xref: /openbmc/linux/fs/exec.c (revision 82ced6fd)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/ima.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56 #include <linux/fs_struct.h>
57 
58 #include <asm/uaccess.h>
59 #include <asm/mmu_context.h>
60 #include <asm/tlb.h>
61 #include "internal.h"
62 
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 int suid_dumpable = 0;
66 
67 /* The maximal length of core_pattern is also specified in sysctl.c */
68 
69 static LIST_HEAD(formats);
70 static DEFINE_RWLOCK(binfmt_lock);
71 
72 int __register_binfmt(struct linux_binfmt * fmt, int insert)
73 {
74 	if (!fmt)
75 		return -EINVAL;
76 	write_lock(&binfmt_lock);
77 	insert ? list_add(&fmt->lh, &formats) :
78 		 list_add_tail(&fmt->lh, &formats);
79 	write_unlock(&binfmt_lock);
80 	return 0;
81 }
82 
83 EXPORT_SYMBOL(__register_binfmt);
84 
85 void unregister_binfmt(struct linux_binfmt * fmt)
86 {
87 	write_lock(&binfmt_lock);
88 	list_del(&fmt->lh);
89 	write_unlock(&binfmt_lock);
90 }
91 
92 EXPORT_SYMBOL(unregister_binfmt);
93 
94 static inline void put_binfmt(struct linux_binfmt * fmt)
95 {
96 	module_put(fmt->module);
97 }
98 
99 /*
100  * Note that a shared library must be both readable and executable due to
101  * security reasons.
102  *
103  * Also note that we take the address to load from from the file itself.
104  */
105 SYSCALL_DEFINE1(uselib, const char __user *, library)
106 {
107 	struct file *file;
108 	char *tmp = getname(library);
109 	int error = PTR_ERR(tmp);
110 
111 	if (IS_ERR(tmp))
112 		goto out;
113 
114 	file = do_filp_open(AT_FDCWD, tmp,
115 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
116 				MAY_READ | MAY_EXEC | MAY_OPEN);
117 	putname(tmp);
118 	error = PTR_ERR(file);
119 	if (IS_ERR(file))
120 		goto out;
121 
122 	error = -EINVAL;
123 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
124 		goto exit;
125 
126 	error = -EACCES;
127 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
128 		goto exit;
129 
130 	fsnotify_open(file->f_path.dentry);
131 
132 	error = -ENOEXEC;
133 	if(file->f_op) {
134 		struct linux_binfmt * fmt;
135 
136 		read_lock(&binfmt_lock);
137 		list_for_each_entry(fmt, &formats, lh) {
138 			if (!fmt->load_shlib)
139 				continue;
140 			if (!try_module_get(fmt->module))
141 				continue;
142 			read_unlock(&binfmt_lock);
143 			error = fmt->load_shlib(file);
144 			read_lock(&binfmt_lock);
145 			put_binfmt(fmt);
146 			if (error != -ENOEXEC)
147 				break;
148 		}
149 		read_unlock(&binfmt_lock);
150 	}
151 exit:
152 	fput(file);
153 out:
154   	return error;
155 }
156 
157 #ifdef CONFIG_MMU
158 
159 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
160 		int write)
161 {
162 	struct page *page;
163 	int ret;
164 
165 #ifdef CONFIG_STACK_GROWSUP
166 	if (write) {
167 		ret = expand_stack_downwards(bprm->vma, pos);
168 		if (ret < 0)
169 			return NULL;
170 	}
171 #endif
172 	ret = get_user_pages(current, bprm->mm, pos,
173 			1, write, 1, &page, NULL);
174 	if (ret <= 0)
175 		return NULL;
176 
177 	if (write) {
178 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
179 		struct rlimit *rlim;
180 
181 		/*
182 		 * We've historically supported up to 32 pages (ARG_MAX)
183 		 * of argument strings even with small stacks
184 		 */
185 		if (size <= ARG_MAX)
186 			return page;
187 
188 		/*
189 		 * Limit to 1/4-th the stack size for the argv+env strings.
190 		 * This ensures that:
191 		 *  - the remaining binfmt code will not run out of stack space,
192 		 *  - the program will have a reasonable amount of stack left
193 		 *    to work from.
194 		 */
195 		rlim = current->signal->rlim;
196 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
197 			put_page(page);
198 			return NULL;
199 		}
200 	}
201 
202 	return page;
203 }
204 
205 static void put_arg_page(struct page *page)
206 {
207 	put_page(page);
208 }
209 
210 static void free_arg_page(struct linux_binprm *bprm, int i)
211 {
212 }
213 
214 static void free_arg_pages(struct linux_binprm *bprm)
215 {
216 }
217 
218 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
219 		struct page *page)
220 {
221 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
222 }
223 
224 static int __bprm_mm_init(struct linux_binprm *bprm)
225 {
226 	int err;
227 	struct vm_area_struct *vma = NULL;
228 	struct mm_struct *mm = bprm->mm;
229 
230 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
231 	if (!vma)
232 		return -ENOMEM;
233 
234 	down_write(&mm->mmap_sem);
235 	vma->vm_mm = mm;
236 
237 	/*
238 	 * Place the stack at the largest stack address the architecture
239 	 * supports. Later, we'll move this to an appropriate place. We don't
240 	 * use STACK_TOP because that can depend on attributes which aren't
241 	 * configured yet.
242 	 */
243 	vma->vm_end = STACK_TOP_MAX;
244 	vma->vm_start = vma->vm_end - PAGE_SIZE;
245 	vma->vm_flags = VM_STACK_FLAGS;
246 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
247 	err = insert_vm_struct(mm, vma);
248 	if (err)
249 		goto err;
250 
251 	mm->stack_vm = mm->total_vm = 1;
252 	up_write(&mm->mmap_sem);
253 	bprm->p = vma->vm_end - sizeof(void *);
254 	return 0;
255 err:
256 	up_write(&mm->mmap_sem);
257 	bprm->vma = NULL;
258 	kmem_cache_free(vm_area_cachep, vma);
259 	return err;
260 }
261 
262 static bool valid_arg_len(struct linux_binprm *bprm, long len)
263 {
264 	return len <= MAX_ARG_STRLEN;
265 }
266 
267 #else
268 
269 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
270 		int write)
271 {
272 	struct page *page;
273 
274 	page = bprm->page[pos / PAGE_SIZE];
275 	if (!page && write) {
276 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
277 		if (!page)
278 			return NULL;
279 		bprm->page[pos / PAGE_SIZE] = page;
280 	}
281 
282 	return page;
283 }
284 
285 static void put_arg_page(struct page *page)
286 {
287 }
288 
289 static void free_arg_page(struct linux_binprm *bprm, int i)
290 {
291 	if (bprm->page[i]) {
292 		__free_page(bprm->page[i]);
293 		bprm->page[i] = NULL;
294 	}
295 }
296 
297 static void free_arg_pages(struct linux_binprm *bprm)
298 {
299 	int i;
300 
301 	for (i = 0; i < MAX_ARG_PAGES; i++)
302 		free_arg_page(bprm, i);
303 }
304 
305 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
306 		struct page *page)
307 {
308 }
309 
310 static int __bprm_mm_init(struct linux_binprm *bprm)
311 {
312 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
313 	return 0;
314 }
315 
316 static bool valid_arg_len(struct linux_binprm *bprm, long len)
317 {
318 	return len <= bprm->p;
319 }
320 
321 #endif /* CONFIG_MMU */
322 
323 /*
324  * Create a new mm_struct and populate it with a temporary stack
325  * vm_area_struct.  We don't have enough context at this point to set the stack
326  * flags, permissions, and offset, so we use temporary values.  We'll update
327  * them later in setup_arg_pages().
328  */
329 int bprm_mm_init(struct linux_binprm *bprm)
330 {
331 	int err;
332 	struct mm_struct *mm = NULL;
333 
334 	bprm->mm = mm = mm_alloc();
335 	err = -ENOMEM;
336 	if (!mm)
337 		goto err;
338 
339 	err = init_new_context(current, mm);
340 	if (err)
341 		goto err;
342 
343 	err = __bprm_mm_init(bprm);
344 	if (err)
345 		goto err;
346 
347 	return 0;
348 
349 err:
350 	if (mm) {
351 		bprm->mm = NULL;
352 		mmdrop(mm);
353 	}
354 
355 	return err;
356 }
357 
358 /*
359  * count() counts the number of strings in array ARGV.
360  */
361 static int count(char __user * __user * argv, int max)
362 {
363 	int i = 0;
364 
365 	if (argv != NULL) {
366 		for (;;) {
367 			char __user * p;
368 
369 			if (get_user(p, argv))
370 				return -EFAULT;
371 			if (!p)
372 				break;
373 			argv++;
374 			if (i++ >= max)
375 				return -E2BIG;
376 			cond_resched();
377 		}
378 	}
379 	return i;
380 }
381 
382 /*
383  * 'copy_strings()' copies argument/environment strings from the old
384  * processes's memory to the new process's stack.  The call to get_user_pages()
385  * ensures the destination page is created and not swapped out.
386  */
387 static int copy_strings(int argc, char __user * __user * argv,
388 			struct linux_binprm *bprm)
389 {
390 	struct page *kmapped_page = NULL;
391 	char *kaddr = NULL;
392 	unsigned long kpos = 0;
393 	int ret;
394 
395 	while (argc-- > 0) {
396 		char __user *str;
397 		int len;
398 		unsigned long pos;
399 
400 		if (get_user(str, argv+argc) ||
401 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
402 			ret = -EFAULT;
403 			goto out;
404 		}
405 
406 		if (!valid_arg_len(bprm, len)) {
407 			ret = -E2BIG;
408 			goto out;
409 		}
410 
411 		/* We're going to work our way backwords. */
412 		pos = bprm->p;
413 		str += len;
414 		bprm->p -= len;
415 
416 		while (len > 0) {
417 			int offset, bytes_to_copy;
418 
419 			offset = pos % PAGE_SIZE;
420 			if (offset == 0)
421 				offset = PAGE_SIZE;
422 
423 			bytes_to_copy = offset;
424 			if (bytes_to_copy > len)
425 				bytes_to_copy = len;
426 
427 			offset -= bytes_to_copy;
428 			pos -= bytes_to_copy;
429 			str -= bytes_to_copy;
430 			len -= bytes_to_copy;
431 
432 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
433 				struct page *page;
434 
435 				page = get_arg_page(bprm, pos, 1);
436 				if (!page) {
437 					ret = -E2BIG;
438 					goto out;
439 				}
440 
441 				if (kmapped_page) {
442 					flush_kernel_dcache_page(kmapped_page);
443 					kunmap(kmapped_page);
444 					put_arg_page(kmapped_page);
445 				}
446 				kmapped_page = page;
447 				kaddr = kmap(kmapped_page);
448 				kpos = pos & PAGE_MASK;
449 				flush_arg_page(bprm, kpos, kmapped_page);
450 			}
451 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
452 				ret = -EFAULT;
453 				goto out;
454 			}
455 		}
456 	}
457 	ret = 0;
458 out:
459 	if (kmapped_page) {
460 		flush_kernel_dcache_page(kmapped_page);
461 		kunmap(kmapped_page);
462 		put_arg_page(kmapped_page);
463 	}
464 	return ret;
465 }
466 
467 /*
468  * Like copy_strings, but get argv and its values from kernel memory.
469  */
470 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
471 {
472 	int r;
473 	mm_segment_t oldfs = get_fs();
474 	set_fs(KERNEL_DS);
475 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
476 	set_fs(oldfs);
477 	return r;
478 }
479 EXPORT_SYMBOL(copy_strings_kernel);
480 
481 #ifdef CONFIG_MMU
482 
483 /*
484  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
485  * the binfmt code determines where the new stack should reside, we shift it to
486  * its final location.  The process proceeds as follows:
487  *
488  * 1) Use shift to calculate the new vma endpoints.
489  * 2) Extend vma to cover both the old and new ranges.  This ensures the
490  *    arguments passed to subsequent functions are consistent.
491  * 3) Move vma's page tables to the new range.
492  * 4) Free up any cleared pgd range.
493  * 5) Shrink the vma to cover only the new range.
494  */
495 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
496 {
497 	struct mm_struct *mm = vma->vm_mm;
498 	unsigned long old_start = vma->vm_start;
499 	unsigned long old_end = vma->vm_end;
500 	unsigned long length = old_end - old_start;
501 	unsigned long new_start = old_start - shift;
502 	unsigned long new_end = old_end - shift;
503 	struct mmu_gather *tlb;
504 
505 	BUG_ON(new_start > new_end);
506 
507 	/*
508 	 * ensure there are no vmas between where we want to go
509 	 * and where we are
510 	 */
511 	if (vma != find_vma(mm, new_start))
512 		return -EFAULT;
513 
514 	/*
515 	 * cover the whole range: [new_start, old_end)
516 	 */
517 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
518 
519 	/*
520 	 * move the page tables downwards, on failure we rely on
521 	 * process cleanup to remove whatever mess we made.
522 	 */
523 	if (length != move_page_tables(vma, old_start,
524 				       vma, new_start, length))
525 		return -ENOMEM;
526 
527 	lru_add_drain();
528 	tlb = tlb_gather_mmu(mm, 0);
529 	if (new_end > old_start) {
530 		/*
531 		 * when the old and new regions overlap clear from new_end.
532 		 */
533 		free_pgd_range(tlb, new_end, old_end, new_end,
534 			vma->vm_next ? vma->vm_next->vm_start : 0);
535 	} else {
536 		/*
537 		 * otherwise, clean from old_start; this is done to not touch
538 		 * the address space in [new_end, old_start) some architectures
539 		 * have constraints on va-space that make this illegal (IA64) -
540 		 * for the others its just a little faster.
541 		 */
542 		free_pgd_range(tlb, old_start, old_end, new_end,
543 			vma->vm_next ? vma->vm_next->vm_start : 0);
544 	}
545 	tlb_finish_mmu(tlb, new_end, old_end);
546 
547 	/*
548 	 * shrink the vma to just the new range.
549 	 */
550 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
551 
552 	return 0;
553 }
554 
555 #define EXTRA_STACK_VM_PAGES	20	/* random */
556 
557 /*
558  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
559  * the stack is optionally relocated, and some extra space is added.
560  */
561 int setup_arg_pages(struct linux_binprm *bprm,
562 		    unsigned long stack_top,
563 		    int executable_stack)
564 {
565 	unsigned long ret;
566 	unsigned long stack_shift;
567 	struct mm_struct *mm = current->mm;
568 	struct vm_area_struct *vma = bprm->vma;
569 	struct vm_area_struct *prev = NULL;
570 	unsigned long vm_flags;
571 	unsigned long stack_base;
572 
573 #ifdef CONFIG_STACK_GROWSUP
574 	/* Limit stack size to 1GB */
575 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
576 	if (stack_base > (1 << 30))
577 		stack_base = 1 << 30;
578 
579 	/* Make sure we didn't let the argument array grow too large. */
580 	if (vma->vm_end - vma->vm_start > stack_base)
581 		return -ENOMEM;
582 
583 	stack_base = PAGE_ALIGN(stack_top - stack_base);
584 
585 	stack_shift = vma->vm_start - stack_base;
586 	mm->arg_start = bprm->p - stack_shift;
587 	bprm->p = vma->vm_end - stack_shift;
588 #else
589 	stack_top = arch_align_stack(stack_top);
590 	stack_top = PAGE_ALIGN(stack_top);
591 	stack_shift = vma->vm_end - stack_top;
592 
593 	bprm->p -= stack_shift;
594 	mm->arg_start = bprm->p;
595 #endif
596 
597 	if (bprm->loader)
598 		bprm->loader -= stack_shift;
599 	bprm->exec -= stack_shift;
600 
601 	down_write(&mm->mmap_sem);
602 	vm_flags = VM_STACK_FLAGS;
603 
604 	/*
605 	 * Adjust stack execute permissions; explicitly enable for
606 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
607 	 * (arch default) otherwise.
608 	 */
609 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
610 		vm_flags |= VM_EXEC;
611 	else if (executable_stack == EXSTACK_DISABLE_X)
612 		vm_flags &= ~VM_EXEC;
613 	vm_flags |= mm->def_flags;
614 
615 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
616 			vm_flags);
617 	if (ret)
618 		goto out_unlock;
619 	BUG_ON(prev != vma);
620 
621 	/* Move stack pages down in memory. */
622 	if (stack_shift) {
623 		ret = shift_arg_pages(vma, stack_shift);
624 		if (ret) {
625 			up_write(&mm->mmap_sem);
626 			return ret;
627 		}
628 	}
629 
630 #ifdef CONFIG_STACK_GROWSUP
631 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
632 #else
633 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
634 #endif
635 	ret = expand_stack(vma, stack_base);
636 	if (ret)
637 		ret = -EFAULT;
638 
639 out_unlock:
640 	up_write(&mm->mmap_sem);
641 	return 0;
642 }
643 EXPORT_SYMBOL(setup_arg_pages);
644 
645 #endif /* CONFIG_MMU */
646 
647 struct file *open_exec(const char *name)
648 {
649 	struct file *file;
650 	int err;
651 
652 	file = do_filp_open(AT_FDCWD, name,
653 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
654 				MAY_EXEC | MAY_OPEN);
655 	if (IS_ERR(file))
656 		goto out;
657 
658 	err = -EACCES;
659 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
660 		goto exit;
661 
662 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
663 		goto exit;
664 
665 	fsnotify_open(file->f_path.dentry);
666 
667 	err = deny_write_access(file);
668 	if (err)
669 		goto exit;
670 
671 out:
672 	return file;
673 
674 exit:
675 	fput(file);
676 	return ERR_PTR(err);
677 }
678 EXPORT_SYMBOL(open_exec);
679 
680 int kernel_read(struct file *file, unsigned long offset,
681 	char *addr, unsigned long count)
682 {
683 	mm_segment_t old_fs;
684 	loff_t pos = offset;
685 	int result;
686 
687 	old_fs = get_fs();
688 	set_fs(get_ds());
689 	/* The cast to a user pointer is valid due to the set_fs() */
690 	result = vfs_read(file, (void __user *)addr, count, &pos);
691 	set_fs(old_fs);
692 	return result;
693 }
694 
695 EXPORT_SYMBOL(kernel_read);
696 
697 static int exec_mmap(struct mm_struct *mm)
698 {
699 	struct task_struct *tsk;
700 	struct mm_struct * old_mm, *active_mm;
701 
702 	/* Notify parent that we're no longer interested in the old VM */
703 	tsk = current;
704 	old_mm = current->mm;
705 	mm_release(tsk, old_mm);
706 
707 	if (old_mm) {
708 		/*
709 		 * Make sure that if there is a core dump in progress
710 		 * for the old mm, we get out and die instead of going
711 		 * through with the exec.  We must hold mmap_sem around
712 		 * checking core_state and changing tsk->mm.
713 		 */
714 		down_read(&old_mm->mmap_sem);
715 		if (unlikely(old_mm->core_state)) {
716 			up_read(&old_mm->mmap_sem);
717 			return -EINTR;
718 		}
719 	}
720 	task_lock(tsk);
721 	active_mm = tsk->active_mm;
722 	tsk->mm = mm;
723 	tsk->active_mm = mm;
724 	activate_mm(active_mm, mm);
725 	task_unlock(tsk);
726 	arch_pick_mmap_layout(mm);
727 	if (old_mm) {
728 		up_read(&old_mm->mmap_sem);
729 		BUG_ON(active_mm != old_mm);
730 		mm_update_next_owner(old_mm);
731 		mmput(old_mm);
732 		return 0;
733 	}
734 	mmdrop(active_mm);
735 	return 0;
736 }
737 
738 /*
739  * This function makes sure the current process has its own signal table,
740  * so that flush_signal_handlers can later reset the handlers without
741  * disturbing other processes.  (Other processes might share the signal
742  * table via the CLONE_SIGHAND option to clone().)
743  */
744 static int de_thread(struct task_struct *tsk)
745 {
746 	struct signal_struct *sig = tsk->signal;
747 	struct sighand_struct *oldsighand = tsk->sighand;
748 	spinlock_t *lock = &oldsighand->siglock;
749 	int count;
750 
751 	if (thread_group_empty(tsk))
752 		goto no_thread_group;
753 
754 	/*
755 	 * Kill all other threads in the thread group.
756 	 */
757 	spin_lock_irq(lock);
758 	if (signal_group_exit(sig)) {
759 		/*
760 		 * Another group action in progress, just
761 		 * return so that the signal is processed.
762 		 */
763 		spin_unlock_irq(lock);
764 		return -EAGAIN;
765 	}
766 	sig->group_exit_task = tsk;
767 	zap_other_threads(tsk);
768 
769 	/* Account for the thread group leader hanging around: */
770 	count = thread_group_leader(tsk) ? 1 : 2;
771 	sig->notify_count = count;
772 	while (atomic_read(&sig->count) > count) {
773 		__set_current_state(TASK_UNINTERRUPTIBLE);
774 		spin_unlock_irq(lock);
775 		schedule();
776 		spin_lock_irq(lock);
777 	}
778 	spin_unlock_irq(lock);
779 
780 	/*
781 	 * At this point all other threads have exited, all we have to
782 	 * do is to wait for the thread group leader to become inactive,
783 	 * and to assume its PID:
784 	 */
785 	if (!thread_group_leader(tsk)) {
786 		struct task_struct *leader = tsk->group_leader;
787 
788 		sig->notify_count = -1;	/* for exit_notify() */
789 		for (;;) {
790 			write_lock_irq(&tasklist_lock);
791 			if (likely(leader->exit_state))
792 				break;
793 			__set_current_state(TASK_UNINTERRUPTIBLE);
794 			write_unlock_irq(&tasklist_lock);
795 			schedule();
796 		}
797 
798 		/*
799 		 * The only record we have of the real-time age of a
800 		 * process, regardless of execs it's done, is start_time.
801 		 * All the past CPU time is accumulated in signal_struct
802 		 * from sister threads now dead.  But in this non-leader
803 		 * exec, nothing survives from the original leader thread,
804 		 * whose birth marks the true age of this process now.
805 		 * When we take on its identity by switching to its PID, we
806 		 * also take its birthdate (always earlier than our own).
807 		 */
808 		tsk->start_time = leader->start_time;
809 
810 		BUG_ON(!same_thread_group(leader, tsk));
811 		BUG_ON(has_group_leader_pid(tsk));
812 		/*
813 		 * An exec() starts a new thread group with the
814 		 * TGID of the previous thread group. Rehash the
815 		 * two threads with a switched PID, and release
816 		 * the former thread group leader:
817 		 */
818 
819 		/* Become a process group leader with the old leader's pid.
820 		 * The old leader becomes a thread of the this thread group.
821 		 * Note: The old leader also uses this pid until release_task
822 		 *       is called.  Odd but simple and correct.
823 		 */
824 		detach_pid(tsk, PIDTYPE_PID);
825 		tsk->pid = leader->pid;
826 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
827 		transfer_pid(leader, tsk, PIDTYPE_PGID);
828 		transfer_pid(leader, tsk, PIDTYPE_SID);
829 		list_replace_rcu(&leader->tasks, &tsk->tasks);
830 
831 		tsk->group_leader = tsk;
832 		leader->group_leader = tsk;
833 
834 		tsk->exit_signal = SIGCHLD;
835 
836 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
837 		leader->exit_state = EXIT_DEAD;
838 		write_unlock_irq(&tasklist_lock);
839 
840 		release_task(leader);
841 	}
842 
843 	sig->group_exit_task = NULL;
844 	sig->notify_count = 0;
845 
846 no_thread_group:
847 	exit_itimers(sig);
848 	flush_itimer_signals();
849 
850 	if (atomic_read(&oldsighand->count) != 1) {
851 		struct sighand_struct *newsighand;
852 		/*
853 		 * This ->sighand is shared with the CLONE_SIGHAND
854 		 * but not CLONE_THREAD task, switch to the new one.
855 		 */
856 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
857 		if (!newsighand)
858 			return -ENOMEM;
859 
860 		atomic_set(&newsighand->count, 1);
861 		memcpy(newsighand->action, oldsighand->action,
862 		       sizeof(newsighand->action));
863 
864 		write_lock_irq(&tasklist_lock);
865 		spin_lock(&oldsighand->siglock);
866 		rcu_assign_pointer(tsk->sighand, newsighand);
867 		spin_unlock(&oldsighand->siglock);
868 		write_unlock_irq(&tasklist_lock);
869 
870 		__cleanup_sighand(oldsighand);
871 	}
872 
873 	BUG_ON(!thread_group_leader(tsk));
874 	return 0;
875 }
876 
877 /*
878  * These functions flushes out all traces of the currently running executable
879  * so that a new one can be started
880  */
881 static void flush_old_files(struct files_struct * files)
882 {
883 	long j = -1;
884 	struct fdtable *fdt;
885 
886 	spin_lock(&files->file_lock);
887 	for (;;) {
888 		unsigned long set, i;
889 
890 		j++;
891 		i = j * __NFDBITS;
892 		fdt = files_fdtable(files);
893 		if (i >= fdt->max_fds)
894 			break;
895 		set = fdt->close_on_exec->fds_bits[j];
896 		if (!set)
897 			continue;
898 		fdt->close_on_exec->fds_bits[j] = 0;
899 		spin_unlock(&files->file_lock);
900 		for ( ; set ; i++,set >>= 1) {
901 			if (set & 1) {
902 				sys_close(i);
903 			}
904 		}
905 		spin_lock(&files->file_lock);
906 
907 	}
908 	spin_unlock(&files->file_lock);
909 }
910 
911 char *get_task_comm(char *buf, struct task_struct *tsk)
912 {
913 	/* buf must be at least sizeof(tsk->comm) in size */
914 	task_lock(tsk);
915 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
916 	task_unlock(tsk);
917 	return buf;
918 }
919 
920 void set_task_comm(struct task_struct *tsk, char *buf)
921 {
922 	task_lock(tsk);
923 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
924 	task_unlock(tsk);
925 }
926 
927 int flush_old_exec(struct linux_binprm * bprm)
928 {
929 	char * name;
930 	int i, ch, retval;
931 	char tcomm[sizeof(current->comm)];
932 
933 	/*
934 	 * Make sure we have a private signal table and that
935 	 * we are unassociated from the previous thread group.
936 	 */
937 	retval = de_thread(current);
938 	if (retval)
939 		goto out;
940 
941 	set_mm_exe_file(bprm->mm, bprm->file);
942 
943 	/*
944 	 * Release all of the old mmap stuff
945 	 */
946 	retval = exec_mmap(bprm->mm);
947 	if (retval)
948 		goto out;
949 
950 	bprm->mm = NULL;		/* We're using it now */
951 
952 	/* This is the point of no return */
953 	current->sas_ss_sp = current->sas_ss_size = 0;
954 
955 	if (current_euid() == current_uid() && current_egid() == current_gid())
956 		set_dumpable(current->mm, 1);
957 	else
958 		set_dumpable(current->mm, suid_dumpable);
959 
960 	name = bprm->filename;
961 
962 	/* Copies the binary name from after last slash */
963 	for (i=0; (ch = *(name++)) != '\0';) {
964 		if (ch == '/')
965 			i = 0; /* overwrite what we wrote */
966 		else
967 			if (i < (sizeof(tcomm) - 1))
968 				tcomm[i++] = ch;
969 	}
970 	tcomm[i] = '\0';
971 	set_task_comm(current, tcomm);
972 
973 	current->flags &= ~PF_RANDOMIZE;
974 	flush_thread();
975 
976 	/* Set the new mm task size. We have to do that late because it may
977 	 * depend on TIF_32BIT which is only updated in flush_thread() on
978 	 * some architectures like powerpc
979 	 */
980 	current->mm->task_size = TASK_SIZE;
981 
982 	/* install the new credentials */
983 	if (bprm->cred->uid != current_euid() ||
984 	    bprm->cred->gid != current_egid()) {
985 		current->pdeath_signal = 0;
986 	} else if (file_permission(bprm->file, MAY_READ) ||
987 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
988 		set_dumpable(current->mm, suid_dumpable);
989 	}
990 
991 	current->personality &= ~bprm->per_clear;
992 
993 	/* An exec changes our domain. We are no longer part of the thread
994 	   group */
995 
996 	current->self_exec_id++;
997 
998 	flush_signal_handlers(current, 0);
999 	flush_old_files(current->files);
1000 
1001 	return 0;
1002 
1003 out:
1004 	return retval;
1005 }
1006 
1007 EXPORT_SYMBOL(flush_old_exec);
1008 
1009 /*
1010  * install the new credentials for this executable
1011  */
1012 void install_exec_creds(struct linux_binprm *bprm)
1013 {
1014 	security_bprm_committing_creds(bprm);
1015 
1016 	commit_creds(bprm->cred);
1017 	bprm->cred = NULL;
1018 
1019 	/* cred_exec_mutex must be held at least to this point to prevent
1020 	 * ptrace_attach() from altering our determination of the task's
1021 	 * credentials; any time after this it may be unlocked */
1022 
1023 	security_bprm_committed_creds(bprm);
1024 }
1025 EXPORT_SYMBOL(install_exec_creds);
1026 
1027 /*
1028  * determine how safe it is to execute the proposed program
1029  * - the caller must hold current->cred_exec_mutex to protect against
1030  *   PTRACE_ATTACH
1031  */
1032 int check_unsafe_exec(struct linux_binprm *bprm)
1033 {
1034 	struct task_struct *p = current, *t;
1035 	unsigned n_fs;
1036 	int res = 0;
1037 
1038 	bprm->unsafe = tracehook_unsafe_exec(p);
1039 
1040 	n_fs = 1;
1041 	write_lock(&p->fs->lock);
1042 	rcu_read_lock();
1043 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1044 		if (t->fs == p->fs)
1045 			n_fs++;
1046 	}
1047 	rcu_read_unlock();
1048 
1049 	if (p->fs->users > n_fs) {
1050 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1051 	} else {
1052 		res = -EAGAIN;
1053 		if (!p->fs->in_exec) {
1054 			p->fs->in_exec = 1;
1055 			res = 1;
1056 		}
1057 	}
1058 	write_unlock(&p->fs->lock);
1059 
1060 	return res;
1061 }
1062 
1063 /*
1064  * Fill the binprm structure from the inode.
1065  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1066  *
1067  * This may be called multiple times for binary chains (scripts for example).
1068  */
1069 int prepare_binprm(struct linux_binprm *bprm)
1070 {
1071 	umode_t mode;
1072 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1073 	int retval;
1074 
1075 	mode = inode->i_mode;
1076 	if (bprm->file->f_op == NULL)
1077 		return -EACCES;
1078 
1079 	/* clear any previous set[ug]id data from a previous binary */
1080 	bprm->cred->euid = current_euid();
1081 	bprm->cred->egid = current_egid();
1082 
1083 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1084 		/* Set-uid? */
1085 		if (mode & S_ISUID) {
1086 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1087 			bprm->cred->euid = inode->i_uid;
1088 		}
1089 
1090 		/* Set-gid? */
1091 		/*
1092 		 * If setgid is set but no group execute bit then this
1093 		 * is a candidate for mandatory locking, not a setgid
1094 		 * executable.
1095 		 */
1096 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1097 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1098 			bprm->cred->egid = inode->i_gid;
1099 		}
1100 	}
1101 
1102 	/* fill in binprm security blob */
1103 	retval = security_bprm_set_creds(bprm);
1104 	if (retval)
1105 		return retval;
1106 	bprm->cred_prepared = 1;
1107 
1108 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1109 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1110 }
1111 
1112 EXPORT_SYMBOL(prepare_binprm);
1113 
1114 /*
1115  * Arguments are '\0' separated strings found at the location bprm->p
1116  * points to; chop off the first by relocating brpm->p to right after
1117  * the first '\0' encountered.
1118  */
1119 int remove_arg_zero(struct linux_binprm *bprm)
1120 {
1121 	int ret = 0;
1122 	unsigned long offset;
1123 	char *kaddr;
1124 	struct page *page;
1125 
1126 	if (!bprm->argc)
1127 		return 0;
1128 
1129 	do {
1130 		offset = bprm->p & ~PAGE_MASK;
1131 		page = get_arg_page(bprm, bprm->p, 0);
1132 		if (!page) {
1133 			ret = -EFAULT;
1134 			goto out;
1135 		}
1136 		kaddr = kmap_atomic(page, KM_USER0);
1137 
1138 		for (; offset < PAGE_SIZE && kaddr[offset];
1139 				offset++, bprm->p++)
1140 			;
1141 
1142 		kunmap_atomic(kaddr, KM_USER0);
1143 		put_arg_page(page);
1144 
1145 		if (offset == PAGE_SIZE)
1146 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1147 	} while (offset == PAGE_SIZE);
1148 
1149 	bprm->p++;
1150 	bprm->argc--;
1151 	ret = 0;
1152 
1153 out:
1154 	return ret;
1155 }
1156 EXPORT_SYMBOL(remove_arg_zero);
1157 
1158 /*
1159  * cycle the list of binary formats handler, until one recognizes the image
1160  */
1161 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1162 {
1163 	unsigned int depth = bprm->recursion_depth;
1164 	int try,retval;
1165 	struct linux_binfmt *fmt;
1166 
1167 	retval = security_bprm_check(bprm);
1168 	if (retval)
1169 		return retval;
1170 	retval = ima_bprm_check(bprm);
1171 	if (retval)
1172 		return retval;
1173 
1174 	/* kernel module loader fixup */
1175 	/* so we don't try to load run modprobe in kernel space. */
1176 	set_fs(USER_DS);
1177 
1178 	retval = audit_bprm(bprm);
1179 	if (retval)
1180 		return retval;
1181 
1182 	retval = -ENOENT;
1183 	for (try=0; try<2; try++) {
1184 		read_lock(&binfmt_lock);
1185 		list_for_each_entry(fmt, &formats, lh) {
1186 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1187 			if (!fn)
1188 				continue;
1189 			if (!try_module_get(fmt->module))
1190 				continue;
1191 			read_unlock(&binfmt_lock);
1192 			retval = fn(bprm, regs);
1193 			/*
1194 			 * Restore the depth counter to its starting value
1195 			 * in this call, so we don't have to rely on every
1196 			 * load_binary function to restore it on return.
1197 			 */
1198 			bprm->recursion_depth = depth;
1199 			if (retval >= 0) {
1200 				if (depth == 0)
1201 					tracehook_report_exec(fmt, bprm, regs);
1202 				put_binfmt(fmt);
1203 				allow_write_access(bprm->file);
1204 				if (bprm->file)
1205 					fput(bprm->file);
1206 				bprm->file = NULL;
1207 				current->did_exec = 1;
1208 				proc_exec_connector(current);
1209 				return retval;
1210 			}
1211 			read_lock(&binfmt_lock);
1212 			put_binfmt(fmt);
1213 			if (retval != -ENOEXEC || bprm->mm == NULL)
1214 				break;
1215 			if (!bprm->file) {
1216 				read_unlock(&binfmt_lock);
1217 				return retval;
1218 			}
1219 		}
1220 		read_unlock(&binfmt_lock);
1221 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1222 			break;
1223 #ifdef CONFIG_MODULES
1224 		} else {
1225 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1226 			if (printable(bprm->buf[0]) &&
1227 			    printable(bprm->buf[1]) &&
1228 			    printable(bprm->buf[2]) &&
1229 			    printable(bprm->buf[3]))
1230 				break; /* -ENOEXEC */
1231 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1232 #endif
1233 		}
1234 	}
1235 	return retval;
1236 }
1237 
1238 EXPORT_SYMBOL(search_binary_handler);
1239 
1240 void free_bprm(struct linux_binprm *bprm)
1241 {
1242 	free_arg_pages(bprm);
1243 	if (bprm->cred)
1244 		abort_creds(bprm->cred);
1245 	kfree(bprm);
1246 }
1247 
1248 /*
1249  * sys_execve() executes a new program.
1250  */
1251 int do_execve(char * filename,
1252 	char __user *__user *argv,
1253 	char __user *__user *envp,
1254 	struct pt_regs * regs)
1255 {
1256 	struct linux_binprm *bprm;
1257 	struct file *file;
1258 	struct files_struct *displaced;
1259 	bool clear_in_exec;
1260 	int retval;
1261 
1262 	retval = unshare_files(&displaced);
1263 	if (retval)
1264 		goto out_ret;
1265 
1266 	retval = -ENOMEM;
1267 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1268 	if (!bprm)
1269 		goto out_files;
1270 
1271 	retval = mutex_lock_interruptible(&current->cred_exec_mutex);
1272 	if (retval < 0)
1273 		goto out_free;
1274 	current->in_execve = 1;
1275 
1276 	retval = -ENOMEM;
1277 	bprm->cred = prepare_exec_creds();
1278 	if (!bprm->cred)
1279 		goto out_unlock;
1280 
1281 	retval = check_unsafe_exec(bprm);
1282 	if (retval < 0)
1283 		goto out_unlock;
1284 	clear_in_exec = retval;
1285 
1286 	file = open_exec(filename);
1287 	retval = PTR_ERR(file);
1288 	if (IS_ERR(file))
1289 		goto out_unmark;
1290 
1291 	sched_exec();
1292 
1293 	bprm->file = file;
1294 	bprm->filename = filename;
1295 	bprm->interp = filename;
1296 
1297 	retval = bprm_mm_init(bprm);
1298 	if (retval)
1299 		goto out_file;
1300 
1301 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1302 	if ((retval = bprm->argc) < 0)
1303 		goto out;
1304 
1305 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1306 	if ((retval = bprm->envc) < 0)
1307 		goto out;
1308 
1309 	retval = prepare_binprm(bprm);
1310 	if (retval < 0)
1311 		goto out;
1312 
1313 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1314 	if (retval < 0)
1315 		goto out;
1316 
1317 	bprm->exec = bprm->p;
1318 	retval = copy_strings(bprm->envc, envp, bprm);
1319 	if (retval < 0)
1320 		goto out;
1321 
1322 	retval = copy_strings(bprm->argc, argv, bprm);
1323 	if (retval < 0)
1324 		goto out;
1325 
1326 	current->flags &= ~PF_KTHREAD;
1327 	retval = search_binary_handler(bprm,regs);
1328 	if (retval < 0)
1329 		goto out;
1330 
1331 	/* execve succeeded */
1332 	current->fs->in_exec = 0;
1333 	current->in_execve = 0;
1334 	mutex_unlock(&current->cred_exec_mutex);
1335 	acct_update_integrals(current);
1336 	free_bprm(bprm);
1337 	if (displaced)
1338 		put_files_struct(displaced);
1339 	return retval;
1340 
1341 out:
1342 	if (bprm->mm)
1343 		mmput (bprm->mm);
1344 
1345 out_file:
1346 	if (bprm->file) {
1347 		allow_write_access(bprm->file);
1348 		fput(bprm->file);
1349 	}
1350 
1351 out_unmark:
1352 	if (clear_in_exec)
1353 		current->fs->in_exec = 0;
1354 
1355 out_unlock:
1356 	current->in_execve = 0;
1357 	mutex_unlock(&current->cred_exec_mutex);
1358 
1359 out_free:
1360 	free_bprm(bprm);
1361 
1362 out_files:
1363 	if (displaced)
1364 		reset_files_struct(displaced);
1365 out_ret:
1366 	return retval;
1367 }
1368 
1369 int set_binfmt(struct linux_binfmt *new)
1370 {
1371 	struct linux_binfmt *old = current->binfmt;
1372 
1373 	if (new) {
1374 		if (!try_module_get(new->module))
1375 			return -1;
1376 	}
1377 	current->binfmt = new;
1378 	if (old)
1379 		module_put(old->module);
1380 	return 0;
1381 }
1382 
1383 EXPORT_SYMBOL(set_binfmt);
1384 
1385 /* format_corename will inspect the pattern parameter, and output a
1386  * name into corename, which must have space for at least
1387  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1388  */
1389 static int format_corename(char *corename, long signr)
1390 {
1391 	const struct cred *cred = current_cred();
1392 	const char *pat_ptr = core_pattern;
1393 	int ispipe = (*pat_ptr == '|');
1394 	char *out_ptr = corename;
1395 	char *const out_end = corename + CORENAME_MAX_SIZE;
1396 	int rc;
1397 	int pid_in_pattern = 0;
1398 
1399 	/* Repeat as long as we have more pattern to process and more output
1400 	   space */
1401 	while (*pat_ptr) {
1402 		if (*pat_ptr != '%') {
1403 			if (out_ptr == out_end)
1404 				goto out;
1405 			*out_ptr++ = *pat_ptr++;
1406 		} else {
1407 			switch (*++pat_ptr) {
1408 			case 0:
1409 				goto out;
1410 			/* Double percent, output one percent */
1411 			case '%':
1412 				if (out_ptr == out_end)
1413 					goto out;
1414 				*out_ptr++ = '%';
1415 				break;
1416 			/* pid */
1417 			case 'p':
1418 				pid_in_pattern = 1;
1419 				rc = snprintf(out_ptr, out_end - out_ptr,
1420 					      "%d", task_tgid_vnr(current));
1421 				if (rc > out_end - out_ptr)
1422 					goto out;
1423 				out_ptr += rc;
1424 				break;
1425 			/* uid */
1426 			case 'u':
1427 				rc = snprintf(out_ptr, out_end - out_ptr,
1428 					      "%d", cred->uid);
1429 				if (rc > out_end - out_ptr)
1430 					goto out;
1431 				out_ptr += rc;
1432 				break;
1433 			/* gid */
1434 			case 'g':
1435 				rc = snprintf(out_ptr, out_end - out_ptr,
1436 					      "%d", cred->gid);
1437 				if (rc > out_end - out_ptr)
1438 					goto out;
1439 				out_ptr += rc;
1440 				break;
1441 			/* signal that caused the coredump */
1442 			case 's':
1443 				rc = snprintf(out_ptr, out_end - out_ptr,
1444 					      "%ld", signr);
1445 				if (rc > out_end - out_ptr)
1446 					goto out;
1447 				out_ptr += rc;
1448 				break;
1449 			/* UNIX time of coredump */
1450 			case 't': {
1451 				struct timeval tv;
1452 				do_gettimeofday(&tv);
1453 				rc = snprintf(out_ptr, out_end - out_ptr,
1454 					      "%lu", tv.tv_sec);
1455 				if (rc > out_end - out_ptr)
1456 					goto out;
1457 				out_ptr += rc;
1458 				break;
1459 			}
1460 			/* hostname */
1461 			case 'h':
1462 				down_read(&uts_sem);
1463 				rc = snprintf(out_ptr, out_end - out_ptr,
1464 					      "%s", utsname()->nodename);
1465 				up_read(&uts_sem);
1466 				if (rc > out_end - out_ptr)
1467 					goto out;
1468 				out_ptr += rc;
1469 				break;
1470 			/* executable */
1471 			case 'e':
1472 				rc = snprintf(out_ptr, out_end - out_ptr,
1473 					      "%s", current->comm);
1474 				if (rc > out_end - out_ptr)
1475 					goto out;
1476 				out_ptr += rc;
1477 				break;
1478 			/* core limit size */
1479 			case 'c':
1480 				rc = snprintf(out_ptr, out_end - out_ptr,
1481 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1482 				if (rc > out_end - out_ptr)
1483 					goto out;
1484 				out_ptr += rc;
1485 				break;
1486 			default:
1487 				break;
1488 			}
1489 			++pat_ptr;
1490 		}
1491 	}
1492 	/* Backward compatibility with core_uses_pid:
1493 	 *
1494 	 * If core_pattern does not include a %p (as is the default)
1495 	 * and core_uses_pid is set, then .%pid will be appended to
1496 	 * the filename. Do not do this for piped commands. */
1497 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1498 		rc = snprintf(out_ptr, out_end - out_ptr,
1499 			      ".%d", task_tgid_vnr(current));
1500 		if (rc > out_end - out_ptr)
1501 			goto out;
1502 		out_ptr += rc;
1503 	}
1504 out:
1505 	*out_ptr = 0;
1506 	return ispipe;
1507 }
1508 
1509 static int zap_process(struct task_struct *start)
1510 {
1511 	struct task_struct *t;
1512 	int nr = 0;
1513 
1514 	start->signal->flags = SIGNAL_GROUP_EXIT;
1515 	start->signal->group_stop_count = 0;
1516 
1517 	t = start;
1518 	do {
1519 		if (t != current && t->mm) {
1520 			sigaddset(&t->pending.signal, SIGKILL);
1521 			signal_wake_up(t, 1);
1522 			nr++;
1523 		}
1524 	} while_each_thread(start, t);
1525 
1526 	return nr;
1527 }
1528 
1529 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1530 				struct core_state *core_state, int exit_code)
1531 {
1532 	struct task_struct *g, *p;
1533 	unsigned long flags;
1534 	int nr = -EAGAIN;
1535 
1536 	spin_lock_irq(&tsk->sighand->siglock);
1537 	if (!signal_group_exit(tsk->signal)) {
1538 		mm->core_state = core_state;
1539 		tsk->signal->group_exit_code = exit_code;
1540 		nr = zap_process(tsk);
1541 	}
1542 	spin_unlock_irq(&tsk->sighand->siglock);
1543 	if (unlikely(nr < 0))
1544 		return nr;
1545 
1546 	if (atomic_read(&mm->mm_users) == nr + 1)
1547 		goto done;
1548 	/*
1549 	 * We should find and kill all tasks which use this mm, and we should
1550 	 * count them correctly into ->nr_threads. We don't take tasklist
1551 	 * lock, but this is safe wrt:
1552 	 *
1553 	 * fork:
1554 	 *	None of sub-threads can fork after zap_process(leader). All
1555 	 *	processes which were created before this point should be
1556 	 *	visible to zap_threads() because copy_process() adds the new
1557 	 *	process to the tail of init_task.tasks list, and lock/unlock
1558 	 *	of ->siglock provides a memory barrier.
1559 	 *
1560 	 * do_exit:
1561 	 *	The caller holds mm->mmap_sem. This means that the task which
1562 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1563 	 *	its ->mm.
1564 	 *
1565 	 * de_thread:
1566 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1567 	 *	we must see either old or new leader, this does not matter.
1568 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1569 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1570 	 *	it can't fail.
1571 	 *
1572 	 *	Note also that "g" can be the old leader with ->mm == NULL
1573 	 *	and already unhashed and thus removed from ->thread_group.
1574 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1575 	 *	clear the ->next pointer, we will find the new leader via
1576 	 *	next_thread().
1577 	 */
1578 	rcu_read_lock();
1579 	for_each_process(g) {
1580 		if (g == tsk->group_leader)
1581 			continue;
1582 		if (g->flags & PF_KTHREAD)
1583 			continue;
1584 		p = g;
1585 		do {
1586 			if (p->mm) {
1587 				if (unlikely(p->mm == mm)) {
1588 					lock_task_sighand(p, &flags);
1589 					nr += zap_process(p);
1590 					unlock_task_sighand(p, &flags);
1591 				}
1592 				break;
1593 			}
1594 		} while_each_thread(g, p);
1595 	}
1596 	rcu_read_unlock();
1597 done:
1598 	atomic_set(&core_state->nr_threads, nr);
1599 	return nr;
1600 }
1601 
1602 static int coredump_wait(int exit_code, struct core_state *core_state)
1603 {
1604 	struct task_struct *tsk = current;
1605 	struct mm_struct *mm = tsk->mm;
1606 	struct completion *vfork_done;
1607 	int core_waiters;
1608 
1609 	init_completion(&core_state->startup);
1610 	core_state->dumper.task = tsk;
1611 	core_state->dumper.next = NULL;
1612 	core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1613 	up_write(&mm->mmap_sem);
1614 
1615 	if (unlikely(core_waiters < 0))
1616 		goto fail;
1617 
1618 	/*
1619 	 * Make sure nobody is waiting for us to release the VM,
1620 	 * otherwise we can deadlock when we wait on each other
1621 	 */
1622 	vfork_done = tsk->vfork_done;
1623 	if (vfork_done) {
1624 		tsk->vfork_done = NULL;
1625 		complete(vfork_done);
1626 	}
1627 
1628 	if (core_waiters)
1629 		wait_for_completion(&core_state->startup);
1630 fail:
1631 	return core_waiters;
1632 }
1633 
1634 static void coredump_finish(struct mm_struct *mm)
1635 {
1636 	struct core_thread *curr, *next;
1637 	struct task_struct *task;
1638 
1639 	next = mm->core_state->dumper.next;
1640 	while ((curr = next) != NULL) {
1641 		next = curr->next;
1642 		task = curr->task;
1643 		/*
1644 		 * see exit_mm(), curr->task must not see
1645 		 * ->task == NULL before we read ->next.
1646 		 */
1647 		smp_mb();
1648 		curr->task = NULL;
1649 		wake_up_process(task);
1650 	}
1651 
1652 	mm->core_state = NULL;
1653 }
1654 
1655 /*
1656  * set_dumpable converts traditional three-value dumpable to two flags and
1657  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1658  * these bits are not changed atomically.  So get_dumpable can observe the
1659  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1660  * return either old dumpable or new one by paying attention to the order of
1661  * modifying the bits.
1662  *
1663  * dumpable |   mm->flags (binary)
1664  * old  new | initial interim  final
1665  * ---------+-----------------------
1666  *  0    1  |   00      01      01
1667  *  0    2  |   00      10(*)   11
1668  *  1    0  |   01      00      00
1669  *  1    2  |   01      11      11
1670  *  2    0  |   11      10(*)   00
1671  *  2    1  |   11      11      01
1672  *
1673  * (*) get_dumpable regards interim value of 10 as 11.
1674  */
1675 void set_dumpable(struct mm_struct *mm, int value)
1676 {
1677 	switch (value) {
1678 	case 0:
1679 		clear_bit(MMF_DUMPABLE, &mm->flags);
1680 		smp_wmb();
1681 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1682 		break;
1683 	case 1:
1684 		set_bit(MMF_DUMPABLE, &mm->flags);
1685 		smp_wmb();
1686 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1687 		break;
1688 	case 2:
1689 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1690 		smp_wmb();
1691 		set_bit(MMF_DUMPABLE, &mm->flags);
1692 		break;
1693 	}
1694 }
1695 
1696 int get_dumpable(struct mm_struct *mm)
1697 {
1698 	int ret;
1699 
1700 	ret = mm->flags & 0x3;
1701 	return (ret >= 2) ? 2 : ret;
1702 }
1703 
1704 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1705 {
1706 	struct core_state core_state;
1707 	char corename[CORENAME_MAX_SIZE + 1];
1708 	struct mm_struct *mm = current->mm;
1709 	struct linux_binfmt * binfmt;
1710 	struct inode * inode;
1711 	struct file * file;
1712 	const struct cred *old_cred;
1713 	struct cred *cred;
1714 	int retval = 0;
1715 	int flag = 0;
1716 	int ispipe = 0;
1717 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1718 	char **helper_argv = NULL;
1719 	int helper_argc = 0;
1720 	char *delimit;
1721 
1722 	audit_core_dumps(signr);
1723 
1724 	binfmt = current->binfmt;
1725 	if (!binfmt || !binfmt->core_dump)
1726 		goto fail;
1727 
1728 	cred = prepare_creds();
1729 	if (!cred) {
1730 		retval = -ENOMEM;
1731 		goto fail;
1732 	}
1733 
1734 	down_write(&mm->mmap_sem);
1735 	/*
1736 	 * If another thread got here first, or we are not dumpable, bail out.
1737 	 */
1738 	if (mm->core_state || !get_dumpable(mm)) {
1739 		up_write(&mm->mmap_sem);
1740 		put_cred(cred);
1741 		goto fail;
1742 	}
1743 
1744 	/*
1745 	 *	We cannot trust fsuid as being the "true" uid of the
1746 	 *	process nor do we know its entire history. We only know it
1747 	 *	was tainted so we dump it as root in mode 2.
1748 	 */
1749 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1750 		flag = O_EXCL;		/* Stop rewrite attacks */
1751 		cred->fsuid = 0;	/* Dump root private */
1752 	}
1753 
1754 	retval = coredump_wait(exit_code, &core_state);
1755 	if (retval < 0) {
1756 		put_cred(cred);
1757 		goto fail;
1758 	}
1759 
1760 	old_cred = override_creds(cred);
1761 
1762 	/*
1763 	 * Clear any false indication of pending signals that might
1764 	 * be seen by the filesystem code called to write the core file.
1765 	 */
1766 	clear_thread_flag(TIF_SIGPENDING);
1767 
1768 	/*
1769 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1770 	 * uses lock_kernel()
1771 	 */
1772  	lock_kernel();
1773 	ispipe = format_corename(corename, signr);
1774 	unlock_kernel();
1775 	/*
1776 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1777 	 * to a pipe.  Since we're not writing directly to the filesystem
1778 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1779 	 * created unless the pipe reader choses to write out the core file
1780 	 * at which point file size limits and permissions will be imposed
1781 	 * as it does with any other process
1782 	 */
1783 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1784 		goto fail_unlock;
1785 
1786  	if (ispipe) {
1787 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1788 		if (!helper_argv) {
1789 			printk(KERN_WARNING "%s failed to allocate memory\n",
1790 			       __func__);
1791 			goto fail_unlock;
1792 		}
1793 		/* Terminate the string before the first option */
1794 		delimit = strchr(corename, ' ');
1795 		if (delimit)
1796 			*delimit = '\0';
1797 		delimit = strrchr(helper_argv[0], '/');
1798 		if (delimit)
1799 			delimit++;
1800 		else
1801 			delimit = helper_argv[0];
1802 		if (!strcmp(delimit, current->comm)) {
1803 			printk(KERN_NOTICE "Recursive core dump detected, "
1804 					"aborting\n");
1805 			goto fail_unlock;
1806 		}
1807 
1808 		core_limit = RLIM_INFINITY;
1809 
1810 		/* SIGPIPE can happen, but it's just never processed */
1811  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1812 				&file)) {
1813  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1814 			       corename);
1815  			goto fail_unlock;
1816  		}
1817  	} else
1818  		file = filp_open(corename,
1819 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1820 				 0600);
1821 	if (IS_ERR(file))
1822 		goto fail_unlock;
1823 	inode = file->f_path.dentry->d_inode;
1824 	if (inode->i_nlink > 1)
1825 		goto close_fail;	/* multiple links - don't dump */
1826 	if (!ispipe && d_unhashed(file->f_path.dentry))
1827 		goto close_fail;
1828 
1829 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1830 	   but keep the previous behaviour for now. */
1831 	if (!ispipe && !S_ISREG(inode->i_mode))
1832 		goto close_fail;
1833 	/*
1834 	 * Dont allow local users get cute and trick others to coredump
1835 	 * into their pre-created files:
1836 	 */
1837 	if (inode->i_uid != current_fsuid())
1838 		goto close_fail;
1839 	if (!file->f_op)
1840 		goto close_fail;
1841 	if (!file->f_op->write)
1842 		goto close_fail;
1843 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1844 		goto close_fail;
1845 
1846 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1847 
1848 	if (retval)
1849 		current->signal->group_exit_code |= 0x80;
1850 close_fail:
1851 	filp_close(file, NULL);
1852 fail_unlock:
1853 	if (helper_argv)
1854 		argv_free(helper_argv);
1855 
1856 	revert_creds(old_cred);
1857 	put_cred(cred);
1858 	coredump_finish(mm);
1859 fail:
1860 	return;
1861 }
1862