1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/pagemap.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/proc_fs.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/ima.h> 49 #include <linux/syscalls.h> 50 #include <linux/tsacct_kern.h> 51 #include <linux/cn_proc.h> 52 #include <linux/audit.h> 53 #include <linux/tracehook.h> 54 #include <linux/kmod.h> 55 #include <linux/fsnotify.h> 56 #include <linux/fs_struct.h> 57 58 #include <asm/uaccess.h> 59 #include <asm/mmu_context.h> 60 #include <asm/tlb.h> 61 #include "internal.h" 62 63 int core_uses_pid; 64 char core_pattern[CORENAME_MAX_SIZE] = "core"; 65 int suid_dumpable = 0; 66 67 /* The maximal length of core_pattern is also specified in sysctl.c */ 68 69 static LIST_HEAD(formats); 70 static DEFINE_RWLOCK(binfmt_lock); 71 72 int __register_binfmt(struct linux_binfmt * fmt, int insert) 73 { 74 if (!fmt) 75 return -EINVAL; 76 write_lock(&binfmt_lock); 77 insert ? list_add(&fmt->lh, &formats) : 78 list_add_tail(&fmt->lh, &formats); 79 write_unlock(&binfmt_lock); 80 return 0; 81 } 82 83 EXPORT_SYMBOL(__register_binfmt); 84 85 void unregister_binfmt(struct linux_binfmt * fmt) 86 { 87 write_lock(&binfmt_lock); 88 list_del(&fmt->lh); 89 write_unlock(&binfmt_lock); 90 } 91 92 EXPORT_SYMBOL(unregister_binfmt); 93 94 static inline void put_binfmt(struct linux_binfmt * fmt) 95 { 96 module_put(fmt->module); 97 } 98 99 /* 100 * Note that a shared library must be both readable and executable due to 101 * security reasons. 102 * 103 * Also note that we take the address to load from from the file itself. 104 */ 105 SYSCALL_DEFINE1(uselib, const char __user *, library) 106 { 107 struct file *file; 108 char *tmp = getname(library); 109 int error = PTR_ERR(tmp); 110 111 if (IS_ERR(tmp)) 112 goto out; 113 114 file = do_filp_open(AT_FDCWD, tmp, 115 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0, 116 MAY_READ | MAY_EXEC | MAY_OPEN); 117 putname(tmp); 118 error = PTR_ERR(file); 119 if (IS_ERR(file)) 120 goto out; 121 122 error = -EINVAL; 123 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 124 goto exit; 125 126 error = -EACCES; 127 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 128 goto exit; 129 130 fsnotify_open(file->f_path.dentry); 131 132 error = -ENOEXEC; 133 if(file->f_op) { 134 struct linux_binfmt * fmt; 135 136 read_lock(&binfmt_lock); 137 list_for_each_entry(fmt, &formats, lh) { 138 if (!fmt->load_shlib) 139 continue; 140 if (!try_module_get(fmt->module)) 141 continue; 142 read_unlock(&binfmt_lock); 143 error = fmt->load_shlib(file); 144 read_lock(&binfmt_lock); 145 put_binfmt(fmt); 146 if (error != -ENOEXEC) 147 break; 148 } 149 read_unlock(&binfmt_lock); 150 } 151 exit: 152 fput(file); 153 out: 154 return error; 155 } 156 157 #ifdef CONFIG_MMU 158 159 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 160 int write) 161 { 162 struct page *page; 163 int ret; 164 165 #ifdef CONFIG_STACK_GROWSUP 166 if (write) { 167 ret = expand_stack_downwards(bprm->vma, pos); 168 if (ret < 0) 169 return NULL; 170 } 171 #endif 172 ret = get_user_pages(current, bprm->mm, pos, 173 1, write, 1, &page, NULL); 174 if (ret <= 0) 175 return NULL; 176 177 if (write) { 178 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 179 struct rlimit *rlim; 180 181 /* 182 * We've historically supported up to 32 pages (ARG_MAX) 183 * of argument strings even with small stacks 184 */ 185 if (size <= ARG_MAX) 186 return page; 187 188 /* 189 * Limit to 1/4-th the stack size for the argv+env strings. 190 * This ensures that: 191 * - the remaining binfmt code will not run out of stack space, 192 * - the program will have a reasonable amount of stack left 193 * to work from. 194 */ 195 rlim = current->signal->rlim; 196 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 197 put_page(page); 198 return NULL; 199 } 200 } 201 202 return page; 203 } 204 205 static void put_arg_page(struct page *page) 206 { 207 put_page(page); 208 } 209 210 static void free_arg_page(struct linux_binprm *bprm, int i) 211 { 212 } 213 214 static void free_arg_pages(struct linux_binprm *bprm) 215 { 216 } 217 218 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 219 struct page *page) 220 { 221 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 222 } 223 224 static int __bprm_mm_init(struct linux_binprm *bprm) 225 { 226 int err; 227 struct vm_area_struct *vma = NULL; 228 struct mm_struct *mm = bprm->mm; 229 230 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 231 if (!vma) 232 return -ENOMEM; 233 234 down_write(&mm->mmap_sem); 235 vma->vm_mm = mm; 236 237 /* 238 * Place the stack at the largest stack address the architecture 239 * supports. Later, we'll move this to an appropriate place. We don't 240 * use STACK_TOP because that can depend on attributes which aren't 241 * configured yet. 242 */ 243 vma->vm_end = STACK_TOP_MAX; 244 vma->vm_start = vma->vm_end - PAGE_SIZE; 245 vma->vm_flags = VM_STACK_FLAGS; 246 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 247 err = insert_vm_struct(mm, vma); 248 if (err) 249 goto err; 250 251 mm->stack_vm = mm->total_vm = 1; 252 up_write(&mm->mmap_sem); 253 bprm->p = vma->vm_end - sizeof(void *); 254 return 0; 255 err: 256 up_write(&mm->mmap_sem); 257 bprm->vma = NULL; 258 kmem_cache_free(vm_area_cachep, vma); 259 return err; 260 } 261 262 static bool valid_arg_len(struct linux_binprm *bprm, long len) 263 { 264 return len <= MAX_ARG_STRLEN; 265 } 266 267 #else 268 269 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 270 int write) 271 { 272 struct page *page; 273 274 page = bprm->page[pos / PAGE_SIZE]; 275 if (!page && write) { 276 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 277 if (!page) 278 return NULL; 279 bprm->page[pos / PAGE_SIZE] = page; 280 } 281 282 return page; 283 } 284 285 static void put_arg_page(struct page *page) 286 { 287 } 288 289 static void free_arg_page(struct linux_binprm *bprm, int i) 290 { 291 if (bprm->page[i]) { 292 __free_page(bprm->page[i]); 293 bprm->page[i] = NULL; 294 } 295 } 296 297 static void free_arg_pages(struct linux_binprm *bprm) 298 { 299 int i; 300 301 for (i = 0; i < MAX_ARG_PAGES; i++) 302 free_arg_page(bprm, i); 303 } 304 305 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 306 struct page *page) 307 { 308 } 309 310 static int __bprm_mm_init(struct linux_binprm *bprm) 311 { 312 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 313 return 0; 314 } 315 316 static bool valid_arg_len(struct linux_binprm *bprm, long len) 317 { 318 return len <= bprm->p; 319 } 320 321 #endif /* CONFIG_MMU */ 322 323 /* 324 * Create a new mm_struct and populate it with a temporary stack 325 * vm_area_struct. We don't have enough context at this point to set the stack 326 * flags, permissions, and offset, so we use temporary values. We'll update 327 * them later in setup_arg_pages(). 328 */ 329 int bprm_mm_init(struct linux_binprm *bprm) 330 { 331 int err; 332 struct mm_struct *mm = NULL; 333 334 bprm->mm = mm = mm_alloc(); 335 err = -ENOMEM; 336 if (!mm) 337 goto err; 338 339 err = init_new_context(current, mm); 340 if (err) 341 goto err; 342 343 err = __bprm_mm_init(bprm); 344 if (err) 345 goto err; 346 347 return 0; 348 349 err: 350 if (mm) { 351 bprm->mm = NULL; 352 mmdrop(mm); 353 } 354 355 return err; 356 } 357 358 /* 359 * count() counts the number of strings in array ARGV. 360 */ 361 static int count(char __user * __user * argv, int max) 362 { 363 int i = 0; 364 365 if (argv != NULL) { 366 for (;;) { 367 char __user * p; 368 369 if (get_user(p, argv)) 370 return -EFAULT; 371 if (!p) 372 break; 373 argv++; 374 if (i++ >= max) 375 return -E2BIG; 376 cond_resched(); 377 } 378 } 379 return i; 380 } 381 382 /* 383 * 'copy_strings()' copies argument/environment strings from the old 384 * processes's memory to the new process's stack. The call to get_user_pages() 385 * ensures the destination page is created and not swapped out. 386 */ 387 static int copy_strings(int argc, char __user * __user * argv, 388 struct linux_binprm *bprm) 389 { 390 struct page *kmapped_page = NULL; 391 char *kaddr = NULL; 392 unsigned long kpos = 0; 393 int ret; 394 395 while (argc-- > 0) { 396 char __user *str; 397 int len; 398 unsigned long pos; 399 400 if (get_user(str, argv+argc) || 401 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 402 ret = -EFAULT; 403 goto out; 404 } 405 406 if (!valid_arg_len(bprm, len)) { 407 ret = -E2BIG; 408 goto out; 409 } 410 411 /* We're going to work our way backwords. */ 412 pos = bprm->p; 413 str += len; 414 bprm->p -= len; 415 416 while (len > 0) { 417 int offset, bytes_to_copy; 418 419 offset = pos % PAGE_SIZE; 420 if (offset == 0) 421 offset = PAGE_SIZE; 422 423 bytes_to_copy = offset; 424 if (bytes_to_copy > len) 425 bytes_to_copy = len; 426 427 offset -= bytes_to_copy; 428 pos -= bytes_to_copy; 429 str -= bytes_to_copy; 430 len -= bytes_to_copy; 431 432 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 433 struct page *page; 434 435 page = get_arg_page(bprm, pos, 1); 436 if (!page) { 437 ret = -E2BIG; 438 goto out; 439 } 440 441 if (kmapped_page) { 442 flush_kernel_dcache_page(kmapped_page); 443 kunmap(kmapped_page); 444 put_arg_page(kmapped_page); 445 } 446 kmapped_page = page; 447 kaddr = kmap(kmapped_page); 448 kpos = pos & PAGE_MASK; 449 flush_arg_page(bprm, kpos, kmapped_page); 450 } 451 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 452 ret = -EFAULT; 453 goto out; 454 } 455 } 456 } 457 ret = 0; 458 out: 459 if (kmapped_page) { 460 flush_kernel_dcache_page(kmapped_page); 461 kunmap(kmapped_page); 462 put_arg_page(kmapped_page); 463 } 464 return ret; 465 } 466 467 /* 468 * Like copy_strings, but get argv and its values from kernel memory. 469 */ 470 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 471 { 472 int r; 473 mm_segment_t oldfs = get_fs(); 474 set_fs(KERNEL_DS); 475 r = copy_strings(argc, (char __user * __user *)argv, bprm); 476 set_fs(oldfs); 477 return r; 478 } 479 EXPORT_SYMBOL(copy_strings_kernel); 480 481 #ifdef CONFIG_MMU 482 483 /* 484 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 485 * the binfmt code determines where the new stack should reside, we shift it to 486 * its final location. The process proceeds as follows: 487 * 488 * 1) Use shift to calculate the new vma endpoints. 489 * 2) Extend vma to cover both the old and new ranges. This ensures the 490 * arguments passed to subsequent functions are consistent. 491 * 3) Move vma's page tables to the new range. 492 * 4) Free up any cleared pgd range. 493 * 5) Shrink the vma to cover only the new range. 494 */ 495 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 496 { 497 struct mm_struct *mm = vma->vm_mm; 498 unsigned long old_start = vma->vm_start; 499 unsigned long old_end = vma->vm_end; 500 unsigned long length = old_end - old_start; 501 unsigned long new_start = old_start - shift; 502 unsigned long new_end = old_end - shift; 503 struct mmu_gather *tlb; 504 505 BUG_ON(new_start > new_end); 506 507 /* 508 * ensure there are no vmas between where we want to go 509 * and where we are 510 */ 511 if (vma != find_vma(mm, new_start)) 512 return -EFAULT; 513 514 /* 515 * cover the whole range: [new_start, old_end) 516 */ 517 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 518 519 /* 520 * move the page tables downwards, on failure we rely on 521 * process cleanup to remove whatever mess we made. 522 */ 523 if (length != move_page_tables(vma, old_start, 524 vma, new_start, length)) 525 return -ENOMEM; 526 527 lru_add_drain(); 528 tlb = tlb_gather_mmu(mm, 0); 529 if (new_end > old_start) { 530 /* 531 * when the old and new regions overlap clear from new_end. 532 */ 533 free_pgd_range(tlb, new_end, old_end, new_end, 534 vma->vm_next ? vma->vm_next->vm_start : 0); 535 } else { 536 /* 537 * otherwise, clean from old_start; this is done to not touch 538 * the address space in [new_end, old_start) some architectures 539 * have constraints on va-space that make this illegal (IA64) - 540 * for the others its just a little faster. 541 */ 542 free_pgd_range(tlb, old_start, old_end, new_end, 543 vma->vm_next ? vma->vm_next->vm_start : 0); 544 } 545 tlb_finish_mmu(tlb, new_end, old_end); 546 547 /* 548 * shrink the vma to just the new range. 549 */ 550 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 551 552 return 0; 553 } 554 555 #define EXTRA_STACK_VM_PAGES 20 /* random */ 556 557 /* 558 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 559 * the stack is optionally relocated, and some extra space is added. 560 */ 561 int setup_arg_pages(struct linux_binprm *bprm, 562 unsigned long stack_top, 563 int executable_stack) 564 { 565 unsigned long ret; 566 unsigned long stack_shift; 567 struct mm_struct *mm = current->mm; 568 struct vm_area_struct *vma = bprm->vma; 569 struct vm_area_struct *prev = NULL; 570 unsigned long vm_flags; 571 unsigned long stack_base; 572 573 #ifdef CONFIG_STACK_GROWSUP 574 /* Limit stack size to 1GB */ 575 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 576 if (stack_base > (1 << 30)) 577 stack_base = 1 << 30; 578 579 /* Make sure we didn't let the argument array grow too large. */ 580 if (vma->vm_end - vma->vm_start > stack_base) 581 return -ENOMEM; 582 583 stack_base = PAGE_ALIGN(stack_top - stack_base); 584 585 stack_shift = vma->vm_start - stack_base; 586 mm->arg_start = bprm->p - stack_shift; 587 bprm->p = vma->vm_end - stack_shift; 588 #else 589 stack_top = arch_align_stack(stack_top); 590 stack_top = PAGE_ALIGN(stack_top); 591 stack_shift = vma->vm_end - stack_top; 592 593 bprm->p -= stack_shift; 594 mm->arg_start = bprm->p; 595 #endif 596 597 if (bprm->loader) 598 bprm->loader -= stack_shift; 599 bprm->exec -= stack_shift; 600 601 down_write(&mm->mmap_sem); 602 vm_flags = VM_STACK_FLAGS; 603 604 /* 605 * Adjust stack execute permissions; explicitly enable for 606 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 607 * (arch default) otherwise. 608 */ 609 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 610 vm_flags |= VM_EXEC; 611 else if (executable_stack == EXSTACK_DISABLE_X) 612 vm_flags &= ~VM_EXEC; 613 vm_flags |= mm->def_flags; 614 615 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 616 vm_flags); 617 if (ret) 618 goto out_unlock; 619 BUG_ON(prev != vma); 620 621 /* Move stack pages down in memory. */ 622 if (stack_shift) { 623 ret = shift_arg_pages(vma, stack_shift); 624 if (ret) { 625 up_write(&mm->mmap_sem); 626 return ret; 627 } 628 } 629 630 #ifdef CONFIG_STACK_GROWSUP 631 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 632 #else 633 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 634 #endif 635 ret = expand_stack(vma, stack_base); 636 if (ret) 637 ret = -EFAULT; 638 639 out_unlock: 640 up_write(&mm->mmap_sem); 641 return 0; 642 } 643 EXPORT_SYMBOL(setup_arg_pages); 644 645 #endif /* CONFIG_MMU */ 646 647 struct file *open_exec(const char *name) 648 { 649 struct file *file; 650 int err; 651 652 file = do_filp_open(AT_FDCWD, name, 653 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0, 654 MAY_EXEC | MAY_OPEN); 655 if (IS_ERR(file)) 656 goto out; 657 658 err = -EACCES; 659 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 660 goto exit; 661 662 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 663 goto exit; 664 665 fsnotify_open(file->f_path.dentry); 666 667 err = deny_write_access(file); 668 if (err) 669 goto exit; 670 671 out: 672 return file; 673 674 exit: 675 fput(file); 676 return ERR_PTR(err); 677 } 678 EXPORT_SYMBOL(open_exec); 679 680 int kernel_read(struct file *file, unsigned long offset, 681 char *addr, unsigned long count) 682 { 683 mm_segment_t old_fs; 684 loff_t pos = offset; 685 int result; 686 687 old_fs = get_fs(); 688 set_fs(get_ds()); 689 /* The cast to a user pointer is valid due to the set_fs() */ 690 result = vfs_read(file, (void __user *)addr, count, &pos); 691 set_fs(old_fs); 692 return result; 693 } 694 695 EXPORT_SYMBOL(kernel_read); 696 697 static int exec_mmap(struct mm_struct *mm) 698 { 699 struct task_struct *tsk; 700 struct mm_struct * old_mm, *active_mm; 701 702 /* Notify parent that we're no longer interested in the old VM */ 703 tsk = current; 704 old_mm = current->mm; 705 mm_release(tsk, old_mm); 706 707 if (old_mm) { 708 /* 709 * Make sure that if there is a core dump in progress 710 * for the old mm, we get out and die instead of going 711 * through with the exec. We must hold mmap_sem around 712 * checking core_state and changing tsk->mm. 713 */ 714 down_read(&old_mm->mmap_sem); 715 if (unlikely(old_mm->core_state)) { 716 up_read(&old_mm->mmap_sem); 717 return -EINTR; 718 } 719 } 720 task_lock(tsk); 721 active_mm = tsk->active_mm; 722 tsk->mm = mm; 723 tsk->active_mm = mm; 724 activate_mm(active_mm, mm); 725 task_unlock(tsk); 726 arch_pick_mmap_layout(mm); 727 if (old_mm) { 728 up_read(&old_mm->mmap_sem); 729 BUG_ON(active_mm != old_mm); 730 mm_update_next_owner(old_mm); 731 mmput(old_mm); 732 return 0; 733 } 734 mmdrop(active_mm); 735 return 0; 736 } 737 738 /* 739 * This function makes sure the current process has its own signal table, 740 * so that flush_signal_handlers can later reset the handlers without 741 * disturbing other processes. (Other processes might share the signal 742 * table via the CLONE_SIGHAND option to clone().) 743 */ 744 static int de_thread(struct task_struct *tsk) 745 { 746 struct signal_struct *sig = tsk->signal; 747 struct sighand_struct *oldsighand = tsk->sighand; 748 spinlock_t *lock = &oldsighand->siglock; 749 int count; 750 751 if (thread_group_empty(tsk)) 752 goto no_thread_group; 753 754 /* 755 * Kill all other threads in the thread group. 756 */ 757 spin_lock_irq(lock); 758 if (signal_group_exit(sig)) { 759 /* 760 * Another group action in progress, just 761 * return so that the signal is processed. 762 */ 763 spin_unlock_irq(lock); 764 return -EAGAIN; 765 } 766 sig->group_exit_task = tsk; 767 zap_other_threads(tsk); 768 769 /* Account for the thread group leader hanging around: */ 770 count = thread_group_leader(tsk) ? 1 : 2; 771 sig->notify_count = count; 772 while (atomic_read(&sig->count) > count) { 773 __set_current_state(TASK_UNINTERRUPTIBLE); 774 spin_unlock_irq(lock); 775 schedule(); 776 spin_lock_irq(lock); 777 } 778 spin_unlock_irq(lock); 779 780 /* 781 * At this point all other threads have exited, all we have to 782 * do is to wait for the thread group leader to become inactive, 783 * and to assume its PID: 784 */ 785 if (!thread_group_leader(tsk)) { 786 struct task_struct *leader = tsk->group_leader; 787 788 sig->notify_count = -1; /* for exit_notify() */ 789 for (;;) { 790 write_lock_irq(&tasklist_lock); 791 if (likely(leader->exit_state)) 792 break; 793 __set_current_state(TASK_UNINTERRUPTIBLE); 794 write_unlock_irq(&tasklist_lock); 795 schedule(); 796 } 797 798 /* 799 * The only record we have of the real-time age of a 800 * process, regardless of execs it's done, is start_time. 801 * All the past CPU time is accumulated in signal_struct 802 * from sister threads now dead. But in this non-leader 803 * exec, nothing survives from the original leader thread, 804 * whose birth marks the true age of this process now. 805 * When we take on its identity by switching to its PID, we 806 * also take its birthdate (always earlier than our own). 807 */ 808 tsk->start_time = leader->start_time; 809 810 BUG_ON(!same_thread_group(leader, tsk)); 811 BUG_ON(has_group_leader_pid(tsk)); 812 /* 813 * An exec() starts a new thread group with the 814 * TGID of the previous thread group. Rehash the 815 * two threads with a switched PID, and release 816 * the former thread group leader: 817 */ 818 819 /* Become a process group leader with the old leader's pid. 820 * The old leader becomes a thread of the this thread group. 821 * Note: The old leader also uses this pid until release_task 822 * is called. Odd but simple and correct. 823 */ 824 detach_pid(tsk, PIDTYPE_PID); 825 tsk->pid = leader->pid; 826 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 827 transfer_pid(leader, tsk, PIDTYPE_PGID); 828 transfer_pid(leader, tsk, PIDTYPE_SID); 829 list_replace_rcu(&leader->tasks, &tsk->tasks); 830 831 tsk->group_leader = tsk; 832 leader->group_leader = tsk; 833 834 tsk->exit_signal = SIGCHLD; 835 836 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 837 leader->exit_state = EXIT_DEAD; 838 write_unlock_irq(&tasklist_lock); 839 840 release_task(leader); 841 } 842 843 sig->group_exit_task = NULL; 844 sig->notify_count = 0; 845 846 no_thread_group: 847 exit_itimers(sig); 848 flush_itimer_signals(); 849 850 if (atomic_read(&oldsighand->count) != 1) { 851 struct sighand_struct *newsighand; 852 /* 853 * This ->sighand is shared with the CLONE_SIGHAND 854 * but not CLONE_THREAD task, switch to the new one. 855 */ 856 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 857 if (!newsighand) 858 return -ENOMEM; 859 860 atomic_set(&newsighand->count, 1); 861 memcpy(newsighand->action, oldsighand->action, 862 sizeof(newsighand->action)); 863 864 write_lock_irq(&tasklist_lock); 865 spin_lock(&oldsighand->siglock); 866 rcu_assign_pointer(tsk->sighand, newsighand); 867 spin_unlock(&oldsighand->siglock); 868 write_unlock_irq(&tasklist_lock); 869 870 __cleanup_sighand(oldsighand); 871 } 872 873 BUG_ON(!thread_group_leader(tsk)); 874 return 0; 875 } 876 877 /* 878 * These functions flushes out all traces of the currently running executable 879 * so that a new one can be started 880 */ 881 static void flush_old_files(struct files_struct * files) 882 { 883 long j = -1; 884 struct fdtable *fdt; 885 886 spin_lock(&files->file_lock); 887 for (;;) { 888 unsigned long set, i; 889 890 j++; 891 i = j * __NFDBITS; 892 fdt = files_fdtable(files); 893 if (i >= fdt->max_fds) 894 break; 895 set = fdt->close_on_exec->fds_bits[j]; 896 if (!set) 897 continue; 898 fdt->close_on_exec->fds_bits[j] = 0; 899 spin_unlock(&files->file_lock); 900 for ( ; set ; i++,set >>= 1) { 901 if (set & 1) { 902 sys_close(i); 903 } 904 } 905 spin_lock(&files->file_lock); 906 907 } 908 spin_unlock(&files->file_lock); 909 } 910 911 char *get_task_comm(char *buf, struct task_struct *tsk) 912 { 913 /* buf must be at least sizeof(tsk->comm) in size */ 914 task_lock(tsk); 915 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 916 task_unlock(tsk); 917 return buf; 918 } 919 920 void set_task_comm(struct task_struct *tsk, char *buf) 921 { 922 task_lock(tsk); 923 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 924 task_unlock(tsk); 925 } 926 927 int flush_old_exec(struct linux_binprm * bprm) 928 { 929 char * name; 930 int i, ch, retval; 931 char tcomm[sizeof(current->comm)]; 932 933 /* 934 * Make sure we have a private signal table and that 935 * we are unassociated from the previous thread group. 936 */ 937 retval = de_thread(current); 938 if (retval) 939 goto out; 940 941 set_mm_exe_file(bprm->mm, bprm->file); 942 943 /* 944 * Release all of the old mmap stuff 945 */ 946 retval = exec_mmap(bprm->mm); 947 if (retval) 948 goto out; 949 950 bprm->mm = NULL; /* We're using it now */ 951 952 /* This is the point of no return */ 953 current->sas_ss_sp = current->sas_ss_size = 0; 954 955 if (current_euid() == current_uid() && current_egid() == current_gid()) 956 set_dumpable(current->mm, 1); 957 else 958 set_dumpable(current->mm, suid_dumpable); 959 960 name = bprm->filename; 961 962 /* Copies the binary name from after last slash */ 963 for (i=0; (ch = *(name++)) != '\0';) { 964 if (ch == '/') 965 i = 0; /* overwrite what we wrote */ 966 else 967 if (i < (sizeof(tcomm) - 1)) 968 tcomm[i++] = ch; 969 } 970 tcomm[i] = '\0'; 971 set_task_comm(current, tcomm); 972 973 current->flags &= ~PF_RANDOMIZE; 974 flush_thread(); 975 976 /* Set the new mm task size. We have to do that late because it may 977 * depend on TIF_32BIT which is only updated in flush_thread() on 978 * some architectures like powerpc 979 */ 980 current->mm->task_size = TASK_SIZE; 981 982 /* install the new credentials */ 983 if (bprm->cred->uid != current_euid() || 984 bprm->cred->gid != current_egid()) { 985 current->pdeath_signal = 0; 986 } else if (file_permission(bprm->file, MAY_READ) || 987 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) { 988 set_dumpable(current->mm, suid_dumpable); 989 } 990 991 current->personality &= ~bprm->per_clear; 992 993 /* An exec changes our domain. We are no longer part of the thread 994 group */ 995 996 current->self_exec_id++; 997 998 flush_signal_handlers(current, 0); 999 flush_old_files(current->files); 1000 1001 return 0; 1002 1003 out: 1004 return retval; 1005 } 1006 1007 EXPORT_SYMBOL(flush_old_exec); 1008 1009 /* 1010 * install the new credentials for this executable 1011 */ 1012 void install_exec_creds(struct linux_binprm *bprm) 1013 { 1014 security_bprm_committing_creds(bprm); 1015 1016 commit_creds(bprm->cred); 1017 bprm->cred = NULL; 1018 1019 /* cred_exec_mutex must be held at least to this point to prevent 1020 * ptrace_attach() from altering our determination of the task's 1021 * credentials; any time after this it may be unlocked */ 1022 1023 security_bprm_committed_creds(bprm); 1024 } 1025 EXPORT_SYMBOL(install_exec_creds); 1026 1027 /* 1028 * determine how safe it is to execute the proposed program 1029 * - the caller must hold current->cred_exec_mutex to protect against 1030 * PTRACE_ATTACH 1031 */ 1032 int check_unsafe_exec(struct linux_binprm *bprm) 1033 { 1034 struct task_struct *p = current, *t; 1035 unsigned n_fs; 1036 int res = 0; 1037 1038 bprm->unsafe = tracehook_unsafe_exec(p); 1039 1040 n_fs = 1; 1041 write_lock(&p->fs->lock); 1042 rcu_read_lock(); 1043 for (t = next_thread(p); t != p; t = next_thread(t)) { 1044 if (t->fs == p->fs) 1045 n_fs++; 1046 } 1047 rcu_read_unlock(); 1048 1049 if (p->fs->users > n_fs) { 1050 bprm->unsafe |= LSM_UNSAFE_SHARE; 1051 } else { 1052 res = -EAGAIN; 1053 if (!p->fs->in_exec) { 1054 p->fs->in_exec = 1; 1055 res = 1; 1056 } 1057 } 1058 write_unlock(&p->fs->lock); 1059 1060 return res; 1061 } 1062 1063 /* 1064 * Fill the binprm structure from the inode. 1065 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1066 * 1067 * This may be called multiple times for binary chains (scripts for example). 1068 */ 1069 int prepare_binprm(struct linux_binprm *bprm) 1070 { 1071 umode_t mode; 1072 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1073 int retval; 1074 1075 mode = inode->i_mode; 1076 if (bprm->file->f_op == NULL) 1077 return -EACCES; 1078 1079 /* clear any previous set[ug]id data from a previous binary */ 1080 bprm->cred->euid = current_euid(); 1081 bprm->cred->egid = current_egid(); 1082 1083 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1084 /* Set-uid? */ 1085 if (mode & S_ISUID) { 1086 bprm->per_clear |= PER_CLEAR_ON_SETID; 1087 bprm->cred->euid = inode->i_uid; 1088 } 1089 1090 /* Set-gid? */ 1091 /* 1092 * If setgid is set but no group execute bit then this 1093 * is a candidate for mandatory locking, not a setgid 1094 * executable. 1095 */ 1096 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1097 bprm->per_clear |= PER_CLEAR_ON_SETID; 1098 bprm->cred->egid = inode->i_gid; 1099 } 1100 } 1101 1102 /* fill in binprm security blob */ 1103 retval = security_bprm_set_creds(bprm); 1104 if (retval) 1105 return retval; 1106 bprm->cred_prepared = 1; 1107 1108 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1109 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1110 } 1111 1112 EXPORT_SYMBOL(prepare_binprm); 1113 1114 /* 1115 * Arguments are '\0' separated strings found at the location bprm->p 1116 * points to; chop off the first by relocating brpm->p to right after 1117 * the first '\0' encountered. 1118 */ 1119 int remove_arg_zero(struct linux_binprm *bprm) 1120 { 1121 int ret = 0; 1122 unsigned long offset; 1123 char *kaddr; 1124 struct page *page; 1125 1126 if (!bprm->argc) 1127 return 0; 1128 1129 do { 1130 offset = bprm->p & ~PAGE_MASK; 1131 page = get_arg_page(bprm, bprm->p, 0); 1132 if (!page) { 1133 ret = -EFAULT; 1134 goto out; 1135 } 1136 kaddr = kmap_atomic(page, KM_USER0); 1137 1138 for (; offset < PAGE_SIZE && kaddr[offset]; 1139 offset++, bprm->p++) 1140 ; 1141 1142 kunmap_atomic(kaddr, KM_USER0); 1143 put_arg_page(page); 1144 1145 if (offset == PAGE_SIZE) 1146 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1147 } while (offset == PAGE_SIZE); 1148 1149 bprm->p++; 1150 bprm->argc--; 1151 ret = 0; 1152 1153 out: 1154 return ret; 1155 } 1156 EXPORT_SYMBOL(remove_arg_zero); 1157 1158 /* 1159 * cycle the list of binary formats handler, until one recognizes the image 1160 */ 1161 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1162 { 1163 unsigned int depth = bprm->recursion_depth; 1164 int try,retval; 1165 struct linux_binfmt *fmt; 1166 1167 retval = security_bprm_check(bprm); 1168 if (retval) 1169 return retval; 1170 retval = ima_bprm_check(bprm); 1171 if (retval) 1172 return retval; 1173 1174 /* kernel module loader fixup */ 1175 /* so we don't try to load run modprobe in kernel space. */ 1176 set_fs(USER_DS); 1177 1178 retval = audit_bprm(bprm); 1179 if (retval) 1180 return retval; 1181 1182 retval = -ENOENT; 1183 for (try=0; try<2; try++) { 1184 read_lock(&binfmt_lock); 1185 list_for_each_entry(fmt, &formats, lh) { 1186 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1187 if (!fn) 1188 continue; 1189 if (!try_module_get(fmt->module)) 1190 continue; 1191 read_unlock(&binfmt_lock); 1192 retval = fn(bprm, regs); 1193 /* 1194 * Restore the depth counter to its starting value 1195 * in this call, so we don't have to rely on every 1196 * load_binary function to restore it on return. 1197 */ 1198 bprm->recursion_depth = depth; 1199 if (retval >= 0) { 1200 if (depth == 0) 1201 tracehook_report_exec(fmt, bprm, regs); 1202 put_binfmt(fmt); 1203 allow_write_access(bprm->file); 1204 if (bprm->file) 1205 fput(bprm->file); 1206 bprm->file = NULL; 1207 current->did_exec = 1; 1208 proc_exec_connector(current); 1209 return retval; 1210 } 1211 read_lock(&binfmt_lock); 1212 put_binfmt(fmt); 1213 if (retval != -ENOEXEC || bprm->mm == NULL) 1214 break; 1215 if (!bprm->file) { 1216 read_unlock(&binfmt_lock); 1217 return retval; 1218 } 1219 } 1220 read_unlock(&binfmt_lock); 1221 if (retval != -ENOEXEC || bprm->mm == NULL) { 1222 break; 1223 #ifdef CONFIG_MODULES 1224 } else { 1225 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1226 if (printable(bprm->buf[0]) && 1227 printable(bprm->buf[1]) && 1228 printable(bprm->buf[2]) && 1229 printable(bprm->buf[3])) 1230 break; /* -ENOEXEC */ 1231 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1232 #endif 1233 } 1234 } 1235 return retval; 1236 } 1237 1238 EXPORT_SYMBOL(search_binary_handler); 1239 1240 void free_bprm(struct linux_binprm *bprm) 1241 { 1242 free_arg_pages(bprm); 1243 if (bprm->cred) 1244 abort_creds(bprm->cred); 1245 kfree(bprm); 1246 } 1247 1248 /* 1249 * sys_execve() executes a new program. 1250 */ 1251 int do_execve(char * filename, 1252 char __user *__user *argv, 1253 char __user *__user *envp, 1254 struct pt_regs * regs) 1255 { 1256 struct linux_binprm *bprm; 1257 struct file *file; 1258 struct files_struct *displaced; 1259 bool clear_in_exec; 1260 int retval; 1261 1262 retval = unshare_files(&displaced); 1263 if (retval) 1264 goto out_ret; 1265 1266 retval = -ENOMEM; 1267 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1268 if (!bprm) 1269 goto out_files; 1270 1271 retval = mutex_lock_interruptible(¤t->cred_exec_mutex); 1272 if (retval < 0) 1273 goto out_free; 1274 current->in_execve = 1; 1275 1276 retval = -ENOMEM; 1277 bprm->cred = prepare_exec_creds(); 1278 if (!bprm->cred) 1279 goto out_unlock; 1280 1281 retval = check_unsafe_exec(bprm); 1282 if (retval < 0) 1283 goto out_unlock; 1284 clear_in_exec = retval; 1285 1286 file = open_exec(filename); 1287 retval = PTR_ERR(file); 1288 if (IS_ERR(file)) 1289 goto out_unmark; 1290 1291 sched_exec(); 1292 1293 bprm->file = file; 1294 bprm->filename = filename; 1295 bprm->interp = filename; 1296 1297 retval = bprm_mm_init(bprm); 1298 if (retval) 1299 goto out_file; 1300 1301 bprm->argc = count(argv, MAX_ARG_STRINGS); 1302 if ((retval = bprm->argc) < 0) 1303 goto out; 1304 1305 bprm->envc = count(envp, MAX_ARG_STRINGS); 1306 if ((retval = bprm->envc) < 0) 1307 goto out; 1308 1309 retval = prepare_binprm(bprm); 1310 if (retval < 0) 1311 goto out; 1312 1313 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1314 if (retval < 0) 1315 goto out; 1316 1317 bprm->exec = bprm->p; 1318 retval = copy_strings(bprm->envc, envp, bprm); 1319 if (retval < 0) 1320 goto out; 1321 1322 retval = copy_strings(bprm->argc, argv, bprm); 1323 if (retval < 0) 1324 goto out; 1325 1326 current->flags &= ~PF_KTHREAD; 1327 retval = search_binary_handler(bprm,regs); 1328 if (retval < 0) 1329 goto out; 1330 1331 /* execve succeeded */ 1332 current->fs->in_exec = 0; 1333 current->in_execve = 0; 1334 mutex_unlock(¤t->cred_exec_mutex); 1335 acct_update_integrals(current); 1336 free_bprm(bprm); 1337 if (displaced) 1338 put_files_struct(displaced); 1339 return retval; 1340 1341 out: 1342 if (bprm->mm) 1343 mmput (bprm->mm); 1344 1345 out_file: 1346 if (bprm->file) { 1347 allow_write_access(bprm->file); 1348 fput(bprm->file); 1349 } 1350 1351 out_unmark: 1352 if (clear_in_exec) 1353 current->fs->in_exec = 0; 1354 1355 out_unlock: 1356 current->in_execve = 0; 1357 mutex_unlock(¤t->cred_exec_mutex); 1358 1359 out_free: 1360 free_bprm(bprm); 1361 1362 out_files: 1363 if (displaced) 1364 reset_files_struct(displaced); 1365 out_ret: 1366 return retval; 1367 } 1368 1369 int set_binfmt(struct linux_binfmt *new) 1370 { 1371 struct linux_binfmt *old = current->binfmt; 1372 1373 if (new) { 1374 if (!try_module_get(new->module)) 1375 return -1; 1376 } 1377 current->binfmt = new; 1378 if (old) 1379 module_put(old->module); 1380 return 0; 1381 } 1382 1383 EXPORT_SYMBOL(set_binfmt); 1384 1385 /* format_corename will inspect the pattern parameter, and output a 1386 * name into corename, which must have space for at least 1387 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1388 */ 1389 static int format_corename(char *corename, long signr) 1390 { 1391 const struct cred *cred = current_cred(); 1392 const char *pat_ptr = core_pattern; 1393 int ispipe = (*pat_ptr == '|'); 1394 char *out_ptr = corename; 1395 char *const out_end = corename + CORENAME_MAX_SIZE; 1396 int rc; 1397 int pid_in_pattern = 0; 1398 1399 /* Repeat as long as we have more pattern to process and more output 1400 space */ 1401 while (*pat_ptr) { 1402 if (*pat_ptr != '%') { 1403 if (out_ptr == out_end) 1404 goto out; 1405 *out_ptr++ = *pat_ptr++; 1406 } else { 1407 switch (*++pat_ptr) { 1408 case 0: 1409 goto out; 1410 /* Double percent, output one percent */ 1411 case '%': 1412 if (out_ptr == out_end) 1413 goto out; 1414 *out_ptr++ = '%'; 1415 break; 1416 /* pid */ 1417 case 'p': 1418 pid_in_pattern = 1; 1419 rc = snprintf(out_ptr, out_end - out_ptr, 1420 "%d", task_tgid_vnr(current)); 1421 if (rc > out_end - out_ptr) 1422 goto out; 1423 out_ptr += rc; 1424 break; 1425 /* uid */ 1426 case 'u': 1427 rc = snprintf(out_ptr, out_end - out_ptr, 1428 "%d", cred->uid); 1429 if (rc > out_end - out_ptr) 1430 goto out; 1431 out_ptr += rc; 1432 break; 1433 /* gid */ 1434 case 'g': 1435 rc = snprintf(out_ptr, out_end - out_ptr, 1436 "%d", cred->gid); 1437 if (rc > out_end - out_ptr) 1438 goto out; 1439 out_ptr += rc; 1440 break; 1441 /* signal that caused the coredump */ 1442 case 's': 1443 rc = snprintf(out_ptr, out_end - out_ptr, 1444 "%ld", signr); 1445 if (rc > out_end - out_ptr) 1446 goto out; 1447 out_ptr += rc; 1448 break; 1449 /* UNIX time of coredump */ 1450 case 't': { 1451 struct timeval tv; 1452 do_gettimeofday(&tv); 1453 rc = snprintf(out_ptr, out_end - out_ptr, 1454 "%lu", tv.tv_sec); 1455 if (rc > out_end - out_ptr) 1456 goto out; 1457 out_ptr += rc; 1458 break; 1459 } 1460 /* hostname */ 1461 case 'h': 1462 down_read(&uts_sem); 1463 rc = snprintf(out_ptr, out_end - out_ptr, 1464 "%s", utsname()->nodename); 1465 up_read(&uts_sem); 1466 if (rc > out_end - out_ptr) 1467 goto out; 1468 out_ptr += rc; 1469 break; 1470 /* executable */ 1471 case 'e': 1472 rc = snprintf(out_ptr, out_end - out_ptr, 1473 "%s", current->comm); 1474 if (rc > out_end - out_ptr) 1475 goto out; 1476 out_ptr += rc; 1477 break; 1478 /* core limit size */ 1479 case 'c': 1480 rc = snprintf(out_ptr, out_end - out_ptr, 1481 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); 1482 if (rc > out_end - out_ptr) 1483 goto out; 1484 out_ptr += rc; 1485 break; 1486 default: 1487 break; 1488 } 1489 ++pat_ptr; 1490 } 1491 } 1492 /* Backward compatibility with core_uses_pid: 1493 * 1494 * If core_pattern does not include a %p (as is the default) 1495 * and core_uses_pid is set, then .%pid will be appended to 1496 * the filename. Do not do this for piped commands. */ 1497 if (!ispipe && !pid_in_pattern && core_uses_pid) { 1498 rc = snprintf(out_ptr, out_end - out_ptr, 1499 ".%d", task_tgid_vnr(current)); 1500 if (rc > out_end - out_ptr) 1501 goto out; 1502 out_ptr += rc; 1503 } 1504 out: 1505 *out_ptr = 0; 1506 return ispipe; 1507 } 1508 1509 static int zap_process(struct task_struct *start) 1510 { 1511 struct task_struct *t; 1512 int nr = 0; 1513 1514 start->signal->flags = SIGNAL_GROUP_EXIT; 1515 start->signal->group_stop_count = 0; 1516 1517 t = start; 1518 do { 1519 if (t != current && t->mm) { 1520 sigaddset(&t->pending.signal, SIGKILL); 1521 signal_wake_up(t, 1); 1522 nr++; 1523 } 1524 } while_each_thread(start, t); 1525 1526 return nr; 1527 } 1528 1529 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1530 struct core_state *core_state, int exit_code) 1531 { 1532 struct task_struct *g, *p; 1533 unsigned long flags; 1534 int nr = -EAGAIN; 1535 1536 spin_lock_irq(&tsk->sighand->siglock); 1537 if (!signal_group_exit(tsk->signal)) { 1538 mm->core_state = core_state; 1539 tsk->signal->group_exit_code = exit_code; 1540 nr = zap_process(tsk); 1541 } 1542 spin_unlock_irq(&tsk->sighand->siglock); 1543 if (unlikely(nr < 0)) 1544 return nr; 1545 1546 if (atomic_read(&mm->mm_users) == nr + 1) 1547 goto done; 1548 /* 1549 * We should find and kill all tasks which use this mm, and we should 1550 * count them correctly into ->nr_threads. We don't take tasklist 1551 * lock, but this is safe wrt: 1552 * 1553 * fork: 1554 * None of sub-threads can fork after zap_process(leader). All 1555 * processes which were created before this point should be 1556 * visible to zap_threads() because copy_process() adds the new 1557 * process to the tail of init_task.tasks list, and lock/unlock 1558 * of ->siglock provides a memory barrier. 1559 * 1560 * do_exit: 1561 * The caller holds mm->mmap_sem. This means that the task which 1562 * uses this mm can't pass exit_mm(), so it can't exit or clear 1563 * its ->mm. 1564 * 1565 * de_thread: 1566 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 1567 * we must see either old or new leader, this does not matter. 1568 * However, it can change p->sighand, so lock_task_sighand(p) 1569 * must be used. Since p->mm != NULL and we hold ->mmap_sem 1570 * it can't fail. 1571 * 1572 * Note also that "g" can be the old leader with ->mm == NULL 1573 * and already unhashed and thus removed from ->thread_group. 1574 * This is OK, __unhash_process()->list_del_rcu() does not 1575 * clear the ->next pointer, we will find the new leader via 1576 * next_thread(). 1577 */ 1578 rcu_read_lock(); 1579 for_each_process(g) { 1580 if (g == tsk->group_leader) 1581 continue; 1582 if (g->flags & PF_KTHREAD) 1583 continue; 1584 p = g; 1585 do { 1586 if (p->mm) { 1587 if (unlikely(p->mm == mm)) { 1588 lock_task_sighand(p, &flags); 1589 nr += zap_process(p); 1590 unlock_task_sighand(p, &flags); 1591 } 1592 break; 1593 } 1594 } while_each_thread(g, p); 1595 } 1596 rcu_read_unlock(); 1597 done: 1598 atomic_set(&core_state->nr_threads, nr); 1599 return nr; 1600 } 1601 1602 static int coredump_wait(int exit_code, struct core_state *core_state) 1603 { 1604 struct task_struct *tsk = current; 1605 struct mm_struct *mm = tsk->mm; 1606 struct completion *vfork_done; 1607 int core_waiters; 1608 1609 init_completion(&core_state->startup); 1610 core_state->dumper.task = tsk; 1611 core_state->dumper.next = NULL; 1612 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 1613 up_write(&mm->mmap_sem); 1614 1615 if (unlikely(core_waiters < 0)) 1616 goto fail; 1617 1618 /* 1619 * Make sure nobody is waiting for us to release the VM, 1620 * otherwise we can deadlock when we wait on each other 1621 */ 1622 vfork_done = tsk->vfork_done; 1623 if (vfork_done) { 1624 tsk->vfork_done = NULL; 1625 complete(vfork_done); 1626 } 1627 1628 if (core_waiters) 1629 wait_for_completion(&core_state->startup); 1630 fail: 1631 return core_waiters; 1632 } 1633 1634 static void coredump_finish(struct mm_struct *mm) 1635 { 1636 struct core_thread *curr, *next; 1637 struct task_struct *task; 1638 1639 next = mm->core_state->dumper.next; 1640 while ((curr = next) != NULL) { 1641 next = curr->next; 1642 task = curr->task; 1643 /* 1644 * see exit_mm(), curr->task must not see 1645 * ->task == NULL before we read ->next. 1646 */ 1647 smp_mb(); 1648 curr->task = NULL; 1649 wake_up_process(task); 1650 } 1651 1652 mm->core_state = NULL; 1653 } 1654 1655 /* 1656 * set_dumpable converts traditional three-value dumpable to two flags and 1657 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1658 * these bits are not changed atomically. So get_dumpable can observe the 1659 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1660 * return either old dumpable or new one by paying attention to the order of 1661 * modifying the bits. 1662 * 1663 * dumpable | mm->flags (binary) 1664 * old new | initial interim final 1665 * ---------+----------------------- 1666 * 0 1 | 00 01 01 1667 * 0 2 | 00 10(*) 11 1668 * 1 0 | 01 00 00 1669 * 1 2 | 01 11 11 1670 * 2 0 | 11 10(*) 00 1671 * 2 1 | 11 11 01 1672 * 1673 * (*) get_dumpable regards interim value of 10 as 11. 1674 */ 1675 void set_dumpable(struct mm_struct *mm, int value) 1676 { 1677 switch (value) { 1678 case 0: 1679 clear_bit(MMF_DUMPABLE, &mm->flags); 1680 smp_wmb(); 1681 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1682 break; 1683 case 1: 1684 set_bit(MMF_DUMPABLE, &mm->flags); 1685 smp_wmb(); 1686 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1687 break; 1688 case 2: 1689 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1690 smp_wmb(); 1691 set_bit(MMF_DUMPABLE, &mm->flags); 1692 break; 1693 } 1694 } 1695 1696 int get_dumpable(struct mm_struct *mm) 1697 { 1698 int ret; 1699 1700 ret = mm->flags & 0x3; 1701 return (ret >= 2) ? 2 : ret; 1702 } 1703 1704 void do_coredump(long signr, int exit_code, struct pt_regs *regs) 1705 { 1706 struct core_state core_state; 1707 char corename[CORENAME_MAX_SIZE + 1]; 1708 struct mm_struct *mm = current->mm; 1709 struct linux_binfmt * binfmt; 1710 struct inode * inode; 1711 struct file * file; 1712 const struct cred *old_cred; 1713 struct cred *cred; 1714 int retval = 0; 1715 int flag = 0; 1716 int ispipe = 0; 1717 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; 1718 char **helper_argv = NULL; 1719 int helper_argc = 0; 1720 char *delimit; 1721 1722 audit_core_dumps(signr); 1723 1724 binfmt = current->binfmt; 1725 if (!binfmt || !binfmt->core_dump) 1726 goto fail; 1727 1728 cred = prepare_creds(); 1729 if (!cred) { 1730 retval = -ENOMEM; 1731 goto fail; 1732 } 1733 1734 down_write(&mm->mmap_sem); 1735 /* 1736 * If another thread got here first, or we are not dumpable, bail out. 1737 */ 1738 if (mm->core_state || !get_dumpable(mm)) { 1739 up_write(&mm->mmap_sem); 1740 put_cred(cred); 1741 goto fail; 1742 } 1743 1744 /* 1745 * We cannot trust fsuid as being the "true" uid of the 1746 * process nor do we know its entire history. We only know it 1747 * was tainted so we dump it as root in mode 2. 1748 */ 1749 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1750 flag = O_EXCL; /* Stop rewrite attacks */ 1751 cred->fsuid = 0; /* Dump root private */ 1752 } 1753 1754 retval = coredump_wait(exit_code, &core_state); 1755 if (retval < 0) { 1756 put_cred(cred); 1757 goto fail; 1758 } 1759 1760 old_cred = override_creds(cred); 1761 1762 /* 1763 * Clear any false indication of pending signals that might 1764 * be seen by the filesystem code called to write the core file. 1765 */ 1766 clear_thread_flag(TIF_SIGPENDING); 1767 1768 /* 1769 * lock_kernel() because format_corename() is controlled by sysctl, which 1770 * uses lock_kernel() 1771 */ 1772 lock_kernel(); 1773 ispipe = format_corename(corename, signr); 1774 unlock_kernel(); 1775 /* 1776 * Don't bother to check the RLIMIT_CORE value if core_pattern points 1777 * to a pipe. Since we're not writing directly to the filesystem 1778 * RLIMIT_CORE doesn't really apply, as no actual core file will be 1779 * created unless the pipe reader choses to write out the core file 1780 * at which point file size limits and permissions will be imposed 1781 * as it does with any other process 1782 */ 1783 if ((!ispipe) && (core_limit < binfmt->min_coredump)) 1784 goto fail_unlock; 1785 1786 if (ispipe) { 1787 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); 1788 if (!helper_argv) { 1789 printk(KERN_WARNING "%s failed to allocate memory\n", 1790 __func__); 1791 goto fail_unlock; 1792 } 1793 /* Terminate the string before the first option */ 1794 delimit = strchr(corename, ' '); 1795 if (delimit) 1796 *delimit = '\0'; 1797 delimit = strrchr(helper_argv[0], '/'); 1798 if (delimit) 1799 delimit++; 1800 else 1801 delimit = helper_argv[0]; 1802 if (!strcmp(delimit, current->comm)) { 1803 printk(KERN_NOTICE "Recursive core dump detected, " 1804 "aborting\n"); 1805 goto fail_unlock; 1806 } 1807 1808 core_limit = RLIM_INFINITY; 1809 1810 /* SIGPIPE can happen, but it's just never processed */ 1811 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL, 1812 &file)) { 1813 printk(KERN_INFO "Core dump to %s pipe failed\n", 1814 corename); 1815 goto fail_unlock; 1816 } 1817 } else 1818 file = filp_open(corename, 1819 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1820 0600); 1821 if (IS_ERR(file)) 1822 goto fail_unlock; 1823 inode = file->f_path.dentry->d_inode; 1824 if (inode->i_nlink > 1) 1825 goto close_fail; /* multiple links - don't dump */ 1826 if (!ispipe && d_unhashed(file->f_path.dentry)) 1827 goto close_fail; 1828 1829 /* AK: actually i see no reason to not allow this for named pipes etc., 1830 but keep the previous behaviour for now. */ 1831 if (!ispipe && !S_ISREG(inode->i_mode)) 1832 goto close_fail; 1833 /* 1834 * Dont allow local users get cute and trick others to coredump 1835 * into their pre-created files: 1836 */ 1837 if (inode->i_uid != current_fsuid()) 1838 goto close_fail; 1839 if (!file->f_op) 1840 goto close_fail; 1841 if (!file->f_op->write) 1842 goto close_fail; 1843 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1844 goto close_fail; 1845 1846 retval = binfmt->core_dump(signr, regs, file, core_limit); 1847 1848 if (retval) 1849 current->signal->group_exit_code |= 0x80; 1850 close_fail: 1851 filp_close(file, NULL); 1852 fail_unlock: 1853 if (helper_argv) 1854 argv_free(helper_argv); 1855 1856 revert_creds(old_cred); 1857 put_cred(cred); 1858 coredump_finish(mm); 1859 fail: 1860 return; 1861 } 1862