1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/vmacache.h> 30 #include <linux/stat.h> 31 #include <linux/fcntl.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/coredump.h> 37 #include <linux/sched/signal.h> 38 #include <linux/sched/numa_balancing.h> 39 #include <linux/sched/task.h> 40 #include <linux/pagemap.h> 41 #include <linux/perf_event.h> 42 #include <linux/highmem.h> 43 #include <linux/spinlock.h> 44 #include <linux/key.h> 45 #include <linux/personality.h> 46 #include <linux/binfmts.h> 47 #include <linux/utsname.h> 48 #include <linux/pid_namespace.h> 49 #include <linux/module.h> 50 #include <linux/namei.h> 51 #include <linux/mount.h> 52 #include <linux/security.h> 53 #include <linux/syscalls.h> 54 #include <linux/tsacct_kern.h> 55 #include <linux/cn_proc.h> 56 #include <linux/audit.h> 57 #include <linux/tracehook.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/pipe_fs_i.h> 62 #include <linux/oom.h> 63 #include <linux/compat.h> 64 #include <linux/vmalloc.h> 65 66 #include <linux/uaccess.h> 67 #include <asm/mmu_context.h> 68 #include <asm/tlb.h> 69 70 #include <trace/events/task.h> 71 #include "internal.h" 72 73 #include <trace/events/sched.h> 74 75 int suid_dumpable = 0; 76 77 static LIST_HEAD(formats); 78 static DEFINE_RWLOCK(binfmt_lock); 79 80 void __register_binfmt(struct linux_binfmt * fmt, int insert) 81 { 82 BUG_ON(!fmt); 83 if (WARN_ON(!fmt->load_binary)) 84 return; 85 write_lock(&binfmt_lock); 86 insert ? list_add(&fmt->lh, &formats) : 87 list_add_tail(&fmt->lh, &formats); 88 write_unlock(&binfmt_lock); 89 } 90 91 EXPORT_SYMBOL(__register_binfmt); 92 93 void unregister_binfmt(struct linux_binfmt * fmt) 94 { 95 write_lock(&binfmt_lock); 96 list_del(&fmt->lh); 97 write_unlock(&binfmt_lock); 98 } 99 100 EXPORT_SYMBOL(unregister_binfmt); 101 102 static inline void put_binfmt(struct linux_binfmt * fmt) 103 { 104 module_put(fmt->module); 105 } 106 107 bool path_noexec(const struct path *path) 108 { 109 return (path->mnt->mnt_flags & MNT_NOEXEC) || 110 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 111 } 112 113 #ifdef CONFIG_USELIB 114 /* 115 * Note that a shared library must be both readable and executable due to 116 * security reasons. 117 * 118 * Also note that we take the address to load from from the file itself. 119 */ 120 SYSCALL_DEFINE1(uselib, const char __user *, library) 121 { 122 struct linux_binfmt *fmt; 123 struct file *file; 124 struct filename *tmp = getname(library); 125 int error = PTR_ERR(tmp); 126 static const struct open_flags uselib_flags = { 127 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 128 .acc_mode = MAY_READ | MAY_EXEC, 129 .intent = LOOKUP_OPEN, 130 .lookup_flags = LOOKUP_FOLLOW, 131 }; 132 133 if (IS_ERR(tmp)) 134 goto out; 135 136 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 137 putname(tmp); 138 error = PTR_ERR(file); 139 if (IS_ERR(file)) 140 goto out; 141 142 error = -EINVAL; 143 if (!S_ISREG(file_inode(file)->i_mode)) 144 goto exit; 145 146 error = -EACCES; 147 if (path_noexec(&file->f_path)) 148 goto exit; 149 150 fsnotify_open(file); 151 152 error = -ENOEXEC; 153 154 read_lock(&binfmt_lock); 155 list_for_each_entry(fmt, &formats, lh) { 156 if (!fmt->load_shlib) 157 continue; 158 if (!try_module_get(fmt->module)) 159 continue; 160 read_unlock(&binfmt_lock); 161 error = fmt->load_shlib(file); 162 read_lock(&binfmt_lock); 163 put_binfmt(fmt); 164 if (error != -ENOEXEC) 165 break; 166 } 167 read_unlock(&binfmt_lock); 168 exit: 169 fput(file); 170 out: 171 return error; 172 } 173 #endif /* #ifdef CONFIG_USELIB */ 174 175 #ifdef CONFIG_MMU 176 /* 177 * The nascent bprm->mm is not visible until exec_mmap() but it can 178 * use a lot of memory, account these pages in current->mm temporary 179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 180 * change the counter back via acct_arg_size(0). 181 */ 182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 183 { 184 struct mm_struct *mm = current->mm; 185 long diff = (long)(pages - bprm->vma_pages); 186 187 if (!mm || !diff) 188 return; 189 190 bprm->vma_pages = pages; 191 add_mm_counter(mm, MM_ANONPAGES, diff); 192 } 193 194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 195 int write) 196 { 197 struct page *page; 198 int ret; 199 unsigned int gup_flags = FOLL_FORCE; 200 201 #ifdef CONFIG_STACK_GROWSUP 202 if (write) { 203 ret = expand_downwards(bprm->vma, pos); 204 if (ret < 0) 205 return NULL; 206 } 207 #endif 208 209 if (write) 210 gup_flags |= FOLL_WRITE; 211 212 /* 213 * We are doing an exec(). 'current' is the process 214 * doing the exec and bprm->mm is the new process's mm. 215 */ 216 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags, 217 &page, NULL, NULL); 218 if (ret <= 0) 219 return NULL; 220 221 if (write) { 222 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 223 unsigned long ptr_size, limit; 224 225 /* 226 * Since the stack will hold pointers to the strings, we 227 * must account for them as well. 228 * 229 * The size calculation is the entire vma while each arg page is 230 * built, so each time we get here it's calculating how far it 231 * is currently (rather than each call being just the newly 232 * added size from the arg page). As a result, we need to 233 * always add the entire size of the pointers, so that on the 234 * last call to get_arg_page() we'll actually have the entire 235 * correct size. 236 */ 237 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); 238 if (ptr_size > ULONG_MAX - size) 239 goto fail; 240 size += ptr_size; 241 242 acct_arg_size(bprm, size / PAGE_SIZE); 243 244 /* 245 * We've historically supported up to 32 pages (ARG_MAX) 246 * of argument strings even with small stacks 247 */ 248 if (size <= ARG_MAX) 249 return page; 250 251 /* 252 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 253 * (whichever is smaller) for the argv+env strings. 254 * This ensures that: 255 * - the remaining binfmt code will not run out of stack space, 256 * - the program will have a reasonable amount of stack left 257 * to work from. 258 */ 259 limit = _STK_LIM / 4 * 3; 260 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 261 if (size > limit) 262 goto fail; 263 } 264 265 return page; 266 267 fail: 268 put_page(page); 269 return NULL; 270 } 271 272 static void put_arg_page(struct page *page) 273 { 274 put_page(page); 275 } 276 277 static void free_arg_pages(struct linux_binprm *bprm) 278 { 279 } 280 281 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 282 struct page *page) 283 { 284 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 285 } 286 287 static int __bprm_mm_init(struct linux_binprm *bprm) 288 { 289 int err; 290 struct vm_area_struct *vma = NULL; 291 struct mm_struct *mm = bprm->mm; 292 293 bprm->vma = vma = vm_area_alloc(mm); 294 if (!vma) 295 return -ENOMEM; 296 297 if (down_write_killable(&mm->mmap_sem)) { 298 err = -EINTR; 299 goto err_free; 300 } 301 302 /* 303 * Place the stack at the largest stack address the architecture 304 * supports. Later, we'll move this to an appropriate place. We don't 305 * use STACK_TOP because that can depend on attributes which aren't 306 * configured yet. 307 */ 308 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 309 vma->vm_end = STACK_TOP_MAX; 310 vma->vm_start = vma->vm_end - PAGE_SIZE; 311 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 312 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 313 314 err = insert_vm_struct(mm, vma); 315 if (err) 316 goto err; 317 318 mm->stack_vm = mm->total_vm = 1; 319 arch_bprm_mm_init(mm, vma); 320 up_write(&mm->mmap_sem); 321 bprm->p = vma->vm_end - sizeof(void *); 322 return 0; 323 err: 324 up_write(&mm->mmap_sem); 325 err_free: 326 bprm->vma = NULL; 327 vm_area_free(vma); 328 return err; 329 } 330 331 static bool valid_arg_len(struct linux_binprm *bprm, long len) 332 { 333 return len <= MAX_ARG_STRLEN; 334 } 335 336 #else 337 338 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 339 { 340 } 341 342 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 343 int write) 344 { 345 struct page *page; 346 347 page = bprm->page[pos / PAGE_SIZE]; 348 if (!page && write) { 349 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 350 if (!page) 351 return NULL; 352 bprm->page[pos / PAGE_SIZE] = page; 353 } 354 355 return page; 356 } 357 358 static void put_arg_page(struct page *page) 359 { 360 } 361 362 static void free_arg_page(struct linux_binprm *bprm, int i) 363 { 364 if (bprm->page[i]) { 365 __free_page(bprm->page[i]); 366 bprm->page[i] = NULL; 367 } 368 } 369 370 static void free_arg_pages(struct linux_binprm *bprm) 371 { 372 int i; 373 374 for (i = 0; i < MAX_ARG_PAGES; i++) 375 free_arg_page(bprm, i); 376 } 377 378 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 379 struct page *page) 380 { 381 } 382 383 static int __bprm_mm_init(struct linux_binprm *bprm) 384 { 385 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 386 return 0; 387 } 388 389 static bool valid_arg_len(struct linux_binprm *bprm, long len) 390 { 391 return len <= bprm->p; 392 } 393 394 #endif /* CONFIG_MMU */ 395 396 /* 397 * Create a new mm_struct and populate it with a temporary stack 398 * vm_area_struct. We don't have enough context at this point to set the stack 399 * flags, permissions, and offset, so we use temporary values. We'll update 400 * them later in setup_arg_pages(). 401 */ 402 static int bprm_mm_init(struct linux_binprm *bprm) 403 { 404 int err; 405 struct mm_struct *mm = NULL; 406 407 bprm->mm = mm = mm_alloc(); 408 err = -ENOMEM; 409 if (!mm) 410 goto err; 411 412 /* Save current stack limit for all calculations made during exec. */ 413 task_lock(current->group_leader); 414 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 415 task_unlock(current->group_leader); 416 417 err = __bprm_mm_init(bprm); 418 if (err) 419 goto err; 420 421 return 0; 422 423 err: 424 if (mm) { 425 bprm->mm = NULL; 426 mmdrop(mm); 427 } 428 429 return err; 430 } 431 432 struct user_arg_ptr { 433 #ifdef CONFIG_COMPAT 434 bool is_compat; 435 #endif 436 union { 437 const char __user *const __user *native; 438 #ifdef CONFIG_COMPAT 439 const compat_uptr_t __user *compat; 440 #endif 441 } ptr; 442 }; 443 444 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 445 { 446 const char __user *native; 447 448 #ifdef CONFIG_COMPAT 449 if (unlikely(argv.is_compat)) { 450 compat_uptr_t compat; 451 452 if (get_user(compat, argv.ptr.compat + nr)) 453 return ERR_PTR(-EFAULT); 454 455 return compat_ptr(compat); 456 } 457 #endif 458 459 if (get_user(native, argv.ptr.native + nr)) 460 return ERR_PTR(-EFAULT); 461 462 return native; 463 } 464 465 /* 466 * count() counts the number of strings in array ARGV. 467 */ 468 static int count(struct user_arg_ptr argv, int max) 469 { 470 int i = 0; 471 472 if (argv.ptr.native != NULL) { 473 for (;;) { 474 const char __user *p = get_user_arg_ptr(argv, i); 475 476 if (!p) 477 break; 478 479 if (IS_ERR(p)) 480 return -EFAULT; 481 482 if (i >= max) 483 return -E2BIG; 484 ++i; 485 486 if (fatal_signal_pending(current)) 487 return -ERESTARTNOHAND; 488 cond_resched(); 489 } 490 } 491 return i; 492 } 493 494 /* 495 * 'copy_strings()' copies argument/environment strings from the old 496 * processes's memory to the new process's stack. The call to get_user_pages() 497 * ensures the destination page is created and not swapped out. 498 */ 499 static int copy_strings(int argc, struct user_arg_ptr argv, 500 struct linux_binprm *bprm) 501 { 502 struct page *kmapped_page = NULL; 503 char *kaddr = NULL; 504 unsigned long kpos = 0; 505 int ret; 506 507 while (argc-- > 0) { 508 const char __user *str; 509 int len; 510 unsigned long pos; 511 512 ret = -EFAULT; 513 str = get_user_arg_ptr(argv, argc); 514 if (IS_ERR(str)) 515 goto out; 516 517 len = strnlen_user(str, MAX_ARG_STRLEN); 518 if (!len) 519 goto out; 520 521 ret = -E2BIG; 522 if (!valid_arg_len(bprm, len)) 523 goto out; 524 525 /* We're going to work our way backwords. */ 526 pos = bprm->p; 527 str += len; 528 bprm->p -= len; 529 530 while (len > 0) { 531 int offset, bytes_to_copy; 532 533 if (fatal_signal_pending(current)) { 534 ret = -ERESTARTNOHAND; 535 goto out; 536 } 537 cond_resched(); 538 539 offset = pos % PAGE_SIZE; 540 if (offset == 0) 541 offset = PAGE_SIZE; 542 543 bytes_to_copy = offset; 544 if (bytes_to_copy > len) 545 bytes_to_copy = len; 546 547 offset -= bytes_to_copy; 548 pos -= bytes_to_copy; 549 str -= bytes_to_copy; 550 len -= bytes_to_copy; 551 552 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 553 struct page *page; 554 555 page = get_arg_page(bprm, pos, 1); 556 if (!page) { 557 ret = -E2BIG; 558 goto out; 559 } 560 561 if (kmapped_page) { 562 flush_kernel_dcache_page(kmapped_page); 563 kunmap(kmapped_page); 564 put_arg_page(kmapped_page); 565 } 566 kmapped_page = page; 567 kaddr = kmap(kmapped_page); 568 kpos = pos & PAGE_MASK; 569 flush_arg_page(bprm, kpos, kmapped_page); 570 } 571 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 572 ret = -EFAULT; 573 goto out; 574 } 575 } 576 } 577 ret = 0; 578 out: 579 if (kmapped_page) { 580 flush_kernel_dcache_page(kmapped_page); 581 kunmap(kmapped_page); 582 put_arg_page(kmapped_page); 583 } 584 return ret; 585 } 586 587 /* 588 * Like copy_strings, but get argv and its values from kernel memory. 589 */ 590 int copy_strings_kernel(int argc, const char *const *__argv, 591 struct linux_binprm *bprm) 592 { 593 int r; 594 mm_segment_t oldfs = get_fs(); 595 struct user_arg_ptr argv = { 596 .ptr.native = (const char __user *const __user *)__argv, 597 }; 598 599 set_fs(KERNEL_DS); 600 r = copy_strings(argc, argv, bprm); 601 set_fs(oldfs); 602 603 return r; 604 } 605 EXPORT_SYMBOL(copy_strings_kernel); 606 607 #ifdef CONFIG_MMU 608 609 /* 610 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 611 * the binfmt code determines where the new stack should reside, we shift it to 612 * its final location. The process proceeds as follows: 613 * 614 * 1) Use shift to calculate the new vma endpoints. 615 * 2) Extend vma to cover both the old and new ranges. This ensures the 616 * arguments passed to subsequent functions are consistent. 617 * 3) Move vma's page tables to the new range. 618 * 4) Free up any cleared pgd range. 619 * 5) Shrink the vma to cover only the new range. 620 */ 621 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 622 { 623 struct mm_struct *mm = vma->vm_mm; 624 unsigned long old_start = vma->vm_start; 625 unsigned long old_end = vma->vm_end; 626 unsigned long length = old_end - old_start; 627 unsigned long new_start = old_start - shift; 628 unsigned long new_end = old_end - shift; 629 struct mmu_gather tlb; 630 631 BUG_ON(new_start > new_end); 632 633 /* 634 * ensure there are no vmas between where we want to go 635 * and where we are 636 */ 637 if (vma != find_vma(mm, new_start)) 638 return -EFAULT; 639 640 /* 641 * cover the whole range: [new_start, old_end) 642 */ 643 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 644 return -ENOMEM; 645 646 /* 647 * move the page tables downwards, on failure we rely on 648 * process cleanup to remove whatever mess we made. 649 */ 650 if (length != move_page_tables(vma, old_start, 651 vma, new_start, length, false)) 652 return -ENOMEM; 653 654 lru_add_drain(); 655 tlb_gather_mmu(&tlb, mm, old_start, old_end); 656 if (new_end > old_start) { 657 /* 658 * when the old and new regions overlap clear from new_end. 659 */ 660 free_pgd_range(&tlb, new_end, old_end, new_end, 661 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 662 } else { 663 /* 664 * otherwise, clean from old_start; this is done to not touch 665 * the address space in [new_end, old_start) some architectures 666 * have constraints on va-space that make this illegal (IA64) - 667 * for the others its just a little faster. 668 */ 669 free_pgd_range(&tlb, old_start, old_end, new_end, 670 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 671 } 672 tlb_finish_mmu(&tlb, old_start, old_end); 673 674 /* 675 * Shrink the vma to just the new range. Always succeeds. 676 */ 677 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 678 679 return 0; 680 } 681 682 /* 683 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 684 * the stack is optionally relocated, and some extra space is added. 685 */ 686 int setup_arg_pages(struct linux_binprm *bprm, 687 unsigned long stack_top, 688 int executable_stack) 689 { 690 unsigned long ret; 691 unsigned long stack_shift; 692 struct mm_struct *mm = current->mm; 693 struct vm_area_struct *vma = bprm->vma; 694 struct vm_area_struct *prev = NULL; 695 unsigned long vm_flags; 696 unsigned long stack_base; 697 unsigned long stack_size; 698 unsigned long stack_expand; 699 unsigned long rlim_stack; 700 701 #ifdef CONFIG_STACK_GROWSUP 702 /* Limit stack size */ 703 stack_base = bprm->rlim_stack.rlim_max; 704 if (stack_base > STACK_SIZE_MAX) 705 stack_base = STACK_SIZE_MAX; 706 707 /* Add space for stack randomization. */ 708 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 709 710 /* Make sure we didn't let the argument array grow too large. */ 711 if (vma->vm_end - vma->vm_start > stack_base) 712 return -ENOMEM; 713 714 stack_base = PAGE_ALIGN(stack_top - stack_base); 715 716 stack_shift = vma->vm_start - stack_base; 717 mm->arg_start = bprm->p - stack_shift; 718 bprm->p = vma->vm_end - stack_shift; 719 #else 720 stack_top = arch_align_stack(stack_top); 721 stack_top = PAGE_ALIGN(stack_top); 722 723 if (unlikely(stack_top < mmap_min_addr) || 724 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 725 return -ENOMEM; 726 727 stack_shift = vma->vm_end - stack_top; 728 729 bprm->p -= stack_shift; 730 mm->arg_start = bprm->p; 731 #endif 732 733 if (bprm->loader) 734 bprm->loader -= stack_shift; 735 bprm->exec -= stack_shift; 736 737 if (down_write_killable(&mm->mmap_sem)) 738 return -EINTR; 739 740 vm_flags = VM_STACK_FLAGS; 741 742 /* 743 * Adjust stack execute permissions; explicitly enable for 744 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 745 * (arch default) otherwise. 746 */ 747 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 748 vm_flags |= VM_EXEC; 749 else if (executable_stack == EXSTACK_DISABLE_X) 750 vm_flags &= ~VM_EXEC; 751 vm_flags |= mm->def_flags; 752 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 753 754 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 755 vm_flags); 756 if (ret) 757 goto out_unlock; 758 BUG_ON(prev != vma); 759 760 /* Move stack pages down in memory. */ 761 if (stack_shift) { 762 ret = shift_arg_pages(vma, stack_shift); 763 if (ret) 764 goto out_unlock; 765 } 766 767 /* mprotect_fixup is overkill to remove the temporary stack flags */ 768 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 769 770 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 771 stack_size = vma->vm_end - vma->vm_start; 772 /* 773 * Align this down to a page boundary as expand_stack 774 * will align it up. 775 */ 776 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 777 #ifdef CONFIG_STACK_GROWSUP 778 if (stack_size + stack_expand > rlim_stack) 779 stack_base = vma->vm_start + rlim_stack; 780 else 781 stack_base = vma->vm_end + stack_expand; 782 #else 783 if (stack_size + stack_expand > rlim_stack) 784 stack_base = vma->vm_end - rlim_stack; 785 else 786 stack_base = vma->vm_start - stack_expand; 787 #endif 788 current->mm->start_stack = bprm->p; 789 ret = expand_stack(vma, stack_base); 790 if (ret) 791 ret = -EFAULT; 792 793 out_unlock: 794 up_write(&mm->mmap_sem); 795 return ret; 796 } 797 EXPORT_SYMBOL(setup_arg_pages); 798 799 #else 800 801 /* 802 * Transfer the program arguments and environment from the holding pages 803 * onto the stack. The provided stack pointer is adjusted accordingly. 804 */ 805 int transfer_args_to_stack(struct linux_binprm *bprm, 806 unsigned long *sp_location) 807 { 808 unsigned long index, stop, sp; 809 int ret = 0; 810 811 stop = bprm->p >> PAGE_SHIFT; 812 sp = *sp_location; 813 814 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 815 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 816 char *src = kmap(bprm->page[index]) + offset; 817 sp -= PAGE_SIZE - offset; 818 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 819 ret = -EFAULT; 820 kunmap(bprm->page[index]); 821 if (ret) 822 goto out; 823 } 824 825 *sp_location = sp; 826 827 out: 828 return ret; 829 } 830 EXPORT_SYMBOL(transfer_args_to_stack); 831 832 #endif /* CONFIG_MMU */ 833 834 static struct file *do_open_execat(int fd, struct filename *name, int flags) 835 { 836 struct file *file; 837 int err; 838 struct open_flags open_exec_flags = { 839 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 840 .acc_mode = MAY_EXEC, 841 .intent = LOOKUP_OPEN, 842 .lookup_flags = LOOKUP_FOLLOW, 843 }; 844 845 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 846 return ERR_PTR(-EINVAL); 847 if (flags & AT_SYMLINK_NOFOLLOW) 848 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 849 if (flags & AT_EMPTY_PATH) 850 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 851 852 file = do_filp_open(fd, name, &open_exec_flags); 853 if (IS_ERR(file)) 854 goto out; 855 856 err = -EACCES; 857 if (!S_ISREG(file_inode(file)->i_mode)) 858 goto exit; 859 860 if (path_noexec(&file->f_path)) 861 goto exit; 862 863 err = deny_write_access(file); 864 if (err) 865 goto exit; 866 867 if (name->name[0] != '\0') 868 fsnotify_open(file); 869 870 out: 871 return file; 872 873 exit: 874 fput(file); 875 return ERR_PTR(err); 876 } 877 878 struct file *open_exec(const char *name) 879 { 880 struct filename *filename = getname_kernel(name); 881 struct file *f = ERR_CAST(filename); 882 883 if (!IS_ERR(filename)) { 884 f = do_open_execat(AT_FDCWD, filename, 0); 885 putname(filename); 886 } 887 return f; 888 } 889 EXPORT_SYMBOL(open_exec); 890 891 int kernel_read_file(struct file *file, void **buf, loff_t *size, 892 loff_t max_size, enum kernel_read_file_id id) 893 { 894 loff_t i_size, pos; 895 ssize_t bytes = 0; 896 int ret; 897 898 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) 899 return -EINVAL; 900 901 ret = deny_write_access(file); 902 if (ret) 903 return ret; 904 905 ret = security_kernel_read_file(file, id); 906 if (ret) 907 goto out; 908 909 i_size = i_size_read(file_inode(file)); 910 if (max_size > 0 && i_size > max_size) { 911 ret = -EFBIG; 912 goto out; 913 } 914 if (i_size <= 0) { 915 ret = -EINVAL; 916 goto out; 917 } 918 919 if (id != READING_FIRMWARE_PREALLOC_BUFFER) 920 *buf = vmalloc(i_size); 921 if (!*buf) { 922 ret = -ENOMEM; 923 goto out; 924 } 925 926 pos = 0; 927 while (pos < i_size) { 928 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos); 929 if (bytes < 0) { 930 ret = bytes; 931 goto out; 932 } 933 934 if (bytes == 0) 935 break; 936 } 937 938 if (pos != i_size) { 939 ret = -EIO; 940 goto out_free; 941 } 942 943 ret = security_kernel_post_read_file(file, *buf, i_size, id); 944 if (!ret) 945 *size = pos; 946 947 out_free: 948 if (ret < 0) { 949 if (id != READING_FIRMWARE_PREALLOC_BUFFER) { 950 vfree(*buf); 951 *buf = NULL; 952 } 953 } 954 955 out: 956 allow_write_access(file); 957 return ret; 958 } 959 EXPORT_SYMBOL_GPL(kernel_read_file); 960 961 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size, 962 loff_t max_size, enum kernel_read_file_id id) 963 { 964 struct file *file; 965 int ret; 966 967 if (!path || !*path) 968 return -EINVAL; 969 970 file = filp_open(path, O_RDONLY, 0); 971 if (IS_ERR(file)) 972 return PTR_ERR(file); 973 974 ret = kernel_read_file(file, buf, size, max_size, id); 975 fput(file); 976 return ret; 977 } 978 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); 979 980 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, 981 enum kernel_read_file_id id) 982 { 983 struct fd f = fdget(fd); 984 int ret = -EBADF; 985 986 if (!f.file) 987 goto out; 988 989 ret = kernel_read_file(f.file, buf, size, max_size, id); 990 out: 991 fdput(f); 992 return ret; 993 } 994 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); 995 996 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 997 { 998 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 999 if (res > 0) 1000 flush_icache_range(addr, addr + len); 1001 return res; 1002 } 1003 EXPORT_SYMBOL(read_code); 1004 1005 static int exec_mmap(struct mm_struct *mm) 1006 { 1007 struct task_struct *tsk; 1008 struct mm_struct *old_mm, *active_mm; 1009 1010 /* Notify parent that we're no longer interested in the old VM */ 1011 tsk = current; 1012 old_mm = current->mm; 1013 mm_release(tsk, old_mm); 1014 1015 if (old_mm) { 1016 sync_mm_rss(old_mm); 1017 /* 1018 * Make sure that if there is a core dump in progress 1019 * for the old mm, we get out and die instead of going 1020 * through with the exec. We must hold mmap_sem around 1021 * checking core_state and changing tsk->mm. 1022 */ 1023 down_read(&old_mm->mmap_sem); 1024 if (unlikely(old_mm->core_state)) { 1025 up_read(&old_mm->mmap_sem); 1026 return -EINTR; 1027 } 1028 } 1029 task_lock(tsk); 1030 active_mm = tsk->active_mm; 1031 tsk->mm = mm; 1032 tsk->active_mm = mm; 1033 activate_mm(active_mm, mm); 1034 tsk->mm->vmacache_seqnum = 0; 1035 vmacache_flush(tsk); 1036 task_unlock(tsk); 1037 if (old_mm) { 1038 up_read(&old_mm->mmap_sem); 1039 BUG_ON(active_mm != old_mm); 1040 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1041 mm_update_next_owner(old_mm); 1042 mmput(old_mm); 1043 return 0; 1044 } 1045 mmdrop(active_mm); 1046 return 0; 1047 } 1048 1049 /* 1050 * This function makes sure the current process has its own signal table, 1051 * so that flush_signal_handlers can later reset the handlers without 1052 * disturbing other processes. (Other processes might share the signal 1053 * table via the CLONE_SIGHAND option to clone().) 1054 */ 1055 static int de_thread(struct task_struct *tsk) 1056 { 1057 struct signal_struct *sig = tsk->signal; 1058 struct sighand_struct *oldsighand = tsk->sighand; 1059 spinlock_t *lock = &oldsighand->siglock; 1060 1061 if (thread_group_empty(tsk)) 1062 goto no_thread_group; 1063 1064 /* 1065 * Kill all other threads in the thread group. 1066 */ 1067 spin_lock_irq(lock); 1068 if (signal_group_exit(sig)) { 1069 /* 1070 * Another group action in progress, just 1071 * return so that the signal is processed. 1072 */ 1073 spin_unlock_irq(lock); 1074 return -EAGAIN; 1075 } 1076 1077 sig->group_exit_task = tsk; 1078 sig->notify_count = zap_other_threads(tsk); 1079 if (!thread_group_leader(tsk)) 1080 sig->notify_count--; 1081 1082 while (sig->notify_count) { 1083 __set_current_state(TASK_KILLABLE); 1084 spin_unlock_irq(lock); 1085 schedule(); 1086 if (unlikely(__fatal_signal_pending(tsk))) 1087 goto killed; 1088 spin_lock_irq(lock); 1089 } 1090 spin_unlock_irq(lock); 1091 1092 /* 1093 * At this point all other threads have exited, all we have to 1094 * do is to wait for the thread group leader to become inactive, 1095 * and to assume its PID: 1096 */ 1097 if (!thread_group_leader(tsk)) { 1098 struct task_struct *leader = tsk->group_leader; 1099 1100 for (;;) { 1101 cgroup_threadgroup_change_begin(tsk); 1102 write_lock_irq(&tasklist_lock); 1103 /* 1104 * Do this under tasklist_lock to ensure that 1105 * exit_notify() can't miss ->group_exit_task 1106 */ 1107 sig->notify_count = -1; 1108 if (likely(leader->exit_state)) 1109 break; 1110 __set_current_state(TASK_KILLABLE); 1111 write_unlock_irq(&tasklist_lock); 1112 cgroup_threadgroup_change_end(tsk); 1113 schedule(); 1114 if (unlikely(__fatal_signal_pending(tsk))) 1115 goto killed; 1116 } 1117 1118 /* 1119 * The only record we have of the real-time age of a 1120 * process, regardless of execs it's done, is start_time. 1121 * All the past CPU time is accumulated in signal_struct 1122 * from sister threads now dead. But in this non-leader 1123 * exec, nothing survives from the original leader thread, 1124 * whose birth marks the true age of this process now. 1125 * When we take on its identity by switching to its PID, we 1126 * also take its birthdate (always earlier than our own). 1127 */ 1128 tsk->start_time = leader->start_time; 1129 tsk->real_start_time = leader->real_start_time; 1130 1131 BUG_ON(!same_thread_group(leader, tsk)); 1132 BUG_ON(has_group_leader_pid(tsk)); 1133 /* 1134 * An exec() starts a new thread group with the 1135 * TGID of the previous thread group. Rehash the 1136 * two threads with a switched PID, and release 1137 * the former thread group leader: 1138 */ 1139 1140 /* Become a process group leader with the old leader's pid. 1141 * The old leader becomes a thread of the this thread group. 1142 * Note: The old leader also uses this pid until release_task 1143 * is called. Odd but simple and correct. 1144 */ 1145 tsk->pid = leader->pid; 1146 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 1147 transfer_pid(leader, tsk, PIDTYPE_PGID); 1148 transfer_pid(leader, tsk, PIDTYPE_SID); 1149 1150 list_replace_rcu(&leader->tasks, &tsk->tasks); 1151 list_replace_init(&leader->sibling, &tsk->sibling); 1152 1153 tsk->group_leader = tsk; 1154 leader->group_leader = tsk; 1155 1156 tsk->exit_signal = SIGCHLD; 1157 leader->exit_signal = -1; 1158 1159 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1160 leader->exit_state = EXIT_DEAD; 1161 1162 /* 1163 * We are going to release_task()->ptrace_unlink() silently, 1164 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1165 * the tracer wont't block again waiting for this thread. 1166 */ 1167 if (unlikely(leader->ptrace)) 1168 __wake_up_parent(leader, leader->parent); 1169 write_unlock_irq(&tasklist_lock); 1170 cgroup_threadgroup_change_end(tsk); 1171 1172 release_task(leader); 1173 } 1174 1175 sig->group_exit_task = NULL; 1176 sig->notify_count = 0; 1177 1178 no_thread_group: 1179 /* we have changed execution domain */ 1180 tsk->exit_signal = SIGCHLD; 1181 1182 #ifdef CONFIG_POSIX_TIMERS 1183 exit_itimers(sig); 1184 flush_itimer_signals(); 1185 #endif 1186 1187 if (atomic_read(&oldsighand->count) != 1) { 1188 struct sighand_struct *newsighand; 1189 /* 1190 * This ->sighand is shared with the CLONE_SIGHAND 1191 * but not CLONE_THREAD task, switch to the new one. 1192 */ 1193 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1194 if (!newsighand) 1195 return -ENOMEM; 1196 1197 atomic_set(&newsighand->count, 1); 1198 memcpy(newsighand->action, oldsighand->action, 1199 sizeof(newsighand->action)); 1200 1201 write_lock_irq(&tasklist_lock); 1202 spin_lock(&oldsighand->siglock); 1203 rcu_assign_pointer(tsk->sighand, newsighand); 1204 spin_unlock(&oldsighand->siglock); 1205 write_unlock_irq(&tasklist_lock); 1206 1207 __cleanup_sighand(oldsighand); 1208 } 1209 1210 BUG_ON(!thread_group_leader(tsk)); 1211 return 0; 1212 1213 killed: 1214 /* protects against exit_notify() and __exit_signal() */ 1215 read_lock(&tasklist_lock); 1216 sig->group_exit_task = NULL; 1217 sig->notify_count = 0; 1218 read_unlock(&tasklist_lock); 1219 return -EAGAIN; 1220 } 1221 1222 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1223 { 1224 task_lock(tsk); 1225 strncpy(buf, tsk->comm, buf_size); 1226 task_unlock(tsk); 1227 return buf; 1228 } 1229 EXPORT_SYMBOL_GPL(__get_task_comm); 1230 1231 /* 1232 * These functions flushes out all traces of the currently running executable 1233 * so that a new one can be started 1234 */ 1235 1236 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1237 { 1238 task_lock(tsk); 1239 trace_task_rename(tsk, buf); 1240 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1241 task_unlock(tsk); 1242 perf_event_comm(tsk, exec); 1243 } 1244 1245 /* 1246 * Calling this is the point of no return. None of the failures will be 1247 * seen by userspace since either the process is already taking a fatal 1248 * signal (via de_thread() or coredump), or will have SEGV raised 1249 * (after exec_mmap()) by search_binary_handlers (see below). 1250 */ 1251 int flush_old_exec(struct linux_binprm * bprm) 1252 { 1253 int retval; 1254 1255 /* 1256 * Make sure we have a private signal table and that 1257 * we are unassociated from the previous thread group. 1258 */ 1259 retval = de_thread(current); 1260 if (retval) 1261 goto out; 1262 1263 /* 1264 * Must be called _before_ exec_mmap() as bprm->mm is 1265 * not visibile until then. This also enables the update 1266 * to be lockless. 1267 */ 1268 set_mm_exe_file(bprm->mm, bprm->file); 1269 1270 /* 1271 * Release all of the old mmap stuff 1272 */ 1273 acct_arg_size(bprm, 0); 1274 retval = exec_mmap(bprm->mm); 1275 if (retval) 1276 goto out; 1277 1278 /* 1279 * After clearing bprm->mm (to mark that current is using the 1280 * prepared mm now), we have nothing left of the original 1281 * process. If anything from here on returns an error, the check 1282 * in search_binary_handler() will SEGV current. 1283 */ 1284 bprm->mm = NULL; 1285 1286 set_fs(USER_DS); 1287 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1288 PF_NOFREEZE | PF_NO_SETAFFINITY); 1289 flush_thread(); 1290 current->personality &= ~bprm->per_clear; 1291 1292 /* 1293 * We have to apply CLOEXEC before we change whether the process is 1294 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1295 * trying to access the should-be-closed file descriptors of a process 1296 * undergoing exec(2). 1297 */ 1298 do_close_on_exec(current->files); 1299 return 0; 1300 1301 out: 1302 return retval; 1303 } 1304 EXPORT_SYMBOL(flush_old_exec); 1305 1306 void would_dump(struct linux_binprm *bprm, struct file *file) 1307 { 1308 struct inode *inode = file_inode(file); 1309 if (inode_permission(inode, MAY_READ) < 0) { 1310 struct user_namespace *old, *user_ns; 1311 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1312 1313 /* Ensure mm->user_ns contains the executable */ 1314 user_ns = old = bprm->mm->user_ns; 1315 while ((user_ns != &init_user_ns) && 1316 !privileged_wrt_inode_uidgid(user_ns, inode)) 1317 user_ns = user_ns->parent; 1318 1319 if (old != user_ns) { 1320 bprm->mm->user_ns = get_user_ns(user_ns); 1321 put_user_ns(old); 1322 } 1323 } 1324 } 1325 EXPORT_SYMBOL(would_dump); 1326 1327 void setup_new_exec(struct linux_binprm * bprm) 1328 { 1329 /* 1330 * Once here, prepare_binrpm() will not be called any more, so 1331 * the final state of setuid/setgid/fscaps can be merged into the 1332 * secureexec flag. 1333 */ 1334 bprm->secureexec |= bprm->cap_elevated; 1335 1336 if (bprm->secureexec) { 1337 /* Make sure parent cannot signal privileged process. */ 1338 current->pdeath_signal = 0; 1339 1340 /* 1341 * For secureexec, reset the stack limit to sane default to 1342 * avoid bad behavior from the prior rlimits. This has to 1343 * happen before arch_pick_mmap_layout(), which examines 1344 * RLIMIT_STACK, but after the point of no return to avoid 1345 * needing to clean up the change on failure. 1346 */ 1347 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1348 bprm->rlim_stack.rlim_cur = _STK_LIM; 1349 } 1350 1351 arch_pick_mmap_layout(current->mm, &bprm->rlim_stack); 1352 1353 current->sas_ss_sp = current->sas_ss_size = 0; 1354 1355 /* 1356 * Figure out dumpability. Note that this checking only of current 1357 * is wrong, but userspace depends on it. This should be testing 1358 * bprm->secureexec instead. 1359 */ 1360 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1361 !(uid_eq(current_euid(), current_uid()) && 1362 gid_eq(current_egid(), current_gid()))) 1363 set_dumpable(current->mm, suid_dumpable); 1364 else 1365 set_dumpable(current->mm, SUID_DUMP_USER); 1366 1367 arch_setup_new_exec(); 1368 perf_event_exec(); 1369 __set_task_comm(current, kbasename(bprm->filename), true); 1370 1371 /* Set the new mm task size. We have to do that late because it may 1372 * depend on TIF_32BIT which is only updated in flush_thread() on 1373 * some architectures like powerpc 1374 */ 1375 current->mm->task_size = TASK_SIZE; 1376 1377 /* An exec changes our domain. We are no longer part of the thread 1378 group */ 1379 current->self_exec_id++; 1380 flush_signal_handlers(current, 0); 1381 } 1382 EXPORT_SYMBOL(setup_new_exec); 1383 1384 /* Runs immediately before start_thread() takes over. */ 1385 void finalize_exec(struct linux_binprm *bprm) 1386 { 1387 /* Store any stack rlimit changes before starting thread. */ 1388 task_lock(current->group_leader); 1389 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1390 task_unlock(current->group_leader); 1391 } 1392 EXPORT_SYMBOL(finalize_exec); 1393 1394 /* 1395 * Prepare credentials and lock ->cred_guard_mutex. 1396 * install_exec_creds() commits the new creds and drops the lock. 1397 * Or, if exec fails before, free_bprm() should release ->cred and 1398 * and unlock. 1399 */ 1400 int prepare_bprm_creds(struct linux_binprm *bprm) 1401 { 1402 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1403 return -ERESTARTNOINTR; 1404 1405 bprm->cred = prepare_exec_creds(); 1406 if (likely(bprm->cred)) 1407 return 0; 1408 1409 mutex_unlock(¤t->signal->cred_guard_mutex); 1410 return -ENOMEM; 1411 } 1412 1413 static void free_bprm(struct linux_binprm *bprm) 1414 { 1415 free_arg_pages(bprm); 1416 if (bprm->cred) { 1417 mutex_unlock(¤t->signal->cred_guard_mutex); 1418 abort_creds(bprm->cred); 1419 } 1420 if (bprm->file) { 1421 allow_write_access(bprm->file); 1422 fput(bprm->file); 1423 } 1424 /* If a binfmt changed the interp, free it. */ 1425 if (bprm->interp != bprm->filename) 1426 kfree(bprm->interp); 1427 kfree(bprm); 1428 } 1429 1430 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1431 { 1432 /* If a binfmt changed the interp, free it first. */ 1433 if (bprm->interp != bprm->filename) 1434 kfree(bprm->interp); 1435 bprm->interp = kstrdup(interp, GFP_KERNEL); 1436 if (!bprm->interp) 1437 return -ENOMEM; 1438 return 0; 1439 } 1440 EXPORT_SYMBOL(bprm_change_interp); 1441 1442 /* 1443 * install the new credentials for this executable 1444 */ 1445 void install_exec_creds(struct linux_binprm *bprm) 1446 { 1447 security_bprm_committing_creds(bprm); 1448 1449 commit_creds(bprm->cred); 1450 bprm->cred = NULL; 1451 1452 /* 1453 * Disable monitoring for regular users 1454 * when executing setuid binaries. Must 1455 * wait until new credentials are committed 1456 * by commit_creds() above 1457 */ 1458 if (get_dumpable(current->mm) != SUID_DUMP_USER) 1459 perf_event_exit_task(current); 1460 /* 1461 * cred_guard_mutex must be held at least to this point to prevent 1462 * ptrace_attach() from altering our determination of the task's 1463 * credentials; any time after this it may be unlocked. 1464 */ 1465 security_bprm_committed_creds(bprm); 1466 mutex_unlock(¤t->signal->cred_guard_mutex); 1467 } 1468 EXPORT_SYMBOL(install_exec_creds); 1469 1470 /* 1471 * determine how safe it is to execute the proposed program 1472 * - the caller must hold ->cred_guard_mutex to protect against 1473 * PTRACE_ATTACH or seccomp thread-sync 1474 */ 1475 static void check_unsafe_exec(struct linux_binprm *bprm) 1476 { 1477 struct task_struct *p = current, *t; 1478 unsigned n_fs; 1479 1480 if (p->ptrace) 1481 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1482 1483 /* 1484 * This isn't strictly necessary, but it makes it harder for LSMs to 1485 * mess up. 1486 */ 1487 if (task_no_new_privs(current)) 1488 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1489 1490 t = p; 1491 n_fs = 1; 1492 spin_lock(&p->fs->lock); 1493 rcu_read_lock(); 1494 while_each_thread(p, t) { 1495 if (t->fs == p->fs) 1496 n_fs++; 1497 } 1498 rcu_read_unlock(); 1499 1500 if (p->fs->users > n_fs) 1501 bprm->unsafe |= LSM_UNSAFE_SHARE; 1502 else 1503 p->fs->in_exec = 1; 1504 spin_unlock(&p->fs->lock); 1505 } 1506 1507 static void bprm_fill_uid(struct linux_binprm *bprm) 1508 { 1509 struct inode *inode; 1510 unsigned int mode; 1511 kuid_t uid; 1512 kgid_t gid; 1513 1514 /* 1515 * Since this can be called multiple times (via prepare_binprm), 1516 * we must clear any previous work done when setting set[ug]id 1517 * bits from any earlier bprm->file uses (for example when run 1518 * first for a setuid script then again for its interpreter). 1519 */ 1520 bprm->cred->euid = current_euid(); 1521 bprm->cred->egid = current_egid(); 1522 1523 if (!mnt_may_suid(bprm->file->f_path.mnt)) 1524 return; 1525 1526 if (task_no_new_privs(current)) 1527 return; 1528 1529 inode = bprm->file->f_path.dentry->d_inode; 1530 mode = READ_ONCE(inode->i_mode); 1531 if (!(mode & (S_ISUID|S_ISGID))) 1532 return; 1533 1534 /* Be careful if suid/sgid is set */ 1535 inode_lock(inode); 1536 1537 /* reload atomically mode/uid/gid now that lock held */ 1538 mode = inode->i_mode; 1539 uid = inode->i_uid; 1540 gid = inode->i_gid; 1541 inode_unlock(inode); 1542 1543 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1544 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1545 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1546 return; 1547 1548 if (mode & S_ISUID) { 1549 bprm->per_clear |= PER_CLEAR_ON_SETID; 1550 bprm->cred->euid = uid; 1551 } 1552 1553 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1554 bprm->per_clear |= PER_CLEAR_ON_SETID; 1555 bprm->cred->egid = gid; 1556 } 1557 } 1558 1559 /* 1560 * Fill the binprm structure from the inode. 1561 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1562 * 1563 * This may be called multiple times for binary chains (scripts for example). 1564 */ 1565 int prepare_binprm(struct linux_binprm *bprm) 1566 { 1567 int retval; 1568 loff_t pos = 0; 1569 1570 bprm_fill_uid(bprm); 1571 1572 /* fill in binprm security blob */ 1573 retval = security_bprm_set_creds(bprm); 1574 if (retval) 1575 return retval; 1576 bprm->called_set_creds = 1; 1577 1578 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1579 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1580 } 1581 1582 EXPORT_SYMBOL(prepare_binprm); 1583 1584 /* 1585 * Arguments are '\0' separated strings found at the location bprm->p 1586 * points to; chop off the first by relocating brpm->p to right after 1587 * the first '\0' encountered. 1588 */ 1589 int remove_arg_zero(struct linux_binprm *bprm) 1590 { 1591 int ret = 0; 1592 unsigned long offset; 1593 char *kaddr; 1594 struct page *page; 1595 1596 if (!bprm->argc) 1597 return 0; 1598 1599 do { 1600 offset = bprm->p & ~PAGE_MASK; 1601 page = get_arg_page(bprm, bprm->p, 0); 1602 if (!page) { 1603 ret = -EFAULT; 1604 goto out; 1605 } 1606 kaddr = kmap_atomic(page); 1607 1608 for (; offset < PAGE_SIZE && kaddr[offset]; 1609 offset++, bprm->p++) 1610 ; 1611 1612 kunmap_atomic(kaddr); 1613 put_arg_page(page); 1614 } while (offset == PAGE_SIZE); 1615 1616 bprm->p++; 1617 bprm->argc--; 1618 ret = 0; 1619 1620 out: 1621 return ret; 1622 } 1623 EXPORT_SYMBOL(remove_arg_zero); 1624 1625 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1626 /* 1627 * cycle the list of binary formats handler, until one recognizes the image 1628 */ 1629 int search_binary_handler(struct linux_binprm *bprm) 1630 { 1631 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1632 struct linux_binfmt *fmt; 1633 int retval; 1634 1635 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1636 if (bprm->recursion_depth > 5) 1637 return -ELOOP; 1638 1639 retval = security_bprm_check(bprm); 1640 if (retval) 1641 return retval; 1642 1643 retval = -ENOENT; 1644 retry: 1645 read_lock(&binfmt_lock); 1646 list_for_each_entry(fmt, &formats, lh) { 1647 if (!try_module_get(fmt->module)) 1648 continue; 1649 read_unlock(&binfmt_lock); 1650 bprm->recursion_depth++; 1651 retval = fmt->load_binary(bprm); 1652 read_lock(&binfmt_lock); 1653 put_binfmt(fmt); 1654 bprm->recursion_depth--; 1655 if (retval < 0 && !bprm->mm) { 1656 /* we got to flush_old_exec() and failed after it */ 1657 read_unlock(&binfmt_lock); 1658 force_sigsegv(SIGSEGV, current); 1659 return retval; 1660 } 1661 if (retval != -ENOEXEC || !bprm->file) { 1662 read_unlock(&binfmt_lock); 1663 return retval; 1664 } 1665 } 1666 read_unlock(&binfmt_lock); 1667 1668 if (need_retry) { 1669 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1670 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1671 return retval; 1672 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1673 return retval; 1674 need_retry = false; 1675 goto retry; 1676 } 1677 1678 return retval; 1679 } 1680 EXPORT_SYMBOL(search_binary_handler); 1681 1682 static int exec_binprm(struct linux_binprm *bprm) 1683 { 1684 pid_t old_pid, old_vpid; 1685 int ret; 1686 1687 /* Need to fetch pid before load_binary changes it */ 1688 old_pid = current->pid; 1689 rcu_read_lock(); 1690 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1691 rcu_read_unlock(); 1692 1693 ret = search_binary_handler(bprm); 1694 if (ret >= 0) { 1695 audit_bprm(bprm); 1696 trace_sched_process_exec(current, old_pid, bprm); 1697 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1698 proc_exec_connector(current); 1699 } 1700 1701 return ret; 1702 } 1703 1704 /* 1705 * sys_execve() executes a new program. 1706 */ 1707 static int __do_execve_file(int fd, struct filename *filename, 1708 struct user_arg_ptr argv, 1709 struct user_arg_ptr envp, 1710 int flags, struct file *file) 1711 { 1712 char *pathbuf = NULL; 1713 struct linux_binprm *bprm; 1714 struct files_struct *displaced; 1715 int retval; 1716 1717 if (IS_ERR(filename)) 1718 return PTR_ERR(filename); 1719 1720 /* 1721 * We move the actual failure in case of RLIMIT_NPROC excess from 1722 * set*uid() to execve() because too many poorly written programs 1723 * don't check setuid() return code. Here we additionally recheck 1724 * whether NPROC limit is still exceeded. 1725 */ 1726 if ((current->flags & PF_NPROC_EXCEEDED) && 1727 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1728 retval = -EAGAIN; 1729 goto out_ret; 1730 } 1731 1732 /* We're below the limit (still or again), so we don't want to make 1733 * further execve() calls fail. */ 1734 current->flags &= ~PF_NPROC_EXCEEDED; 1735 1736 retval = unshare_files(&displaced); 1737 if (retval) 1738 goto out_ret; 1739 1740 retval = -ENOMEM; 1741 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1742 if (!bprm) 1743 goto out_files; 1744 1745 retval = prepare_bprm_creds(bprm); 1746 if (retval) 1747 goto out_free; 1748 1749 check_unsafe_exec(bprm); 1750 current->in_execve = 1; 1751 1752 if (!file) 1753 file = do_open_execat(fd, filename, flags); 1754 retval = PTR_ERR(file); 1755 if (IS_ERR(file)) 1756 goto out_unmark; 1757 1758 sched_exec(); 1759 1760 bprm->file = file; 1761 if (!filename) { 1762 bprm->filename = "none"; 1763 } else if (fd == AT_FDCWD || filename->name[0] == '/') { 1764 bprm->filename = filename->name; 1765 } else { 1766 if (filename->name[0] == '\0') 1767 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1768 else 1769 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1770 fd, filename->name); 1771 if (!pathbuf) { 1772 retval = -ENOMEM; 1773 goto out_unmark; 1774 } 1775 /* 1776 * Record that a name derived from an O_CLOEXEC fd will be 1777 * inaccessible after exec. Relies on having exclusive access to 1778 * current->files (due to unshare_files above). 1779 */ 1780 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1781 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1782 bprm->filename = pathbuf; 1783 } 1784 bprm->interp = bprm->filename; 1785 1786 retval = bprm_mm_init(bprm); 1787 if (retval) 1788 goto out_unmark; 1789 1790 bprm->argc = count(argv, MAX_ARG_STRINGS); 1791 if ((retval = bprm->argc) < 0) 1792 goto out; 1793 1794 bprm->envc = count(envp, MAX_ARG_STRINGS); 1795 if ((retval = bprm->envc) < 0) 1796 goto out; 1797 1798 retval = prepare_binprm(bprm); 1799 if (retval < 0) 1800 goto out; 1801 1802 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1803 if (retval < 0) 1804 goto out; 1805 1806 bprm->exec = bprm->p; 1807 retval = copy_strings(bprm->envc, envp, bprm); 1808 if (retval < 0) 1809 goto out; 1810 1811 retval = copy_strings(bprm->argc, argv, bprm); 1812 if (retval < 0) 1813 goto out; 1814 1815 would_dump(bprm, bprm->file); 1816 1817 retval = exec_binprm(bprm); 1818 if (retval < 0) 1819 goto out; 1820 1821 /* execve succeeded */ 1822 current->fs->in_exec = 0; 1823 current->in_execve = 0; 1824 membarrier_execve(current); 1825 rseq_execve(current); 1826 acct_update_integrals(current); 1827 task_numa_free(current); 1828 free_bprm(bprm); 1829 kfree(pathbuf); 1830 if (filename) 1831 putname(filename); 1832 if (displaced) 1833 put_files_struct(displaced); 1834 return retval; 1835 1836 out: 1837 if (bprm->mm) { 1838 acct_arg_size(bprm, 0); 1839 mmput(bprm->mm); 1840 } 1841 1842 out_unmark: 1843 current->fs->in_exec = 0; 1844 current->in_execve = 0; 1845 1846 out_free: 1847 free_bprm(bprm); 1848 kfree(pathbuf); 1849 1850 out_files: 1851 if (displaced) 1852 reset_files_struct(displaced); 1853 out_ret: 1854 if (filename) 1855 putname(filename); 1856 return retval; 1857 } 1858 1859 static int do_execveat_common(int fd, struct filename *filename, 1860 struct user_arg_ptr argv, 1861 struct user_arg_ptr envp, 1862 int flags) 1863 { 1864 return __do_execve_file(fd, filename, argv, envp, flags, NULL); 1865 } 1866 1867 int do_execve_file(struct file *file, void *__argv, void *__envp) 1868 { 1869 struct user_arg_ptr argv = { .ptr.native = __argv }; 1870 struct user_arg_ptr envp = { .ptr.native = __envp }; 1871 1872 return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file); 1873 } 1874 1875 int do_execve(struct filename *filename, 1876 const char __user *const __user *__argv, 1877 const char __user *const __user *__envp) 1878 { 1879 struct user_arg_ptr argv = { .ptr.native = __argv }; 1880 struct user_arg_ptr envp = { .ptr.native = __envp }; 1881 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1882 } 1883 1884 int do_execveat(int fd, struct filename *filename, 1885 const char __user *const __user *__argv, 1886 const char __user *const __user *__envp, 1887 int flags) 1888 { 1889 struct user_arg_ptr argv = { .ptr.native = __argv }; 1890 struct user_arg_ptr envp = { .ptr.native = __envp }; 1891 1892 return do_execveat_common(fd, filename, argv, envp, flags); 1893 } 1894 1895 #ifdef CONFIG_COMPAT 1896 static int compat_do_execve(struct filename *filename, 1897 const compat_uptr_t __user *__argv, 1898 const compat_uptr_t __user *__envp) 1899 { 1900 struct user_arg_ptr argv = { 1901 .is_compat = true, 1902 .ptr.compat = __argv, 1903 }; 1904 struct user_arg_ptr envp = { 1905 .is_compat = true, 1906 .ptr.compat = __envp, 1907 }; 1908 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1909 } 1910 1911 static int compat_do_execveat(int fd, struct filename *filename, 1912 const compat_uptr_t __user *__argv, 1913 const compat_uptr_t __user *__envp, 1914 int flags) 1915 { 1916 struct user_arg_ptr argv = { 1917 .is_compat = true, 1918 .ptr.compat = __argv, 1919 }; 1920 struct user_arg_ptr envp = { 1921 .is_compat = true, 1922 .ptr.compat = __envp, 1923 }; 1924 return do_execveat_common(fd, filename, argv, envp, flags); 1925 } 1926 #endif 1927 1928 void set_binfmt(struct linux_binfmt *new) 1929 { 1930 struct mm_struct *mm = current->mm; 1931 1932 if (mm->binfmt) 1933 module_put(mm->binfmt->module); 1934 1935 mm->binfmt = new; 1936 if (new) 1937 __module_get(new->module); 1938 } 1939 EXPORT_SYMBOL(set_binfmt); 1940 1941 /* 1942 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 1943 */ 1944 void set_dumpable(struct mm_struct *mm, int value) 1945 { 1946 unsigned long old, new; 1947 1948 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 1949 return; 1950 1951 do { 1952 old = READ_ONCE(mm->flags); 1953 new = (old & ~MMF_DUMPABLE_MASK) | value; 1954 } while (cmpxchg(&mm->flags, old, new) != old); 1955 } 1956 1957 SYSCALL_DEFINE3(execve, 1958 const char __user *, filename, 1959 const char __user *const __user *, argv, 1960 const char __user *const __user *, envp) 1961 { 1962 return do_execve(getname(filename), argv, envp); 1963 } 1964 1965 SYSCALL_DEFINE5(execveat, 1966 int, fd, const char __user *, filename, 1967 const char __user *const __user *, argv, 1968 const char __user *const __user *, envp, 1969 int, flags) 1970 { 1971 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1972 1973 return do_execveat(fd, 1974 getname_flags(filename, lookup_flags, NULL), 1975 argv, envp, flags); 1976 } 1977 1978 #ifdef CONFIG_COMPAT 1979 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 1980 const compat_uptr_t __user *, argv, 1981 const compat_uptr_t __user *, envp) 1982 { 1983 return compat_do_execve(getname(filename), argv, envp); 1984 } 1985 1986 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 1987 const char __user *, filename, 1988 const compat_uptr_t __user *, argv, 1989 const compat_uptr_t __user *, envp, 1990 int, flags) 1991 { 1992 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1993 1994 return compat_do_execveat(fd, 1995 getname_flags(filename, lookup_flags, NULL), 1996 argv, envp, flags); 1997 } 1998 #endif 1999