand, newsighand);
1199 		spin_unlock(&oldsighand->siglock);
1200 		write_unlock_irq(&tasklist_lock);
1201 
1202 		__cleanup_sighand(oldsighand);
1203 	}
1204 	return 0;
1205 }
1206 
1207 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1208 {
1209 	task_lock(tsk);
1210 	strncpy(buf, tsk->comm, buf_size);
1211 	task_unlock(tsk);
1212 	return buf;
1213 }
1214 EXPORT_SYMBOL_GPL(__get_task_comm);
1215 
1216 /*
1217  * These functions flushes out all traces of the currently running executable
1218  * so that a new one can be started
1219  */
1220 
1221 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1222 {
1223 	task_lock(tsk);
1224 	trace_task_rename(tsk, buf);
1225 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1226 	task_unlock(tsk);
1227 	perf_event_comm(tsk, exec);
1228 }
1229 
1230 /*
1231  * Calling this is the point of no return. None of the failures will be
1232  * seen by userspace since either the process is already taking a fatal
1233  * signal (via de_thread() or coredump), or will have SEGV raised
1234  * (after exec_mmap()) by search_binary_handler (see below).
1235  */
1236 int begin_new_exec(struct linux_binprm * bprm)
1237 {
1238 	struct task_struct *me = current;
1239 	int retval;
1240 
1241 	/* Once we are committed compute the creds */
1242 	retval = bprm_creds_from_file(bprm);
1243 	if (retval)
1244 		return retval;
1245 
1246 	/*
1247 	 * Ensure all future errors are fatal.
1248 	 */
1249 	bprm->point_of_no_return = true;
1250 
1251 	/*
1252 	 * Make this the only thread in the thread group.
1253 	 */
1254 	retval = de_thread(me);
1255 	if (retval)
1256 		goto out;
1257 
1258 	/*
1259 	 * Cancel any io_uring activity across execve
1260 	 */
1261 	io_uring_task_cancel();
1262 
1263 	/* Ensure the files table is not shared. */
1264 	retval = unshare_files();
1265 	if (retval)
1266 		goto out;
1267 
1268 	/*
1269 	 * Must be called _before_ exec_mmap() as bprm->mm is
1270 	 * not visibile until then. This also enables the update
1271 	 * to be lockless.
1272 	 */
1273 	set_mm_exe_file(bprm->mm, bprm->file);
1274 
1275 	/* If the binary is not readable then enforce mm->dumpable=0 */
1276 	would_dump(bprm, bprm->file);
1277 	if (bprm->have_execfd)
1278 		would_dump(bprm, bprm->executable);
1279 
1280 	/*
1281 	 * Release all of the old mmap stuff
1282 	 */
1283 	acct_arg_size(bprm, 0);
1284 	retval = exec_mmap(bprm->mm);
1285 	if (retval)
1286 		goto out;
1287 
1288 	bprm->mm = NULL;
1289 
1290 #ifdef CONFIG_POSIX_TIMERS
1291 	exit_itimers(me->signal);
1292 	flush_itimer_signals();
1293 #endif
1294 
1295 	/*
1296 	 * Make the signal table private.
1297 	 */
1298 	retval = unshare_sighand(me);
1299 	if (retval)
1300 		goto out_unlock;
1301 
1302 	/*
1303 	 * Ensure that the uaccess routines can actually operate on userspace
1304 	 * pointers:
1305 	 */
1306 	force_uaccess_begin();
1307 
1308 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1309 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1310 	flush_thread();
1311 	me->personality &= ~bprm->per_clear;
1312 
1313 	clear_syscall_work_syscall_user_dispatch(me);
1314 
1315 	/*
1316 	 * We have to apply CLOEXEC before we change whether the process is
1317 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1318 	 * trying to access the should-be-closed file descriptors of a process
1319 	 * undergoing exec(2).
1320 	 */
1321 	do_close_on_exec(me->files);
1322 
1323 	if (bprm->secureexec) {
1324 		/* Make sure parent cannot signal privileged process. */
1325 		me->pdeath_signal = 0;
1326 
1327 		/*
1328 		 * For secureexec, reset the stack limit to sane default to
1329 		 * avoid bad behavior from the prior rlimits. This has to
1330 		 * happen before arch_pick_mmap_layout(), which examines
1331 		 * RLIMIT_STACK, but after the point of no return to avoid
1332 		 * needing to clean up the change on failure.
1333 		 */
1334 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1335 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1336 	}
1337 
1338 	me->sas_ss_sp = me->sas_ss_size = 0;
1339 
1340 	/*
1341 	 * Figure out dumpability. Note that this checking only of current
1342 	 * is wrong, but userspace depends on it. This should be testing
1343 	 * bprm->secureexec instead.
1344 	 */
1345 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1346 	    !(uid_eq(current_euid(), current_uid()) &&
1347 	      gid_eq(current_egid(), current_gid())))
1348 		set_dumpable(current->mm, suid_dumpable);
1349 	else
1350 		set_dumpable(current->mm, SUID_DUMP_USER);
1351 
1352 	perf_event_exec();
1353 	__set_task_comm(me, kbasename(bprm->filename), true);
1354 
1355 	/* An exec changes our domain. We are no longer part of the thread
1356 	   group */
1357 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1358 	flush_signal_handlers(me, 0);
1359 
1360 	retval = set_cred_ucounts(bprm->cred);
1361 	if (retval < 0)
1362 		goto out_unlock;
1363 
1364 	/*
1365 	 * install the new credentials for this executable
1366 	 */
1367 	security_bprm_committing_creds(bprm);
1368 
1369 	commit_creds(bprm->cred);
1370 	bprm->cred = NULL;
1371 
1372 	/*
1373 	 * Disable monitoring for regular users
1374 	 * when executing setuid binaries. Must
1375 	 * wait until new credentials are committed
1376 	 * by commit_creds() above
1377 	 */
1378 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1379 		perf_event_exit_task(me);
1380 	/*
1381 	 * cred_guard_mutex must be held at least to this point to prevent
1382 	 * ptrace_attach() from altering our determination of the task's
1383 	 * credentials; any time after this it may be unlocked.
1384 	 */
1385 	security_bprm_committed_creds(bprm);
1386 
1387 	/* Pass the opened binary to the interpreter. */
1388 	if (bprm->have_execfd) {
1389 		retval = get_unused_fd_flags(0);
1390 		if (retval < 0)
1391 			goto out_unlock;
1392 		fd_install(retval, bprm->executable);
1393 		bprm->executable = NULL;
1394 		bprm->execfd = retval;
1395 	}
1396 	return 0;
1397 
1398 out_unlock:
1399 	up_write(&me->signal->exec_update_lock);
1400 out:
1401 	return retval;
1402 }
1403 EXPORT_SYMBOL(begin_new_exec);
1404 
1405 void would_dump(struct linux_binprm *bprm, struct file *file)
1406 {
1407 	struct inode *inode = file_inode(file);
1408 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1409 	if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1410 		struct user_namespace *old, *user_ns;
1411 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1412 
1413 		/* Ensure mm->user_ns contains the executable */
1414 		user_ns = old = bprm->mm->user_ns;
1415 		while ((user_ns != &init_user_ns) &&
1416 		       !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1417 			user_ns = user_ns->parent;
1418 
1419 		if (old != user_ns) {
1420 			bprm->mm->user_ns = get_user_ns(user_ns);
1421 			put_user_ns(old);
1422 		}
1423 	}
1424 }
1425 EXPORT_SYMBOL(would_dump);
1426 
1427 void setup_new_exec(struct linux_binprm * bprm)
1428 {
1429 	/* Setup things that can depend upon the personality */
1430 	struct task_struct *me = current;
1431 
1432 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1433 
1434 	arch_setup_new_exec();
1435 
1436 	/* Set the new mm task size. We have to do that late because it may
1437 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1438 	 * some architectures like powerpc
1439 	 */
1440 	me->mm->task_size = TASK_SIZE;
1441 	up_write(&me->signal->exec_update_lock);
1442 	mutex_unlock(&me->signal->cred_guard_mutex);
1443 }
1444 EXPORT_SYMBOL(setup_new_exec);
1445 
1446 /* Runs immediately before start_thread() takes over. */
1447 void finalize_exec(struct linux_binprm *bprm)
1448 {
1449 	/* Store any stack rlimit changes before starting thread. */
1450 	task_lock(current->group_leader);
1451 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1452 	task_unlock(current->group_leader);
1453 }
1454 EXPORT_SYMBOL(finalize_exec);
1455 
1456 /*
1457  * Prepare credentials and lock ->cred_guard_mutex.
1458  * setup_new_exec() commits the new creds and drops the lock.
1459  * Or, if exec fails before, free_bprm() should release ->cred
1460  * and unlock.
1461  */
1462 static int prepare_bprm_creds(struct linux_binprm *bprm)
1463 {
1464 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1465 		return -ERESTARTNOINTR;
1466 
1467 	bprm->cred = prepare_exec_creds();
1468 	if (likely(bprm->cred))
1469 		return 0;
1470 
1471 	mutex_unlock(&current->signal->cred_guard_mutex);
1472 	return -ENOMEM;
1473 }
1474 
1475 static void free_bprm(struct linux_binprm *bprm)
1476 {
1477 	if (bprm->mm) {
1478 		acct_arg_size(bprm, 0);
1479 		mmput(bprm->mm);
1480 	}
1481 	free_arg_pages(bprm);
1482 	if (bprm->cred) {
1483 		mutex_unlock(&current->signal->cred_guard_mutex);
1484 		abort_creds(bprm->cred);
1485 	}
1486 	if (bprm->file) {
1487 		allow_write_access(bprm->file);
1488 		fput(bprm->file);
1489 	}
1490 	if (bprm->executable)
1491 		fput(bprm->executable);
1492 	/* If a binfmt changed the interp, free it. */
1493 	if (bprm->interp != bprm->filename)
1494 		kfree(bprm->interp);
1495 	kfree(bprm->fdpath);
1496 	kfree(bprm);
1497 }
1498 
1499 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1500 {
1501 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1502 	int retval = -ENOMEM;
1503 	if (!bprm)
1504 		goto out;
1505 
1506 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1507 		bprm->filename = filename->name;
1508 	} else {
1509 		if (filename->name[0] == '\0')
1510 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1511 		else
1512 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1513 						  fd, filename->name);
1514 		if (!bprm->fdpath)
1515 			goto out_free;
1516 
1517 		bprm->filename = bprm->fdpath;
1518 	}
1519 	bprm->interp = bprm->filename;
1520 
1521 	retval = bprm_mm_init(bprm);
1522 	if (retval)
1523 		goto out_free;
1524 	return bprm;
1525 
1526 out_free:
1527 	free_bprm(bprm);
1528 out:
1529 	return ERR_PTR(retval);
1530 }
1531 
1532 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1533 {
1534 	/* If a binfmt changed the interp, free it first. */
1535 	if (bprm->interp != bprm->filename)
1536 		kfree(bprm->interp);
1537 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1538 	if (!bprm->interp)
1539 		return -ENOMEM;
1540 	return 0;
1541 }
1542 EXPORT_SYMBOL(bprm_change_interp);
1543 
1544 /*
1545  * determine how safe it is to execute the proposed program
1546  * - the caller must hold ->cred_guard_mutex to protect against
1547  *   PTRACE_ATTACH or seccomp thread-sync
1548  */
1549 static void check_unsafe_exec(struct linux_binprm *bprm)
1550 {
1551 	struct task_struct *p = current, *t;
1552 	unsigned n_fs;
1553 
1554 	if (p->ptrace)
1555 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1556 
1557 	/*
1558 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1559 	 * mess up.
1560 	 */
1561 	if (task_no_new_privs(current))
1562 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1563 
1564 	t = p;
1565 	n_fs = 1;
1566 	spin_lock(&p->fs->lock);
1567 	rcu_read_lock();
1568 	while_each_thread(p, t) {
1569 		if (t->fs == p->fs)
1570 			n_fs++;
1571 	}
1572 	rcu_read_unlock();
1573 
1574 	if (p->fs->users > n_fs)
1575 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1576 	else
1577 		p->fs->in_exec = 1;
1578 	spin_unlock(&p->fs->lock);
1579 }
1580 
1581 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1582 {
1583 	/* Handle suid and sgid on files */
1584 	struct user_namespace *mnt_userns;
1585 	struct inode *inode;
1586 	unsigned int mode;
1587 	kuid_t uid;
1588 	kgid_t gid;
1589 
1590 	if (!mnt_may_suid(file->f_path.mnt))
1591 		return;
1592 
1593 	if (task_no_new_privs(current))
1594 		return;
1595 
1596 	inode = file->f_path.dentry->d_inode;
1597 	mode = READ_ONCE(inode->i_mode);
1598 	if (!(mode & (S_ISUID|S_ISGID)))
1599 		return;
1600 
1601 	mnt_userns = file_mnt_user_ns(file);
1602 
1603 	/* Be careful if suid/sgid is set */
1604 	inode_lock(inode);
1605 
1606 	/* reload atomically mode/uid/gid now that lock held */
1607 	mode = inode->i_mode;
1608 	uid = i_uid_into_mnt(mnt_userns, inode);
1609 	gid = i_gid_into_mnt(mnt_userns, inode);
1610 	inode_unlock(inode);
1611 
1612 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1613 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1614 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1615 		return;
1616 
1617 	if (mode & S_ISUID) {
1618 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1619 		bprm->cred->euid = uid;
1620 	}
1621 
1622 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1623 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1624 		bprm->cred->egid = gid;
1625 	}
1626 }
1627 
1628 /*
1629  * Compute brpm->cred based upon the final binary.
1630  */
1631 static int bprm_creds_from_file(struct linux_binprm *bprm)
1632 {
1633 	/* Compute creds based on which file? */
1634 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1635 
1636 	bprm_fill_uid(bprm, file);
1637 	return security_bprm_creds_from_file(bprm, file);
1638 }
1639 
1640 /*
1641  * Fill the binprm structure from the inode.
1642  * Read the first BINPRM_BUF_SIZE bytes
1643  *
1644  * This may be called multiple times for binary chains (scripts for example).
1645  */
1646 static int prepare_binprm(struct linux_binprm *bprm)
1647 {
1648 	loff_t pos = 0;
1649 
1650 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1651 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1652 }
1653 
1654 /*
1655  * Arguments are '\0' separated strings found at the location bprm->p
1656  * points to; chop off the first by relocating brpm->p to right after
1657  * the first '\0' encountered.
1658  */
1659 int remove_arg_zero(struct linux_binprm *bprm)
1660 {
1661 	int ret = 0;
1662 	unsigned long offset;
1663 	char *kaddr;
1664 	struct page *page;
1665 
1666 	if (!bprm->argc)
1667 		return 0;
1668 
1669 	do {
1670 		offset = bprm->p & ~PAGE_MASK;
1671 		page = get_arg_page(bprm, bprm->p, 0);
1672 		if (!page) {
1673 			ret = -EFAULT;
1674 			goto out;
1675 		}
1676 		kaddr = kmap_atomic(page);
1677 
1678 		for (; offset < PAGE_SIZE && kaddr[offset];
1679 				offset++, bprm->p++)
1680 			;
1681 
1682 		kunmap_atomic(kaddr);
1683 		put_arg_page(page);
1684 	} while (offset == PAGE_SIZE);
1685 
1686 	bprm->p++;
1687 	bprm->argc--;
1688 	ret = 0;
1689 
1690 out:
1691 	return ret;
1692 }
1693 EXPORT_SYMBOL(remove_arg_zero);
1694 
1695 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1696 /*
1697  * cycle the list of binary formats handler, until one recognizes the image
1698  */
1699 static int search_binary_handler(struct linux_binprm *bprm)
1700 {
1701 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1702 	struct linux_binfmt *fmt;
1703 	int retval;
1704 
1705 	retval = prepare_binprm(bprm);
1706 	if (retval < 0)
1707 		return retval;
1708 
1709 	retval = security_bprm_check(bprm);
1710 	if (retval)
1711 		return retval;
1712 
1713 	retval = -ENOENT;
1714  retry:
1715 	read_lock(&binfmt_lock);
1716 	list_for_each_entry(fmt, &formats, lh) {
1717 		if (!try_module_get(fmt->module))
1718 			continue;
1719 		read_unlock(&binfmt_lock);
1720 
1721 		retval = fmt->load_binary(bprm);
1722 
1723 		read_lock(&binfmt_lock);
1724 		put_binfmt(fmt);
1725 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1726 			read_unlock(&binfmt_lock);
1727 			return retval;
1728 		}
1729 	}
1730 	read_unlock(&binfmt_lock);
1731 
1732 	if (need_retry) {
1733 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1734 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1735 			return retval;
1736 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1737 			return retval;
1738 		need_retry = false;
1739 		goto retry;
1740 	}
1741 
1742 	return retval;
1743 }
1744 
1745 static int exec_binprm(struct linux_binprm *bprm)
1746 {
1747 	pid_t old_pid, old_vpid;
1748 	int ret, depth;
1749 
1750 	/* Need to fetch pid before load_binary changes it */
1751 	old_pid = current->pid;
1752 	rcu_read_lock();
1753 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1754 	rcu_read_unlock();
1755 
1756 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1757 	for (depth = 0;; depth++) {
1758 		struct file *exec;
1759 		if (depth > 5)
1760 			return -ELOOP;
1761 
1762 		ret = search_binary_handler(bprm);
1763 		if (ret < 0)
1764 			return ret;
1765 		if (!bprm->interpreter)
1766 			break;
1767 
1768 		exec = bprm->file;
1769 		bprm->file = bprm->interpreter;
1770 		bprm->interpreter = NULL;
1771 
1772 		allow_write_access(exec);
1773 		if (unlikely(bprm->have_execfd)) {
1774 			if (bprm->executable) {
1775 				fput(exec);
1776 				return -ENOEXEC;
1777 			}
1778 			bprm->executable = exec;
1779 		} else
1780 			fput(exec);
1781 	}
1782 
1783 	audit_bprm(bprm);
1784 	trace_sched_process_exec(current, old_pid, bprm);
1785 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1786 	proc_exec_connector(current);
1787 	return 0;
1788 }
1789 
1790 /*
1791  * sys_execve() executes a new program.
1792  */
1793 static int bprm_execve(struct linux_binprm *bprm,
1794 		       int fd, struct filename *filename, int flags)
1795 {
1796 	struct file *file;
1797 	int retval;
1798 
1799 	retval = prepare_bprm_creds(bprm);
1800 	if (retval)
1801 		return retval;
1802 
1803 	check_unsafe_exec(bprm);
1804 	current->in_execve = 1;
1805 
1806 	file = do_open_execat(fd, filename, flags);
1807 	retval = PTR_ERR(file);
1808 	if (IS_ERR(file))
1809 		goto out_unmark;
1810 
1811 	sched_exec();
1812 
1813 	bprm->file = file;
1814 	/*
1815 	 * Record that a name derived from an O_CLOEXEC fd will be
1816 	 * inaccessible after exec.  This allows the code in exec to
1817 	 * choose to fail when the executable is not mmaped into the
1818 	 * interpreter and an open file descriptor is not passed to
1819 	 * the interpreter.  This makes for a better user experience
1820 	 * than having the interpreter start and then immediately fail
1821 	 * when it finds the executable is inaccessible.
1822 	 */
1823 	if (bprm->fdpath && get_close_on_exec(fd))
1824 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1825 
1826 	/* Set the unchanging part of bprm->cred */
1827 	retval = security_bprm_creds_for_exec(bprm);
1828 	if (retval)
1829 		goto out;
1830 
1831 	retval = exec_binprm(bprm);
1832 	if (retval < 0)
1833 		goto out;
1834 
1835 	/* execve succeeded */
1836 	current->fs->in_exec = 0;
1837 	current->in_execve = 0;
1838 	rseq_execve(current);
1839 	acct_update_integrals(current);
1840 	task_numa_free(current, false);
1841 	return retval;
1842 
1843 out:
1844 	/*
1845 	 * If past the point of no return ensure the code never
1846 	 * returns to the userspace process.  Use an existing fatal
1847 	 * signal if present otherwise terminate the process with
1848 	 * SIGSEGV.
1849 	 */
1850 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1851 		force_sigsegv(SIGSEGV);
1852 
1853 out_unmark:
1854 	current->fs->in_exec = 0;
1855 	current->in_execve = 0;
1856 
1857 	return retval;
1858 }
1859 
1860 static int do_execveat_common(int fd, struct filename *filename,
1861 			      struct user_arg_ptr argv,
1862 			      struct user_arg_ptr envp,
1863 			      int flags)
1864 {
1865 	struct linux_binprm *bprm;
1866 	int retval;
1867 
1868 	if (IS_ERR(filename))
1869 		return PTR_ERR(filename);
1870 
1871 	/*
1872 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1873 	 * set*uid() to execve() because too many poorly written programs
1874 	 * don't check setuid() return code.  Here we additionally recheck
1875 	 * whether NPROC limit is still exceeded.
1876 	 */
1877 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1878 	    is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1879 		retval = -EAGAIN;
1880 		goto out_ret;
1881 	}
1882 
1883 	/* We're below the limit (still or again), so we don't want to make
1884 	 * further execve() calls fail. */
1885 	current->flags &= ~PF_NPROC_EXCEEDED;
1886 
1887 	bprm = alloc_bprm(fd, filename);
1888 	if (IS_ERR(bprm)) {
1889 		retval = PTR_ERR(bprm);
1890 		goto out_ret;
1891 	}
1892 
1893 	retval = count(argv, MAX_ARG_STRINGS);
1894 	if (retval < 0)
1895 		goto out_free;
1896 	bprm->argc = retval;
1897 
1898 	retval = count(envp, MAX_ARG_STRINGS);
1899 	if (retval < 0)
1900 		goto out_free;
1901 	bprm->envc = retval;
1902 
1903 	retval = bprm_stack_limits(bprm);
1904 	if (retval < 0)
1905 		goto out_free;
1906 
1907 	retval = copy_string_kernel(bprm->filename, bprm);
1908 	if (retval < 0)
1909 		goto out_free;
1910 	bprm->exec = bprm->p;
1911 
1912 	retval = copy_strings(bprm->envc, envp, bprm);
1913 	if (retval < 0)
1914 		goto out_free;
1915 
1916 	retval = copy_strings(bprm->argc, argv, bprm);
1917 	if (retval < 0)
1918 		goto out_free;
1919 
1920 	retval = bprm_execve(bprm, fd, filename, flags);
1921 out_free:
1922 	free_bprm(bprm);
1923 
1924 out_ret:
1925 	putname(filename);
1926 	return retval;
1927 }
1928 
1929 int kernel_execve(const char *kernel_filename,
1930 		  const char *const *argv, const char *const *envp)
1931 {
1932 	struct filename *filename;
1933 	struct linux_binprm *bprm;
1934 	int fd = AT_FDCWD;
1935 	int retval;
1936 
1937 	filename = getname_kernel(kernel_filename);
1938 	if (IS_ERR(filename))
1939 		return PTR_ERR(filename);
1940 
1941 	bprm = alloc_bprm(fd, filename);
1942 	if (IS_ERR(bprm)) {
1943 		retval = PTR_ERR(bprm);
1944 		goto out_ret;
1945 	}
1946 
1947 	retval = count_strings_kernel(argv);
1948 	if (retval < 0)
1949 		goto out_free;
1950 	bprm->argc = retval;
1951 
1952 	retval = count_strings_kernel(envp);
1953 	if (retval < 0)
1954 		goto out_free;
1955 	bprm->envc = retval;
1956 
1957 	retval = bprm_stack_limits(bprm);
1958 	if (retval < 0)
1959 		goto out_free;
1960 
1961 	retval = copy_string_kernel(bprm->filename, bprm);
1962 	if (retval < 0)
1963 		goto out_free;
1964 	bprm->exec = bprm->p;
1965 
1966 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
1967 	if (retval < 0)
1968 		goto out_free;
1969 
1970 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
1971 	if (retval < 0)
1972 		goto out_free;
1973 
1974 	retval = bprm_execve(bprm, fd, filename, 0);
1975 out_free:
1976 	free_bprm(bprm);
1977 out_ret:
1978 	putname(filename);
1979 	return retval;
1980 }
1981 
1982 static int do_execve(struct filename *filename,
1983 	const char __user *const __user *__argv,
1984 	const char __user *const __user *__envp)
1985 {
1986 	struct user_arg_ptr argv = { .ptr.native = __argv };
1987 	struct user_arg_ptr envp = { .ptr.native = __envp };
1988 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1989 }
1990 
1991 static int do_execveat(int fd, struct filename *filename,
1992 		const char __user *const __user *__argv,
1993 		const char __user *const __user *__envp,
1994 		int flags)
1995 {
1996 	struct user_arg_ptr argv = { .ptr.native = __argv };
1997 	struct user_arg_ptr envp = { .ptr.native = __envp };
1998 
1999 	return do_execveat_common(fd, filename, argv, envp, flags);
2000 }
2001 
2002 #ifdef CONFIG_COMPAT
2003 static int compat_do_execve(struct filename *filename,
2004 	const compat_uptr_t __user *__argv,
2005 	const compat_uptr_t __user *__envp)
2006 {
2007 	struct user_arg_ptr argv = {
2008 		.is_compat = true,
2009 		.ptr.compat = __argv,
2010 	};
2011 	struct user_arg_ptr envp = {
2012 		.is_compat = true,
2013 		.ptr.compat = __envp,
2014 	};
2015 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2016 }
2017 
2018 static int compat_do_execveat(int fd, struct filename *filename,
2019 			      const compat_uptr_t __user *__argv,
2020 			      const compat_uptr_t __user *__envp,
2021 			      int flags)
2022 {
2023 	struct user_arg_ptr argv = {
2024 		.is_compat = true,
2025 		.ptr.compat = __argv,
2026 	};
2027 	struct user_arg_ptr envp = {
2028 		.is_compat = true,
2029 		.ptr.compat = __envp,
2030 	};
2031 	return do_execveat_common(fd, filename, argv, envp, flags);
2032 }
2033 #endif
2034 
2035 void set_binfmt(struct linux_binfmt *new)
2036 {
2037 	struct mm_struct *mm = current->mm;
2038 
2039 	if (mm->binfmt)
2040 		module_put(mm->binfmt->module);
2041 
2042 	mm->binfmt = new;
2043 	if (new)
2044 		__module_get(new->module);
2045 }
2046 EXPORT_SYMBOL(set_binfmt);
2047 
2048 /*
2049  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2050  */
2051 void set_dumpable(struct mm_struct *mm, int value)
2052 {
2053 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2054 		return;
2055 
2056 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2057 }
2058 
2059 SYSCALL_DEFINE3(execve,
2060 		const char __user *, filename,
2061 		const char __user *const __user *, argv,
2062 		const char __user *const __user *, envp)
2063 {
2064 	return do_execve(getname(filename), argv, envp);
2065 }
2066 
2067 SYSCALL_DEFINE5(execveat,
2068 		int, fd, const char __user *, filename,
2069 		const char __user *const __user *, argv,
2070 		const char __user *const __user *, envp,
2071 		int, flags)
2072 {
2073 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2074 
2075 	return do_execveat(fd,
2076 			   getname_flags(filename, lookup_flags, NULL),
2077 			   argv, envp, flags);
2078 }
2079 
2080 #ifdef CONFIG_COMPAT
2081 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2082 	const compat_uptr_t __user *, argv,
2083 	const compat_uptr_t __user *, envp)
2084 {
2085 	return compat_do_execve(getname(filename), argv, envp);
2086 }
2087 
2088 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2089 		       const char __user *, filename,
2090 		       const compat_uptr_t __user *, argv,
2091 		       const compat_uptr_t __user *, envp,
2092 		       int,  flags)
2093 {
2094 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2095 
2096 	return compat_do_execveat(fd,
2097 				  getname_flags(filename, lookup_flags, NULL),
2098 				  argv, envp, flags);
2099 }
2100 #endif
2101