1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/vmacache.h> 30 #include <linux/stat.h> 31 #include <linux/fcntl.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/pagemap.h> 36 #include <linux/perf_event.h> 37 #include <linux/highmem.h> 38 #include <linux/spinlock.h> 39 #include <linux/key.h> 40 #include <linux/personality.h> 41 #include <linux/binfmts.h> 42 #include <linux/utsname.h> 43 #include <linux/pid_namespace.h> 44 #include <linux/module.h> 45 #include <linux/namei.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/tsacct_kern.h> 50 #include <linux/cn_proc.h> 51 #include <linux/audit.h> 52 #include <linux/tracehook.h> 53 #include <linux/kmod.h> 54 #include <linux/fsnotify.h> 55 #include <linux/fs_struct.h> 56 #include <linux/pipe_fs_i.h> 57 #include <linux/oom.h> 58 #include <linux/compat.h> 59 60 #include <asm/uaccess.h> 61 #include <asm/mmu_context.h> 62 #include <asm/tlb.h> 63 64 #include <trace/events/task.h> 65 #include "internal.h" 66 67 #include <trace/events/sched.h> 68 69 int suid_dumpable = 0; 70 71 static LIST_HEAD(formats); 72 static DEFINE_RWLOCK(binfmt_lock); 73 74 void __register_binfmt(struct linux_binfmt * fmt, int insert) 75 { 76 BUG_ON(!fmt); 77 if (WARN_ON(!fmt->load_binary)) 78 return; 79 write_lock(&binfmt_lock); 80 insert ? list_add(&fmt->lh, &formats) : 81 list_add_tail(&fmt->lh, &formats); 82 write_unlock(&binfmt_lock); 83 } 84 85 EXPORT_SYMBOL(__register_binfmt); 86 87 void unregister_binfmt(struct linux_binfmt * fmt) 88 { 89 write_lock(&binfmt_lock); 90 list_del(&fmt->lh); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(unregister_binfmt); 95 96 static inline void put_binfmt(struct linux_binfmt * fmt) 97 { 98 module_put(fmt->module); 99 } 100 101 #ifdef CONFIG_USELIB 102 /* 103 * Note that a shared library must be both readable and executable due to 104 * security reasons. 105 * 106 * Also note that we take the address to load from from the file itself. 107 */ 108 SYSCALL_DEFINE1(uselib, const char __user *, library) 109 { 110 struct linux_binfmt *fmt; 111 struct file *file; 112 struct filename *tmp = getname(library); 113 int error = PTR_ERR(tmp); 114 static const struct open_flags uselib_flags = { 115 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 116 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN, 117 .intent = LOOKUP_OPEN, 118 .lookup_flags = LOOKUP_FOLLOW, 119 }; 120 121 if (IS_ERR(tmp)) 122 goto out; 123 124 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 125 putname(tmp); 126 error = PTR_ERR(file); 127 if (IS_ERR(file)) 128 goto out; 129 130 error = -EINVAL; 131 if (!S_ISREG(file_inode(file)->i_mode)) 132 goto exit; 133 134 error = -EACCES; 135 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 136 goto exit; 137 138 fsnotify_open(file); 139 140 error = -ENOEXEC; 141 142 read_lock(&binfmt_lock); 143 list_for_each_entry(fmt, &formats, lh) { 144 if (!fmt->load_shlib) 145 continue; 146 if (!try_module_get(fmt->module)) 147 continue; 148 read_unlock(&binfmt_lock); 149 error = fmt->load_shlib(file); 150 read_lock(&binfmt_lock); 151 put_binfmt(fmt); 152 if (error != -ENOEXEC) 153 break; 154 } 155 read_unlock(&binfmt_lock); 156 exit: 157 fput(file); 158 out: 159 return error; 160 } 161 #endif /* #ifdef CONFIG_USELIB */ 162 163 #ifdef CONFIG_MMU 164 /* 165 * The nascent bprm->mm is not visible until exec_mmap() but it can 166 * use a lot of memory, account these pages in current->mm temporary 167 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 168 * change the counter back via acct_arg_size(0). 169 */ 170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 171 { 172 struct mm_struct *mm = current->mm; 173 long diff = (long)(pages - bprm->vma_pages); 174 175 if (!mm || !diff) 176 return; 177 178 bprm->vma_pages = pages; 179 add_mm_counter(mm, MM_ANONPAGES, diff); 180 } 181 182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 183 int write) 184 { 185 struct page *page; 186 int ret; 187 188 #ifdef CONFIG_STACK_GROWSUP 189 if (write) { 190 ret = expand_downwards(bprm->vma, pos); 191 if (ret < 0) 192 return NULL; 193 } 194 #endif 195 ret = get_user_pages(current, bprm->mm, pos, 196 1, write, 1, &page, NULL); 197 if (ret <= 0) 198 return NULL; 199 200 if (write) { 201 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 202 struct rlimit *rlim; 203 204 acct_arg_size(bprm, size / PAGE_SIZE); 205 206 /* 207 * We've historically supported up to 32 pages (ARG_MAX) 208 * of argument strings even with small stacks 209 */ 210 if (size <= ARG_MAX) 211 return page; 212 213 /* 214 * Limit to 1/4-th the stack size for the argv+env strings. 215 * This ensures that: 216 * - the remaining binfmt code will not run out of stack space, 217 * - the program will have a reasonable amount of stack left 218 * to work from. 219 */ 220 rlim = current->signal->rlim; 221 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 222 put_page(page); 223 return NULL; 224 } 225 } 226 227 return page; 228 } 229 230 static void put_arg_page(struct page *page) 231 { 232 put_page(page); 233 } 234 235 static void free_arg_page(struct linux_binprm *bprm, int i) 236 { 237 } 238 239 static void free_arg_pages(struct linux_binprm *bprm) 240 { 241 } 242 243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 244 struct page *page) 245 { 246 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 247 } 248 249 static int __bprm_mm_init(struct linux_binprm *bprm) 250 { 251 int err; 252 struct vm_area_struct *vma = NULL; 253 struct mm_struct *mm = bprm->mm; 254 255 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 256 if (!vma) 257 return -ENOMEM; 258 259 down_write(&mm->mmap_sem); 260 vma->vm_mm = mm; 261 262 /* 263 * Place the stack at the largest stack address the architecture 264 * supports. Later, we'll move this to an appropriate place. We don't 265 * use STACK_TOP because that can depend on attributes which aren't 266 * configured yet. 267 */ 268 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 269 vma->vm_end = STACK_TOP_MAX; 270 vma->vm_start = vma->vm_end - PAGE_SIZE; 271 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 272 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 273 INIT_LIST_HEAD(&vma->anon_vma_chain); 274 275 err = insert_vm_struct(mm, vma); 276 if (err) 277 goto err; 278 279 mm->stack_vm = mm->total_vm = 1; 280 arch_bprm_mm_init(mm, vma); 281 up_write(&mm->mmap_sem); 282 bprm->p = vma->vm_end - sizeof(void *); 283 return 0; 284 err: 285 up_write(&mm->mmap_sem); 286 bprm->vma = NULL; 287 kmem_cache_free(vm_area_cachep, vma); 288 return err; 289 } 290 291 static bool valid_arg_len(struct linux_binprm *bprm, long len) 292 { 293 return len <= MAX_ARG_STRLEN; 294 } 295 296 #else 297 298 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 299 { 300 } 301 302 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 303 int write) 304 { 305 struct page *page; 306 307 page = bprm->page[pos / PAGE_SIZE]; 308 if (!page && write) { 309 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 310 if (!page) 311 return NULL; 312 bprm->page[pos / PAGE_SIZE] = page; 313 } 314 315 return page; 316 } 317 318 static void put_arg_page(struct page *page) 319 { 320 } 321 322 static void free_arg_page(struct linux_binprm *bprm, int i) 323 { 324 if (bprm->page[i]) { 325 __free_page(bprm->page[i]); 326 bprm->page[i] = NULL; 327 } 328 } 329 330 static void free_arg_pages(struct linux_binprm *bprm) 331 { 332 int i; 333 334 for (i = 0; i < MAX_ARG_PAGES; i++) 335 free_arg_page(bprm, i); 336 } 337 338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 339 struct page *page) 340 { 341 } 342 343 static int __bprm_mm_init(struct linux_binprm *bprm) 344 { 345 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 346 return 0; 347 } 348 349 static bool valid_arg_len(struct linux_binprm *bprm, long len) 350 { 351 return len <= bprm->p; 352 } 353 354 #endif /* CONFIG_MMU */ 355 356 /* 357 * Create a new mm_struct and populate it with a temporary stack 358 * vm_area_struct. We don't have enough context at this point to set the stack 359 * flags, permissions, and offset, so we use temporary values. We'll update 360 * them later in setup_arg_pages(). 361 */ 362 static int bprm_mm_init(struct linux_binprm *bprm) 363 { 364 int err; 365 struct mm_struct *mm = NULL; 366 367 bprm->mm = mm = mm_alloc(); 368 err = -ENOMEM; 369 if (!mm) 370 goto err; 371 372 err = __bprm_mm_init(bprm); 373 if (err) 374 goto err; 375 376 return 0; 377 378 err: 379 if (mm) { 380 bprm->mm = NULL; 381 mmdrop(mm); 382 } 383 384 return err; 385 } 386 387 struct user_arg_ptr { 388 #ifdef CONFIG_COMPAT 389 bool is_compat; 390 #endif 391 union { 392 const char __user *const __user *native; 393 #ifdef CONFIG_COMPAT 394 const compat_uptr_t __user *compat; 395 #endif 396 } ptr; 397 }; 398 399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 400 { 401 const char __user *native; 402 403 #ifdef CONFIG_COMPAT 404 if (unlikely(argv.is_compat)) { 405 compat_uptr_t compat; 406 407 if (get_user(compat, argv.ptr.compat + nr)) 408 return ERR_PTR(-EFAULT); 409 410 return compat_ptr(compat); 411 } 412 #endif 413 414 if (get_user(native, argv.ptr.native + nr)) 415 return ERR_PTR(-EFAULT); 416 417 return native; 418 } 419 420 /* 421 * count() counts the number of strings in array ARGV. 422 */ 423 static int count(struct user_arg_ptr argv, int max) 424 { 425 int i = 0; 426 427 if (argv.ptr.native != NULL) { 428 for (;;) { 429 const char __user *p = get_user_arg_ptr(argv, i); 430 431 if (!p) 432 break; 433 434 if (IS_ERR(p)) 435 return -EFAULT; 436 437 if (i >= max) 438 return -E2BIG; 439 ++i; 440 441 if (fatal_signal_pending(current)) 442 return -ERESTARTNOHAND; 443 cond_resched(); 444 } 445 } 446 return i; 447 } 448 449 /* 450 * 'copy_strings()' copies argument/environment strings from the old 451 * processes's memory to the new process's stack. The call to get_user_pages() 452 * ensures the destination page is created and not swapped out. 453 */ 454 static int copy_strings(int argc, struct user_arg_ptr argv, 455 struct linux_binprm *bprm) 456 { 457 struct page *kmapped_page = NULL; 458 char *kaddr = NULL; 459 unsigned long kpos = 0; 460 int ret; 461 462 while (argc-- > 0) { 463 const char __user *str; 464 int len; 465 unsigned long pos; 466 467 ret = -EFAULT; 468 str = get_user_arg_ptr(argv, argc); 469 if (IS_ERR(str)) 470 goto out; 471 472 len = strnlen_user(str, MAX_ARG_STRLEN); 473 if (!len) 474 goto out; 475 476 ret = -E2BIG; 477 if (!valid_arg_len(bprm, len)) 478 goto out; 479 480 /* We're going to work our way backwords. */ 481 pos = bprm->p; 482 str += len; 483 bprm->p -= len; 484 485 while (len > 0) { 486 int offset, bytes_to_copy; 487 488 if (fatal_signal_pending(current)) { 489 ret = -ERESTARTNOHAND; 490 goto out; 491 } 492 cond_resched(); 493 494 offset = pos % PAGE_SIZE; 495 if (offset == 0) 496 offset = PAGE_SIZE; 497 498 bytes_to_copy = offset; 499 if (bytes_to_copy > len) 500 bytes_to_copy = len; 501 502 offset -= bytes_to_copy; 503 pos -= bytes_to_copy; 504 str -= bytes_to_copy; 505 len -= bytes_to_copy; 506 507 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 508 struct page *page; 509 510 page = get_arg_page(bprm, pos, 1); 511 if (!page) { 512 ret = -E2BIG; 513 goto out; 514 } 515 516 if (kmapped_page) { 517 flush_kernel_dcache_page(kmapped_page); 518 kunmap(kmapped_page); 519 put_arg_page(kmapped_page); 520 } 521 kmapped_page = page; 522 kaddr = kmap(kmapped_page); 523 kpos = pos & PAGE_MASK; 524 flush_arg_page(bprm, kpos, kmapped_page); 525 } 526 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 527 ret = -EFAULT; 528 goto out; 529 } 530 } 531 } 532 ret = 0; 533 out: 534 if (kmapped_page) { 535 flush_kernel_dcache_page(kmapped_page); 536 kunmap(kmapped_page); 537 put_arg_page(kmapped_page); 538 } 539 return ret; 540 } 541 542 /* 543 * Like copy_strings, but get argv and its values from kernel memory. 544 */ 545 int copy_strings_kernel(int argc, const char *const *__argv, 546 struct linux_binprm *bprm) 547 { 548 int r; 549 mm_segment_t oldfs = get_fs(); 550 struct user_arg_ptr argv = { 551 .ptr.native = (const char __user *const __user *)__argv, 552 }; 553 554 set_fs(KERNEL_DS); 555 r = copy_strings(argc, argv, bprm); 556 set_fs(oldfs); 557 558 return r; 559 } 560 EXPORT_SYMBOL(copy_strings_kernel); 561 562 #ifdef CONFIG_MMU 563 564 /* 565 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 566 * the binfmt code determines where the new stack should reside, we shift it to 567 * its final location. The process proceeds as follows: 568 * 569 * 1) Use shift to calculate the new vma endpoints. 570 * 2) Extend vma to cover both the old and new ranges. This ensures the 571 * arguments passed to subsequent functions are consistent. 572 * 3) Move vma's page tables to the new range. 573 * 4) Free up any cleared pgd range. 574 * 5) Shrink the vma to cover only the new range. 575 */ 576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 577 { 578 struct mm_struct *mm = vma->vm_mm; 579 unsigned long old_start = vma->vm_start; 580 unsigned long old_end = vma->vm_end; 581 unsigned long length = old_end - old_start; 582 unsigned long new_start = old_start - shift; 583 unsigned long new_end = old_end - shift; 584 struct mmu_gather tlb; 585 586 BUG_ON(new_start > new_end); 587 588 /* 589 * ensure there are no vmas between where we want to go 590 * and where we are 591 */ 592 if (vma != find_vma(mm, new_start)) 593 return -EFAULT; 594 595 /* 596 * cover the whole range: [new_start, old_end) 597 */ 598 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 599 return -ENOMEM; 600 601 /* 602 * move the page tables downwards, on failure we rely on 603 * process cleanup to remove whatever mess we made. 604 */ 605 if (length != move_page_tables(vma, old_start, 606 vma, new_start, length, false)) 607 return -ENOMEM; 608 609 lru_add_drain(); 610 tlb_gather_mmu(&tlb, mm, old_start, old_end); 611 if (new_end > old_start) { 612 /* 613 * when the old and new regions overlap clear from new_end. 614 */ 615 free_pgd_range(&tlb, new_end, old_end, new_end, 616 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 617 } else { 618 /* 619 * otherwise, clean from old_start; this is done to not touch 620 * the address space in [new_end, old_start) some architectures 621 * have constraints on va-space that make this illegal (IA64) - 622 * for the others its just a little faster. 623 */ 624 free_pgd_range(&tlb, old_start, old_end, new_end, 625 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 626 } 627 tlb_finish_mmu(&tlb, old_start, old_end); 628 629 /* 630 * Shrink the vma to just the new range. Always succeeds. 631 */ 632 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 633 634 return 0; 635 } 636 637 /* 638 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 639 * the stack is optionally relocated, and some extra space is added. 640 */ 641 int setup_arg_pages(struct linux_binprm *bprm, 642 unsigned long stack_top, 643 int executable_stack) 644 { 645 unsigned long ret; 646 unsigned long stack_shift; 647 struct mm_struct *mm = current->mm; 648 struct vm_area_struct *vma = bprm->vma; 649 struct vm_area_struct *prev = NULL; 650 unsigned long vm_flags; 651 unsigned long stack_base; 652 unsigned long stack_size; 653 unsigned long stack_expand; 654 unsigned long rlim_stack; 655 656 #ifdef CONFIG_STACK_GROWSUP 657 /* Limit stack size */ 658 stack_base = rlimit_max(RLIMIT_STACK); 659 if (stack_base > STACK_SIZE_MAX) 660 stack_base = STACK_SIZE_MAX; 661 662 /* Make sure we didn't let the argument array grow too large. */ 663 if (vma->vm_end - vma->vm_start > stack_base) 664 return -ENOMEM; 665 666 stack_base = PAGE_ALIGN(stack_top - stack_base); 667 668 stack_shift = vma->vm_start - stack_base; 669 mm->arg_start = bprm->p - stack_shift; 670 bprm->p = vma->vm_end - stack_shift; 671 #else 672 stack_top = arch_align_stack(stack_top); 673 stack_top = PAGE_ALIGN(stack_top); 674 675 if (unlikely(stack_top < mmap_min_addr) || 676 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 677 return -ENOMEM; 678 679 stack_shift = vma->vm_end - stack_top; 680 681 bprm->p -= stack_shift; 682 mm->arg_start = bprm->p; 683 #endif 684 685 if (bprm->loader) 686 bprm->loader -= stack_shift; 687 bprm->exec -= stack_shift; 688 689 down_write(&mm->mmap_sem); 690 vm_flags = VM_STACK_FLAGS; 691 692 /* 693 * Adjust stack execute permissions; explicitly enable for 694 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 695 * (arch default) otherwise. 696 */ 697 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 698 vm_flags |= VM_EXEC; 699 else if (executable_stack == EXSTACK_DISABLE_X) 700 vm_flags &= ~VM_EXEC; 701 vm_flags |= mm->def_flags; 702 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 703 704 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 705 vm_flags); 706 if (ret) 707 goto out_unlock; 708 BUG_ON(prev != vma); 709 710 /* Move stack pages down in memory. */ 711 if (stack_shift) { 712 ret = shift_arg_pages(vma, stack_shift); 713 if (ret) 714 goto out_unlock; 715 } 716 717 /* mprotect_fixup is overkill to remove the temporary stack flags */ 718 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 719 720 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 721 stack_size = vma->vm_end - vma->vm_start; 722 /* 723 * Align this down to a page boundary as expand_stack 724 * will align it up. 725 */ 726 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 727 #ifdef CONFIG_STACK_GROWSUP 728 if (stack_size + stack_expand > rlim_stack) 729 stack_base = vma->vm_start + rlim_stack; 730 else 731 stack_base = vma->vm_end + stack_expand; 732 #else 733 if (stack_size + stack_expand > rlim_stack) 734 stack_base = vma->vm_end - rlim_stack; 735 else 736 stack_base = vma->vm_start - stack_expand; 737 #endif 738 current->mm->start_stack = bprm->p; 739 ret = expand_stack(vma, stack_base); 740 if (ret) 741 ret = -EFAULT; 742 743 out_unlock: 744 up_write(&mm->mmap_sem); 745 return ret; 746 } 747 EXPORT_SYMBOL(setup_arg_pages); 748 749 #endif /* CONFIG_MMU */ 750 751 static struct file *do_open_execat(int fd, struct filename *name, int flags) 752 { 753 struct file *file; 754 int err; 755 struct open_flags open_exec_flags = { 756 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 757 .acc_mode = MAY_EXEC | MAY_OPEN, 758 .intent = LOOKUP_OPEN, 759 .lookup_flags = LOOKUP_FOLLOW, 760 }; 761 762 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 763 return ERR_PTR(-EINVAL); 764 if (flags & AT_SYMLINK_NOFOLLOW) 765 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 766 if (flags & AT_EMPTY_PATH) 767 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 768 769 file = do_filp_open(fd, name, &open_exec_flags); 770 if (IS_ERR(file)) 771 goto out; 772 773 err = -EACCES; 774 if (!S_ISREG(file_inode(file)->i_mode)) 775 goto exit; 776 777 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 778 goto exit; 779 780 err = deny_write_access(file); 781 if (err) 782 goto exit; 783 784 if (name->name[0] != '\0') 785 fsnotify_open(file); 786 787 out: 788 return file; 789 790 exit: 791 fput(file); 792 return ERR_PTR(err); 793 } 794 795 struct file *open_exec(const char *name) 796 { 797 struct filename tmp = { .name = name }; 798 return do_open_execat(AT_FDCWD, &tmp, 0); 799 } 800 EXPORT_SYMBOL(open_exec); 801 802 int kernel_read(struct file *file, loff_t offset, 803 char *addr, unsigned long count) 804 { 805 mm_segment_t old_fs; 806 loff_t pos = offset; 807 int result; 808 809 old_fs = get_fs(); 810 set_fs(get_ds()); 811 /* The cast to a user pointer is valid due to the set_fs() */ 812 result = vfs_read(file, (void __user *)addr, count, &pos); 813 set_fs(old_fs); 814 return result; 815 } 816 817 EXPORT_SYMBOL(kernel_read); 818 819 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 820 { 821 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 822 if (res > 0) 823 flush_icache_range(addr, addr + len); 824 return res; 825 } 826 EXPORT_SYMBOL(read_code); 827 828 static int exec_mmap(struct mm_struct *mm) 829 { 830 struct task_struct *tsk; 831 struct mm_struct *old_mm, *active_mm; 832 833 /* Notify parent that we're no longer interested in the old VM */ 834 tsk = current; 835 old_mm = current->mm; 836 mm_release(tsk, old_mm); 837 838 if (old_mm) { 839 sync_mm_rss(old_mm); 840 /* 841 * Make sure that if there is a core dump in progress 842 * for the old mm, we get out and die instead of going 843 * through with the exec. We must hold mmap_sem around 844 * checking core_state and changing tsk->mm. 845 */ 846 down_read(&old_mm->mmap_sem); 847 if (unlikely(old_mm->core_state)) { 848 up_read(&old_mm->mmap_sem); 849 return -EINTR; 850 } 851 } 852 task_lock(tsk); 853 active_mm = tsk->active_mm; 854 tsk->mm = mm; 855 tsk->active_mm = mm; 856 activate_mm(active_mm, mm); 857 tsk->mm->vmacache_seqnum = 0; 858 vmacache_flush(tsk); 859 task_unlock(tsk); 860 if (old_mm) { 861 up_read(&old_mm->mmap_sem); 862 BUG_ON(active_mm != old_mm); 863 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 864 mm_update_next_owner(old_mm); 865 mmput(old_mm); 866 return 0; 867 } 868 mmdrop(active_mm); 869 return 0; 870 } 871 872 /* 873 * This function makes sure the current process has its own signal table, 874 * so that flush_signal_handlers can later reset the handlers without 875 * disturbing other processes. (Other processes might share the signal 876 * table via the CLONE_SIGHAND option to clone().) 877 */ 878 static int de_thread(struct task_struct *tsk) 879 { 880 struct signal_struct *sig = tsk->signal; 881 struct sighand_struct *oldsighand = tsk->sighand; 882 spinlock_t *lock = &oldsighand->siglock; 883 884 if (thread_group_empty(tsk)) 885 goto no_thread_group; 886 887 /* 888 * Kill all other threads in the thread group. 889 */ 890 spin_lock_irq(lock); 891 if (signal_group_exit(sig)) { 892 /* 893 * Another group action in progress, just 894 * return so that the signal is processed. 895 */ 896 spin_unlock_irq(lock); 897 return -EAGAIN; 898 } 899 900 sig->group_exit_task = tsk; 901 sig->notify_count = zap_other_threads(tsk); 902 if (!thread_group_leader(tsk)) 903 sig->notify_count--; 904 905 while (sig->notify_count) { 906 __set_current_state(TASK_KILLABLE); 907 spin_unlock_irq(lock); 908 schedule(); 909 if (unlikely(__fatal_signal_pending(tsk))) 910 goto killed; 911 spin_lock_irq(lock); 912 } 913 spin_unlock_irq(lock); 914 915 /* 916 * At this point all other threads have exited, all we have to 917 * do is to wait for the thread group leader to become inactive, 918 * and to assume its PID: 919 */ 920 if (!thread_group_leader(tsk)) { 921 struct task_struct *leader = tsk->group_leader; 922 923 sig->notify_count = -1; /* for exit_notify() */ 924 for (;;) { 925 threadgroup_change_begin(tsk); 926 write_lock_irq(&tasklist_lock); 927 if (likely(leader->exit_state)) 928 break; 929 __set_current_state(TASK_KILLABLE); 930 write_unlock_irq(&tasklist_lock); 931 threadgroup_change_end(tsk); 932 schedule(); 933 if (unlikely(__fatal_signal_pending(tsk))) 934 goto killed; 935 } 936 937 /* 938 * The only record we have of the real-time age of a 939 * process, regardless of execs it's done, is start_time. 940 * All the past CPU time is accumulated in signal_struct 941 * from sister threads now dead. But in this non-leader 942 * exec, nothing survives from the original leader thread, 943 * whose birth marks the true age of this process now. 944 * When we take on its identity by switching to its PID, we 945 * also take its birthdate (always earlier than our own). 946 */ 947 tsk->start_time = leader->start_time; 948 tsk->real_start_time = leader->real_start_time; 949 950 BUG_ON(!same_thread_group(leader, tsk)); 951 BUG_ON(has_group_leader_pid(tsk)); 952 /* 953 * An exec() starts a new thread group with the 954 * TGID of the previous thread group. Rehash the 955 * two threads with a switched PID, and release 956 * the former thread group leader: 957 */ 958 959 /* Become a process group leader with the old leader's pid. 960 * The old leader becomes a thread of the this thread group. 961 * Note: The old leader also uses this pid until release_task 962 * is called. Odd but simple and correct. 963 */ 964 tsk->pid = leader->pid; 965 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 966 transfer_pid(leader, tsk, PIDTYPE_PGID); 967 transfer_pid(leader, tsk, PIDTYPE_SID); 968 969 list_replace_rcu(&leader->tasks, &tsk->tasks); 970 list_replace_init(&leader->sibling, &tsk->sibling); 971 972 tsk->group_leader = tsk; 973 leader->group_leader = tsk; 974 975 tsk->exit_signal = SIGCHLD; 976 leader->exit_signal = -1; 977 978 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 979 leader->exit_state = EXIT_DEAD; 980 981 /* 982 * We are going to release_task()->ptrace_unlink() silently, 983 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 984 * the tracer wont't block again waiting for this thread. 985 */ 986 if (unlikely(leader->ptrace)) 987 __wake_up_parent(leader, leader->parent); 988 write_unlock_irq(&tasklist_lock); 989 threadgroup_change_end(tsk); 990 991 release_task(leader); 992 } 993 994 sig->group_exit_task = NULL; 995 sig->notify_count = 0; 996 997 no_thread_group: 998 /* we have changed execution domain */ 999 tsk->exit_signal = SIGCHLD; 1000 1001 exit_itimers(sig); 1002 flush_itimer_signals(); 1003 1004 if (atomic_read(&oldsighand->count) != 1) { 1005 struct sighand_struct *newsighand; 1006 /* 1007 * This ->sighand is shared with the CLONE_SIGHAND 1008 * but not CLONE_THREAD task, switch to the new one. 1009 */ 1010 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1011 if (!newsighand) 1012 return -ENOMEM; 1013 1014 atomic_set(&newsighand->count, 1); 1015 memcpy(newsighand->action, oldsighand->action, 1016 sizeof(newsighand->action)); 1017 1018 write_lock_irq(&tasklist_lock); 1019 spin_lock(&oldsighand->siglock); 1020 rcu_assign_pointer(tsk->sighand, newsighand); 1021 spin_unlock(&oldsighand->siglock); 1022 write_unlock_irq(&tasklist_lock); 1023 1024 __cleanup_sighand(oldsighand); 1025 } 1026 1027 BUG_ON(!thread_group_leader(tsk)); 1028 return 0; 1029 1030 killed: 1031 /* protects against exit_notify() and __exit_signal() */ 1032 read_lock(&tasklist_lock); 1033 sig->group_exit_task = NULL; 1034 sig->notify_count = 0; 1035 read_unlock(&tasklist_lock); 1036 return -EAGAIN; 1037 } 1038 1039 char *get_task_comm(char *buf, struct task_struct *tsk) 1040 { 1041 /* buf must be at least sizeof(tsk->comm) in size */ 1042 task_lock(tsk); 1043 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1044 task_unlock(tsk); 1045 return buf; 1046 } 1047 EXPORT_SYMBOL_GPL(get_task_comm); 1048 1049 /* 1050 * These functions flushes out all traces of the currently running executable 1051 * so that a new one can be started 1052 */ 1053 1054 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1055 { 1056 task_lock(tsk); 1057 trace_task_rename(tsk, buf); 1058 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1059 task_unlock(tsk); 1060 perf_event_comm(tsk, exec); 1061 } 1062 1063 int flush_old_exec(struct linux_binprm * bprm) 1064 { 1065 int retval; 1066 1067 /* 1068 * Make sure we have a private signal table and that 1069 * we are unassociated from the previous thread group. 1070 */ 1071 retval = de_thread(current); 1072 if (retval) 1073 goto out; 1074 1075 set_mm_exe_file(bprm->mm, bprm->file); 1076 /* 1077 * Release all of the old mmap stuff 1078 */ 1079 acct_arg_size(bprm, 0); 1080 retval = exec_mmap(bprm->mm); 1081 if (retval) 1082 goto out; 1083 1084 bprm->mm = NULL; /* We're using it now */ 1085 1086 set_fs(USER_DS); 1087 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1088 PF_NOFREEZE | PF_NO_SETAFFINITY); 1089 flush_thread(); 1090 current->personality &= ~bprm->per_clear; 1091 1092 return 0; 1093 1094 out: 1095 return retval; 1096 } 1097 EXPORT_SYMBOL(flush_old_exec); 1098 1099 void would_dump(struct linux_binprm *bprm, struct file *file) 1100 { 1101 if (inode_permission(file_inode(file), MAY_READ) < 0) 1102 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1103 } 1104 EXPORT_SYMBOL(would_dump); 1105 1106 void setup_new_exec(struct linux_binprm * bprm) 1107 { 1108 arch_pick_mmap_layout(current->mm); 1109 1110 /* This is the point of no return */ 1111 current->sas_ss_sp = current->sas_ss_size = 0; 1112 1113 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid())) 1114 set_dumpable(current->mm, SUID_DUMP_USER); 1115 else 1116 set_dumpable(current->mm, suid_dumpable); 1117 1118 perf_event_exec(); 1119 __set_task_comm(current, kbasename(bprm->filename), true); 1120 1121 /* Set the new mm task size. We have to do that late because it may 1122 * depend on TIF_32BIT which is only updated in flush_thread() on 1123 * some architectures like powerpc 1124 */ 1125 current->mm->task_size = TASK_SIZE; 1126 1127 /* install the new credentials */ 1128 if (!uid_eq(bprm->cred->uid, current_euid()) || 1129 !gid_eq(bprm->cred->gid, current_egid())) { 1130 current->pdeath_signal = 0; 1131 } else { 1132 would_dump(bprm, bprm->file); 1133 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) 1134 set_dumpable(current->mm, suid_dumpable); 1135 } 1136 1137 /* An exec changes our domain. We are no longer part of the thread 1138 group */ 1139 current->self_exec_id++; 1140 flush_signal_handlers(current, 0); 1141 do_close_on_exec(current->files); 1142 } 1143 EXPORT_SYMBOL(setup_new_exec); 1144 1145 /* 1146 * Prepare credentials and lock ->cred_guard_mutex. 1147 * install_exec_creds() commits the new creds and drops the lock. 1148 * Or, if exec fails before, free_bprm() should release ->cred and 1149 * and unlock. 1150 */ 1151 int prepare_bprm_creds(struct linux_binprm *bprm) 1152 { 1153 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1154 return -ERESTARTNOINTR; 1155 1156 bprm->cred = prepare_exec_creds(); 1157 if (likely(bprm->cred)) 1158 return 0; 1159 1160 mutex_unlock(¤t->signal->cred_guard_mutex); 1161 return -ENOMEM; 1162 } 1163 1164 static void free_bprm(struct linux_binprm *bprm) 1165 { 1166 free_arg_pages(bprm); 1167 if (bprm->cred) { 1168 mutex_unlock(¤t->signal->cred_guard_mutex); 1169 abort_creds(bprm->cred); 1170 } 1171 if (bprm->file) { 1172 allow_write_access(bprm->file); 1173 fput(bprm->file); 1174 } 1175 /* If a binfmt changed the interp, free it. */ 1176 if (bprm->interp != bprm->filename) 1177 kfree(bprm->interp); 1178 kfree(bprm); 1179 } 1180 1181 int bprm_change_interp(char *interp, struct linux_binprm *bprm) 1182 { 1183 /* If a binfmt changed the interp, free it first. */ 1184 if (bprm->interp != bprm->filename) 1185 kfree(bprm->interp); 1186 bprm->interp = kstrdup(interp, GFP_KERNEL); 1187 if (!bprm->interp) 1188 return -ENOMEM; 1189 return 0; 1190 } 1191 EXPORT_SYMBOL(bprm_change_interp); 1192 1193 /* 1194 * install the new credentials for this executable 1195 */ 1196 void install_exec_creds(struct linux_binprm *bprm) 1197 { 1198 security_bprm_committing_creds(bprm); 1199 1200 commit_creds(bprm->cred); 1201 bprm->cred = NULL; 1202 1203 /* 1204 * Disable monitoring for regular users 1205 * when executing setuid binaries. Must 1206 * wait until new credentials are committed 1207 * by commit_creds() above 1208 */ 1209 if (get_dumpable(current->mm) != SUID_DUMP_USER) 1210 perf_event_exit_task(current); 1211 /* 1212 * cred_guard_mutex must be held at least to this point to prevent 1213 * ptrace_attach() from altering our determination of the task's 1214 * credentials; any time after this it may be unlocked. 1215 */ 1216 security_bprm_committed_creds(bprm); 1217 mutex_unlock(¤t->signal->cred_guard_mutex); 1218 } 1219 EXPORT_SYMBOL(install_exec_creds); 1220 1221 /* 1222 * determine how safe it is to execute the proposed program 1223 * - the caller must hold ->cred_guard_mutex to protect against 1224 * PTRACE_ATTACH or seccomp thread-sync 1225 */ 1226 static void check_unsafe_exec(struct linux_binprm *bprm) 1227 { 1228 struct task_struct *p = current, *t; 1229 unsigned n_fs; 1230 1231 if (p->ptrace) { 1232 if (p->ptrace & PT_PTRACE_CAP) 1233 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP; 1234 else 1235 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1236 } 1237 1238 /* 1239 * This isn't strictly necessary, but it makes it harder for LSMs to 1240 * mess up. 1241 */ 1242 if (task_no_new_privs(current)) 1243 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1244 1245 t = p; 1246 n_fs = 1; 1247 spin_lock(&p->fs->lock); 1248 rcu_read_lock(); 1249 while_each_thread(p, t) { 1250 if (t->fs == p->fs) 1251 n_fs++; 1252 } 1253 rcu_read_unlock(); 1254 1255 if (p->fs->users > n_fs) 1256 bprm->unsafe |= LSM_UNSAFE_SHARE; 1257 else 1258 p->fs->in_exec = 1; 1259 spin_unlock(&p->fs->lock); 1260 } 1261 1262 /* 1263 * Fill the binprm structure from the inode. 1264 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1265 * 1266 * This may be called multiple times for binary chains (scripts for example). 1267 */ 1268 int prepare_binprm(struct linux_binprm *bprm) 1269 { 1270 struct inode *inode = file_inode(bprm->file); 1271 umode_t mode = inode->i_mode; 1272 int retval; 1273 1274 1275 /* clear any previous set[ug]id data from a previous binary */ 1276 bprm->cred->euid = current_euid(); 1277 bprm->cred->egid = current_egid(); 1278 1279 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) && 1280 !task_no_new_privs(current) && 1281 kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) && 1282 kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) { 1283 /* Set-uid? */ 1284 if (mode & S_ISUID) { 1285 bprm->per_clear |= PER_CLEAR_ON_SETID; 1286 bprm->cred->euid = inode->i_uid; 1287 } 1288 1289 /* Set-gid? */ 1290 /* 1291 * If setgid is set but no group execute bit then this 1292 * is a candidate for mandatory locking, not a setgid 1293 * executable. 1294 */ 1295 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1296 bprm->per_clear |= PER_CLEAR_ON_SETID; 1297 bprm->cred->egid = inode->i_gid; 1298 } 1299 } 1300 1301 /* fill in binprm security blob */ 1302 retval = security_bprm_set_creds(bprm); 1303 if (retval) 1304 return retval; 1305 bprm->cred_prepared = 1; 1306 1307 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1308 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1309 } 1310 1311 EXPORT_SYMBOL(prepare_binprm); 1312 1313 /* 1314 * Arguments are '\0' separated strings found at the location bprm->p 1315 * points to; chop off the first by relocating brpm->p to right after 1316 * the first '\0' encountered. 1317 */ 1318 int remove_arg_zero(struct linux_binprm *bprm) 1319 { 1320 int ret = 0; 1321 unsigned long offset; 1322 char *kaddr; 1323 struct page *page; 1324 1325 if (!bprm->argc) 1326 return 0; 1327 1328 do { 1329 offset = bprm->p & ~PAGE_MASK; 1330 page = get_arg_page(bprm, bprm->p, 0); 1331 if (!page) { 1332 ret = -EFAULT; 1333 goto out; 1334 } 1335 kaddr = kmap_atomic(page); 1336 1337 for (; offset < PAGE_SIZE && kaddr[offset]; 1338 offset++, bprm->p++) 1339 ; 1340 1341 kunmap_atomic(kaddr); 1342 put_arg_page(page); 1343 1344 if (offset == PAGE_SIZE) 1345 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1346 } while (offset == PAGE_SIZE); 1347 1348 bprm->p++; 1349 bprm->argc--; 1350 ret = 0; 1351 1352 out: 1353 return ret; 1354 } 1355 EXPORT_SYMBOL(remove_arg_zero); 1356 1357 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1358 /* 1359 * cycle the list of binary formats handler, until one recognizes the image 1360 */ 1361 int search_binary_handler(struct linux_binprm *bprm) 1362 { 1363 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1364 struct linux_binfmt *fmt; 1365 int retval; 1366 1367 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1368 if (bprm->recursion_depth > 5) 1369 return -ELOOP; 1370 1371 retval = security_bprm_check(bprm); 1372 if (retval) 1373 return retval; 1374 1375 retval = -ENOENT; 1376 retry: 1377 read_lock(&binfmt_lock); 1378 list_for_each_entry(fmt, &formats, lh) { 1379 if (!try_module_get(fmt->module)) 1380 continue; 1381 read_unlock(&binfmt_lock); 1382 bprm->recursion_depth++; 1383 retval = fmt->load_binary(bprm); 1384 read_lock(&binfmt_lock); 1385 put_binfmt(fmt); 1386 bprm->recursion_depth--; 1387 if (retval < 0 && !bprm->mm) { 1388 /* we got to flush_old_exec() and failed after it */ 1389 read_unlock(&binfmt_lock); 1390 force_sigsegv(SIGSEGV, current); 1391 return retval; 1392 } 1393 if (retval != -ENOEXEC || !bprm->file) { 1394 read_unlock(&binfmt_lock); 1395 return retval; 1396 } 1397 } 1398 read_unlock(&binfmt_lock); 1399 1400 if (need_retry) { 1401 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1402 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1403 return retval; 1404 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1405 return retval; 1406 need_retry = false; 1407 goto retry; 1408 } 1409 1410 return retval; 1411 } 1412 EXPORT_SYMBOL(search_binary_handler); 1413 1414 static int exec_binprm(struct linux_binprm *bprm) 1415 { 1416 pid_t old_pid, old_vpid; 1417 int ret; 1418 1419 /* Need to fetch pid before load_binary changes it */ 1420 old_pid = current->pid; 1421 rcu_read_lock(); 1422 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1423 rcu_read_unlock(); 1424 1425 ret = search_binary_handler(bprm); 1426 if (ret >= 0) { 1427 audit_bprm(bprm); 1428 trace_sched_process_exec(current, old_pid, bprm); 1429 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1430 proc_exec_connector(current); 1431 } 1432 1433 return ret; 1434 } 1435 1436 /* 1437 * sys_execve() executes a new program. 1438 */ 1439 static int do_execveat_common(int fd, struct filename *filename, 1440 struct user_arg_ptr argv, 1441 struct user_arg_ptr envp, 1442 int flags) 1443 { 1444 char *pathbuf = NULL; 1445 struct linux_binprm *bprm; 1446 struct file *file; 1447 struct files_struct *displaced; 1448 int retval; 1449 1450 if (IS_ERR(filename)) 1451 return PTR_ERR(filename); 1452 1453 /* 1454 * We move the actual failure in case of RLIMIT_NPROC excess from 1455 * set*uid() to execve() because too many poorly written programs 1456 * don't check setuid() return code. Here we additionally recheck 1457 * whether NPROC limit is still exceeded. 1458 */ 1459 if ((current->flags & PF_NPROC_EXCEEDED) && 1460 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1461 retval = -EAGAIN; 1462 goto out_ret; 1463 } 1464 1465 /* We're below the limit (still or again), so we don't want to make 1466 * further execve() calls fail. */ 1467 current->flags &= ~PF_NPROC_EXCEEDED; 1468 1469 retval = unshare_files(&displaced); 1470 if (retval) 1471 goto out_ret; 1472 1473 retval = -ENOMEM; 1474 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1475 if (!bprm) 1476 goto out_files; 1477 1478 retval = prepare_bprm_creds(bprm); 1479 if (retval) 1480 goto out_free; 1481 1482 check_unsafe_exec(bprm); 1483 current->in_execve = 1; 1484 1485 file = do_open_execat(fd, filename, flags); 1486 retval = PTR_ERR(file); 1487 if (IS_ERR(file)) 1488 goto out_unmark; 1489 1490 sched_exec(); 1491 1492 bprm->file = file; 1493 if (fd == AT_FDCWD || filename->name[0] == '/') { 1494 bprm->filename = filename->name; 1495 } else { 1496 if (filename->name[0] == '\0') 1497 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd); 1498 else 1499 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s", 1500 fd, filename->name); 1501 if (!pathbuf) { 1502 retval = -ENOMEM; 1503 goto out_unmark; 1504 } 1505 /* 1506 * Record that a name derived from an O_CLOEXEC fd will be 1507 * inaccessible after exec. Relies on having exclusive access to 1508 * current->files (due to unshare_files above). 1509 */ 1510 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1511 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1512 bprm->filename = pathbuf; 1513 } 1514 bprm->interp = bprm->filename; 1515 1516 retval = bprm_mm_init(bprm); 1517 if (retval) 1518 goto out_unmark; 1519 1520 bprm->argc = count(argv, MAX_ARG_STRINGS); 1521 if ((retval = bprm->argc) < 0) 1522 goto out; 1523 1524 bprm->envc = count(envp, MAX_ARG_STRINGS); 1525 if ((retval = bprm->envc) < 0) 1526 goto out; 1527 1528 retval = prepare_binprm(bprm); 1529 if (retval < 0) 1530 goto out; 1531 1532 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1533 if (retval < 0) 1534 goto out; 1535 1536 bprm->exec = bprm->p; 1537 retval = copy_strings(bprm->envc, envp, bprm); 1538 if (retval < 0) 1539 goto out; 1540 1541 retval = copy_strings(bprm->argc, argv, bprm); 1542 if (retval < 0) 1543 goto out; 1544 1545 retval = exec_binprm(bprm); 1546 if (retval < 0) 1547 goto out; 1548 1549 /* execve succeeded */ 1550 current->fs->in_exec = 0; 1551 current->in_execve = 0; 1552 acct_update_integrals(current); 1553 task_numa_free(current); 1554 free_bprm(bprm); 1555 kfree(pathbuf); 1556 putname(filename); 1557 if (displaced) 1558 put_files_struct(displaced); 1559 return retval; 1560 1561 out: 1562 if (bprm->mm) { 1563 acct_arg_size(bprm, 0); 1564 mmput(bprm->mm); 1565 } 1566 1567 out_unmark: 1568 current->fs->in_exec = 0; 1569 current->in_execve = 0; 1570 1571 out_free: 1572 free_bprm(bprm); 1573 kfree(pathbuf); 1574 1575 out_files: 1576 if (displaced) 1577 reset_files_struct(displaced); 1578 out_ret: 1579 putname(filename); 1580 return retval; 1581 } 1582 1583 int do_execve(struct filename *filename, 1584 const char __user *const __user *__argv, 1585 const char __user *const __user *__envp) 1586 { 1587 struct user_arg_ptr argv = { .ptr.native = __argv }; 1588 struct user_arg_ptr envp = { .ptr.native = __envp }; 1589 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1590 } 1591 1592 int do_execveat(int fd, struct filename *filename, 1593 const char __user *const __user *__argv, 1594 const char __user *const __user *__envp, 1595 int flags) 1596 { 1597 struct user_arg_ptr argv = { .ptr.native = __argv }; 1598 struct user_arg_ptr envp = { .ptr.native = __envp }; 1599 1600 return do_execveat_common(fd, filename, argv, envp, flags); 1601 } 1602 1603 #ifdef CONFIG_COMPAT 1604 static int compat_do_execve(struct filename *filename, 1605 const compat_uptr_t __user *__argv, 1606 const compat_uptr_t __user *__envp) 1607 { 1608 struct user_arg_ptr argv = { 1609 .is_compat = true, 1610 .ptr.compat = __argv, 1611 }; 1612 struct user_arg_ptr envp = { 1613 .is_compat = true, 1614 .ptr.compat = __envp, 1615 }; 1616 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1617 } 1618 1619 static int compat_do_execveat(int fd, struct filename *filename, 1620 const compat_uptr_t __user *__argv, 1621 const compat_uptr_t __user *__envp, 1622 int flags) 1623 { 1624 struct user_arg_ptr argv = { 1625 .is_compat = true, 1626 .ptr.compat = __argv, 1627 }; 1628 struct user_arg_ptr envp = { 1629 .is_compat = true, 1630 .ptr.compat = __envp, 1631 }; 1632 return do_execveat_common(fd, filename, argv, envp, flags); 1633 } 1634 #endif 1635 1636 void set_binfmt(struct linux_binfmt *new) 1637 { 1638 struct mm_struct *mm = current->mm; 1639 1640 if (mm->binfmt) 1641 module_put(mm->binfmt->module); 1642 1643 mm->binfmt = new; 1644 if (new) 1645 __module_get(new->module); 1646 } 1647 EXPORT_SYMBOL(set_binfmt); 1648 1649 /* 1650 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 1651 */ 1652 void set_dumpable(struct mm_struct *mm, int value) 1653 { 1654 unsigned long old, new; 1655 1656 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 1657 return; 1658 1659 do { 1660 old = ACCESS_ONCE(mm->flags); 1661 new = (old & ~MMF_DUMPABLE_MASK) | value; 1662 } while (cmpxchg(&mm->flags, old, new) != old); 1663 } 1664 1665 SYSCALL_DEFINE3(execve, 1666 const char __user *, filename, 1667 const char __user *const __user *, argv, 1668 const char __user *const __user *, envp) 1669 { 1670 return do_execve(getname(filename), argv, envp); 1671 } 1672 1673 SYSCALL_DEFINE5(execveat, 1674 int, fd, const char __user *, filename, 1675 const char __user *const __user *, argv, 1676 const char __user *const __user *, envp, 1677 int, flags) 1678 { 1679 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1680 1681 return do_execveat(fd, 1682 getname_flags(filename, lookup_flags, NULL), 1683 argv, envp, flags); 1684 } 1685 1686 #ifdef CONFIG_COMPAT 1687 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 1688 const compat_uptr_t __user *, argv, 1689 const compat_uptr_t __user *, envp) 1690 { 1691 return compat_do_execve(getname(filename), argv, envp); 1692 } 1693 1694 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 1695 const char __user *, filename, 1696 const compat_uptr_t __user *, argv, 1697 const compat_uptr_t __user *, envp, 1698 int, flags) 1699 { 1700 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1701 1702 return compat_do_execveat(fd, 1703 getname_flags(filename, lookup_flags, NULL), 1704 argv, envp, flags); 1705 } 1706 #endif 1707