1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/vmacache.h> 32 #include <linux/stat.h> 33 #include <linux/fcntl.h> 34 #include <linux/swap.h> 35 #include <linux/string.h> 36 #include <linux/init.h> 37 #include <linux/sched/mm.h> 38 #include <linux/sched/coredump.h> 39 #include <linux/sched/signal.h> 40 #include <linux/sched/numa_balancing.h> 41 #include <linux/sched/task.h> 42 #include <linux/pagemap.h> 43 #include <linux/perf_event.h> 44 #include <linux/highmem.h> 45 #include <linux/spinlock.h> 46 #include <linux/key.h> 47 #include <linux/personality.h> 48 #include <linux/binfmts.h> 49 #include <linux/utsname.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/module.h> 52 #include <linux/namei.h> 53 #include <linux/mount.h> 54 #include <linux/security.h> 55 #include <linux/syscalls.h> 56 #include <linux/tsacct_kern.h> 57 #include <linux/cn_proc.h> 58 #include <linux/audit.h> 59 #include <linux/tracehook.h> 60 #include <linux/kmod.h> 61 #include <linux/fsnotify.h> 62 #include <linux/fs_struct.h> 63 #include <linux/oom.h> 64 #include <linux/compat.h> 65 #include <linux/vmalloc.h> 66 #include <linux/io_uring.h> 67 #include <linux/syscall_user_dispatch.h> 68 69 #include <linux/uaccess.h> 70 #include <asm/mmu_context.h> 71 #include <asm/tlb.h> 72 73 #include <trace/events/task.h> 74 #include "internal.h" 75 76 #include <trace/events/sched.h> 77 78 static int bprm_creds_from_file(struct linux_binprm *bprm); 79 80 int suid_dumpable = 0; 81 82 static LIST_HEAD(formats); 83 static DEFINE_RWLOCK(binfmt_lock); 84 85 void __register_binfmt(struct linux_binfmt * fmt, int insert) 86 { 87 BUG_ON(!fmt); 88 if (WARN_ON(!fmt->load_binary)) 89 return; 90 write_lock(&binfmt_lock); 91 insert ? list_add(&fmt->lh, &formats) : 92 list_add_tail(&fmt->lh, &formats); 93 write_unlock(&binfmt_lock); 94 } 95 96 EXPORT_SYMBOL(__register_binfmt); 97 98 void unregister_binfmt(struct linux_binfmt * fmt) 99 { 100 write_lock(&binfmt_lock); 101 list_del(&fmt->lh); 102 write_unlock(&binfmt_lock); 103 } 104 105 EXPORT_SYMBOL(unregister_binfmt); 106 107 static inline void put_binfmt(struct linux_binfmt * fmt) 108 { 109 module_put(fmt->module); 110 } 111 112 bool path_noexec(const struct path *path) 113 { 114 return (path->mnt->mnt_flags & MNT_NOEXEC) || 115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 116 } 117 118 #ifdef CONFIG_USELIB 119 /* 120 * Note that a shared library must be both readable and executable due to 121 * security reasons. 122 * 123 * Also note that we take the address to load from from the file itself. 124 */ 125 SYSCALL_DEFINE1(uselib, const char __user *, library) 126 { 127 struct linux_binfmt *fmt; 128 struct file *file; 129 struct filename *tmp = getname(library); 130 int error = PTR_ERR(tmp); 131 static const struct open_flags uselib_flags = { 132 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 133 .acc_mode = MAY_READ | MAY_EXEC, 134 .intent = LOOKUP_OPEN, 135 .lookup_flags = LOOKUP_FOLLOW, 136 }; 137 138 if (IS_ERR(tmp)) 139 goto out; 140 141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 142 putname(tmp); 143 error = PTR_ERR(file); 144 if (IS_ERR(file)) 145 goto out; 146 147 /* 148 * may_open() has already checked for this, so it should be 149 * impossible to trip now. But we need to be extra cautious 150 * and check again at the very end too. 151 */ 152 error = -EACCES; 153 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 154 path_noexec(&file->f_path))) 155 goto exit; 156 157 fsnotify_open(file); 158 159 error = -ENOEXEC; 160 161 read_lock(&binfmt_lock); 162 list_for_each_entry(fmt, &formats, lh) { 163 if (!fmt->load_shlib) 164 continue; 165 if (!try_module_get(fmt->module)) 166 continue; 167 read_unlock(&binfmt_lock); 168 error = fmt->load_shlib(file); 169 read_lock(&binfmt_lock); 170 put_binfmt(fmt); 171 if (error != -ENOEXEC) 172 break; 173 } 174 read_unlock(&binfmt_lock); 175 exit: 176 fput(file); 177 out: 178 return error; 179 } 180 #endif /* #ifdef CONFIG_USELIB */ 181 182 #ifdef CONFIG_MMU 183 /* 184 * The nascent bprm->mm is not visible until exec_mmap() but it can 185 * use a lot of memory, account these pages in current->mm temporary 186 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 187 * change the counter back via acct_arg_size(0). 188 */ 189 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 190 { 191 struct mm_struct *mm = current->mm; 192 long diff = (long)(pages - bprm->vma_pages); 193 194 if (!mm || !diff) 195 return; 196 197 bprm->vma_pages = pages; 198 add_mm_counter(mm, MM_ANONPAGES, diff); 199 } 200 201 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 202 int write) 203 { 204 struct page *page; 205 int ret; 206 unsigned int gup_flags = FOLL_FORCE; 207 208 #ifdef CONFIG_STACK_GROWSUP 209 if (write) { 210 ret = expand_downwards(bprm->vma, pos); 211 if (ret < 0) 212 return NULL; 213 } 214 #endif 215 216 if (write) 217 gup_flags |= FOLL_WRITE; 218 219 /* 220 * We are doing an exec(). 'current' is the process 221 * doing the exec and bprm->mm is the new process's mm. 222 */ 223 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags, 224 &page, NULL, NULL); 225 if (ret <= 0) 226 return NULL; 227 228 if (write) 229 acct_arg_size(bprm, vma_pages(bprm->vma)); 230 231 return page; 232 } 233 234 static void put_arg_page(struct page *page) 235 { 236 put_page(page); 237 } 238 239 static void free_arg_pages(struct linux_binprm *bprm) 240 { 241 } 242 243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 244 struct page *page) 245 { 246 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 247 } 248 249 static int __bprm_mm_init(struct linux_binprm *bprm) 250 { 251 int err; 252 struct vm_area_struct *vma = NULL; 253 struct mm_struct *mm = bprm->mm; 254 255 bprm->vma = vma = vm_area_alloc(mm); 256 if (!vma) 257 return -ENOMEM; 258 vma_set_anonymous(vma); 259 260 if (mmap_write_lock_killable(mm)) { 261 err = -EINTR; 262 goto err_free; 263 } 264 265 /* 266 * Place the stack at the largest stack address the architecture 267 * supports. Later, we'll move this to an appropriate place. We don't 268 * use STACK_TOP because that can depend on attributes which aren't 269 * configured yet. 270 */ 271 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 272 vma->vm_end = STACK_TOP_MAX; 273 vma->vm_start = vma->vm_end - PAGE_SIZE; 274 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 275 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 276 277 err = insert_vm_struct(mm, vma); 278 if (err) 279 goto err; 280 281 mm->stack_vm = mm->total_vm = 1; 282 mmap_write_unlock(mm); 283 bprm->p = vma->vm_end - sizeof(void *); 284 return 0; 285 err: 286 mmap_write_unlock(mm); 287 err_free: 288 bprm->vma = NULL; 289 vm_area_free(vma); 290 return err; 291 } 292 293 static bool valid_arg_len(struct linux_binprm *bprm, long len) 294 { 295 return len <= MAX_ARG_STRLEN; 296 } 297 298 #else 299 300 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 301 { 302 } 303 304 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 305 int write) 306 { 307 struct page *page; 308 309 page = bprm->page[pos / PAGE_SIZE]; 310 if (!page && write) { 311 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 312 if (!page) 313 return NULL; 314 bprm->page[pos / PAGE_SIZE] = page; 315 } 316 317 return page; 318 } 319 320 static void put_arg_page(struct page *page) 321 { 322 } 323 324 static void free_arg_page(struct linux_binprm *bprm, int i) 325 { 326 if (bprm->page[i]) { 327 __free_page(bprm->page[i]); 328 bprm->page[i] = NULL; 329 } 330 } 331 332 static void free_arg_pages(struct linux_binprm *bprm) 333 { 334 int i; 335 336 for (i = 0; i < MAX_ARG_PAGES; i++) 337 free_arg_page(bprm, i); 338 } 339 340 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 341 struct page *page) 342 { 343 } 344 345 static int __bprm_mm_init(struct linux_binprm *bprm) 346 { 347 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 348 return 0; 349 } 350 351 static bool valid_arg_len(struct linux_binprm *bprm, long len) 352 { 353 return len <= bprm->p; 354 } 355 356 #endif /* CONFIG_MMU */ 357 358 /* 359 * Create a new mm_struct and populate it with a temporary stack 360 * vm_area_struct. We don't have enough context at this point to set the stack 361 * flags, permissions, and offset, so we use temporary values. We'll update 362 * them later in setup_arg_pages(). 363 */ 364 static int bprm_mm_init(struct linux_binprm *bprm) 365 { 366 int err; 367 struct mm_struct *mm = NULL; 368 369 bprm->mm = mm = mm_alloc(); 370 err = -ENOMEM; 371 if (!mm) 372 goto err; 373 374 /* Save current stack limit for all calculations made during exec. */ 375 task_lock(current->group_leader); 376 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 377 task_unlock(current->group_leader); 378 379 err = __bprm_mm_init(bprm); 380 if (err) 381 goto err; 382 383 return 0; 384 385 err: 386 if (mm) { 387 bprm->mm = NULL; 388 mmdrop(mm); 389 } 390 391 return err; 392 } 393 394 struct user_arg_ptr { 395 #ifdef CONFIG_COMPAT 396 bool is_compat; 397 #endif 398 union { 399 const char __user *const __user *native; 400 #ifdef CONFIG_COMPAT 401 const compat_uptr_t __user *compat; 402 #endif 403 } ptr; 404 }; 405 406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 407 { 408 const char __user *native; 409 410 #ifdef CONFIG_COMPAT 411 if (unlikely(argv.is_compat)) { 412 compat_uptr_t compat; 413 414 if (get_user(compat, argv.ptr.compat + nr)) 415 return ERR_PTR(-EFAULT); 416 417 return compat_ptr(compat); 418 } 419 #endif 420 421 if (get_user(native, argv.ptr.native + nr)) 422 return ERR_PTR(-EFAULT); 423 424 return native; 425 } 426 427 /* 428 * count() counts the number of strings in array ARGV. 429 */ 430 static int count(struct user_arg_ptr argv, int max) 431 { 432 int i = 0; 433 434 if (argv.ptr.native != NULL) { 435 for (;;) { 436 const char __user *p = get_user_arg_ptr(argv, i); 437 438 if (!p) 439 break; 440 441 if (IS_ERR(p)) 442 return -EFAULT; 443 444 if (i >= max) 445 return -E2BIG; 446 ++i; 447 448 if (fatal_signal_pending(current)) 449 return -ERESTARTNOHAND; 450 cond_resched(); 451 } 452 } 453 return i; 454 } 455 456 static int count_strings_kernel(const char *const *argv) 457 { 458 int i; 459 460 if (!argv) 461 return 0; 462 463 for (i = 0; argv[i]; ++i) { 464 if (i >= MAX_ARG_STRINGS) 465 return -E2BIG; 466 if (fatal_signal_pending(current)) 467 return -ERESTARTNOHAND; 468 cond_resched(); 469 } 470 return i; 471 } 472 473 static int bprm_stack_limits(struct linux_binprm *bprm) 474 { 475 unsigned long limit, ptr_size; 476 477 /* 478 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 479 * (whichever is smaller) for the argv+env strings. 480 * This ensures that: 481 * - the remaining binfmt code will not run out of stack space, 482 * - the program will have a reasonable amount of stack left 483 * to work from. 484 */ 485 limit = _STK_LIM / 4 * 3; 486 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 487 /* 488 * We've historically supported up to 32 pages (ARG_MAX) 489 * of argument strings even with small stacks 490 */ 491 limit = max_t(unsigned long, limit, ARG_MAX); 492 /* 493 * We must account for the size of all the argv and envp pointers to 494 * the argv and envp strings, since they will also take up space in 495 * the stack. They aren't stored until much later when we can't 496 * signal to the parent that the child has run out of stack space. 497 * Instead, calculate it here so it's possible to fail gracefully. 498 */ 499 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); 500 if (limit <= ptr_size) 501 return -E2BIG; 502 limit -= ptr_size; 503 504 bprm->argmin = bprm->p - limit; 505 return 0; 506 } 507 508 /* 509 * 'copy_strings()' copies argument/environment strings from the old 510 * processes's memory to the new process's stack. The call to get_user_pages() 511 * ensures the destination page is created and not swapped out. 512 */ 513 static int copy_strings(int argc, struct user_arg_ptr argv, 514 struct linux_binprm *bprm) 515 { 516 struct page *kmapped_page = NULL; 517 char *kaddr = NULL; 518 unsigned long kpos = 0; 519 int ret; 520 521 while (argc-- > 0) { 522 const char __user *str; 523 int len; 524 unsigned long pos; 525 526 ret = -EFAULT; 527 str = get_user_arg_ptr(argv, argc); 528 if (IS_ERR(str)) 529 goto out; 530 531 len = strnlen_user(str, MAX_ARG_STRLEN); 532 if (!len) 533 goto out; 534 535 ret = -E2BIG; 536 if (!valid_arg_len(bprm, len)) 537 goto out; 538 539 /* We're going to work our way backwords. */ 540 pos = bprm->p; 541 str += len; 542 bprm->p -= len; 543 #ifdef CONFIG_MMU 544 if (bprm->p < bprm->argmin) 545 goto out; 546 #endif 547 548 while (len > 0) { 549 int offset, bytes_to_copy; 550 551 if (fatal_signal_pending(current)) { 552 ret = -ERESTARTNOHAND; 553 goto out; 554 } 555 cond_resched(); 556 557 offset = pos % PAGE_SIZE; 558 if (offset == 0) 559 offset = PAGE_SIZE; 560 561 bytes_to_copy = offset; 562 if (bytes_to_copy > len) 563 bytes_to_copy = len; 564 565 offset -= bytes_to_copy; 566 pos -= bytes_to_copy; 567 str -= bytes_to_copy; 568 len -= bytes_to_copy; 569 570 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 571 struct page *page; 572 573 page = get_arg_page(bprm, pos, 1); 574 if (!page) { 575 ret = -E2BIG; 576 goto out; 577 } 578 579 if (kmapped_page) { 580 flush_kernel_dcache_page(kmapped_page); 581 kunmap(kmapped_page); 582 put_arg_page(kmapped_page); 583 } 584 kmapped_page = page; 585 kaddr = kmap(kmapped_page); 586 kpos = pos & PAGE_MASK; 587 flush_arg_page(bprm, kpos, kmapped_page); 588 } 589 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 590 ret = -EFAULT; 591 goto out; 592 } 593 } 594 } 595 ret = 0; 596 out: 597 if (kmapped_page) { 598 flush_kernel_dcache_page(kmapped_page); 599 kunmap(kmapped_page); 600 put_arg_page(kmapped_page); 601 } 602 return ret; 603 } 604 605 /* 606 * Copy and argument/environment string from the kernel to the processes stack. 607 */ 608 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 609 { 610 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 611 unsigned long pos = bprm->p; 612 613 if (len == 0) 614 return -EFAULT; 615 if (!valid_arg_len(bprm, len)) 616 return -E2BIG; 617 618 /* We're going to work our way backwards. */ 619 arg += len; 620 bprm->p -= len; 621 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 622 return -E2BIG; 623 624 while (len > 0) { 625 unsigned int bytes_to_copy = min_t(unsigned int, len, 626 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 627 struct page *page; 628 char *kaddr; 629 630 pos -= bytes_to_copy; 631 arg -= bytes_to_copy; 632 len -= bytes_to_copy; 633 634 page = get_arg_page(bprm, pos, 1); 635 if (!page) 636 return -E2BIG; 637 kaddr = kmap_atomic(page); 638 flush_arg_page(bprm, pos & PAGE_MASK, page); 639 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy); 640 flush_kernel_dcache_page(page); 641 kunmap_atomic(kaddr); 642 put_arg_page(page); 643 } 644 645 return 0; 646 } 647 EXPORT_SYMBOL(copy_string_kernel); 648 649 static int copy_strings_kernel(int argc, const char *const *argv, 650 struct linux_binprm *bprm) 651 { 652 while (argc-- > 0) { 653 int ret = copy_string_kernel(argv[argc], bprm); 654 if (ret < 0) 655 return ret; 656 if (fatal_signal_pending(current)) 657 return -ERESTARTNOHAND; 658 cond_resched(); 659 } 660 return 0; 661 } 662 663 #ifdef CONFIG_MMU 664 665 /* 666 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 667 * the binfmt code determines where the new stack should reside, we shift it to 668 * its final location. The process proceeds as follows: 669 * 670 * 1) Use shift to calculate the new vma endpoints. 671 * 2) Extend vma to cover both the old and new ranges. This ensures the 672 * arguments passed to subsequent functions are consistent. 673 * 3) Move vma's page tables to the new range. 674 * 4) Free up any cleared pgd range. 675 * 5) Shrink the vma to cover only the new range. 676 */ 677 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 678 { 679 struct mm_struct *mm = vma->vm_mm; 680 unsigned long old_start = vma->vm_start; 681 unsigned long old_end = vma->vm_end; 682 unsigned long length = old_end - old_start; 683 unsigned long new_start = old_start - shift; 684 unsigned long new_end = old_end - shift; 685 struct mmu_gather tlb; 686 687 BUG_ON(new_start > new_end); 688 689 /* 690 * ensure there are no vmas between where we want to go 691 * and where we are 692 */ 693 if (vma != find_vma(mm, new_start)) 694 return -EFAULT; 695 696 /* 697 * cover the whole range: [new_start, old_end) 698 */ 699 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 700 return -ENOMEM; 701 702 /* 703 * move the page tables downwards, on failure we rely on 704 * process cleanup to remove whatever mess we made. 705 */ 706 if (length != move_page_tables(vma, old_start, 707 vma, new_start, length, false)) 708 return -ENOMEM; 709 710 lru_add_drain(); 711 tlb_gather_mmu(&tlb, mm, old_start, old_end); 712 if (new_end > old_start) { 713 /* 714 * when the old and new regions overlap clear from new_end. 715 */ 716 free_pgd_range(&tlb, new_end, old_end, new_end, 717 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 718 } else { 719 /* 720 * otherwise, clean from old_start; this is done to not touch 721 * the address space in [new_end, old_start) some architectures 722 * have constraints on va-space that make this illegal (IA64) - 723 * for the others its just a little faster. 724 */ 725 free_pgd_range(&tlb, old_start, old_end, new_end, 726 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 727 } 728 tlb_finish_mmu(&tlb, old_start, old_end); 729 730 /* 731 * Shrink the vma to just the new range. Always succeeds. 732 */ 733 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 734 735 return 0; 736 } 737 738 /* 739 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 740 * the stack is optionally relocated, and some extra space is added. 741 */ 742 int setup_arg_pages(struct linux_binprm *bprm, 743 unsigned long stack_top, 744 int executable_stack) 745 { 746 unsigned long ret; 747 unsigned long stack_shift; 748 struct mm_struct *mm = current->mm; 749 struct vm_area_struct *vma = bprm->vma; 750 struct vm_area_struct *prev = NULL; 751 unsigned long vm_flags; 752 unsigned long stack_base; 753 unsigned long stack_size; 754 unsigned long stack_expand; 755 unsigned long rlim_stack; 756 757 #ifdef CONFIG_STACK_GROWSUP 758 /* Limit stack size */ 759 stack_base = bprm->rlim_stack.rlim_max; 760 if (stack_base > STACK_SIZE_MAX) 761 stack_base = STACK_SIZE_MAX; 762 763 /* Add space for stack randomization. */ 764 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 765 766 /* Make sure we didn't let the argument array grow too large. */ 767 if (vma->vm_end - vma->vm_start > stack_base) 768 return -ENOMEM; 769 770 stack_base = PAGE_ALIGN(stack_top - stack_base); 771 772 stack_shift = vma->vm_start - stack_base; 773 mm->arg_start = bprm->p - stack_shift; 774 bprm->p = vma->vm_end - stack_shift; 775 #else 776 stack_top = arch_align_stack(stack_top); 777 stack_top = PAGE_ALIGN(stack_top); 778 779 if (unlikely(stack_top < mmap_min_addr) || 780 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 781 return -ENOMEM; 782 783 stack_shift = vma->vm_end - stack_top; 784 785 bprm->p -= stack_shift; 786 mm->arg_start = bprm->p; 787 #endif 788 789 if (bprm->loader) 790 bprm->loader -= stack_shift; 791 bprm->exec -= stack_shift; 792 793 if (mmap_write_lock_killable(mm)) 794 return -EINTR; 795 796 vm_flags = VM_STACK_FLAGS; 797 798 /* 799 * Adjust stack execute permissions; explicitly enable for 800 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 801 * (arch default) otherwise. 802 */ 803 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 804 vm_flags |= VM_EXEC; 805 else if (executable_stack == EXSTACK_DISABLE_X) 806 vm_flags &= ~VM_EXEC; 807 vm_flags |= mm->def_flags; 808 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 809 810 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 811 vm_flags); 812 if (ret) 813 goto out_unlock; 814 BUG_ON(prev != vma); 815 816 if (unlikely(vm_flags & VM_EXEC)) { 817 pr_warn_once("process '%pD4' started with executable stack\n", 818 bprm->file); 819 } 820 821 /* Move stack pages down in memory. */ 822 if (stack_shift) { 823 ret = shift_arg_pages(vma, stack_shift); 824 if (ret) 825 goto out_unlock; 826 } 827 828 /* mprotect_fixup is overkill to remove the temporary stack flags */ 829 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 830 831 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 832 stack_size = vma->vm_end - vma->vm_start; 833 /* 834 * Align this down to a page boundary as expand_stack 835 * will align it up. 836 */ 837 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 838 #ifdef CONFIG_STACK_GROWSUP 839 if (stack_size + stack_expand > rlim_stack) 840 stack_base = vma->vm_start + rlim_stack; 841 else 842 stack_base = vma->vm_end + stack_expand; 843 #else 844 if (stack_size + stack_expand > rlim_stack) 845 stack_base = vma->vm_end - rlim_stack; 846 else 847 stack_base = vma->vm_start - stack_expand; 848 #endif 849 current->mm->start_stack = bprm->p; 850 ret = expand_stack(vma, stack_base); 851 if (ret) 852 ret = -EFAULT; 853 854 out_unlock: 855 mmap_write_unlock(mm); 856 return ret; 857 } 858 EXPORT_SYMBOL(setup_arg_pages); 859 860 #else 861 862 /* 863 * Transfer the program arguments and environment from the holding pages 864 * onto the stack. The provided stack pointer is adjusted accordingly. 865 */ 866 int transfer_args_to_stack(struct linux_binprm *bprm, 867 unsigned long *sp_location) 868 { 869 unsigned long index, stop, sp; 870 int ret = 0; 871 872 stop = bprm->p >> PAGE_SHIFT; 873 sp = *sp_location; 874 875 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 876 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 877 char *src = kmap(bprm->page[index]) + offset; 878 sp -= PAGE_SIZE - offset; 879 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 880 ret = -EFAULT; 881 kunmap(bprm->page[index]); 882 if (ret) 883 goto out; 884 } 885 886 *sp_location = sp; 887 888 out: 889 return ret; 890 } 891 EXPORT_SYMBOL(transfer_args_to_stack); 892 893 #endif /* CONFIG_MMU */ 894 895 static struct file *do_open_execat(int fd, struct filename *name, int flags) 896 { 897 struct file *file; 898 int err; 899 struct open_flags open_exec_flags = { 900 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 901 .acc_mode = MAY_EXEC, 902 .intent = LOOKUP_OPEN, 903 .lookup_flags = LOOKUP_FOLLOW, 904 }; 905 906 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 907 return ERR_PTR(-EINVAL); 908 if (flags & AT_SYMLINK_NOFOLLOW) 909 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 910 if (flags & AT_EMPTY_PATH) 911 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 912 913 file = do_filp_open(fd, name, &open_exec_flags); 914 if (IS_ERR(file)) 915 goto out; 916 917 /* 918 * may_open() has already checked for this, so it should be 919 * impossible to trip now. But we need to be extra cautious 920 * and check again at the very end too. 921 */ 922 err = -EACCES; 923 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 924 path_noexec(&file->f_path))) 925 goto exit; 926 927 err = deny_write_access(file); 928 if (err) 929 goto exit; 930 931 if (name->name[0] != '\0') 932 fsnotify_open(file); 933 934 out: 935 return file; 936 937 exit: 938 fput(file); 939 return ERR_PTR(err); 940 } 941 942 struct file *open_exec(const char *name) 943 { 944 struct filename *filename = getname_kernel(name); 945 struct file *f = ERR_CAST(filename); 946 947 if (!IS_ERR(filename)) { 948 f = do_open_execat(AT_FDCWD, filename, 0); 949 putname(filename); 950 } 951 return f; 952 } 953 EXPORT_SYMBOL(open_exec); 954 955 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \ 956 defined(CONFIG_BINFMT_ELF_FDPIC) 957 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 958 { 959 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 960 if (res > 0) 961 flush_icache_user_range(addr, addr + len); 962 return res; 963 } 964 EXPORT_SYMBOL(read_code); 965 #endif 966 967 /* 968 * Maps the mm_struct mm into the current task struct. 969 * On success, this function returns with the mutex 970 * exec_update_mutex locked. 971 */ 972 static int exec_mmap(struct mm_struct *mm) 973 { 974 struct task_struct *tsk; 975 struct mm_struct *old_mm, *active_mm; 976 int ret; 977 978 /* Notify parent that we're no longer interested in the old VM */ 979 tsk = current; 980 old_mm = current->mm; 981 exec_mm_release(tsk, old_mm); 982 if (old_mm) 983 sync_mm_rss(old_mm); 984 985 ret = mutex_lock_killable(&tsk->signal->exec_update_mutex); 986 if (ret) 987 return ret; 988 989 if (old_mm) { 990 /* 991 * Make sure that if there is a core dump in progress 992 * for the old mm, we get out and die instead of going 993 * through with the exec. We must hold mmap_lock around 994 * checking core_state and changing tsk->mm. 995 */ 996 mmap_read_lock(old_mm); 997 if (unlikely(old_mm->core_state)) { 998 mmap_read_unlock(old_mm); 999 mutex_unlock(&tsk->signal->exec_update_mutex); 1000 return -EINTR; 1001 } 1002 } 1003 1004 task_lock(tsk); 1005 membarrier_exec_mmap(mm); 1006 1007 local_irq_disable(); 1008 active_mm = tsk->active_mm; 1009 tsk->active_mm = mm; 1010 tsk->mm = mm; 1011 /* 1012 * This prevents preemption while active_mm is being loaded and 1013 * it and mm are being updated, which could cause problems for 1014 * lazy tlb mm refcounting when these are updated by context 1015 * switches. Not all architectures can handle irqs off over 1016 * activate_mm yet. 1017 */ 1018 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1019 local_irq_enable(); 1020 activate_mm(active_mm, mm); 1021 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1022 local_irq_enable(); 1023 tsk->mm->vmacache_seqnum = 0; 1024 vmacache_flush(tsk); 1025 task_unlock(tsk); 1026 if (old_mm) { 1027 mmap_read_unlock(old_mm); 1028 BUG_ON(active_mm != old_mm); 1029 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1030 mm_update_next_owner(old_mm); 1031 mmput(old_mm); 1032 return 0; 1033 } 1034 mmdrop(active_mm); 1035 return 0; 1036 } 1037 1038 static int de_thread(struct task_struct *tsk) 1039 { 1040 struct signal_struct *sig = tsk->signal; 1041 struct sighand_struct *oldsighand = tsk->sighand; 1042 spinlock_t *lock = &oldsighand->siglock; 1043 1044 if (thread_group_empty(tsk)) 1045 goto no_thread_group; 1046 1047 /* 1048 * Kill all other threads in the thread group. 1049 */ 1050 spin_lock_irq(lock); 1051 if (signal_group_exit(sig)) { 1052 /* 1053 * Another group action in progress, just 1054 * return so that the signal is processed. 1055 */ 1056 spin_unlock_irq(lock); 1057 return -EAGAIN; 1058 } 1059 1060 sig->group_exit_task = tsk; 1061 sig->notify_count = zap_other_threads(tsk); 1062 if (!thread_group_leader(tsk)) 1063 sig->notify_count--; 1064 1065 while (sig->notify_count) { 1066 __set_current_state(TASK_KILLABLE); 1067 spin_unlock_irq(lock); 1068 schedule(); 1069 if (__fatal_signal_pending(tsk)) 1070 goto killed; 1071 spin_lock_irq(lock); 1072 } 1073 spin_unlock_irq(lock); 1074 1075 /* 1076 * At this point all other threads have exited, all we have to 1077 * do is to wait for the thread group leader to become inactive, 1078 * and to assume its PID: 1079 */ 1080 if (!thread_group_leader(tsk)) { 1081 struct task_struct *leader = tsk->group_leader; 1082 1083 for (;;) { 1084 cgroup_threadgroup_change_begin(tsk); 1085 write_lock_irq(&tasklist_lock); 1086 /* 1087 * Do this under tasklist_lock to ensure that 1088 * exit_notify() can't miss ->group_exit_task 1089 */ 1090 sig->notify_count = -1; 1091 if (likely(leader->exit_state)) 1092 break; 1093 __set_current_state(TASK_KILLABLE); 1094 write_unlock_irq(&tasklist_lock); 1095 cgroup_threadgroup_change_end(tsk); 1096 schedule(); 1097 if (__fatal_signal_pending(tsk)) 1098 goto killed; 1099 } 1100 1101 /* 1102 * The only record we have of the real-time age of a 1103 * process, regardless of execs it's done, is start_time. 1104 * All the past CPU time is accumulated in signal_struct 1105 * from sister threads now dead. But in this non-leader 1106 * exec, nothing survives from the original leader thread, 1107 * whose birth marks the true age of this process now. 1108 * When we take on its identity by switching to its PID, we 1109 * also take its birthdate (always earlier than our own). 1110 */ 1111 tsk->start_time = leader->start_time; 1112 tsk->start_boottime = leader->start_boottime; 1113 1114 BUG_ON(!same_thread_group(leader, tsk)); 1115 /* 1116 * An exec() starts a new thread group with the 1117 * TGID of the previous thread group. Rehash the 1118 * two threads with a switched PID, and release 1119 * the former thread group leader: 1120 */ 1121 1122 /* Become a process group leader with the old leader's pid. 1123 * The old leader becomes a thread of the this thread group. 1124 */ 1125 exchange_tids(tsk, leader); 1126 transfer_pid(leader, tsk, PIDTYPE_TGID); 1127 transfer_pid(leader, tsk, PIDTYPE_PGID); 1128 transfer_pid(leader, tsk, PIDTYPE_SID); 1129 1130 list_replace_rcu(&leader->tasks, &tsk->tasks); 1131 list_replace_init(&leader->sibling, &tsk->sibling); 1132 1133 tsk->group_leader = tsk; 1134 leader->group_leader = tsk; 1135 1136 tsk->exit_signal = SIGCHLD; 1137 leader->exit_signal = -1; 1138 1139 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1140 leader->exit_state = EXIT_DEAD; 1141 1142 /* 1143 * We are going to release_task()->ptrace_unlink() silently, 1144 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1145 * the tracer wont't block again waiting for this thread. 1146 */ 1147 if (unlikely(leader->ptrace)) 1148 __wake_up_parent(leader, leader->parent); 1149 write_unlock_irq(&tasklist_lock); 1150 cgroup_threadgroup_change_end(tsk); 1151 1152 release_task(leader); 1153 } 1154 1155 sig->group_exit_task = NULL; 1156 sig->notify_count = 0; 1157 1158 no_thread_group: 1159 /* we have changed execution domain */ 1160 tsk->exit_signal = SIGCHLD; 1161 1162 BUG_ON(!thread_group_leader(tsk)); 1163 return 0; 1164 1165 killed: 1166 /* protects against exit_notify() and __exit_signal() */ 1167 read_lock(&tasklist_lock); 1168 sig->group_exit_task = NULL; 1169 sig->notify_count = 0; 1170 read_unlock(&tasklist_lock); 1171 return -EAGAIN; 1172 } 1173 1174 1175 /* 1176 * This function makes sure the current process has its own signal table, 1177 * so that flush_signal_handlers can later reset the handlers without 1178 * disturbing other processes. (Other processes might share the signal 1179 * table via the CLONE_SIGHAND option to clone().) 1180 */ 1181 static int unshare_sighand(struct task_struct *me) 1182 { 1183 struct sighand_struct *oldsighand = me->sighand; 1184 1185 if (refcount_read(&oldsighand->count) != 1) { 1186 struct sighand_struct *newsighand; 1187 /* 1188 * This ->sighand is shared with the CLONE_SIGHAND 1189 * but not CLONE_THREAD task, switch to the new one. 1190 */ 1191 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1192 if (!newsighand) 1193 return -ENOMEM; 1194 1195 refcount_set(&newsighand->count, 1); 1196 memcpy(newsighand->action, oldsighand->action, 1197 sizeof(newsighand->action)); 1198 1199 write_lock_irq(&tasklist_lock); 1200 spin_lock(&oldsighand->siglock); 1201 rcu_assign_pointer(me->sighand, newsighand); 1202 spin_unlock(&oldsighand->siglock); 1203 write_unlock_irq(&tasklist_lock); 1204 1205 __cleanup_sighand(oldsighand); 1206 } 1207 return 0; 1208 } 1209 1210 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1211 { 1212 task_lock(tsk); 1213 strncpy(buf, tsk->comm, buf_size); 1214 task_unlock(tsk); 1215 return buf; 1216 } 1217 EXPORT_SYMBOL_GPL(__get_task_comm); 1218 1219 /* 1220 * These functions flushes out all traces of the currently running executable 1221 * so that a new one can be started 1222 */ 1223 1224 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1225 { 1226 task_lock(tsk); 1227 trace_task_rename(tsk, buf); 1228 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1229 task_unlock(tsk); 1230 perf_event_comm(tsk, exec); 1231 } 1232 1233 /* 1234 * Calling this is the point of no return. None of the failures will be 1235 * seen by userspace since either the process is already taking a fatal 1236 * signal (via de_thread() or coredump), or will have SEGV raised 1237 * (after exec_mmap()) by search_binary_handler (see below). 1238 */ 1239 int begin_new_exec(struct linux_binprm * bprm) 1240 { 1241 struct task_struct *me = current; 1242 int retval; 1243 1244 /* Once we are committed compute the creds */ 1245 retval = bprm_creds_from_file(bprm); 1246 if (retval) 1247 return retval; 1248 1249 /* 1250 * Ensure all future errors are fatal. 1251 */ 1252 bprm->point_of_no_return = true; 1253 1254 /* 1255 * Make this the only thread in the thread group. 1256 */ 1257 retval = de_thread(me); 1258 if (retval) 1259 goto out; 1260 1261 /* 1262 * Must be called _before_ exec_mmap() as bprm->mm is 1263 * not visibile until then. This also enables the update 1264 * to be lockless. 1265 */ 1266 set_mm_exe_file(bprm->mm, bprm->file); 1267 1268 /* If the binary is not readable then enforce mm->dumpable=0 */ 1269 would_dump(bprm, bprm->file); 1270 if (bprm->have_execfd) 1271 would_dump(bprm, bprm->executable); 1272 1273 /* 1274 * Release all of the old mmap stuff 1275 */ 1276 acct_arg_size(bprm, 0); 1277 retval = exec_mmap(bprm->mm); 1278 if (retval) 1279 goto out; 1280 1281 bprm->mm = NULL; 1282 1283 #ifdef CONFIG_POSIX_TIMERS 1284 exit_itimers(me->signal); 1285 flush_itimer_signals(); 1286 #endif 1287 1288 /* 1289 * Make the signal table private. 1290 */ 1291 retval = unshare_sighand(me); 1292 if (retval) 1293 goto out_unlock; 1294 1295 /* 1296 * Ensure that the uaccess routines can actually operate on userspace 1297 * pointers: 1298 */ 1299 force_uaccess_begin(); 1300 1301 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1302 PF_NOFREEZE | PF_NO_SETAFFINITY); 1303 flush_thread(); 1304 me->personality &= ~bprm->per_clear; 1305 1306 clear_syscall_work_syscall_user_dispatch(me); 1307 1308 /* 1309 * We have to apply CLOEXEC before we change whether the process is 1310 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1311 * trying to access the should-be-closed file descriptors of a process 1312 * undergoing exec(2). 1313 */ 1314 do_close_on_exec(me->files); 1315 1316 if (bprm->secureexec) { 1317 /* Make sure parent cannot signal privileged process. */ 1318 me->pdeath_signal = 0; 1319 1320 /* 1321 * For secureexec, reset the stack limit to sane default to 1322 * avoid bad behavior from the prior rlimits. This has to 1323 * happen before arch_pick_mmap_layout(), which examines 1324 * RLIMIT_STACK, but after the point of no return to avoid 1325 * needing to clean up the change on failure. 1326 */ 1327 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1328 bprm->rlim_stack.rlim_cur = _STK_LIM; 1329 } 1330 1331 me->sas_ss_sp = me->sas_ss_size = 0; 1332 1333 /* 1334 * Figure out dumpability. Note that this checking only of current 1335 * is wrong, but userspace depends on it. This should be testing 1336 * bprm->secureexec instead. 1337 */ 1338 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1339 !(uid_eq(current_euid(), current_uid()) && 1340 gid_eq(current_egid(), current_gid()))) 1341 set_dumpable(current->mm, suid_dumpable); 1342 else 1343 set_dumpable(current->mm, SUID_DUMP_USER); 1344 1345 perf_event_exec(); 1346 __set_task_comm(me, kbasename(bprm->filename), true); 1347 1348 /* An exec changes our domain. We are no longer part of the thread 1349 group */ 1350 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1351 flush_signal_handlers(me, 0); 1352 1353 /* 1354 * install the new credentials for this executable 1355 */ 1356 security_bprm_committing_creds(bprm); 1357 1358 commit_creds(bprm->cred); 1359 bprm->cred = NULL; 1360 1361 /* 1362 * Disable monitoring for regular users 1363 * when executing setuid binaries. Must 1364 * wait until new credentials are committed 1365 * by commit_creds() above 1366 */ 1367 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1368 perf_event_exit_task(me); 1369 /* 1370 * cred_guard_mutex must be held at least to this point to prevent 1371 * ptrace_attach() from altering our determination of the task's 1372 * credentials; any time after this it may be unlocked. 1373 */ 1374 security_bprm_committed_creds(bprm); 1375 1376 /* Pass the opened binary to the interpreter. */ 1377 if (bprm->have_execfd) { 1378 retval = get_unused_fd_flags(0); 1379 if (retval < 0) 1380 goto out_unlock; 1381 fd_install(retval, bprm->executable); 1382 bprm->executable = NULL; 1383 bprm->execfd = retval; 1384 } 1385 return 0; 1386 1387 out_unlock: 1388 mutex_unlock(&me->signal->exec_update_mutex); 1389 out: 1390 return retval; 1391 } 1392 EXPORT_SYMBOL(begin_new_exec); 1393 1394 void would_dump(struct linux_binprm *bprm, struct file *file) 1395 { 1396 struct inode *inode = file_inode(file); 1397 if (inode_permission(inode, MAY_READ) < 0) { 1398 struct user_namespace *old, *user_ns; 1399 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1400 1401 /* Ensure mm->user_ns contains the executable */ 1402 user_ns = old = bprm->mm->user_ns; 1403 while ((user_ns != &init_user_ns) && 1404 !privileged_wrt_inode_uidgid(user_ns, inode)) 1405 user_ns = user_ns->parent; 1406 1407 if (old != user_ns) { 1408 bprm->mm->user_ns = get_user_ns(user_ns); 1409 put_user_ns(old); 1410 } 1411 } 1412 } 1413 EXPORT_SYMBOL(would_dump); 1414 1415 void setup_new_exec(struct linux_binprm * bprm) 1416 { 1417 /* Setup things that can depend upon the personality */ 1418 struct task_struct *me = current; 1419 1420 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1421 1422 arch_setup_new_exec(); 1423 1424 /* Set the new mm task size. We have to do that late because it may 1425 * depend on TIF_32BIT which is only updated in flush_thread() on 1426 * some architectures like powerpc 1427 */ 1428 me->mm->task_size = TASK_SIZE; 1429 mutex_unlock(&me->signal->exec_update_mutex); 1430 mutex_unlock(&me->signal->cred_guard_mutex); 1431 } 1432 EXPORT_SYMBOL(setup_new_exec); 1433 1434 /* Runs immediately before start_thread() takes over. */ 1435 void finalize_exec(struct linux_binprm *bprm) 1436 { 1437 /* Store any stack rlimit changes before starting thread. */ 1438 task_lock(current->group_leader); 1439 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1440 task_unlock(current->group_leader); 1441 } 1442 EXPORT_SYMBOL(finalize_exec); 1443 1444 /* 1445 * Prepare credentials and lock ->cred_guard_mutex. 1446 * setup_new_exec() commits the new creds and drops the lock. 1447 * Or, if exec fails before, free_bprm() should release ->cred and 1448 * and unlock. 1449 */ 1450 static int prepare_bprm_creds(struct linux_binprm *bprm) 1451 { 1452 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1453 return -ERESTARTNOINTR; 1454 1455 bprm->cred = prepare_exec_creds(); 1456 if (likely(bprm->cred)) 1457 return 0; 1458 1459 mutex_unlock(¤t->signal->cred_guard_mutex); 1460 return -ENOMEM; 1461 } 1462 1463 static void free_bprm(struct linux_binprm *bprm) 1464 { 1465 if (bprm->mm) { 1466 acct_arg_size(bprm, 0); 1467 mmput(bprm->mm); 1468 } 1469 free_arg_pages(bprm); 1470 if (bprm->cred) { 1471 mutex_unlock(¤t->signal->cred_guard_mutex); 1472 abort_creds(bprm->cred); 1473 } 1474 if (bprm->file) { 1475 allow_write_access(bprm->file); 1476 fput(bprm->file); 1477 } 1478 if (bprm->executable) 1479 fput(bprm->executable); 1480 /* If a binfmt changed the interp, free it. */ 1481 if (bprm->interp != bprm->filename) 1482 kfree(bprm->interp); 1483 kfree(bprm->fdpath); 1484 kfree(bprm); 1485 } 1486 1487 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1488 { 1489 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1490 int retval = -ENOMEM; 1491 if (!bprm) 1492 goto out; 1493 1494 if (fd == AT_FDCWD || filename->name[0] == '/') { 1495 bprm->filename = filename->name; 1496 } else { 1497 if (filename->name[0] == '\0') 1498 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1499 else 1500 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1501 fd, filename->name); 1502 if (!bprm->fdpath) 1503 goto out_free; 1504 1505 bprm->filename = bprm->fdpath; 1506 } 1507 bprm->interp = bprm->filename; 1508 1509 retval = bprm_mm_init(bprm); 1510 if (retval) 1511 goto out_free; 1512 return bprm; 1513 1514 out_free: 1515 free_bprm(bprm); 1516 out: 1517 return ERR_PTR(retval); 1518 } 1519 1520 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1521 { 1522 /* If a binfmt changed the interp, free it first. */ 1523 if (bprm->interp != bprm->filename) 1524 kfree(bprm->interp); 1525 bprm->interp = kstrdup(interp, GFP_KERNEL); 1526 if (!bprm->interp) 1527 return -ENOMEM; 1528 return 0; 1529 } 1530 EXPORT_SYMBOL(bprm_change_interp); 1531 1532 /* 1533 * determine how safe it is to execute the proposed program 1534 * - the caller must hold ->cred_guard_mutex to protect against 1535 * PTRACE_ATTACH or seccomp thread-sync 1536 */ 1537 static void check_unsafe_exec(struct linux_binprm *bprm) 1538 { 1539 struct task_struct *p = current, *t; 1540 unsigned n_fs; 1541 1542 if (p->ptrace) 1543 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1544 1545 /* 1546 * This isn't strictly necessary, but it makes it harder for LSMs to 1547 * mess up. 1548 */ 1549 if (task_no_new_privs(current)) 1550 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1551 1552 t = p; 1553 n_fs = 1; 1554 spin_lock(&p->fs->lock); 1555 rcu_read_lock(); 1556 while_each_thread(p, t) { 1557 if (t->fs == p->fs) 1558 n_fs++; 1559 } 1560 rcu_read_unlock(); 1561 1562 if (p->fs->users > n_fs) 1563 bprm->unsafe |= LSM_UNSAFE_SHARE; 1564 else 1565 p->fs->in_exec = 1; 1566 spin_unlock(&p->fs->lock); 1567 } 1568 1569 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1570 { 1571 /* Handle suid and sgid on files */ 1572 struct inode *inode; 1573 unsigned int mode; 1574 kuid_t uid; 1575 kgid_t gid; 1576 1577 if (!mnt_may_suid(file->f_path.mnt)) 1578 return; 1579 1580 if (task_no_new_privs(current)) 1581 return; 1582 1583 inode = file->f_path.dentry->d_inode; 1584 mode = READ_ONCE(inode->i_mode); 1585 if (!(mode & (S_ISUID|S_ISGID))) 1586 return; 1587 1588 /* Be careful if suid/sgid is set */ 1589 inode_lock(inode); 1590 1591 /* reload atomically mode/uid/gid now that lock held */ 1592 mode = inode->i_mode; 1593 uid = inode->i_uid; 1594 gid = inode->i_gid; 1595 inode_unlock(inode); 1596 1597 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1598 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1599 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1600 return; 1601 1602 if (mode & S_ISUID) { 1603 bprm->per_clear |= PER_CLEAR_ON_SETID; 1604 bprm->cred->euid = uid; 1605 } 1606 1607 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1608 bprm->per_clear |= PER_CLEAR_ON_SETID; 1609 bprm->cred->egid = gid; 1610 } 1611 } 1612 1613 /* 1614 * Compute brpm->cred based upon the final binary. 1615 */ 1616 static int bprm_creds_from_file(struct linux_binprm *bprm) 1617 { 1618 /* Compute creds based on which file? */ 1619 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1620 1621 bprm_fill_uid(bprm, file); 1622 return security_bprm_creds_from_file(bprm, file); 1623 } 1624 1625 /* 1626 * Fill the binprm structure from the inode. 1627 * Read the first BINPRM_BUF_SIZE bytes 1628 * 1629 * This may be called multiple times for binary chains (scripts for example). 1630 */ 1631 static int prepare_binprm(struct linux_binprm *bprm) 1632 { 1633 loff_t pos = 0; 1634 1635 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1636 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1637 } 1638 1639 /* 1640 * Arguments are '\0' separated strings found at the location bprm->p 1641 * points to; chop off the first by relocating brpm->p to right after 1642 * the first '\0' encountered. 1643 */ 1644 int remove_arg_zero(struct linux_binprm *bprm) 1645 { 1646 int ret = 0; 1647 unsigned long offset; 1648 char *kaddr; 1649 struct page *page; 1650 1651 if (!bprm->argc) 1652 return 0; 1653 1654 do { 1655 offset = bprm->p & ~PAGE_MASK; 1656 page = get_arg_page(bprm, bprm->p, 0); 1657 if (!page) { 1658 ret = -EFAULT; 1659 goto out; 1660 } 1661 kaddr = kmap_atomic(page); 1662 1663 for (; offset < PAGE_SIZE && kaddr[offset]; 1664 offset++, bprm->p++) 1665 ; 1666 1667 kunmap_atomic(kaddr); 1668 put_arg_page(page); 1669 } while (offset == PAGE_SIZE); 1670 1671 bprm->p++; 1672 bprm->argc--; 1673 ret = 0; 1674 1675 out: 1676 return ret; 1677 } 1678 EXPORT_SYMBOL(remove_arg_zero); 1679 1680 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1681 /* 1682 * cycle the list of binary formats handler, until one recognizes the image 1683 */ 1684 static int search_binary_handler(struct linux_binprm *bprm) 1685 { 1686 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1687 struct linux_binfmt *fmt; 1688 int retval; 1689 1690 retval = prepare_binprm(bprm); 1691 if (retval < 0) 1692 return retval; 1693 1694 retval = security_bprm_check(bprm); 1695 if (retval) 1696 return retval; 1697 1698 retval = -ENOENT; 1699 retry: 1700 read_lock(&binfmt_lock); 1701 list_for_each_entry(fmt, &formats, lh) { 1702 if (!try_module_get(fmt->module)) 1703 continue; 1704 read_unlock(&binfmt_lock); 1705 1706 retval = fmt->load_binary(bprm); 1707 1708 read_lock(&binfmt_lock); 1709 put_binfmt(fmt); 1710 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1711 read_unlock(&binfmt_lock); 1712 return retval; 1713 } 1714 } 1715 read_unlock(&binfmt_lock); 1716 1717 if (need_retry) { 1718 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1719 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1720 return retval; 1721 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1722 return retval; 1723 need_retry = false; 1724 goto retry; 1725 } 1726 1727 return retval; 1728 } 1729 1730 static int exec_binprm(struct linux_binprm *bprm) 1731 { 1732 pid_t old_pid, old_vpid; 1733 int ret, depth; 1734 1735 /* Need to fetch pid before load_binary changes it */ 1736 old_pid = current->pid; 1737 rcu_read_lock(); 1738 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1739 rcu_read_unlock(); 1740 1741 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1742 for (depth = 0;; depth++) { 1743 struct file *exec; 1744 if (depth > 5) 1745 return -ELOOP; 1746 1747 ret = search_binary_handler(bprm); 1748 if (ret < 0) 1749 return ret; 1750 if (!bprm->interpreter) 1751 break; 1752 1753 exec = bprm->file; 1754 bprm->file = bprm->interpreter; 1755 bprm->interpreter = NULL; 1756 1757 allow_write_access(exec); 1758 if (unlikely(bprm->have_execfd)) { 1759 if (bprm->executable) { 1760 fput(exec); 1761 return -ENOEXEC; 1762 } 1763 bprm->executable = exec; 1764 } else 1765 fput(exec); 1766 } 1767 1768 audit_bprm(bprm); 1769 trace_sched_process_exec(current, old_pid, bprm); 1770 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1771 proc_exec_connector(current); 1772 return 0; 1773 } 1774 1775 /* 1776 * sys_execve() executes a new program. 1777 */ 1778 static int bprm_execve(struct linux_binprm *bprm, 1779 int fd, struct filename *filename, int flags) 1780 { 1781 struct file *file; 1782 struct files_struct *displaced; 1783 int retval; 1784 1785 /* 1786 * Cancel any io_uring activity across execve 1787 */ 1788 io_uring_task_cancel(); 1789 1790 retval = unshare_files(&displaced); 1791 if (retval) 1792 return retval; 1793 1794 retval = prepare_bprm_creds(bprm); 1795 if (retval) 1796 goto out_files; 1797 1798 check_unsafe_exec(bprm); 1799 current->in_execve = 1; 1800 1801 file = do_open_execat(fd, filename, flags); 1802 retval = PTR_ERR(file); 1803 if (IS_ERR(file)) 1804 goto out_unmark; 1805 1806 sched_exec(); 1807 1808 bprm->file = file; 1809 /* 1810 * Record that a name derived from an O_CLOEXEC fd will be 1811 * inaccessible after exec. Relies on having exclusive access to 1812 * current->files (due to unshare_files above). 1813 */ 1814 if (bprm->fdpath && 1815 close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1816 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1817 1818 /* Set the unchanging part of bprm->cred */ 1819 retval = security_bprm_creds_for_exec(bprm); 1820 if (retval) 1821 goto out; 1822 1823 retval = exec_binprm(bprm); 1824 if (retval < 0) 1825 goto out; 1826 1827 /* execve succeeded */ 1828 current->fs->in_exec = 0; 1829 current->in_execve = 0; 1830 rseq_execve(current); 1831 acct_update_integrals(current); 1832 task_numa_free(current, false); 1833 if (displaced) 1834 put_files_struct(displaced); 1835 return retval; 1836 1837 out: 1838 /* 1839 * If past the point of no return ensure the the code never 1840 * returns to the userspace process. Use an existing fatal 1841 * signal if present otherwise terminate the process with 1842 * SIGSEGV. 1843 */ 1844 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1845 force_sigsegv(SIGSEGV); 1846 1847 out_unmark: 1848 current->fs->in_exec = 0; 1849 current->in_execve = 0; 1850 1851 out_files: 1852 if (displaced) 1853 reset_files_struct(displaced); 1854 1855 return retval; 1856 } 1857 1858 static int do_execveat_common(int fd, struct filename *filename, 1859 struct user_arg_ptr argv, 1860 struct user_arg_ptr envp, 1861 int flags) 1862 { 1863 struct linux_binprm *bprm; 1864 int retval; 1865 1866 if (IS_ERR(filename)) 1867 return PTR_ERR(filename); 1868 1869 /* 1870 * We move the actual failure in case of RLIMIT_NPROC excess from 1871 * set*uid() to execve() because too many poorly written programs 1872 * don't check setuid() return code. Here we additionally recheck 1873 * whether NPROC limit is still exceeded. 1874 */ 1875 if ((current->flags & PF_NPROC_EXCEEDED) && 1876 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1877 retval = -EAGAIN; 1878 goto out_ret; 1879 } 1880 1881 /* We're below the limit (still or again), so we don't want to make 1882 * further execve() calls fail. */ 1883 current->flags &= ~PF_NPROC_EXCEEDED; 1884 1885 bprm = alloc_bprm(fd, filename); 1886 if (IS_ERR(bprm)) { 1887 retval = PTR_ERR(bprm); 1888 goto out_ret; 1889 } 1890 1891 retval = count(argv, MAX_ARG_STRINGS); 1892 if (retval < 0) 1893 goto out_free; 1894 bprm->argc = retval; 1895 1896 retval = count(envp, MAX_ARG_STRINGS); 1897 if (retval < 0) 1898 goto out_free; 1899 bprm->envc = retval; 1900 1901 retval = bprm_stack_limits(bprm); 1902 if (retval < 0) 1903 goto out_free; 1904 1905 retval = copy_string_kernel(bprm->filename, bprm); 1906 if (retval < 0) 1907 goto out_free; 1908 bprm->exec = bprm->p; 1909 1910 retval = copy_strings(bprm->envc, envp, bprm); 1911 if (retval < 0) 1912 goto out_free; 1913 1914 retval = copy_strings(bprm->argc, argv, bprm); 1915 if (retval < 0) 1916 goto out_free; 1917 1918 retval = bprm_execve(bprm, fd, filename, flags); 1919 out_free: 1920 free_bprm(bprm); 1921 1922 out_ret: 1923 putname(filename); 1924 return retval; 1925 } 1926 1927 int kernel_execve(const char *kernel_filename, 1928 const char *const *argv, const char *const *envp) 1929 { 1930 struct filename *filename; 1931 struct linux_binprm *bprm; 1932 int fd = AT_FDCWD; 1933 int retval; 1934 1935 filename = getname_kernel(kernel_filename); 1936 if (IS_ERR(filename)) 1937 return PTR_ERR(filename); 1938 1939 bprm = alloc_bprm(fd, filename); 1940 if (IS_ERR(bprm)) { 1941 retval = PTR_ERR(bprm); 1942 goto out_ret; 1943 } 1944 1945 retval = count_strings_kernel(argv); 1946 if (retval < 0) 1947 goto out_free; 1948 bprm->argc = retval; 1949 1950 retval = count_strings_kernel(envp); 1951 if (retval < 0) 1952 goto out_free; 1953 bprm->envc = retval; 1954 1955 retval = bprm_stack_limits(bprm); 1956 if (retval < 0) 1957 goto out_free; 1958 1959 retval = copy_string_kernel(bprm->filename, bprm); 1960 if (retval < 0) 1961 goto out_free; 1962 bprm->exec = bprm->p; 1963 1964 retval = copy_strings_kernel(bprm->envc, envp, bprm); 1965 if (retval < 0) 1966 goto out_free; 1967 1968 retval = copy_strings_kernel(bprm->argc, argv, bprm); 1969 if (retval < 0) 1970 goto out_free; 1971 1972 retval = bprm_execve(bprm, fd, filename, 0); 1973 out_free: 1974 free_bprm(bprm); 1975 out_ret: 1976 putname(filename); 1977 return retval; 1978 } 1979 1980 static int do_execve(struct filename *filename, 1981 const char __user *const __user *__argv, 1982 const char __user *const __user *__envp) 1983 { 1984 struct user_arg_ptr argv = { .ptr.native = __argv }; 1985 struct user_arg_ptr envp = { .ptr.native = __envp }; 1986 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1987 } 1988 1989 static int do_execveat(int fd, struct filename *filename, 1990 const char __user *const __user *__argv, 1991 const char __user *const __user *__envp, 1992 int flags) 1993 { 1994 struct user_arg_ptr argv = { .ptr.native = __argv }; 1995 struct user_arg_ptr envp = { .ptr.native = __envp }; 1996 1997 return do_execveat_common(fd, filename, argv, envp, flags); 1998 } 1999 2000 #ifdef CONFIG_COMPAT 2001 static int compat_do_execve(struct filename *filename, 2002 const compat_uptr_t __user *__argv, 2003 const compat_uptr_t __user *__envp) 2004 { 2005 struct user_arg_ptr argv = { 2006 .is_compat = true, 2007 .ptr.compat = __argv, 2008 }; 2009 struct user_arg_ptr envp = { 2010 .is_compat = true, 2011 .ptr.compat = __envp, 2012 }; 2013 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2014 } 2015 2016 static int compat_do_execveat(int fd, struct filename *filename, 2017 const compat_uptr_t __user *__argv, 2018 const compat_uptr_t __user *__envp, 2019 int flags) 2020 { 2021 struct user_arg_ptr argv = { 2022 .is_compat = true, 2023 .ptr.compat = __argv, 2024 }; 2025 struct user_arg_ptr envp = { 2026 .is_compat = true, 2027 .ptr.compat = __envp, 2028 }; 2029 return do_execveat_common(fd, filename, argv, envp, flags); 2030 } 2031 #endif 2032 2033 void set_binfmt(struct linux_binfmt *new) 2034 { 2035 struct mm_struct *mm = current->mm; 2036 2037 if (mm->binfmt) 2038 module_put(mm->binfmt->module); 2039 2040 mm->binfmt = new; 2041 if (new) 2042 __module_get(new->module); 2043 } 2044 EXPORT_SYMBOL(set_binfmt); 2045 2046 /* 2047 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2048 */ 2049 void set_dumpable(struct mm_struct *mm, int value) 2050 { 2051 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2052 return; 2053 2054 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2055 } 2056 2057 SYSCALL_DEFINE3(execve, 2058 const char __user *, filename, 2059 const char __user *const __user *, argv, 2060 const char __user *const __user *, envp) 2061 { 2062 return do_execve(getname(filename), argv, envp); 2063 } 2064 2065 SYSCALL_DEFINE5(execveat, 2066 int, fd, const char __user *, filename, 2067 const char __user *const __user *, argv, 2068 const char __user *const __user *, envp, 2069 int, flags) 2070 { 2071 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2072 2073 return do_execveat(fd, 2074 getname_flags(filename, lookup_flags, NULL), 2075 argv, envp, flags); 2076 } 2077 2078 #ifdef CONFIG_COMPAT 2079 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2080 const compat_uptr_t __user *, argv, 2081 const compat_uptr_t __user *, envp) 2082 { 2083 return compat_do_execve(getname(filename), argv, envp); 2084 } 2085 2086 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2087 const char __user *, filename, 2088 const compat_uptr_t __user *, argv, 2089 const compat_uptr_t __user *, envp, 2090 int, flags) 2091 { 2092 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2093 2094 return compat_do_execveat(fd, 2095 getname_flags(filename, lookup_flags, NULL), 2096 argv, envp, flags); 2097 } 2098 #endif 2099