xref: /openbmc/linux/fs/exec.c (revision 867a0e05)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63 
64 #include <trace/events/task.h>
65 #include "internal.h"
66 
67 #include <trace/events/sched.h>
68 
69 int suid_dumpable = 0;
70 
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73 
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 	BUG_ON(!fmt);
77 	if (WARN_ON(!fmt->load_binary))
78 		return;
79 	write_lock(&binfmt_lock);
80 	insert ? list_add(&fmt->lh, &formats) :
81 		 list_add_tail(&fmt->lh, &formats);
82 	write_unlock(&binfmt_lock);
83 }
84 
85 EXPORT_SYMBOL(__register_binfmt);
86 
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89 	write_lock(&binfmt_lock);
90 	list_del(&fmt->lh);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(unregister_binfmt);
95 
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98 	module_put(fmt->module);
99 }
100 
101 #ifdef CONFIG_USELIB
102 /*
103  * Note that a shared library must be both readable and executable due to
104  * security reasons.
105  *
106  * Also note that we take the address to load from from the file itself.
107  */
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 {
110 	struct linux_binfmt *fmt;
111 	struct file *file;
112 	struct filename *tmp = getname(library);
113 	int error = PTR_ERR(tmp);
114 	static const struct open_flags uselib_flags = {
115 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
116 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
117 		.intent = LOOKUP_OPEN,
118 		.lookup_flags = LOOKUP_FOLLOW,
119 	};
120 
121 	if (IS_ERR(tmp))
122 		goto out;
123 
124 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
125 	putname(tmp);
126 	error = PTR_ERR(file);
127 	if (IS_ERR(file))
128 		goto out;
129 
130 	error = -EINVAL;
131 	if (!S_ISREG(file_inode(file)->i_mode))
132 		goto exit;
133 
134 	error = -EACCES;
135 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136 		goto exit;
137 
138 	fsnotify_open(file);
139 
140 	error = -ENOEXEC;
141 
142 	read_lock(&binfmt_lock);
143 	list_for_each_entry(fmt, &formats, lh) {
144 		if (!fmt->load_shlib)
145 			continue;
146 		if (!try_module_get(fmt->module))
147 			continue;
148 		read_unlock(&binfmt_lock);
149 		error = fmt->load_shlib(file);
150 		read_lock(&binfmt_lock);
151 		put_binfmt(fmt);
152 		if (error != -ENOEXEC)
153 			break;
154 	}
155 	read_unlock(&binfmt_lock);
156 exit:
157 	fput(file);
158 out:
159   	return error;
160 }
161 #endif /* #ifdef CONFIG_USELIB */
162 
163 #ifdef CONFIG_MMU
164 /*
165  * The nascent bprm->mm is not visible until exec_mmap() but it can
166  * use a lot of memory, account these pages in current->mm temporary
167  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168  * change the counter back via acct_arg_size(0).
169  */
170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
171 {
172 	struct mm_struct *mm = current->mm;
173 	long diff = (long)(pages - bprm->vma_pages);
174 
175 	if (!mm || !diff)
176 		return;
177 
178 	bprm->vma_pages = pages;
179 	add_mm_counter(mm, MM_ANONPAGES, diff);
180 }
181 
182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
183 		int write)
184 {
185 	struct page *page;
186 	int ret;
187 
188 #ifdef CONFIG_STACK_GROWSUP
189 	if (write) {
190 		ret = expand_downwards(bprm->vma, pos);
191 		if (ret < 0)
192 			return NULL;
193 	}
194 #endif
195 	ret = get_user_pages(current, bprm->mm, pos,
196 			1, write, 1, &page, NULL);
197 	if (ret <= 0)
198 		return NULL;
199 
200 	if (write) {
201 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202 		struct rlimit *rlim;
203 
204 		acct_arg_size(bprm, size / PAGE_SIZE);
205 
206 		/*
207 		 * We've historically supported up to 32 pages (ARG_MAX)
208 		 * of argument strings even with small stacks
209 		 */
210 		if (size <= ARG_MAX)
211 			return page;
212 
213 		/*
214 		 * Limit to 1/4-th the stack size for the argv+env strings.
215 		 * This ensures that:
216 		 *  - the remaining binfmt code will not run out of stack space,
217 		 *  - the program will have a reasonable amount of stack left
218 		 *    to work from.
219 		 */
220 		rlim = current->signal->rlim;
221 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
222 			put_page(page);
223 			return NULL;
224 		}
225 	}
226 
227 	return page;
228 }
229 
230 static void put_arg_page(struct page *page)
231 {
232 	put_page(page);
233 }
234 
235 static void free_arg_page(struct linux_binprm *bprm, int i)
236 {
237 }
238 
239 static void free_arg_pages(struct linux_binprm *bprm)
240 {
241 }
242 
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244 		struct page *page)
245 {
246 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 }
248 
249 static int __bprm_mm_init(struct linux_binprm *bprm)
250 {
251 	int err;
252 	struct vm_area_struct *vma = NULL;
253 	struct mm_struct *mm = bprm->mm;
254 
255 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
256 	if (!vma)
257 		return -ENOMEM;
258 
259 	down_write(&mm->mmap_sem);
260 	vma->vm_mm = mm;
261 
262 	/*
263 	 * Place the stack at the largest stack address the architecture
264 	 * supports. Later, we'll move this to an appropriate place. We don't
265 	 * use STACK_TOP because that can depend on attributes which aren't
266 	 * configured yet.
267 	 */
268 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269 	vma->vm_end = STACK_TOP_MAX;
270 	vma->vm_start = vma->vm_end - PAGE_SIZE;
271 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273 	INIT_LIST_HEAD(&vma->anon_vma_chain);
274 
275 	err = insert_vm_struct(mm, vma);
276 	if (err)
277 		goto err;
278 
279 	mm->stack_vm = mm->total_vm = 1;
280 	arch_bprm_mm_init(mm, vma);
281 	up_write(&mm->mmap_sem);
282 	bprm->p = vma->vm_end - sizeof(void *);
283 	return 0;
284 err:
285 	up_write(&mm->mmap_sem);
286 	bprm->vma = NULL;
287 	kmem_cache_free(vm_area_cachep, vma);
288 	return err;
289 }
290 
291 static bool valid_arg_len(struct linux_binprm *bprm, long len)
292 {
293 	return len <= MAX_ARG_STRLEN;
294 }
295 
296 #else
297 
298 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
299 {
300 }
301 
302 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
303 		int write)
304 {
305 	struct page *page;
306 
307 	page = bprm->page[pos / PAGE_SIZE];
308 	if (!page && write) {
309 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
310 		if (!page)
311 			return NULL;
312 		bprm->page[pos / PAGE_SIZE] = page;
313 	}
314 
315 	return page;
316 }
317 
318 static void put_arg_page(struct page *page)
319 {
320 }
321 
322 static void free_arg_page(struct linux_binprm *bprm, int i)
323 {
324 	if (bprm->page[i]) {
325 		__free_page(bprm->page[i]);
326 		bprm->page[i] = NULL;
327 	}
328 }
329 
330 static void free_arg_pages(struct linux_binprm *bprm)
331 {
332 	int i;
333 
334 	for (i = 0; i < MAX_ARG_PAGES; i++)
335 		free_arg_page(bprm, i);
336 }
337 
338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
339 		struct page *page)
340 {
341 }
342 
343 static int __bprm_mm_init(struct linux_binprm *bprm)
344 {
345 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
346 	return 0;
347 }
348 
349 static bool valid_arg_len(struct linux_binprm *bprm, long len)
350 {
351 	return len <= bprm->p;
352 }
353 
354 #endif /* CONFIG_MMU */
355 
356 /*
357  * Create a new mm_struct and populate it with a temporary stack
358  * vm_area_struct.  We don't have enough context at this point to set the stack
359  * flags, permissions, and offset, so we use temporary values.  We'll update
360  * them later in setup_arg_pages().
361  */
362 static int bprm_mm_init(struct linux_binprm *bprm)
363 {
364 	int err;
365 	struct mm_struct *mm = NULL;
366 
367 	bprm->mm = mm = mm_alloc();
368 	err = -ENOMEM;
369 	if (!mm)
370 		goto err;
371 
372 	err = __bprm_mm_init(bprm);
373 	if (err)
374 		goto err;
375 
376 	return 0;
377 
378 err:
379 	if (mm) {
380 		bprm->mm = NULL;
381 		mmdrop(mm);
382 	}
383 
384 	return err;
385 }
386 
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389 	bool is_compat;
390 #endif
391 	union {
392 		const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394 		const compat_uptr_t __user *compat;
395 #endif
396 	} ptr;
397 };
398 
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 {
401 	const char __user *native;
402 
403 #ifdef CONFIG_COMPAT
404 	if (unlikely(argv.is_compat)) {
405 		compat_uptr_t compat;
406 
407 		if (get_user(compat, argv.ptr.compat + nr))
408 			return ERR_PTR(-EFAULT);
409 
410 		return compat_ptr(compat);
411 	}
412 #endif
413 
414 	if (get_user(native, argv.ptr.native + nr))
415 		return ERR_PTR(-EFAULT);
416 
417 	return native;
418 }
419 
420 /*
421  * count() counts the number of strings in array ARGV.
422  */
423 static int count(struct user_arg_ptr argv, int max)
424 {
425 	int i = 0;
426 
427 	if (argv.ptr.native != NULL) {
428 		for (;;) {
429 			const char __user *p = get_user_arg_ptr(argv, i);
430 
431 			if (!p)
432 				break;
433 
434 			if (IS_ERR(p))
435 				return -EFAULT;
436 
437 			if (i >= max)
438 				return -E2BIG;
439 			++i;
440 
441 			if (fatal_signal_pending(current))
442 				return -ERESTARTNOHAND;
443 			cond_resched();
444 		}
445 	}
446 	return i;
447 }
448 
449 /*
450  * 'copy_strings()' copies argument/environment strings from the old
451  * processes's memory to the new process's stack.  The call to get_user_pages()
452  * ensures the destination page is created and not swapped out.
453  */
454 static int copy_strings(int argc, struct user_arg_ptr argv,
455 			struct linux_binprm *bprm)
456 {
457 	struct page *kmapped_page = NULL;
458 	char *kaddr = NULL;
459 	unsigned long kpos = 0;
460 	int ret;
461 
462 	while (argc-- > 0) {
463 		const char __user *str;
464 		int len;
465 		unsigned long pos;
466 
467 		ret = -EFAULT;
468 		str = get_user_arg_ptr(argv, argc);
469 		if (IS_ERR(str))
470 			goto out;
471 
472 		len = strnlen_user(str, MAX_ARG_STRLEN);
473 		if (!len)
474 			goto out;
475 
476 		ret = -E2BIG;
477 		if (!valid_arg_len(bprm, len))
478 			goto out;
479 
480 		/* We're going to work our way backwords. */
481 		pos = bprm->p;
482 		str += len;
483 		bprm->p -= len;
484 
485 		while (len > 0) {
486 			int offset, bytes_to_copy;
487 
488 			if (fatal_signal_pending(current)) {
489 				ret = -ERESTARTNOHAND;
490 				goto out;
491 			}
492 			cond_resched();
493 
494 			offset = pos % PAGE_SIZE;
495 			if (offset == 0)
496 				offset = PAGE_SIZE;
497 
498 			bytes_to_copy = offset;
499 			if (bytes_to_copy > len)
500 				bytes_to_copy = len;
501 
502 			offset -= bytes_to_copy;
503 			pos -= bytes_to_copy;
504 			str -= bytes_to_copy;
505 			len -= bytes_to_copy;
506 
507 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
508 				struct page *page;
509 
510 				page = get_arg_page(bprm, pos, 1);
511 				if (!page) {
512 					ret = -E2BIG;
513 					goto out;
514 				}
515 
516 				if (kmapped_page) {
517 					flush_kernel_dcache_page(kmapped_page);
518 					kunmap(kmapped_page);
519 					put_arg_page(kmapped_page);
520 				}
521 				kmapped_page = page;
522 				kaddr = kmap(kmapped_page);
523 				kpos = pos & PAGE_MASK;
524 				flush_arg_page(bprm, kpos, kmapped_page);
525 			}
526 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
527 				ret = -EFAULT;
528 				goto out;
529 			}
530 		}
531 	}
532 	ret = 0;
533 out:
534 	if (kmapped_page) {
535 		flush_kernel_dcache_page(kmapped_page);
536 		kunmap(kmapped_page);
537 		put_arg_page(kmapped_page);
538 	}
539 	return ret;
540 }
541 
542 /*
543  * Like copy_strings, but get argv and its values from kernel memory.
544  */
545 int copy_strings_kernel(int argc, const char *const *__argv,
546 			struct linux_binprm *bprm)
547 {
548 	int r;
549 	mm_segment_t oldfs = get_fs();
550 	struct user_arg_ptr argv = {
551 		.ptr.native = (const char __user *const  __user *)__argv,
552 	};
553 
554 	set_fs(KERNEL_DS);
555 	r = copy_strings(argc, argv, bprm);
556 	set_fs(oldfs);
557 
558 	return r;
559 }
560 EXPORT_SYMBOL(copy_strings_kernel);
561 
562 #ifdef CONFIG_MMU
563 
564 /*
565  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
566  * the binfmt code determines where the new stack should reside, we shift it to
567  * its final location.  The process proceeds as follows:
568  *
569  * 1) Use shift to calculate the new vma endpoints.
570  * 2) Extend vma to cover both the old and new ranges.  This ensures the
571  *    arguments passed to subsequent functions are consistent.
572  * 3) Move vma's page tables to the new range.
573  * 4) Free up any cleared pgd range.
574  * 5) Shrink the vma to cover only the new range.
575  */
576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
577 {
578 	struct mm_struct *mm = vma->vm_mm;
579 	unsigned long old_start = vma->vm_start;
580 	unsigned long old_end = vma->vm_end;
581 	unsigned long length = old_end - old_start;
582 	unsigned long new_start = old_start - shift;
583 	unsigned long new_end = old_end - shift;
584 	struct mmu_gather tlb;
585 
586 	BUG_ON(new_start > new_end);
587 
588 	/*
589 	 * ensure there are no vmas between where we want to go
590 	 * and where we are
591 	 */
592 	if (vma != find_vma(mm, new_start))
593 		return -EFAULT;
594 
595 	/*
596 	 * cover the whole range: [new_start, old_end)
597 	 */
598 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
599 		return -ENOMEM;
600 
601 	/*
602 	 * move the page tables downwards, on failure we rely on
603 	 * process cleanup to remove whatever mess we made.
604 	 */
605 	if (length != move_page_tables(vma, old_start,
606 				       vma, new_start, length, false))
607 		return -ENOMEM;
608 
609 	lru_add_drain();
610 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
611 	if (new_end > old_start) {
612 		/*
613 		 * when the old and new regions overlap clear from new_end.
614 		 */
615 		free_pgd_range(&tlb, new_end, old_end, new_end,
616 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
617 	} else {
618 		/*
619 		 * otherwise, clean from old_start; this is done to not touch
620 		 * the address space in [new_end, old_start) some architectures
621 		 * have constraints on va-space that make this illegal (IA64) -
622 		 * for the others its just a little faster.
623 		 */
624 		free_pgd_range(&tlb, old_start, old_end, new_end,
625 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
626 	}
627 	tlb_finish_mmu(&tlb, old_start, old_end);
628 
629 	/*
630 	 * Shrink the vma to just the new range.  Always succeeds.
631 	 */
632 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
633 
634 	return 0;
635 }
636 
637 /*
638  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
639  * the stack is optionally relocated, and some extra space is added.
640  */
641 int setup_arg_pages(struct linux_binprm *bprm,
642 		    unsigned long stack_top,
643 		    int executable_stack)
644 {
645 	unsigned long ret;
646 	unsigned long stack_shift;
647 	struct mm_struct *mm = current->mm;
648 	struct vm_area_struct *vma = bprm->vma;
649 	struct vm_area_struct *prev = NULL;
650 	unsigned long vm_flags;
651 	unsigned long stack_base;
652 	unsigned long stack_size;
653 	unsigned long stack_expand;
654 	unsigned long rlim_stack;
655 
656 #ifdef CONFIG_STACK_GROWSUP
657 	/* Limit stack size */
658 	stack_base = rlimit_max(RLIMIT_STACK);
659 	if (stack_base > STACK_SIZE_MAX)
660 		stack_base = STACK_SIZE_MAX;
661 
662 	/* Make sure we didn't let the argument array grow too large. */
663 	if (vma->vm_end - vma->vm_start > stack_base)
664 		return -ENOMEM;
665 
666 	stack_base = PAGE_ALIGN(stack_top - stack_base);
667 
668 	stack_shift = vma->vm_start - stack_base;
669 	mm->arg_start = bprm->p - stack_shift;
670 	bprm->p = vma->vm_end - stack_shift;
671 #else
672 	stack_top = arch_align_stack(stack_top);
673 	stack_top = PAGE_ALIGN(stack_top);
674 
675 	if (unlikely(stack_top < mmap_min_addr) ||
676 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
677 		return -ENOMEM;
678 
679 	stack_shift = vma->vm_end - stack_top;
680 
681 	bprm->p -= stack_shift;
682 	mm->arg_start = bprm->p;
683 #endif
684 
685 	if (bprm->loader)
686 		bprm->loader -= stack_shift;
687 	bprm->exec -= stack_shift;
688 
689 	down_write(&mm->mmap_sem);
690 	vm_flags = VM_STACK_FLAGS;
691 
692 	/*
693 	 * Adjust stack execute permissions; explicitly enable for
694 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
695 	 * (arch default) otherwise.
696 	 */
697 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
698 		vm_flags |= VM_EXEC;
699 	else if (executable_stack == EXSTACK_DISABLE_X)
700 		vm_flags &= ~VM_EXEC;
701 	vm_flags |= mm->def_flags;
702 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
703 
704 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
705 			vm_flags);
706 	if (ret)
707 		goto out_unlock;
708 	BUG_ON(prev != vma);
709 
710 	/* Move stack pages down in memory. */
711 	if (stack_shift) {
712 		ret = shift_arg_pages(vma, stack_shift);
713 		if (ret)
714 			goto out_unlock;
715 	}
716 
717 	/* mprotect_fixup is overkill to remove the temporary stack flags */
718 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
719 
720 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
721 	stack_size = vma->vm_end - vma->vm_start;
722 	/*
723 	 * Align this down to a page boundary as expand_stack
724 	 * will align it up.
725 	 */
726 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
727 #ifdef CONFIG_STACK_GROWSUP
728 	if (stack_size + stack_expand > rlim_stack)
729 		stack_base = vma->vm_start + rlim_stack;
730 	else
731 		stack_base = vma->vm_end + stack_expand;
732 #else
733 	if (stack_size + stack_expand > rlim_stack)
734 		stack_base = vma->vm_end - rlim_stack;
735 	else
736 		stack_base = vma->vm_start - stack_expand;
737 #endif
738 	current->mm->start_stack = bprm->p;
739 	ret = expand_stack(vma, stack_base);
740 	if (ret)
741 		ret = -EFAULT;
742 
743 out_unlock:
744 	up_write(&mm->mmap_sem);
745 	return ret;
746 }
747 EXPORT_SYMBOL(setup_arg_pages);
748 
749 #endif /* CONFIG_MMU */
750 
751 static struct file *do_open_execat(int fd, struct filename *name, int flags)
752 {
753 	struct file *file;
754 	int err;
755 	struct open_flags open_exec_flags = {
756 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
757 		.acc_mode = MAY_EXEC | MAY_OPEN,
758 		.intent = LOOKUP_OPEN,
759 		.lookup_flags = LOOKUP_FOLLOW,
760 	};
761 
762 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
763 		return ERR_PTR(-EINVAL);
764 	if (flags & AT_SYMLINK_NOFOLLOW)
765 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
766 	if (flags & AT_EMPTY_PATH)
767 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
768 
769 	file = do_filp_open(fd, name, &open_exec_flags);
770 	if (IS_ERR(file))
771 		goto out;
772 
773 	err = -EACCES;
774 	if (!S_ISREG(file_inode(file)->i_mode))
775 		goto exit;
776 
777 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
778 		goto exit;
779 
780 	err = deny_write_access(file);
781 	if (err)
782 		goto exit;
783 
784 	if (name->name[0] != '\0')
785 		fsnotify_open(file);
786 
787 out:
788 	return file;
789 
790 exit:
791 	fput(file);
792 	return ERR_PTR(err);
793 }
794 
795 struct file *open_exec(const char *name)
796 {
797 	struct filename tmp = { .name = name };
798 	return do_open_execat(AT_FDCWD, &tmp, 0);
799 }
800 EXPORT_SYMBOL(open_exec);
801 
802 int kernel_read(struct file *file, loff_t offset,
803 		char *addr, unsigned long count)
804 {
805 	mm_segment_t old_fs;
806 	loff_t pos = offset;
807 	int result;
808 
809 	old_fs = get_fs();
810 	set_fs(get_ds());
811 	/* The cast to a user pointer is valid due to the set_fs() */
812 	result = vfs_read(file, (void __user *)addr, count, &pos);
813 	set_fs(old_fs);
814 	return result;
815 }
816 
817 EXPORT_SYMBOL(kernel_read);
818 
819 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
820 {
821 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
822 	if (res > 0)
823 		flush_icache_range(addr, addr + len);
824 	return res;
825 }
826 EXPORT_SYMBOL(read_code);
827 
828 static int exec_mmap(struct mm_struct *mm)
829 {
830 	struct task_struct *tsk;
831 	struct mm_struct *old_mm, *active_mm;
832 
833 	/* Notify parent that we're no longer interested in the old VM */
834 	tsk = current;
835 	old_mm = current->mm;
836 	mm_release(tsk, old_mm);
837 
838 	if (old_mm) {
839 		sync_mm_rss(old_mm);
840 		/*
841 		 * Make sure that if there is a core dump in progress
842 		 * for the old mm, we get out and die instead of going
843 		 * through with the exec.  We must hold mmap_sem around
844 		 * checking core_state and changing tsk->mm.
845 		 */
846 		down_read(&old_mm->mmap_sem);
847 		if (unlikely(old_mm->core_state)) {
848 			up_read(&old_mm->mmap_sem);
849 			return -EINTR;
850 		}
851 	}
852 	task_lock(tsk);
853 	active_mm = tsk->active_mm;
854 	tsk->mm = mm;
855 	tsk->active_mm = mm;
856 	activate_mm(active_mm, mm);
857 	tsk->mm->vmacache_seqnum = 0;
858 	vmacache_flush(tsk);
859 	task_unlock(tsk);
860 	if (old_mm) {
861 		up_read(&old_mm->mmap_sem);
862 		BUG_ON(active_mm != old_mm);
863 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
864 		mm_update_next_owner(old_mm);
865 		mmput(old_mm);
866 		return 0;
867 	}
868 	mmdrop(active_mm);
869 	return 0;
870 }
871 
872 /*
873  * This function makes sure the current process has its own signal table,
874  * so that flush_signal_handlers can later reset the handlers without
875  * disturbing other processes.  (Other processes might share the signal
876  * table via the CLONE_SIGHAND option to clone().)
877  */
878 static int de_thread(struct task_struct *tsk)
879 {
880 	struct signal_struct *sig = tsk->signal;
881 	struct sighand_struct *oldsighand = tsk->sighand;
882 	spinlock_t *lock = &oldsighand->siglock;
883 
884 	if (thread_group_empty(tsk))
885 		goto no_thread_group;
886 
887 	/*
888 	 * Kill all other threads in the thread group.
889 	 */
890 	spin_lock_irq(lock);
891 	if (signal_group_exit(sig)) {
892 		/*
893 		 * Another group action in progress, just
894 		 * return so that the signal is processed.
895 		 */
896 		spin_unlock_irq(lock);
897 		return -EAGAIN;
898 	}
899 
900 	sig->group_exit_task = tsk;
901 	sig->notify_count = zap_other_threads(tsk);
902 	if (!thread_group_leader(tsk))
903 		sig->notify_count--;
904 
905 	while (sig->notify_count) {
906 		__set_current_state(TASK_KILLABLE);
907 		spin_unlock_irq(lock);
908 		schedule();
909 		if (unlikely(__fatal_signal_pending(tsk)))
910 			goto killed;
911 		spin_lock_irq(lock);
912 	}
913 	spin_unlock_irq(lock);
914 
915 	/*
916 	 * At this point all other threads have exited, all we have to
917 	 * do is to wait for the thread group leader to become inactive,
918 	 * and to assume its PID:
919 	 */
920 	if (!thread_group_leader(tsk)) {
921 		struct task_struct *leader = tsk->group_leader;
922 
923 		sig->notify_count = -1;	/* for exit_notify() */
924 		for (;;) {
925 			threadgroup_change_begin(tsk);
926 			write_lock_irq(&tasklist_lock);
927 			if (likely(leader->exit_state))
928 				break;
929 			__set_current_state(TASK_KILLABLE);
930 			write_unlock_irq(&tasklist_lock);
931 			threadgroup_change_end(tsk);
932 			schedule();
933 			if (unlikely(__fatal_signal_pending(tsk)))
934 				goto killed;
935 		}
936 
937 		/*
938 		 * The only record we have of the real-time age of a
939 		 * process, regardless of execs it's done, is start_time.
940 		 * All the past CPU time is accumulated in signal_struct
941 		 * from sister threads now dead.  But in this non-leader
942 		 * exec, nothing survives from the original leader thread,
943 		 * whose birth marks the true age of this process now.
944 		 * When we take on its identity by switching to its PID, we
945 		 * also take its birthdate (always earlier than our own).
946 		 */
947 		tsk->start_time = leader->start_time;
948 		tsk->real_start_time = leader->real_start_time;
949 
950 		BUG_ON(!same_thread_group(leader, tsk));
951 		BUG_ON(has_group_leader_pid(tsk));
952 		/*
953 		 * An exec() starts a new thread group with the
954 		 * TGID of the previous thread group. Rehash the
955 		 * two threads with a switched PID, and release
956 		 * the former thread group leader:
957 		 */
958 
959 		/* Become a process group leader with the old leader's pid.
960 		 * The old leader becomes a thread of the this thread group.
961 		 * Note: The old leader also uses this pid until release_task
962 		 *       is called.  Odd but simple and correct.
963 		 */
964 		tsk->pid = leader->pid;
965 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
966 		transfer_pid(leader, tsk, PIDTYPE_PGID);
967 		transfer_pid(leader, tsk, PIDTYPE_SID);
968 
969 		list_replace_rcu(&leader->tasks, &tsk->tasks);
970 		list_replace_init(&leader->sibling, &tsk->sibling);
971 
972 		tsk->group_leader = tsk;
973 		leader->group_leader = tsk;
974 
975 		tsk->exit_signal = SIGCHLD;
976 		leader->exit_signal = -1;
977 
978 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
979 		leader->exit_state = EXIT_DEAD;
980 
981 		/*
982 		 * We are going to release_task()->ptrace_unlink() silently,
983 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
984 		 * the tracer wont't block again waiting for this thread.
985 		 */
986 		if (unlikely(leader->ptrace))
987 			__wake_up_parent(leader, leader->parent);
988 		write_unlock_irq(&tasklist_lock);
989 		threadgroup_change_end(tsk);
990 
991 		release_task(leader);
992 	}
993 
994 	sig->group_exit_task = NULL;
995 	sig->notify_count = 0;
996 
997 no_thread_group:
998 	/* we have changed execution domain */
999 	tsk->exit_signal = SIGCHLD;
1000 
1001 	exit_itimers(sig);
1002 	flush_itimer_signals();
1003 
1004 	if (atomic_read(&oldsighand->count) != 1) {
1005 		struct sighand_struct *newsighand;
1006 		/*
1007 		 * This ->sighand is shared with the CLONE_SIGHAND
1008 		 * but not CLONE_THREAD task, switch to the new one.
1009 		 */
1010 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1011 		if (!newsighand)
1012 			return -ENOMEM;
1013 
1014 		atomic_set(&newsighand->count, 1);
1015 		memcpy(newsighand->action, oldsighand->action,
1016 		       sizeof(newsighand->action));
1017 
1018 		write_lock_irq(&tasklist_lock);
1019 		spin_lock(&oldsighand->siglock);
1020 		rcu_assign_pointer(tsk->sighand, newsighand);
1021 		spin_unlock(&oldsighand->siglock);
1022 		write_unlock_irq(&tasklist_lock);
1023 
1024 		__cleanup_sighand(oldsighand);
1025 	}
1026 
1027 	BUG_ON(!thread_group_leader(tsk));
1028 	return 0;
1029 
1030 killed:
1031 	/* protects against exit_notify() and __exit_signal() */
1032 	read_lock(&tasklist_lock);
1033 	sig->group_exit_task = NULL;
1034 	sig->notify_count = 0;
1035 	read_unlock(&tasklist_lock);
1036 	return -EAGAIN;
1037 }
1038 
1039 char *get_task_comm(char *buf, struct task_struct *tsk)
1040 {
1041 	/* buf must be at least sizeof(tsk->comm) in size */
1042 	task_lock(tsk);
1043 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1044 	task_unlock(tsk);
1045 	return buf;
1046 }
1047 EXPORT_SYMBOL_GPL(get_task_comm);
1048 
1049 /*
1050  * These functions flushes out all traces of the currently running executable
1051  * so that a new one can be started
1052  */
1053 
1054 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1055 {
1056 	task_lock(tsk);
1057 	trace_task_rename(tsk, buf);
1058 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1059 	task_unlock(tsk);
1060 	perf_event_comm(tsk, exec);
1061 }
1062 
1063 int flush_old_exec(struct linux_binprm * bprm)
1064 {
1065 	int retval;
1066 
1067 	/*
1068 	 * Make sure we have a private signal table and that
1069 	 * we are unassociated from the previous thread group.
1070 	 */
1071 	retval = de_thread(current);
1072 	if (retval)
1073 		goto out;
1074 
1075 	set_mm_exe_file(bprm->mm, bprm->file);
1076 	/*
1077 	 * Release all of the old mmap stuff
1078 	 */
1079 	acct_arg_size(bprm, 0);
1080 	retval = exec_mmap(bprm->mm);
1081 	if (retval)
1082 		goto out;
1083 
1084 	bprm->mm = NULL;		/* We're using it now */
1085 
1086 	set_fs(USER_DS);
1087 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1088 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1089 	flush_thread();
1090 	current->personality &= ~bprm->per_clear;
1091 
1092 	return 0;
1093 
1094 out:
1095 	return retval;
1096 }
1097 EXPORT_SYMBOL(flush_old_exec);
1098 
1099 void would_dump(struct linux_binprm *bprm, struct file *file)
1100 {
1101 	if (inode_permission(file_inode(file), MAY_READ) < 0)
1102 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1103 }
1104 EXPORT_SYMBOL(would_dump);
1105 
1106 void setup_new_exec(struct linux_binprm * bprm)
1107 {
1108 	arch_pick_mmap_layout(current->mm);
1109 
1110 	/* This is the point of no return */
1111 	current->sas_ss_sp = current->sas_ss_size = 0;
1112 
1113 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1114 		set_dumpable(current->mm, SUID_DUMP_USER);
1115 	else
1116 		set_dumpable(current->mm, suid_dumpable);
1117 
1118 	perf_event_exec();
1119 	__set_task_comm(current, kbasename(bprm->filename), true);
1120 
1121 	/* Set the new mm task size. We have to do that late because it may
1122 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1123 	 * some architectures like powerpc
1124 	 */
1125 	current->mm->task_size = TASK_SIZE;
1126 
1127 	/* install the new credentials */
1128 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1129 	    !gid_eq(bprm->cred->gid, current_egid())) {
1130 		current->pdeath_signal = 0;
1131 	} else {
1132 		would_dump(bprm, bprm->file);
1133 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1134 			set_dumpable(current->mm, suid_dumpable);
1135 	}
1136 
1137 	/* An exec changes our domain. We are no longer part of the thread
1138 	   group */
1139 	current->self_exec_id++;
1140 	flush_signal_handlers(current, 0);
1141 	do_close_on_exec(current->files);
1142 }
1143 EXPORT_SYMBOL(setup_new_exec);
1144 
1145 /*
1146  * Prepare credentials and lock ->cred_guard_mutex.
1147  * install_exec_creds() commits the new creds and drops the lock.
1148  * Or, if exec fails before, free_bprm() should release ->cred and
1149  * and unlock.
1150  */
1151 int prepare_bprm_creds(struct linux_binprm *bprm)
1152 {
1153 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1154 		return -ERESTARTNOINTR;
1155 
1156 	bprm->cred = prepare_exec_creds();
1157 	if (likely(bprm->cred))
1158 		return 0;
1159 
1160 	mutex_unlock(&current->signal->cred_guard_mutex);
1161 	return -ENOMEM;
1162 }
1163 
1164 static void free_bprm(struct linux_binprm *bprm)
1165 {
1166 	free_arg_pages(bprm);
1167 	if (bprm->cred) {
1168 		mutex_unlock(&current->signal->cred_guard_mutex);
1169 		abort_creds(bprm->cred);
1170 	}
1171 	if (bprm->file) {
1172 		allow_write_access(bprm->file);
1173 		fput(bprm->file);
1174 	}
1175 	/* If a binfmt changed the interp, free it. */
1176 	if (bprm->interp != bprm->filename)
1177 		kfree(bprm->interp);
1178 	kfree(bprm);
1179 }
1180 
1181 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1182 {
1183 	/* If a binfmt changed the interp, free it first. */
1184 	if (bprm->interp != bprm->filename)
1185 		kfree(bprm->interp);
1186 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1187 	if (!bprm->interp)
1188 		return -ENOMEM;
1189 	return 0;
1190 }
1191 EXPORT_SYMBOL(bprm_change_interp);
1192 
1193 /*
1194  * install the new credentials for this executable
1195  */
1196 void install_exec_creds(struct linux_binprm *bprm)
1197 {
1198 	security_bprm_committing_creds(bprm);
1199 
1200 	commit_creds(bprm->cred);
1201 	bprm->cred = NULL;
1202 
1203 	/*
1204 	 * Disable monitoring for regular users
1205 	 * when executing setuid binaries. Must
1206 	 * wait until new credentials are committed
1207 	 * by commit_creds() above
1208 	 */
1209 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1210 		perf_event_exit_task(current);
1211 	/*
1212 	 * cred_guard_mutex must be held at least to this point to prevent
1213 	 * ptrace_attach() from altering our determination of the task's
1214 	 * credentials; any time after this it may be unlocked.
1215 	 */
1216 	security_bprm_committed_creds(bprm);
1217 	mutex_unlock(&current->signal->cred_guard_mutex);
1218 }
1219 EXPORT_SYMBOL(install_exec_creds);
1220 
1221 /*
1222  * determine how safe it is to execute the proposed program
1223  * - the caller must hold ->cred_guard_mutex to protect against
1224  *   PTRACE_ATTACH or seccomp thread-sync
1225  */
1226 static void check_unsafe_exec(struct linux_binprm *bprm)
1227 {
1228 	struct task_struct *p = current, *t;
1229 	unsigned n_fs;
1230 
1231 	if (p->ptrace) {
1232 		if (p->ptrace & PT_PTRACE_CAP)
1233 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1234 		else
1235 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1236 	}
1237 
1238 	/*
1239 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1240 	 * mess up.
1241 	 */
1242 	if (task_no_new_privs(current))
1243 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1244 
1245 	t = p;
1246 	n_fs = 1;
1247 	spin_lock(&p->fs->lock);
1248 	rcu_read_lock();
1249 	while_each_thread(p, t) {
1250 		if (t->fs == p->fs)
1251 			n_fs++;
1252 	}
1253 	rcu_read_unlock();
1254 
1255 	if (p->fs->users > n_fs)
1256 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1257 	else
1258 		p->fs->in_exec = 1;
1259 	spin_unlock(&p->fs->lock);
1260 }
1261 
1262 /*
1263  * Fill the binprm structure from the inode.
1264  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1265  *
1266  * This may be called multiple times for binary chains (scripts for example).
1267  */
1268 int prepare_binprm(struct linux_binprm *bprm)
1269 {
1270 	struct inode *inode = file_inode(bprm->file);
1271 	umode_t mode = inode->i_mode;
1272 	int retval;
1273 
1274 
1275 	/* clear any previous set[ug]id data from a previous binary */
1276 	bprm->cred->euid = current_euid();
1277 	bprm->cred->egid = current_egid();
1278 
1279 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1280 	    !task_no_new_privs(current) &&
1281 	    kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1282 	    kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1283 		/* Set-uid? */
1284 		if (mode & S_ISUID) {
1285 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1286 			bprm->cred->euid = inode->i_uid;
1287 		}
1288 
1289 		/* Set-gid? */
1290 		/*
1291 		 * If setgid is set but no group execute bit then this
1292 		 * is a candidate for mandatory locking, not a setgid
1293 		 * executable.
1294 		 */
1295 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1296 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1297 			bprm->cred->egid = inode->i_gid;
1298 		}
1299 	}
1300 
1301 	/* fill in binprm security blob */
1302 	retval = security_bprm_set_creds(bprm);
1303 	if (retval)
1304 		return retval;
1305 	bprm->cred_prepared = 1;
1306 
1307 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1308 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1309 }
1310 
1311 EXPORT_SYMBOL(prepare_binprm);
1312 
1313 /*
1314  * Arguments are '\0' separated strings found at the location bprm->p
1315  * points to; chop off the first by relocating brpm->p to right after
1316  * the first '\0' encountered.
1317  */
1318 int remove_arg_zero(struct linux_binprm *bprm)
1319 {
1320 	int ret = 0;
1321 	unsigned long offset;
1322 	char *kaddr;
1323 	struct page *page;
1324 
1325 	if (!bprm->argc)
1326 		return 0;
1327 
1328 	do {
1329 		offset = bprm->p & ~PAGE_MASK;
1330 		page = get_arg_page(bprm, bprm->p, 0);
1331 		if (!page) {
1332 			ret = -EFAULT;
1333 			goto out;
1334 		}
1335 		kaddr = kmap_atomic(page);
1336 
1337 		for (; offset < PAGE_SIZE && kaddr[offset];
1338 				offset++, bprm->p++)
1339 			;
1340 
1341 		kunmap_atomic(kaddr);
1342 		put_arg_page(page);
1343 
1344 		if (offset == PAGE_SIZE)
1345 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1346 	} while (offset == PAGE_SIZE);
1347 
1348 	bprm->p++;
1349 	bprm->argc--;
1350 	ret = 0;
1351 
1352 out:
1353 	return ret;
1354 }
1355 EXPORT_SYMBOL(remove_arg_zero);
1356 
1357 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1358 /*
1359  * cycle the list of binary formats handler, until one recognizes the image
1360  */
1361 int search_binary_handler(struct linux_binprm *bprm)
1362 {
1363 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1364 	struct linux_binfmt *fmt;
1365 	int retval;
1366 
1367 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1368 	if (bprm->recursion_depth > 5)
1369 		return -ELOOP;
1370 
1371 	retval = security_bprm_check(bprm);
1372 	if (retval)
1373 		return retval;
1374 
1375 	retval = -ENOENT;
1376  retry:
1377 	read_lock(&binfmt_lock);
1378 	list_for_each_entry(fmt, &formats, lh) {
1379 		if (!try_module_get(fmt->module))
1380 			continue;
1381 		read_unlock(&binfmt_lock);
1382 		bprm->recursion_depth++;
1383 		retval = fmt->load_binary(bprm);
1384 		read_lock(&binfmt_lock);
1385 		put_binfmt(fmt);
1386 		bprm->recursion_depth--;
1387 		if (retval < 0 && !bprm->mm) {
1388 			/* we got to flush_old_exec() and failed after it */
1389 			read_unlock(&binfmt_lock);
1390 			force_sigsegv(SIGSEGV, current);
1391 			return retval;
1392 		}
1393 		if (retval != -ENOEXEC || !bprm->file) {
1394 			read_unlock(&binfmt_lock);
1395 			return retval;
1396 		}
1397 	}
1398 	read_unlock(&binfmt_lock);
1399 
1400 	if (need_retry) {
1401 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1402 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1403 			return retval;
1404 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1405 			return retval;
1406 		need_retry = false;
1407 		goto retry;
1408 	}
1409 
1410 	return retval;
1411 }
1412 EXPORT_SYMBOL(search_binary_handler);
1413 
1414 static int exec_binprm(struct linux_binprm *bprm)
1415 {
1416 	pid_t old_pid, old_vpid;
1417 	int ret;
1418 
1419 	/* Need to fetch pid before load_binary changes it */
1420 	old_pid = current->pid;
1421 	rcu_read_lock();
1422 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1423 	rcu_read_unlock();
1424 
1425 	ret = search_binary_handler(bprm);
1426 	if (ret >= 0) {
1427 		audit_bprm(bprm);
1428 		trace_sched_process_exec(current, old_pid, bprm);
1429 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1430 		proc_exec_connector(current);
1431 	}
1432 
1433 	return ret;
1434 }
1435 
1436 /*
1437  * sys_execve() executes a new program.
1438  */
1439 static int do_execveat_common(int fd, struct filename *filename,
1440 			      struct user_arg_ptr argv,
1441 			      struct user_arg_ptr envp,
1442 			      int flags)
1443 {
1444 	char *pathbuf = NULL;
1445 	struct linux_binprm *bprm;
1446 	struct file *file;
1447 	struct files_struct *displaced;
1448 	int retval;
1449 
1450 	if (IS_ERR(filename))
1451 		return PTR_ERR(filename);
1452 
1453 	/*
1454 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1455 	 * set*uid() to execve() because too many poorly written programs
1456 	 * don't check setuid() return code.  Here we additionally recheck
1457 	 * whether NPROC limit is still exceeded.
1458 	 */
1459 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1460 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1461 		retval = -EAGAIN;
1462 		goto out_ret;
1463 	}
1464 
1465 	/* We're below the limit (still or again), so we don't want to make
1466 	 * further execve() calls fail. */
1467 	current->flags &= ~PF_NPROC_EXCEEDED;
1468 
1469 	retval = unshare_files(&displaced);
1470 	if (retval)
1471 		goto out_ret;
1472 
1473 	retval = -ENOMEM;
1474 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1475 	if (!bprm)
1476 		goto out_files;
1477 
1478 	retval = prepare_bprm_creds(bprm);
1479 	if (retval)
1480 		goto out_free;
1481 
1482 	check_unsafe_exec(bprm);
1483 	current->in_execve = 1;
1484 
1485 	file = do_open_execat(fd, filename, flags);
1486 	retval = PTR_ERR(file);
1487 	if (IS_ERR(file))
1488 		goto out_unmark;
1489 
1490 	sched_exec();
1491 
1492 	bprm->file = file;
1493 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1494 		bprm->filename = filename->name;
1495 	} else {
1496 		if (filename->name[0] == '\0')
1497 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1498 		else
1499 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1500 					    fd, filename->name);
1501 		if (!pathbuf) {
1502 			retval = -ENOMEM;
1503 			goto out_unmark;
1504 		}
1505 		/*
1506 		 * Record that a name derived from an O_CLOEXEC fd will be
1507 		 * inaccessible after exec. Relies on having exclusive access to
1508 		 * current->files (due to unshare_files above).
1509 		 */
1510 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1511 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1512 		bprm->filename = pathbuf;
1513 	}
1514 	bprm->interp = bprm->filename;
1515 
1516 	retval = bprm_mm_init(bprm);
1517 	if (retval)
1518 		goto out_unmark;
1519 
1520 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1521 	if ((retval = bprm->argc) < 0)
1522 		goto out;
1523 
1524 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1525 	if ((retval = bprm->envc) < 0)
1526 		goto out;
1527 
1528 	retval = prepare_binprm(bprm);
1529 	if (retval < 0)
1530 		goto out;
1531 
1532 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1533 	if (retval < 0)
1534 		goto out;
1535 
1536 	bprm->exec = bprm->p;
1537 	retval = copy_strings(bprm->envc, envp, bprm);
1538 	if (retval < 0)
1539 		goto out;
1540 
1541 	retval = copy_strings(bprm->argc, argv, bprm);
1542 	if (retval < 0)
1543 		goto out;
1544 
1545 	retval = exec_binprm(bprm);
1546 	if (retval < 0)
1547 		goto out;
1548 
1549 	/* execve succeeded */
1550 	current->fs->in_exec = 0;
1551 	current->in_execve = 0;
1552 	acct_update_integrals(current);
1553 	task_numa_free(current);
1554 	free_bprm(bprm);
1555 	kfree(pathbuf);
1556 	putname(filename);
1557 	if (displaced)
1558 		put_files_struct(displaced);
1559 	return retval;
1560 
1561 out:
1562 	if (bprm->mm) {
1563 		acct_arg_size(bprm, 0);
1564 		mmput(bprm->mm);
1565 	}
1566 
1567 out_unmark:
1568 	current->fs->in_exec = 0;
1569 	current->in_execve = 0;
1570 
1571 out_free:
1572 	free_bprm(bprm);
1573 	kfree(pathbuf);
1574 
1575 out_files:
1576 	if (displaced)
1577 		reset_files_struct(displaced);
1578 out_ret:
1579 	putname(filename);
1580 	return retval;
1581 }
1582 
1583 int do_execve(struct filename *filename,
1584 	const char __user *const __user *__argv,
1585 	const char __user *const __user *__envp)
1586 {
1587 	struct user_arg_ptr argv = { .ptr.native = __argv };
1588 	struct user_arg_ptr envp = { .ptr.native = __envp };
1589 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1590 }
1591 
1592 int do_execveat(int fd, struct filename *filename,
1593 		const char __user *const __user *__argv,
1594 		const char __user *const __user *__envp,
1595 		int flags)
1596 {
1597 	struct user_arg_ptr argv = { .ptr.native = __argv };
1598 	struct user_arg_ptr envp = { .ptr.native = __envp };
1599 
1600 	return do_execveat_common(fd, filename, argv, envp, flags);
1601 }
1602 
1603 #ifdef CONFIG_COMPAT
1604 static int compat_do_execve(struct filename *filename,
1605 	const compat_uptr_t __user *__argv,
1606 	const compat_uptr_t __user *__envp)
1607 {
1608 	struct user_arg_ptr argv = {
1609 		.is_compat = true,
1610 		.ptr.compat = __argv,
1611 	};
1612 	struct user_arg_ptr envp = {
1613 		.is_compat = true,
1614 		.ptr.compat = __envp,
1615 	};
1616 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1617 }
1618 
1619 static int compat_do_execveat(int fd, struct filename *filename,
1620 			      const compat_uptr_t __user *__argv,
1621 			      const compat_uptr_t __user *__envp,
1622 			      int flags)
1623 {
1624 	struct user_arg_ptr argv = {
1625 		.is_compat = true,
1626 		.ptr.compat = __argv,
1627 	};
1628 	struct user_arg_ptr envp = {
1629 		.is_compat = true,
1630 		.ptr.compat = __envp,
1631 	};
1632 	return do_execveat_common(fd, filename, argv, envp, flags);
1633 }
1634 #endif
1635 
1636 void set_binfmt(struct linux_binfmt *new)
1637 {
1638 	struct mm_struct *mm = current->mm;
1639 
1640 	if (mm->binfmt)
1641 		module_put(mm->binfmt->module);
1642 
1643 	mm->binfmt = new;
1644 	if (new)
1645 		__module_get(new->module);
1646 }
1647 EXPORT_SYMBOL(set_binfmt);
1648 
1649 /*
1650  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1651  */
1652 void set_dumpable(struct mm_struct *mm, int value)
1653 {
1654 	unsigned long old, new;
1655 
1656 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1657 		return;
1658 
1659 	do {
1660 		old = ACCESS_ONCE(mm->flags);
1661 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1662 	} while (cmpxchg(&mm->flags, old, new) != old);
1663 }
1664 
1665 SYSCALL_DEFINE3(execve,
1666 		const char __user *, filename,
1667 		const char __user *const __user *, argv,
1668 		const char __user *const __user *, envp)
1669 {
1670 	return do_execve(getname(filename), argv, envp);
1671 }
1672 
1673 SYSCALL_DEFINE5(execveat,
1674 		int, fd, const char __user *, filename,
1675 		const char __user *const __user *, argv,
1676 		const char __user *const __user *, envp,
1677 		int, flags)
1678 {
1679 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1680 
1681 	return do_execveat(fd,
1682 			   getname_flags(filename, lookup_flags, NULL),
1683 			   argv, envp, flags);
1684 }
1685 
1686 #ifdef CONFIG_COMPAT
1687 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1688 	const compat_uptr_t __user *, argv,
1689 	const compat_uptr_t __user *, envp)
1690 {
1691 	return compat_do_execve(getname(filename), argv, envp);
1692 }
1693 
1694 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1695 		       const char __user *, filename,
1696 		       const compat_uptr_t __user *, argv,
1697 		       const compat_uptr_t __user *, envp,
1698 		       int,  flags)
1699 {
1700 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1701 
1702 	return compat_do_execveat(fd,
1703 				  getname_flags(filename, lookup_flags, NULL),
1704 				  argv, envp, flags);
1705 }
1706 #endif
1707