xref: /openbmc/linux/fs/exec.c (revision 8bd1369b)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69 
70 #include <trace/events/task.h>
71 #include "internal.h"
72 
73 #include <trace/events/sched.h>
74 
75 int suid_dumpable = 0;
76 
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79 
80 void __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82 	BUG_ON(!fmt);
83 	if (WARN_ON(!fmt->load_binary))
84 		return;
85 	write_lock(&binfmt_lock);
86 	insert ? list_add(&fmt->lh, &formats) :
87 		 list_add_tail(&fmt->lh, &formats);
88 	write_unlock(&binfmt_lock);
89 }
90 
91 EXPORT_SYMBOL(__register_binfmt);
92 
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 	write_lock(&binfmt_lock);
96 	list_del(&fmt->lh);
97 	write_unlock(&binfmt_lock);
98 }
99 
100 EXPORT_SYMBOL(unregister_binfmt);
101 
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104 	module_put(fmt->module);
105 }
106 
107 bool path_noexec(const struct path *path)
108 {
109 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
111 }
112 
113 #ifdef CONFIG_USELIB
114 /*
115  * Note that a shared library must be both readable and executable due to
116  * security reasons.
117  *
118  * Also note that we take the address to load from from the file itself.
119  */
120 SYSCALL_DEFINE1(uselib, const char __user *, library)
121 {
122 	struct linux_binfmt *fmt;
123 	struct file *file;
124 	struct filename *tmp = getname(library);
125 	int error = PTR_ERR(tmp);
126 	static const struct open_flags uselib_flags = {
127 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128 		.acc_mode = MAY_READ | MAY_EXEC,
129 		.intent = LOOKUP_OPEN,
130 		.lookup_flags = LOOKUP_FOLLOW,
131 	};
132 
133 	if (IS_ERR(tmp))
134 		goto out;
135 
136 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137 	putname(tmp);
138 	error = PTR_ERR(file);
139 	if (IS_ERR(file))
140 		goto out;
141 
142 	error = -EINVAL;
143 	if (!S_ISREG(file_inode(file)->i_mode))
144 		goto exit;
145 
146 	error = -EACCES;
147 	if (path_noexec(&file->f_path))
148 		goto exit;
149 
150 	fsnotify_open(file);
151 
152 	error = -ENOEXEC;
153 
154 	read_lock(&binfmt_lock);
155 	list_for_each_entry(fmt, &formats, lh) {
156 		if (!fmt->load_shlib)
157 			continue;
158 		if (!try_module_get(fmt->module))
159 			continue;
160 		read_unlock(&binfmt_lock);
161 		error = fmt->load_shlib(file);
162 		read_lock(&binfmt_lock);
163 		put_binfmt(fmt);
164 		if (error != -ENOEXEC)
165 			break;
166 	}
167 	read_unlock(&binfmt_lock);
168 exit:
169 	fput(file);
170 out:
171   	return error;
172 }
173 #endif /* #ifdef CONFIG_USELIB */
174 
175 #ifdef CONFIG_MMU
176 /*
177  * The nascent bprm->mm is not visible until exec_mmap() but it can
178  * use a lot of memory, account these pages in current->mm temporary
179  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180  * change the counter back via acct_arg_size(0).
181  */
182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
183 {
184 	struct mm_struct *mm = current->mm;
185 	long diff = (long)(pages - bprm->vma_pages);
186 
187 	if (!mm || !diff)
188 		return;
189 
190 	bprm->vma_pages = pages;
191 	add_mm_counter(mm, MM_ANONPAGES, diff);
192 }
193 
194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195 		int write)
196 {
197 	struct page *page;
198 	int ret;
199 	unsigned int gup_flags = FOLL_FORCE;
200 
201 #ifdef CONFIG_STACK_GROWSUP
202 	if (write) {
203 		ret = expand_downwards(bprm->vma, pos);
204 		if (ret < 0)
205 			return NULL;
206 	}
207 #endif
208 
209 	if (write)
210 		gup_flags |= FOLL_WRITE;
211 
212 	/*
213 	 * We are doing an exec().  'current' is the process
214 	 * doing the exec and bprm->mm is the new process's mm.
215 	 */
216 	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217 			&page, NULL, NULL);
218 	if (ret <= 0)
219 		return NULL;
220 
221 	if (write) {
222 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
223 		unsigned long ptr_size, limit;
224 
225 		/*
226 		 * Since the stack will hold pointers to the strings, we
227 		 * must account for them as well.
228 		 *
229 		 * The size calculation is the entire vma while each arg page is
230 		 * built, so each time we get here it's calculating how far it
231 		 * is currently (rather than each call being just the newly
232 		 * added size from the arg page).  As a result, we need to
233 		 * always add the entire size of the pointers, so that on the
234 		 * last call to get_arg_page() we'll actually have the entire
235 		 * correct size.
236 		 */
237 		ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
238 		if (ptr_size > ULONG_MAX - size)
239 			goto fail;
240 		size += ptr_size;
241 
242 		acct_arg_size(bprm, size / PAGE_SIZE);
243 
244 		/*
245 		 * We've historically supported up to 32 pages (ARG_MAX)
246 		 * of argument strings even with small stacks
247 		 */
248 		if (size <= ARG_MAX)
249 			return page;
250 
251 		/*
252 		 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
253 		 * (whichever is smaller) for the argv+env strings.
254 		 * This ensures that:
255 		 *  - the remaining binfmt code will not run out of stack space,
256 		 *  - the program will have a reasonable amount of stack left
257 		 *    to work from.
258 		 */
259 		limit = _STK_LIM / 4 * 3;
260 		limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
261 		if (size > limit)
262 			goto fail;
263 	}
264 
265 	return page;
266 
267 fail:
268 	put_page(page);
269 	return NULL;
270 }
271 
272 static void put_arg_page(struct page *page)
273 {
274 	put_page(page);
275 }
276 
277 static void free_arg_pages(struct linux_binprm *bprm)
278 {
279 }
280 
281 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
282 		struct page *page)
283 {
284 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
285 }
286 
287 static int __bprm_mm_init(struct linux_binprm *bprm)
288 {
289 	int err;
290 	struct vm_area_struct *vma = NULL;
291 	struct mm_struct *mm = bprm->mm;
292 
293 	bprm->vma = vma = vm_area_alloc(mm);
294 	if (!vma)
295 		return -ENOMEM;
296 
297 	if (down_write_killable(&mm->mmap_sem)) {
298 		err = -EINTR;
299 		goto err_free;
300 	}
301 
302 	/*
303 	 * Place the stack at the largest stack address the architecture
304 	 * supports. Later, we'll move this to an appropriate place. We don't
305 	 * use STACK_TOP because that can depend on attributes which aren't
306 	 * configured yet.
307 	 */
308 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
309 	vma->vm_end = STACK_TOP_MAX;
310 	vma->vm_start = vma->vm_end - PAGE_SIZE;
311 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
312 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
313 
314 	err = insert_vm_struct(mm, vma);
315 	if (err)
316 		goto err;
317 
318 	mm->stack_vm = mm->total_vm = 1;
319 	arch_bprm_mm_init(mm, vma);
320 	up_write(&mm->mmap_sem);
321 	bprm->p = vma->vm_end - sizeof(void *);
322 	return 0;
323 err:
324 	up_write(&mm->mmap_sem);
325 err_free:
326 	bprm->vma = NULL;
327 	vm_area_free(vma);
328 	return err;
329 }
330 
331 static bool valid_arg_len(struct linux_binprm *bprm, long len)
332 {
333 	return len <= MAX_ARG_STRLEN;
334 }
335 
336 #else
337 
338 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
339 {
340 }
341 
342 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
343 		int write)
344 {
345 	struct page *page;
346 
347 	page = bprm->page[pos / PAGE_SIZE];
348 	if (!page && write) {
349 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
350 		if (!page)
351 			return NULL;
352 		bprm->page[pos / PAGE_SIZE] = page;
353 	}
354 
355 	return page;
356 }
357 
358 static void put_arg_page(struct page *page)
359 {
360 }
361 
362 static void free_arg_page(struct linux_binprm *bprm, int i)
363 {
364 	if (bprm->page[i]) {
365 		__free_page(bprm->page[i]);
366 		bprm->page[i] = NULL;
367 	}
368 }
369 
370 static void free_arg_pages(struct linux_binprm *bprm)
371 {
372 	int i;
373 
374 	for (i = 0; i < MAX_ARG_PAGES; i++)
375 		free_arg_page(bprm, i);
376 }
377 
378 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
379 		struct page *page)
380 {
381 }
382 
383 static int __bprm_mm_init(struct linux_binprm *bprm)
384 {
385 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
386 	return 0;
387 }
388 
389 static bool valid_arg_len(struct linux_binprm *bprm, long len)
390 {
391 	return len <= bprm->p;
392 }
393 
394 #endif /* CONFIG_MMU */
395 
396 /*
397  * Create a new mm_struct and populate it with a temporary stack
398  * vm_area_struct.  We don't have enough context at this point to set the stack
399  * flags, permissions, and offset, so we use temporary values.  We'll update
400  * them later in setup_arg_pages().
401  */
402 static int bprm_mm_init(struct linux_binprm *bprm)
403 {
404 	int err;
405 	struct mm_struct *mm = NULL;
406 
407 	bprm->mm = mm = mm_alloc();
408 	err = -ENOMEM;
409 	if (!mm)
410 		goto err;
411 
412 	/* Save current stack limit for all calculations made during exec. */
413 	task_lock(current->group_leader);
414 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
415 	task_unlock(current->group_leader);
416 
417 	err = __bprm_mm_init(bprm);
418 	if (err)
419 		goto err;
420 
421 	return 0;
422 
423 err:
424 	if (mm) {
425 		bprm->mm = NULL;
426 		mmdrop(mm);
427 	}
428 
429 	return err;
430 }
431 
432 struct user_arg_ptr {
433 #ifdef CONFIG_COMPAT
434 	bool is_compat;
435 #endif
436 	union {
437 		const char __user *const __user *native;
438 #ifdef CONFIG_COMPAT
439 		const compat_uptr_t __user *compat;
440 #endif
441 	} ptr;
442 };
443 
444 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
445 {
446 	const char __user *native;
447 
448 #ifdef CONFIG_COMPAT
449 	if (unlikely(argv.is_compat)) {
450 		compat_uptr_t compat;
451 
452 		if (get_user(compat, argv.ptr.compat + nr))
453 			return ERR_PTR(-EFAULT);
454 
455 		return compat_ptr(compat);
456 	}
457 #endif
458 
459 	if (get_user(native, argv.ptr.native + nr))
460 		return ERR_PTR(-EFAULT);
461 
462 	return native;
463 }
464 
465 /*
466  * count() counts the number of strings in array ARGV.
467  */
468 static int count(struct user_arg_ptr argv, int max)
469 {
470 	int i = 0;
471 
472 	if (argv.ptr.native != NULL) {
473 		for (;;) {
474 			const char __user *p = get_user_arg_ptr(argv, i);
475 
476 			if (!p)
477 				break;
478 
479 			if (IS_ERR(p))
480 				return -EFAULT;
481 
482 			if (i >= max)
483 				return -E2BIG;
484 			++i;
485 
486 			if (fatal_signal_pending(current))
487 				return -ERESTARTNOHAND;
488 			cond_resched();
489 		}
490 	}
491 	return i;
492 }
493 
494 /*
495  * 'copy_strings()' copies argument/environment strings from the old
496  * processes's memory to the new process's stack.  The call to get_user_pages()
497  * ensures the destination page is created and not swapped out.
498  */
499 static int copy_strings(int argc, struct user_arg_ptr argv,
500 			struct linux_binprm *bprm)
501 {
502 	struct page *kmapped_page = NULL;
503 	char *kaddr = NULL;
504 	unsigned long kpos = 0;
505 	int ret;
506 
507 	while (argc-- > 0) {
508 		const char __user *str;
509 		int len;
510 		unsigned long pos;
511 
512 		ret = -EFAULT;
513 		str = get_user_arg_ptr(argv, argc);
514 		if (IS_ERR(str))
515 			goto out;
516 
517 		len = strnlen_user(str, MAX_ARG_STRLEN);
518 		if (!len)
519 			goto out;
520 
521 		ret = -E2BIG;
522 		if (!valid_arg_len(bprm, len))
523 			goto out;
524 
525 		/* We're going to work our way backwords. */
526 		pos = bprm->p;
527 		str += len;
528 		bprm->p -= len;
529 
530 		while (len > 0) {
531 			int offset, bytes_to_copy;
532 
533 			if (fatal_signal_pending(current)) {
534 				ret = -ERESTARTNOHAND;
535 				goto out;
536 			}
537 			cond_resched();
538 
539 			offset = pos % PAGE_SIZE;
540 			if (offset == 0)
541 				offset = PAGE_SIZE;
542 
543 			bytes_to_copy = offset;
544 			if (bytes_to_copy > len)
545 				bytes_to_copy = len;
546 
547 			offset -= bytes_to_copy;
548 			pos -= bytes_to_copy;
549 			str -= bytes_to_copy;
550 			len -= bytes_to_copy;
551 
552 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
553 				struct page *page;
554 
555 				page = get_arg_page(bprm, pos, 1);
556 				if (!page) {
557 					ret = -E2BIG;
558 					goto out;
559 				}
560 
561 				if (kmapped_page) {
562 					flush_kernel_dcache_page(kmapped_page);
563 					kunmap(kmapped_page);
564 					put_arg_page(kmapped_page);
565 				}
566 				kmapped_page = page;
567 				kaddr = kmap(kmapped_page);
568 				kpos = pos & PAGE_MASK;
569 				flush_arg_page(bprm, kpos, kmapped_page);
570 			}
571 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
572 				ret = -EFAULT;
573 				goto out;
574 			}
575 		}
576 	}
577 	ret = 0;
578 out:
579 	if (kmapped_page) {
580 		flush_kernel_dcache_page(kmapped_page);
581 		kunmap(kmapped_page);
582 		put_arg_page(kmapped_page);
583 	}
584 	return ret;
585 }
586 
587 /*
588  * Like copy_strings, but get argv and its values from kernel memory.
589  */
590 int copy_strings_kernel(int argc, const char *const *__argv,
591 			struct linux_binprm *bprm)
592 {
593 	int r;
594 	mm_segment_t oldfs = get_fs();
595 	struct user_arg_ptr argv = {
596 		.ptr.native = (const char __user *const  __user *)__argv,
597 	};
598 
599 	set_fs(KERNEL_DS);
600 	r = copy_strings(argc, argv, bprm);
601 	set_fs(oldfs);
602 
603 	return r;
604 }
605 EXPORT_SYMBOL(copy_strings_kernel);
606 
607 #ifdef CONFIG_MMU
608 
609 /*
610  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
611  * the binfmt code determines where the new stack should reside, we shift it to
612  * its final location.  The process proceeds as follows:
613  *
614  * 1) Use shift to calculate the new vma endpoints.
615  * 2) Extend vma to cover both the old and new ranges.  This ensures the
616  *    arguments passed to subsequent functions are consistent.
617  * 3) Move vma's page tables to the new range.
618  * 4) Free up any cleared pgd range.
619  * 5) Shrink the vma to cover only the new range.
620  */
621 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
622 {
623 	struct mm_struct *mm = vma->vm_mm;
624 	unsigned long old_start = vma->vm_start;
625 	unsigned long old_end = vma->vm_end;
626 	unsigned long length = old_end - old_start;
627 	unsigned long new_start = old_start - shift;
628 	unsigned long new_end = old_end - shift;
629 	struct mmu_gather tlb;
630 
631 	BUG_ON(new_start > new_end);
632 
633 	/*
634 	 * ensure there are no vmas between where we want to go
635 	 * and where we are
636 	 */
637 	if (vma != find_vma(mm, new_start))
638 		return -EFAULT;
639 
640 	/*
641 	 * cover the whole range: [new_start, old_end)
642 	 */
643 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
644 		return -ENOMEM;
645 
646 	/*
647 	 * move the page tables downwards, on failure we rely on
648 	 * process cleanup to remove whatever mess we made.
649 	 */
650 	if (length != move_page_tables(vma, old_start,
651 				       vma, new_start, length, false))
652 		return -ENOMEM;
653 
654 	lru_add_drain();
655 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
656 	if (new_end > old_start) {
657 		/*
658 		 * when the old and new regions overlap clear from new_end.
659 		 */
660 		free_pgd_range(&tlb, new_end, old_end, new_end,
661 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
662 	} else {
663 		/*
664 		 * otherwise, clean from old_start; this is done to not touch
665 		 * the address space in [new_end, old_start) some architectures
666 		 * have constraints on va-space that make this illegal (IA64) -
667 		 * for the others its just a little faster.
668 		 */
669 		free_pgd_range(&tlb, old_start, old_end, new_end,
670 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
671 	}
672 	tlb_finish_mmu(&tlb, old_start, old_end);
673 
674 	/*
675 	 * Shrink the vma to just the new range.  Always succeeds.
676 	 */
677 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
678 
679 	return 0;
680 }
681 
682 /*
683  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
684  * the stack is optionally relocated, and some extra space is added.
685  */
686 int setup_arg_pages(struct linux_binprm *bprm,
687 		    unsigned long stack_top,
688 		    int executable_stack)
689 {
690 	unsigned long ret;
691 	unsigned long stack_shift;
692 	struct mm_struct *mm = current->mm;
693 	struct vm_area_struct *vma = bprm->vma;
694 	struct vm_area_struct *prev = NULL;
695 	unsigned long vm_flags;
696 	unsigned long stack_base;
697 	unsigned long stack_size;
698 	unsigned long stack_expand;
699 	unsigned long rlim_stack;
700 
701 #ifdef CONFIG_STACK_GROWSUP
702 	/* Limit stack size */
703 	stack_base = bprm->rlim_stack.rlim_max;
704 	if (stack_base > STACK_SIZE_MAX)
705 		stack_base = STACK_SIZE_MAX;
706 
707 	/* Add space for stack randomization. */
708 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
709 
710 	/* Make sure we didn't let the argument array grow too large. */
711 	if (vma->vm_end - vma->vm_start > stack_base)
712 		return -ENOMEM;
713 
714 	stack_base = PAGE_ALIGN(stack_top - stack_base);
715 
716 	stack_shift = vma->vm_start - stack_base;
717 	mm->arg_start = bprm->p - stack_shift;
718 	bprm->p = vma->vm_end - stack_shift;
719 #else
720 	stack_top = arch_align_stack(stack_top);
721 	stack_top = PAGE_ALIGN(stack_top);
722 
723 	if (unlikely(stack_top < mmap_min_addr) ||
724 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
725 		return -ENOMEM;
726 
727 	stack_shift = vma->vm_end - stack_top;
728 
729 	bprm->p -= stack_shift;
730 	mm->arg_start = bprm->p;
731 #endif
732 
733 	if (bprm->loader)
734 		bprm->loader -= stack_shift;
735 	bprm->exec -= stack_shift;
736 
737 	if (down_write_killable(&mm->mmap_sem))
738 		return -EINTR;
739 
740 	vm_flags = VM_STACK_FLAGS;
741 
742 	/*
743 	 * Adjust stack execute permissions; explicitly enable for
744 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
745 	 * (arch default) otherwise.
746 	 */
747 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
748 		vm_flags |= VM_EXEC;
749 	else if (executable_stack == EXSTACK_DISABLE_X)
750 		vm_flags &= ~VM_EXEC;
751 	vm_flags |= mm->def_flags;
752 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
753 
754 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
755 			vm_flags);
756 	if (ret)
757 		goto out_unlock;
758 	BUG_ON(prev != vma);
759 
760 	/* Move stack pages down in memory. */
761 	if (stack_shift) {
762 		ret = shift_arg_pages(vma, stack_shift);
763 		if (ret)
764 			goto out_unlock;
765 	}
766 
767 	/* mprotect_fixup is overkill to remove the temporary stack flags */
768 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
769 
770 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
771 	stack_size = vma->vm_end - vma->vm_start;
772 	/*
773 	 * Align this down to a page boundary as expand_stack
774 	 * will align it up.
775 	 */
776 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
777 #ifdef CONFIG_STACK_GROWSUP
778 	if (stack_size + stack_expand > rlim_stack)
779 		stack_base = vma->vm_start + rlim_stack;
780 	else
781 		stack_base = vma->vm_end + stack_expand;
782 #else
783 	if (stack_size + stack_expand > rlim_stack)
784 		stack_base = vma->vm_end - rlim_stack;
785 	else
786 		stack_base = vma->vm_start - stack_expand;
787 #endif
788 	current->mm->start_stack = bprm->p;
789 	ret = expand_stack(vma, stack_base);
790 	if (ret)
791 		ret = -EFAULT;
792 
793 out_unlock:
794 	up_write(&mm->mmap_sem);
795 	return ret;
796 }
797 EXPORT_SYMBOL(setup_arg_pages);
798 
799 #else
800 
801 /*
802  * Transfer the program arguments and environment from the holding pages
803  * onto the stack. The provided stack pointer is adjusted accordingly.
804  */
805 int transfer_args_to_stack(struct linux_binprm *bprm,
806 			   unsigned long *sp_location)
807 {
808 	unsigned long index, stop, sp;
809 	int ret = 0;
810 
811 	stop = bprm->p >> PAGE_SHIFT;
812 	sp = *sp_location;
813 
814 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
815 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
816 		char *src = kmap(bprm->page[index]) + offset;
817 		sp -= PAGE_SIZE - offset;
818 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
819 			ret = -EFAULT;
820 		kunmap(bprm->page[index]);
821 		if (ret)
822 			goto out;
823 	}
824 
825 	*sp_location = sp;
826 
827 out:
828 	return ret;
829 }
830 EXPORT_SYMBOL(transfer_args_to_stack);
831 
832 #endif /* CONFIG_MMU */
833 
834 static struct file *do_open_execat(int fd, struct filename *name, int flags)
835 {
836 	struct file *file;
837 	int err;
838 	struct open_flags open_exec_flags = {
839 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
840 		.acc_mode = MAY_EXEC,
841 		.intent = LOOKUP_OPEN,
842 		.lookup_flags = LOOKUP_FOLLOW,
843 	};
844 
845 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
846 		return ERR_PTR(-EINVAL);
847 	if (flags & AT_SYMLINK_NOFOLLOW)
848 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
849 	if (flags & AT_EMPTY_PATH)
850 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
851 
852 	file = do_filp_open(fd, name, &open_exec_flags);
853 	if (IS_ERR(file))
854 		goto out;
855 
856 	err = -EACCES;
857 	if (!S_ISREG(file_inode(file)->i_mode))
858 		goto exit;
859 
860 	if (path_noexec(&file->f_path))
861 		goto exit;
862 
863 	err = deny_write_access(file);
864 	if (err)
865 		goto exit;
866 
867 	if (name->name[0] != '\0')
868 		fsnotify_open(file);
869 
870 out:
871 	return file;
872 
873 exit:
874 	fput(file);
875 	return ERR_PTR(err);
876 }
877 
878 struct file *open_exec(const char *name)
879 {
880 	struct filename *filename = getname_kernel(name);
881 	struct file *f = ERR_CAST(filename);
882 
883 	if (!IS_ERR(filename)) {
884 		f = do_open_execat(AT_FDCWD, filename, 0);
885 		putname(filename);
886 	}
887 	return f;
888 }
889 EXPORT_SYMBOL(open_exec);
890 
891 int kernel_read_file(struct file *file, void **buf, loff_t *size,
892 		     loff_t max_size, enum kernel_read_file_id id)
893 {
894 	loff_t i_size, pos;
895 	ssize_t bytes = 0;
896 	int ret;
897 
898 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
899 		return -EINVAL;
900 
901 	ret = deny_write_access(file);
902 	if (ret)
903 		return ret;
904 
905 	ret = security_kernel_read_file(file, id);
906 	if (ret)
907 		goto out;
908 
909 	i_size = i_size_read(file_inode(file));
910 	if (max_size > 0 && i_size > max_size) {
911 		ret = -EFBIG;
912 		goto out;
913 	}
914 	if (i_size <= 0) {
915 		ret = -EINVAL;
916 		goto out;
917 	}
918 
919 	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
920 		*buf = vmalloc(i_size);
921 	if (!*buf) {
922 		ret = -ENOMEM;
923 		goto out;
924 	}
925 
926 	pos = 0;
927 	while (pos < i_size) {
928 		bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
929 		if (bytes < 0) {
930 			ret = bytes;
931 			goto out;
932 		}
933 
934 		if (bytes == 0)
935 			break;
936 	}
937 
938 	if (pos != i_size) {
939 		ret = -EIO;
940 		goto out_free;
941 	}
942 
943 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
944 	if (!ret)
945 		*size = pos;
946 
947 out_free:
948 	if (ret < 0) {
949 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
950 			vfree(*buf);
951 			*buf = NULL;
952 		}
953 	}
954 
955 out:
956 	allow_write_access(file);
957 	return ret;
958 }
959 EXPORT_SYMBOL_GPL(kernel_read_file);
960 
961 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
962 			       loff_t max_size, enum kernel_read_file_id id)
963 {
964 	struct file *file;
965 	int ret;
966 
967 	if (!path || !*path)
968 		return -EINVAL;
969 
970 	file = filp_open(path, O_RDONLY, 0);
971 	if (IS_ERR(file))
972 		return PTR_ERR(file);
973 
974 	ret = kernel_read_file(file, buf, size, max_size, id);
975 	fput(file);
976 	return ret;
977 }
978 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
979 
980 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
981 			     enum kernel_read_file_id id)
982 {
983 	struct fd f = fdget(fd);
984 	int ret = -EBADF;
985 
986 	if (!f.file)
987 		goto out;
988 
989 	ret = kernel_read_file(f.file, buf, size, max_size, id);
990 out:
991 	fdput(f);
992 	return ret;
993 }
994 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
995 
996 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
997 {
998 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
999 	if (res > 0)
1000 		flush_icache_range(addr, addr + len);
1001 	return res;
1002 }
1003 EXPORT_SYMBOL(read_code);
1004 
1005 static int exec_mmap(struct mm_struct *mm)
1006 {
1007 	struct task_struct *tsk;
1008 	struct mm_struct *old_mm, *active_mm;
1009 
1010 	/* Notify parent that we're no longer interested in the old VM */
1011 	tsk = current;
1012 	old_mm = current->mm;
1013 	mm_release(tsk, old_mm);
1014 
1015 	if (old_mm) {
1016 		sync_mm_rss(old_mm);
1017 		/*
1018 		 * Make sure that if there is a core dump in progress
1019 		 * for the old mm, we get out and die instead of going
1020 		 * through with the exec.  We must hold mmap_sem around
1021 		 * checking core_state and changing tsk->mm.
1022 		 */
1023 		down_read(&old_mm->mmap_sem);
1024 		if (unlikely(old_mm->core_state)) {
1025 			up_read(&old_mm->mmap_sem);
1026 			return -EINTR;
1027 		}
1028 	}
1029 	task_lock(tsk);
1030 	active_mm = tsk->active_mm;
1031 	tsk->mm = mm;
1032 	tsk->active_mm = mm;
1033 	activate_mm(active_mm, mm);
1034 	tsk->mm->vmacache_seqnum = 0;
1035 	vmacache_flush(tsk);
1036 	task_unlock(tsk);
1037 	if (old_mm) {
1038 		up_read(&old_mm->mmap_sem);
1039 		BUG_ON(active_mm != old_mm);
1040 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1041 		mm_update_next_owner(old_mm);
1042 		mmput(old_mm);
1043 		return 0;
1044 	}
1045 	mmdrop(active_mm);
1046 	return 0;
1047 }
1048 
1049 /*
1050  * This function makes sure the current process has its own signal table,
1051  * so that flush_signal_handlers can later reset the handlers without
1052  * disturbing other processes.  (Other processes might share the signal
1053  * table via the CLONE_SIGHAND option to clone().)
1054  */
1055 static int de_thread(struct task_struct *tsk)
1056 {
1057 	struct signal_struct *sig = tsk->signal;
1058 	struct sighand_struct *oldsighand = tsk->sighand;
1059 	spinlock_t *lock = &oldsighand->siglock;
1060 
1061 	if (thread_group_empty(tsk))
1062 		goto no_thread_group;
1063 
1064 	/*
1065 	 * Kill all other threads in the thread group.
1066 	 */
1067 	spin_lock_irq(lock);
1068 	if (signal_group_exit(sig)) {
1069 		/*
1070 		 * Another group action in progress, just
1071 		 * return so that the signal is processed.
1072 		 */
1073 		spin_unlock_irq(lock);
1074 		return -EAGAIN;
1075 	}
1076 
1077 	sig->group_exit_task = tsk;
1078 	sig->notify_count = zap_other_threads(tsk);
1079 	if (!thread_group_leader(tsk))
1080 		sig->notify_count--;
1081 
1082 	while (sig->notify_count) {
1083 		__set_current_state(TASK_KILLABLE);
1084 		spin_unlock_irq(lock);
1085 		schedule();
1086 		if (unlikely(__fatal_signal_pending(tsk)))
1087 			goto killed;
1088 		spin_lock_irq(lock);
1089 	}
1090 	spin_unlock_irq(lock);
1091 
1092 	/*
1093 	 * At this point all other threads have exited, all we have to
1094 	 * do is to wait for the thread group leader to become inactive,
1095 	 * and to assume its PID:
1096 	 */
1097 	if (!thread_group_leader(tsk)) {
1098 		struct task_struct *leader = tsk->group_leader;
1099 
1100 		for (;;) {
1101 			cgroup_threadgroup_change_begin(tsk);
1102 			write_lock_irq(&tasklist_lock);
1103 			/*
1104 			 * Do this under tasklist_lock to ensure that
1105 			 * exit_notify() can't miss ->group_exit_task
1106 			 */
1107 			sig->notify_count = -1;
1108 			if (likely(leader->exit_state))
1109 				break;
1110 			__set_current_state(TASK_KILLABLE);
1111 			write_unlock_irq(&tasklist_lock);
1112 			cgroup_threadgroup_change_end(tsk);
1113 			schedule();
1114 			if (unlikely(__fatal_signal_pending(tsk)))
1115 				goto killed;
1116 		}
1117 
1118 		/*
1119 		 * The only record we have of the real-time age of a
1120 		 * process, regardless of execs it's done, is start_time.
1121 		 * All the past CPU time is accumulated in signal_struct
1122 		 * from sister threads now dead.  But in this non-leader
1123 		 * exec, nothing survives from the original leader thread,
1124 		 * whose birth marks the true age of this process now.
1125 		 * When we take on its identity by switching to its PID, we
1126 		 * also take its birthdate (always earlier than our own).
1127 		 */
1128 		tsk->start_time = leader->start_time;
1129 		tsk->real_start_time = leader->real_start_time;
1130 
1131 		BUG_ON(!same_thread_group(leader, tsk));
1132 		BUG_ON(has_group_leader_pid(tsk));
1133 		/*
1134 		 * An exec() starts a new thread group with the
1135 		 * TGID of the previous thread group. Rehash the
1136 		 * two threads with a switched PID, and release
1137 		 * the former thread group leader:
1138 		 */
1139 
1140 		/* Become a process group leader with the old leader's pid.
1141 		 * The old leader becomes a thread of the this thread group.
1142 		 * Note: The old leader also uses this pid until release_task
1143 		 *       is called.  Odd but simple and correct.
1144 		 */
1145 		tsk->pid = leader->pid;
1146 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1147 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1148 		transfer_pid(leader, tsk, PIDTYPE_SID);
1149 
1150 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1151 		list_replace_init(&leader->sibling, &tsk->sibling);
1152 
1153 		tsk->group_leader = tsk;
1154 		leader->group_leader = tsk;
1155 
1156 		tsk->exit_signal = SIGCHLD;
1157 		leader->exit_signal = -1;
1158 
1159 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1160 		leader->exit_state = EXIT_DEAD;
1161 
1162 		/*
1163 		 * We are going to release_task()->ptrace_unlink() silently,
1164 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1165 		 * the tracer wont't block again waiting for this thread.
1166 		 */
1167 		if (unlikely(leader->ptrace))
1168 			__wake_up_parent(leader, leader->parent);
1169 		write_unlock_irq(&tasklist_lock);
1170 		cgroup_threadgroup_change_end(tsk);
1171 
1172 		release_task(leader);
1173 	}
1174 
1175 	sig->group_exit_task = NULL;
1176 	sig->notify_count = 0;
1177 
1178 no_thread_group:
1179 	/* we have changed execution domain */
1180 	tsk->exit_signal = SIGCHLD;
1181 
1182 #ifdef CONFIG_POSIX_TIMERS
1183 	exit_itimers(sig);
1184 	flush_itimer_signals();
1185 #endif
1186 
1187 	if (atomic_read(&oldsighand->count) != 1) {
1188 		struct sighand_struct *newsighand;
1189 		/*
1190 		 * This ->sighand is shared with the CLONE_SIGHAND
1191 		 * but not CLONE_THREAD task, switch to the new one.
1192 		 */
1193 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1194 		if (!newsighand)
1195 			return -ENOMEM;
1196 
1197 		atomic_set(&newsighand->count, 1);
1198 		memcpy(newsighand->action, oldsighand->action,
1199 		       sizeof(newsighand->action));
1200 
1201 		write_lock_irq(&tasklist_lock);
1202 		spin_lock(&oldsighand->siglock);
1203 		rcu_assign_pointer(tsk->sighand, newsighand);
1204 		spin_unlock(&oldsighand->siglock);
1205 		write_unlock_irq(&tasklist_lock);
1206 
1207 		__cleanup_sighand(oldsighand);
1208 	}
1209 
1210 	BUG_ON(!thread_group_leader(tsk));
1211 	return 0;
1212 
1213 killed:
1214 	/* protects against exit_notify() and __exit_signal() */
1215 	read_lock(&tasklist_lock);
1216 	sig->group_exit_task = NULL;
1217 	sig->notify_count = 0;
1218 	read_unlock(&tasklist_lock);
1219 	return -EAGAIN;
1220 }
1221 
1222 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1223 {
1224 	task_lock(tsk);
1225 	strncpy(buf, tsk->comm, buf_size);
1226 	task_unlock(tsk);
1227 	return buf;
1228 }
1229 EXPORT_SYMBOL_GPL(__get_task_comm);
1230 
1231 /*
1232  * These functions flushes out all traces of the currently running executable
1233  * so that a new one can be started
1234  */
1235 
1236 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1237 {
1238 	task_lock(tsk);
1239 	trace_task_rename(tsk, buf);
1240 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1241 	task_unlock(tsk);
1242 	perf_event_comm(tsk, exec);
1243 }
1244 
1245 /*
1246  * Calling this is the point of no return. None of the failures will be
1247  * seen by userspace since either the process is already taking a fatal
1248  * signal (via de_thread() or coredump), or will have SEGV raised
1249  * (after exec_mmap()) by search_binary_handlers (see below).
1250  */
1251 int flush_old_exec(struct linux_binprm * bprm)
1252 {
1253 	int retval;
1254 
1255 	/*
1256 	 * Make sure we have a private signal table and that
1257 	 * we are unassociated from the previous thread group.
1258 	 */
1259 	retval = de_thread(current);
1260 	if (retval)
1261 		goto out;
1262 
1263 	/*
1264 	 * Must be called _before_ exec_mmap() as bprm->mm is
1265 	 * not visibile until then. This also enables the update
1266 	 * to be lockless.
1267 	 */
1268 	set_mm_exe_file(bprm->mm, bprm->file);
1269 
1270 	/*
1271 	 * Release all of the old mmap stuff
1272 	 */
1273 	acct_arg_size(bprm, 0);
1274 	retval = exec_mmap(bprm->mm);
1275 	if (retval)
1276 		goto out;
1277 
1278 	/*
1279 	 * After clearing bprm->mm (to mark that current is using the
1280 	 * prepared mm now), we have nothing left of the original
1281 	 * process. If anything from here on returns an error, the check
1282 	 * in search_binary_handler() will SEGV current.
1283 	 */
1284 	bprm->mm = NULL;
1285 
1286 	set_fs(USER_DS);
1287 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1288 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1289 	flush_thread();
1290 	current->personality &= ~bprm->per_clear;
1291 
1292 	/*
1293 	 * We have to apply CLOEXEC before we change whether the process is
1294 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1295 	 * trying to access the should-be-closed file descriptors of a process
1296 	 * undergoing exec(2).
1297 	 */
1298 	do_close_on_exec(current->files);
1299 	return 0;
1300 
1301 out:
1302 	return retval;
1303 }
1304 EXPORT_SYMBOL(flush_old_exec);
1305 
1306 void would_dump(struct linux_binprm *bprm, struct file *file)
1307 {
1308 	struct inode *inode = file_inode(file);
1309 	if (inode_permission(inode, MAY_READ) < 0) {
1310 		struct user_namespace *old, *user_ns;
1311 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1312 
1313 		/* Ensure mm->user_ns contains the executable */
1314 		user_ns = old = bprm->mm->user_ns;
1315 		while ((user_ns != &init_user_ns) &&
1316 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1317 			user_ns = user_ns->parent;
1318 
1319 		if (old != user_ns) {
1320 			bprm->mm->user_ns = get_user_ns(user_ns);
1321 			put_user_ns(old);
1322 		}
1323 	}
1324 }
1325 EXPORT_SYMBOL(would_dump);
1326 
1327 void setup_new_exec(struct linux_binprm * bprm)
1328 {
1329 	/*
1330 	 * Once here, prepare_binrpm() will not be called any more, so
1331 	 * the final state of setuid/setgid/fscaps can be merged into the
1332 	 * secureexec flag.
1333 	 */
1334 	bprm->secureexec |= bprm->cap_elevated;
1335 
1336 	if (bprm->secureexec) {
1337 		/* Make sure parent cannot signal privileged process. */
1338 		current->pdeath_signal = 0;
1339 
1340 		/*
1341 		 * For secureexec, reset the stack limit to sane default to
1342 		 * avoid bad behavior from the prior rlimits. This has to
1343 		 * happen before arch_pick_mmap_layout(), which examines
1344 		 * RLIMIT_STACK, but after the point of no return to avoid
1345 		 * needing to clean up the change on failure.
1346 		 */
1347 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1348 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1349 	}
1350 
1351 	arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1352 
1353 	current->sas_ss_sp = current->sas_ss_size = 0;
1354 
1355 	/*
1356 	 * Figure out dumpability. Note that this checking only of current
1357 	 * is wrong, but userspace depends on it. This should be testing
1358 	 * bprm->secureexec instead.
1359 	 */
1360 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1361 	    !(uid_eq(current_euid(), current_uid()) &&
1362 	      gid_eq(current_egid(), current_gid())))
1363 		set_dumpable(current->mm, suid_dumpable);
1364 	else
1365 		set_dumpable(current->mm, SUID_DUMP_USER);
1366 
1367 	arch_setup_new_exec();
1368 	perf_event_exec();
1369 	__set_task_comm(current, kbasename(bprm->filename), true);
1370 
1371 	/* Set the new mm task size. We have to do that late because it may
1372 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1373 	 * some architectures like powerpc
1374 	 */
1375 	current->mm->task_size = TASK_SIZE;
1376 
1377 	/* An exec changes our domain. We are no longer part of the thread
1378 	   group */
1379 	current->self_exec_id++;
1380 	flush_signal_handlers(current, 0);
1381 }
1382 EXPORT_SYMBOL(setup_new_exec);
1383 
1384 /* Runs immediately before start_thread() takes over. */
1385 void finalize_exec(struct linux_binprm *bprm)
1386 {
1387 	/* Store any stack rlimit changes before starting thread. */
1388 	task_lock(current->group_leader);
1389 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1390 	task_unlock(current->group_leader);
1391 }
1392 EXPORT_SYMBOL(finalize_exec);
1393 
1394 /*
1395  * Prepare credentials and lock ->cred_guard_mutex.
1396  * install_exec_creds() commits the new creds and drops the lock.
1397  * Or, if exec fails before, free_bprm() should release ->cred and
1398  * and unlock.
1399  */
1400 int prepare_bprm_creds(struct linux_binprm *bprm)
1401 {
1402 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1403 		return -ERESTARTNOINTR;
1404 
1405 	bprm->cred = prepare_exec_creds();
1406 	if (likely(bprm->cred))
1407 		return 0;
1408 
1409 	mutex_unlock(&current->signal->cred_guard_mutex);
1410 	return -ENOMEM;
1411 }
1412 
1413 static void free_bprm(struct linux_binprm *bprm)
1414 {
1415 	free_arg_pages(bprm);
1416 	if (bprm->cred) {
1417 		mutex_unlock(&current->signal->cred_guard_mutex);
1418 		abort_creds(bprm->cred);
1419 	}
1420 	if (bprm->file) {
1421 		allow_write_access(bprm->file);
1422 		fput(bprm->file);
1423 	}
1424 	/* If a binfmt changed the interp, free it. */
1425 	if (bprm->interp != bprm->filename)
1426 		kfree(bprm->interp);
1427 	kfree(bprm);
1428 }
1429 
1430 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1431 {
1432 	/* If a binfmt changed the interp, free it first. */
1433 	if (bprm->interp != bprm->filename)
1434 		kfree(bprm->interp);
1435 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1436 	if (!bprm->interp)
1437 		return -ENOMEM;
1438 	return 0;
1439 }
1440 EXPORT_SYMBOL(bprm_change_interp);
1441 
1442 /*
1443  * install the new credentials for this executable
1444  */
1445 void install_exec_creds(struct linux_binprm *bprm)
1446 {
1447 	security_bprm_committing_creds(bprm);
1448 
1449 	commit_creds(bprm->cred);
1450 	bprm->cred = NULL;
1451 
1452 	/*
1453 	 * Disable monitoring for regular users
1454 	 * when executing setuid binaries. Must
1455 	 * wait until new credentials are committed
1456 	 * by commit_creds() above
1457 	 */
1458 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1459 		perf_event_exit_task(current);
1460 	/*
1461 	 * cred_guard_mutex must be held at least to this point to prevent
1462 	 * ptrace_attach() from altering our determination of the task's
1463 	 * credentials; any time after this it may be unlocked.
1464 	 */
1465 	security_bprm_committed_creds(bprm);
1466 	mutex_unlock(&current->signal->cred_guard_mutex);
1467 }
1468 EXPORT_SYMBOL(install_exec_creds);
1469 
1470 /*
1471  * determine how safe it is to execute the proposed program
1472  * - the caller must hold ->cred_guard_mutex to protect against
1473  *   PTRACE_ATTACH or seccomp thread-sync
1474  */
1475 static void check_unsafe_exec(struct linux_binprm *bprm)
1476 {
1477 	struct task_struct *p = current, *t;
1478 	unsigned n_fs;
1479 
1480 	if (p->ptrace)
1481 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1482 
1483 	/*
1484 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1485 	 * mess up.
1486 	 */
1487 	if (task_no_new_privs(current))
1488 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1489 
1490 	t = p;
1491 	n_fs = 1;
1492 	spin_lock(&p->fs->lock);
1493 	rcu_read_lock();
1494 	while_each_thread(p, t) {
1495 		if (t->fs == p->fs)
1496 			n_fs++;
1497 	}
1498 	rcu_read_unlock();
1499 
1500 	if (p->fs->users > n_fs)
1501 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1502 	else
1503 		p->fs->in_exec = 1;
1504 	spin_unlock(&p->fs->lock);
1505 }
1506 
1507 static void bprm_fill_uid(struct linux_binprm *bprm)
1508 {
1509 	struct inode *inode;
1510 	unsigned int mode;
1511 	kuid_t uid;
1512 	kgid_t gid;
1513 
1514 	/*
1515 	 * Since this can be called multiple times (via prepare_binprm),
1516 	 * we must clear any previous work done when setting set[ug]id
1517 	 * bits from any earlier bprm->file uses (for example when run
1518 	 * first for a setuid script then again for its interpreter).
1519 	 */
1520 	bprm->cred->euid = current_euid();
1521 	bprm->cred->egid = current_egid();
1522 
1523 	if (!mnt_may_suid(bprm->file->f_path.mnt))
1524 		return;
1525 
1526 	if (task_no_new_privs(current))
1527 		return;
1528 
1529 	inode = bprm->file->f_path.dentry->d_inode;
1530 	mode = READ_ONCE(inode->i_mode);
1531 	if (!(mode & (S_ISUID|S_ISGID)))
1532 		return;
1533 
1534 	/* Be careful if suid/sgid is set */
1535 	inode_lock(inode);
1536 
1537 	/* reload atomically mode/uid/gid now that lock held */
1538 	mode = inode->i_mode;
1539 	uid = inode->i_uid;
1540 	gid = inode->i_gid;
1541 	inode_unlock(inode);
1542 
1543 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1544 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1545 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1546 		return;
1547 
1548 	if (mode & S_ISUID) {
1549 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1550 		bprm->cred->euid = uid;
1551 	}
1552 
1553 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1554 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1555 		bprm->cred->egid = gid;
1556 	}
1557 }
1558 
1559 /*
1560  * Fill the binprm structure from the inode.
1561  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1562  *
1563  * This may be called multiple times for binary chains (scripts for example).
1564  */
1565 int prepare_binprm(struct linux_binprm *bprm)
1566 {
1567 	int retval;
1568 	loff_t pos = 0;
1569 
1570 	bprm_fill_uid(bprm);
1571 
1572 	/* fill in binprm security blob */
1573 	retval = security_bprm_set_creds(bprm);
1574 	if (retval)
1575 		return retval;
1576 	bprm->called_set_creds = 1;
1577 
1578 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1579 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1580 }
1581 
1582 EXPORT_SYMBOL(prepare_binprm);
1583 
1584 /*
1585  * Arguments are '\0' separated strings found at the location bprm->p
1586  * points to; chop off the first by relocating brpm->p to right after
1587  * the first '\0' encountered.
1588  */
1589 int remove_arg_zero(struct linux_binprm *bprm)
1590 {
1591 	int ret = 0;
1592 	unsigned long offset;
1593 	char *kaddr;
1594 	struct page *page;
1595 
1596 	if (!bprm->argc)
1597 		return 0;
1598 
1599 	do {
1600 		offset = bprm->p & ~PAGE_MASK;
1601 		page = get_arg_page(bprm, bprm->p, 0);
1602 		if (!page) {
1603 			ret = -EFAULT;
1604 			goto out;
1605 		}
1606 		kaddr = kmap_atomic(page);
1607 
1608 		for (; offset < PAGE_SIZE && kaddr[offset];
1609 				offset++, bprm->p++)
1610 			;
1611 
1612 		kunmap_atomic(kaddr);
1613 		put_arg_page(page);
1614 	} while (offset == PAGE_SIZE);
1615 
1616 	bprm->p++;
1617 	bprm->argc--;
1618 	ret = 0;
1619 
1620 out:
1621 	return ret;
1622 }
1623 EXPORT_SYMBOL(remove_arg_zero);
1624 
1625 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1626 /*
1627  * cycle the list of binary formats handler, until one recognizes the image
1628  */
1629 int search_binary_handler(struct linux_binprm *bprm)
1630 {
1631 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1632 	struct linux_binfmt *fmt;
1633 	int retval;
1634 
1635 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1636 	if (bprm->recursion_depth > 5)
1637 		return -ELOOP;
1638 
1639 	retval = security_bprm_check(bprm);
1640 	if (retval)
1641 		return retval;
1642 
1643 	retval = -ENOENT;
1644  retry:
1645 	read_lock(&binfmt_lock);
1646 	list_for_each_entry(fmt, &formats, lh) {
1647 		if (!try_module_get(fmt->module))
1648 			continue;
1649 		read_unlock(&binfmt_lock);
1650 		bprm->recursion_depth++;
1651 		retval = fmt->load_binary(bprm);
1652 		read_lock(&binfmt_lock);
1653 		put_binfmt(fmt);
1654 		bprm->recursion_depth--;
1655 		if (retval < 0 && !bprm->mm) {
1656 			/* we got to flush_old_exec() and failed after it */
1657 			read_unlock(&binfmt_lock);
1658 			force_sigsegv(SIGSEGV, current);
1659 			return retval;
1660 		}
1661 		if (retval != -ENOEXEC || !bprm->file) {
1662 			read_unlock(&binfmt_lock);
1663 			return retval;
1664 		}
1665 	}
1666 	read_unlock(&binfmt_lock);
1667 
1668 	if (need_retry) {
1669 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1670 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1671 			return retval;
1672 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1673 			return retval;
1674 		need_retry = false;
1675 		goto retry;
1676 	}
1677 
1678 	return retval;
1679 }
1680 EXPORT_SYMBOL(search_binary_handler);
1681 
1682 static int exec_binprm(struct linux_binprm *bprm)
1683 {
1684 	pid_t old_pid, old_vpid;
1685 	int ret;
1686 
1687 	/* Need to fetch pid before load_binary changes it */
1688 	old_pid = current->pid;
1689 	rcu_read_lock();
1690 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1691 	rcu_read_unlock();
1692 
1693 	ret = search_binary_handler(bprm);
1694 	if (ret >= 0) {
1695 		audit_bprm(bprm);
1696 		trace_sched_process_exec(current, old_pid, bprm);
1697 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1698 		proc_exec_connector(current);
1699 	}
1700 
1701 	return ret;
1702 }
1703 
1704 /*
1705  * sys_execve() executes a new program.
1706  */
1707 static int __do_execve_file(int fd, struct filename *filename,
1708 			    struct user_arg_ptr argv,
1709 			    struct user_arg_ptr envp,
1710 			    int flags, struct file *file)
1711 {
1712 	char *pathbuf = NULL;
1713 	struct linux_binprm *bprm;
1714 	struct files_struct *displaced;
1715 	int retval;
1716 
1717 	if (IS_ERR(filename))
1718 		return PTR_ERR(filename);
1719 
1720 	/*
1721 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1722 	 * set*uid() to execve() because too many poorly written programs
1723 	 * don't check setuid() return code.  Here we additionally recheck
1724 	 * whether NPROC limit is still exceeded.
1725 	 */
1726 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1727 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1728 		retval = -EAGAIN;
1729 		goto out_ret;
1730 	}
1731 
1732 	/* We're below the limit (still or again), so we don't want to make
1733 	 * further execve() calls fail. */
1734 	current->flags &= ~PF_NPROC_EXCEEDED;
1735 
1736 	retval = unshare_files(&displaced);
1737 	if (retval)
1738 		goto out_ret;
1739 
1740 	retval = -ENOMEM;
1741 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1742 	if (!bprm)
1743 		goto out_files;
1744 
1745 	retval = prepare_bprm_creds(bprm);
1746 	if (retval)
1747 		goto out_free;
1748 
1749 	check_unsafe_exec(bprm);
1750 	current->in_execve = 1;
1751 
1752 	if (!file)
1753 		file = do_open_execat(fd, filename, flags);
1754 	retval = PTR_ERR(file);
1755 	if (IS_ERR(file))
1756 		goto out_unmark;
1757 
1758 	sched_exec();
1759 
1760 	bprm->file = file;
1761 	if (!filename) {
1762 		bprm->filename = "none";
1763 	} else if (fd == AT_FDCWD || filename->name[0] == '/') {
1764 		bprm->filename = filename->name;
1765 	} else {
1766 		if (filename->name[0] == '\0')
1767 			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1768 		else
1769 			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1770 					    fd, filename->name);
1771 		if (!pathbuf) {
1772 			retval = -ENOMEM;
1773 			goto out_unmark;
1774 		}
1775 		/*
1776 		 * Record that a name derived from an O_CLOEXEC fd will be
1777 		 * inaccessible after exec. Relies on having exclusive access to
1778 		 * current->files (due to unshare_files above).
1779 		 */
1780 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1781 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1782 		bprm->filename = pathbuf;
1783 	}
1784 	bprm->interp = bprm->filename;
1785 
1786 	retval = bprm_mm_init(bprm);
1787 	if (retval)
1788 		goto out_unmark;
1789 
1790 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1791 	if ((retval = bprm->argc) < 0)
1792 		goto out;
1793 
1794 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1795 	if ((retval = bprm->envc) < 0)
1796 		goto out;
1797 
1798 	retval = prepare_binprm(bprm);
1799 	if (retval < 0)
1800 		goto out;
1801 
1802 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1803 	if (retval < 0)
1804 		goto out;
1805 
1806 	bprm->exec = bprm->p;
1807 	retval = copy_strings(bprm->envc, envp, bprm);
1808 	if (retval < 0)
1809 		goto out;
1810 
1811 	retval = copy_strings(bprm->argc, argv, bprm);
1812 	if (retval < 0)
1813 		goto out;
1814 
1815 	would_dump(bprm, bprm->file);
1816 
1817 	retval = exec_binprm(bprm);
1818 	if (retval < 0)
1819 		goto out;
1820 
1821 	/* execve succeeded */
1822 	current->fs->in_exec = 0;
1823 	current->in_execve = 0;
1824 	membarrier_execve(current);
1825 	rseq_execve(current);
1826 	acct_update_integrals(current);
1827 	task_numa_free(current);
1828 	free_bprm(bprm);
1829 	kfree(pathbuf);
1830 	if (filename)
1831 		putname(filename);
1832 	if (displaced)
1833 		put_files_struct(displaced);
1834 	return retval;
1835 
1836 out:
1837 	if (bprm->mm) {
1838 		acct_arg_size(bprm, 0);
1839 		mmput(bprm->mm);
1840 	}
1841 
1842 out_unmark:
1843 	current->fs->in_exec = 0;
1844 	current->in_execve = 0;
1845 
1846 out_free:
1847 	free_bprm(bprm);
1848 	kfree(pathbuf);
1849 
1850 out_files:
1851 	if (displaced)
1852 		reset_files_struct(displaced);
1853 out_ret:
1854 	if (filename)
1855 		putname(filename);
1856 	return retval;
1857 }
1858 
1859 static int do_execveat_common(int fd, struct filename *filename,
1860 			      struct user_arg_ptr argv,
1861 			      struct user_arg_ptr envp,
1862 			      int flags)
1863 {
1864 	return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1865 }
1866 
1867 int do_execve_file(struct file *file, void *__argv, void *__envp)
1868 {
1869 	struct user_arg_ptr argv = { .ptr.native = __argv };
1870 	struct user_arg_ptr envp = { .ptr.native = __envp };
1871 
1872 	return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1873 }
1874 
1875 int do_execve(struct filename *filename,
1876 	const char __user *const __user *__argv,
1877 	const char __user *const __user *__envp)
1878 {
1879 	struct user_arg_ptr argv = { .ptr.native = __argv };
1880 	struct user_arg_ptr envp = { .ptr.native = __envp };
1881 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1882 }
1883 
1884 int do_execveat(int fd, struct filename *filename,
1885 		const char __user *const __user *__argv,
1886 		const char __user *const __user *__envp,
1887 		int flags)
1888 {
1889 	struct user_arg_ptr argv = { .ptr.native = __argv };
1890 	struct user_arg_ptr envp = { .ptr.native = __envp };
1891 
1892 	return do_execveat_common(fd, filename, argv, envp, flags);
1893 }
1894 
1895 #ifdef CONFIG_COMPAT
1896 static int compat_do_execve(struct filename *filename,
1897 	const compat_uptr_t __user *__argv,
1898 	const compat_uptr_t __user *__envp)
1899 {
1900 	struct user_arg_ptr argv = {
1901 		.is_compat = true,
1902 		.ptr.compat = __argv,
1903 	};
1904 	struct user_arg_ptr envp = {
1905 		.is_compat = true,
1906 		.ptr.compat = __envp,
1907 	};
1908 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1909 }
1910 
1911 static int compat_do_execveat(int fd, struct filename *filename,
1912 			      const compat_uptr_t __user *__argv,
1913 			      const compat_uptr_t __user *__envp,
1914 			      int flags)
1915 {
1916 	struct user_arg_ptr argv = {
1917 		.is_compat = true,
1918 		.ptr.compat = __argv,
1919 	};
1920 	struct user_arg_ptr envp = {
1921 		.is_compat = true,
1922 		.ptr.compat = __envp,
1923 	};
1924 	return do_execveat_common(fd, filename, argv, envp, flags);
1925 }
1926 #endif
1927 
1928 void set_binfmt(struct linux_binfmt *new)
1929 {
1930 	struct mm_struct *mm = current->mm;
1931 
1932 	if (mm->binfmt)
1933 		module_put(mm->binfmt->module);
1934 
1935 	mm->binfmt = new;
1936 	if (new)
1937 		__module_get(new->module);
1938 }
1939 EXPORT_SYMBOL(set_binfmt);
1940 
1941 /*
1942  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1943  */
1944 void set_dumpable(struct mm_struct *mm, int value)
1945 {
1946 	unsigned long old, new;
1947 
1948 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1949 		return;
1950 
1951 	do {
1952 		old = READ_ONCE(mm->flags);
1953 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1954 	} while (cmpxchg(&mm->flags, old, new) != old);
1955 }
1956 
1957 SYSCALL_DEFINE3(execve,
1958 		const char __user *, filename,
1959 		const char __user *const __user *, argv,
1960 		const char __user *const __user *, envp)
1961 {
1962 	return do_execve(getname(filename), argv, envp);
1963 }
1964 
1965 SYSCALL_DEFINE5(execveat,
1966 		int, fd, const char __user *, filename,
1967 		const char __user *const __user *, argv,
1968 		const char __user *const __user *, envp,
1969 		int, flags)
1970 {
1971 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1972 
1973 	return do_execveat(fd,
1974 			   getname_flags(filename, lookup_flags, NULL),
1975 			   argv, envp, flags);
1976 }
1977 
1978 #ifdef CONFIG_COMPAT
1979 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1980 	const compat_uptr_t __user *, argv,
1981 	const compat_uptr_t __user *, envp)
1982 {
1983 	return compat_do_execve(getname(filename), argv, envp);
1984 }
1985 
1986 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1987 		       const char __user *, filename,
1988 		       const compat_uptr_t __user *, argv,
1989 		       const compat_uptr_t __user *, envp,
1990 		       int,  flags)
1991 {
1992 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1993 
1994 	return compat_do_execveat(fd,
1995 				  getname_flags(filename, lookup_flags, NULL),
1996 				  argv, envp, flags);
1997 }
1998 #endif
1999