xref: /openbmc/linux/fs/exec.c (revision 7f400a1d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/tlb.h>
72 
73 #include <trace/events/task.h>
74 #include "internal.h"
75 
76 #include <trace/events/sched.h>
77 
78 static int bprm_creds_from_file(struct linux_binprm *bprm);
79 
80 int suid_dumpable = 0;
81 
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84 
85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 	write_lock(&binfmt_lock);
88 	insert ? list_add(&fmt->lh, &formats) :
89 		 list_add_tail(&fmt->lh, &formats);
90 	write_unlock(&binfmt_lock);
91 }
92 
93 EXPORT_SYMBOL(__register_binfmt);
94 
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 	write_lock(&binfmt_lock);
98 	list_del(&fmt->lh);
99 	write_unlock(&binfmt_lock);
100 }
101 
102 EXPORT_SYMBOL(unregister_binfmt);
103 
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 	module_put(fmt->module);
107 }
108 
109 bool path_noexec(const struct path *path)
110 {
111 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114 
115 #ifdef CONFIG_USELIB
116 /*
117  * Note that a shared library must be both readable and executable due to
118  * security reasons.
119  *
120  * Also note that we take the address to load from the file itself.
121  */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124 	struct linux_binfmt *fmt;
125 	struct file *file;
126 	struct filename *tmp = getname(library);
127 	int error = PTR_ERR(tmp);
128 	static const struct open_flags uselib_flags = {
129 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 		.acc_mode = MAY_READ | MAY_EXEC,
131 		.intent = LOOKUP_OPEN,
132 		.lookup_flags = LOOKUP_FOLLOW,
133 	};
134 
135 	if (IS_ERR(tmp))
136 		goto out;
137 
138 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 	putname(tmp);
140 	error = PTR_ERR(file);
141 	if (IS_ERR(file))
142 		goto out;
143 
144 	/*
145 	 * may_open() has already checked for this, so it should be
146 	 * impossible to trip now. But we need to be extra cautious
147 	 * and check again at the very end too.
148 	 */
149 	error = -EACCES;
150 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
151 			 path_noexec(&file->f_path)))
152 		goto exit;
153 
154 	fsnotify_open(file);
155 
156 	error = -ENOEXEC;
157 
158 	read_lock(&binfmt_lock);
159 	list_for_each_entry(fmt, &formats, lh) {
160 		if (!fmt->load_shlib)
161 			continue;
162 		if (!try_module_get(fmt->module))
163 			continue;
164 		read_unlock(&binfmt_lock);
165 		error = fmt->load_shlib(file);
166 		read_lock(&binfmt_lock);
167 		put_binfmt(fmt);
168 		if (error != -ENOEXEC)
169 			break;
170 	}
171 	read_unlock(&binfmt_lock);
172 exit:
173 	fput(file);
174 out:
175 	return error;
176 }
177 #endif /* #ifdef CONFIG_USELIB */
178 
179 #ifdef CONFIG_MMU
180 /*
181  * The nascent bprm->mm is not visible until exec_mmap() but it can
182  * use a lot of memory, account these pages in current->mm temporary
183  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184  * change the counter back via acct_arg_size(0).
185  */
186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 {
188 	struct mm_struct *mm = current->mm;
189 	long diff = (long)(pages - bprm->vma_pages);
190 
191 	if (!mm || !diff)
192 		return;
193 
194 	bprm->vma_pages = pages;
195 	add_mm_counter(mm, MM_ANONPAGES, diff);
196 }
197 
198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 		int write)
200 {
201 	struct page *page;
202 	int ret;
203 	unsigned int gup_flags = 0;
204 
205 #ifdef CONFIG_STACK_GROWSUP
206 	if (write) {
207 		ret = expand_downwards(bprm->vma, pos);
208 		if (ret < 0)
209 			return NULL;
210 	}
211 #endif
212 
213 	if (write)
214 		gup_flags |= FOLL_WRITE;
215 
216 	/*
217 	 * We are doing an exec().  'current' is the process
218 	 * doing the exec and bprm->mm is the new process's mm.
219 	 */
220 	mmap_read_lock(bprm->mm);
221 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
222 			&page, NULL, NULL);
223 	mmap_read_unlock(bprm->mm);
224 	if (ret <= 0)
225 		return NULL;
226 
227 	if (write)
228 		acct_arg_size(bprm, vma_pages(bprm->vma));
229 
230 	return page;
231 }
232 
233 static void put_arg_page(struct page *page)
234 {
235 	put_page(page);
236 }
237 
238 static void free_arg_pages(struct linux_binprm *bprm)
239 {
240 }
241 
242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
243 		struct page *page)
244 {
245 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246 }
247 
248 static int __bprm_mm_init(struct linux_binprm *bprm)
249 {
250 	int err;
251 	struct vm_area_struct *vma = NULL;
252 	struct mm_struct *mm = bprm->mm;
253 
254 	bprm->vma = vma = vm_area_alloc(mm);
255 	if (!vma)
256 		return -ENOMEM;
257 	vma_set_anonymous(vma);
258 
259 	if (mmap_write_lock_killable(mm)) {
260 		err = -EINTR;
261 		goto err_free;
262 	}
263 
264 	/*
265 	 * Place the stack at the largest stack address the architecture
266 	 * supports. Later, we'll move this to an appropriate place. We don't
267 	 * use STACK_TOP because that can depend on attributes which aren't
268 	 * configured yet.
269 	 */
270 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
271 	vma->vm_end = STACK_TOP_MAX;
272 	vma->vm_start = vma->vm_end - PAGE_SIZE;
273 	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
274 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
275 
276 	err = insert_vm_struct(mm, vma);
277 	if (err)
278 		goto err;
279 
280 	mm->stack_vm = mm->total_vm = 1;
281 	mmap_write_unlock(mm);
282 	bprm->p = vma->vm_end - sizeof(void *);
283 	return 0;
284 err:
285 	mmap_write_unlock(mm);
286 err_free:
287 	bprm->vma = NULL;
288 	vm_area_free(vma);
289 	return err;
290 }
291 
292 static bool valid_arg_len(struct linux_binprm *bprm, long len)
293 {
294 	return len <= MAX_ARG_STRLEN;
295 }
296 
297 #else
298 
299 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
300 {
301 }
302 
303 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
304 		int write)
305 {
306 	struct page *page;
307 
308 	page = bprm->page[pos / PAGE_SIZE];
309 	if (!page && write) {
310 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
311 		if (!page)
312 			return NULL;
313 		bprm->page[pos / PAGE_SIZE] = page;
314 	}
315 
316 	return page;
317 }
318 
319 static void put_arg_page(struct page *page)
320 {
321 }
322 
323 static void free_arg_page(struct linux_binprm *bprm, int i)
324 {
325 	if (bprm->page[i]) {
326 		__free_page(bprm->page[i]);
327 		bprm->page[i] = NULL;
328 	}
329 }
330 
331 static void free_arg_pages(struct linux_binprm *bprm)
332 {
333 	int i;
334 
335 	for (i = 0; i < MAX_ARG_PAGES; i++)
336 		free_arg_page(bprm, i);
337 }
338 
339 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
340 		struct page *page)
341 {
342 }
343 
344 static int __bprm_mm_init(struct linux_binprm *bprm)
345 {
346 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
347 	return 0;
348 }
349 
350 static bool valid_arg_len(struct linux_binprm *bprm, long len)
351 {
352 	return len <= bprm->p;
353 }
354 
355 #endif /* CONFIG_MMU */
356 
357 /*
358  * Create a new mm_struct and populate it with a temporary stack
359  * vm_area_struct.  We don't have enough context at this point to set the stack
360  * flags, permissions, and offset, so we use temporary values.  We'll update
361  * them later in setup_arg_pages().
362  */
363 static int bprm_mm_init(struct linux_binprm *bprm)
364 {
365 	int err;
366 	struct mm_struct *mm = NULL;
367 
368 	bprm->mm = mm = mm_alloc();
369 	err = -ENOMEM;
370 	if (!mm)
371 		goto err;
372 
373 	/* Save current stack limit for all calculations made during exec. */
374 	task_lock(current->group_leader);
375 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
376 	task_unlock(current->group_leader);
377 
378 	err = __bprm_mm_init(bprm);
379 	if (err)
380 		goto err;
381 
382 	return 0;
383 
384 err:
385 	if (mm) {
386 		bprm->mm = NULL;
387 		mmdrop(mm);
388 	}
389 
390 	return err;
391 }
392 
393 struct user_arg_ptr {
394 #ifdef CONFIG_COMPAT
395 	bool is_compat;
396 #endif
397 	union {
398 		const char __user *const __user *native;
399 #ifdef CONFIG_COMPAT
400 		const compat_uptr_t __user *compat;
401 #endif
402 	} ptr;
403 };
404 
405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
406 {
407 	const char __user *native;
408 
409 #ifdef CONFIG_COMPAT
410 	if (unlikely(argv.is_compat)) {
411 		compat_uptr_t compat;
412 
413 		if (get_user(compat, argv.ptr.compat + nr))
414 			return ERR_PTR(-EFAULT);
415 
416 		return compat_ptr(compat);
417 	}
418 #endif
419 
420 	if (get_user(native, argv.ptr.native + nr))
421 		return ERR_PTR(-EFAULT);
422 
423 	return native;
424 }
425 
426 /*
427  * count() counts the number of strings in array ARGV.
428  */
429 static int count(struct user_arg_ptr argv, int max)
430 {
431 	int i = 0;
432 
433 	if (argv.ptr.native != NULL) {
434 		for (;;) {
435 			const char __user *p = get_user_arg_ptr(argv, i);
436 
437 			if (!p)
438 				break;
439 
440 			if (IS_ERR(p))
441 				return -EFAULT;
442 
443 			if (i >= max)
444 				return -E2BIG;
445 			++i;
446 
447 			if (fatal_signal_pending(current))
448 				return -ERESTARTNOHAND;
449 			cond_resched();
450 		}
451 	}
452 	return i;
453 }
454 
455 static int count_strings_kernel(const char *const *argv)
456 {
457 	int i;
458 
459 	if (!argv)
460 		return 0;
461 
462 	for (i = 0; argv[i]; ++i) {
463 		if (i >= MAX_ARG_STRINGS)
464 			return -E2BIG;
465 		if (fatal_signal_pending(current))
466 			return -ERESTARTNOHAND;
467 		cond_resched();
468 	}
469 	return i;
470 }
471 
472 static int bprm_stack_limits(struct linux_binprm *bprm)
473 {
474 	unsigned long limit, ptr_size;
475 
476 	/*
477 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
478 	 * (whichever is smaller) for the argv+env strings.
479 	 * This ensures that:
480 	 *  - the remaining binfmt code will not run out of stack space,
481 	 *  - the program will have a reasonable amount of stack left
482 	 *    to work from.
483 	 */
484 	limit = _STK_LIM / 4 * 3;
485 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
486 	/*
487 	 * We've historically supported up to 32 pages (ARG_MAX)
488 	 * of argument strings even with small stacks
489 	 */
490 	limit = max_t(unsigned long, limit, ARG_MAX);
491 	/*
492 	 * We must account for the size of all the argv and envp pointers to
493 	 * the argv and envp strings, since they will also take up space in
494 	 * the stack. They aren't stored until much later when we can't
495 	 * signal to the parent that the child has run out of stack space.
496 	 * Instead, calculate it here so it's possible to fail gracefully.
497 	 *
498 	 * In the case of argc = 0, make sure there is space for adding a
499 	 * empty string (which will bump argc to 1), to ensure confused
500 	 * userspace programs don't start processing from argv[1], thinking
501 	 * argc can never be 0, to keep them from walking envp by accident.
502 	 * See do_execveat_common().
503 	 */
504 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
505 	if (limit <= ptr_size)
506 		return -E2BIG;
507 	limit -= ptr_size;
508 
509 	bprm->argmin = bprm->p - limit;
510 	return 0;
511 }
512 
513 /*
514  * 'copy_strings()' copies argument/environment strings from the old
515  * processes's memory to the new process's stack.  The call to get_user_pages()
516  * ensures the destination page is created and not swapped out.
517  */
518 static int copy_strings(int argc, struct user_arg_ptr argv,
519 			struct linux_binprm *bprm)
520 {
521 	struct page *kmapped_page = NULL;
522 	char *kaddr = NULL;
523 	unsigned long kpos = 0;
524 	int ret;
525 
526 	while (argc-- > 0) {
527 		const char __user *str;
528 		int len;
529 		unsigned long pos;
530 
531 		ret = -EFAULT;
532 		str = get_user_arg_ptr(argv, argc);
533 		if (IS_ERR(str))
534 			goto out;
535 
536 		len = strnlen_user(str, MAX_ARG_STRLEN);
537 		if (!len)
538 			goto out;
539 
540 		ret = -E2BIG;
541 		if (!valid_arg_len(bprm, len))
542 			goto out;
543 
544 		/* We're going to work our way backwards. */
545 		pos = bprm->p;
546 		str += len;
547 		bprm->p -= len;
548 #ifdef CONFIG_MMU
549 		if (bprm->p < bprm->argmin)
550 			goto out;
551 #endif
552 
553 		while (len > 0) {
554 			int offset, bytes_to_copy;
555 
556 			if (fatal_signal_pending(current)) {
557 				ret = -ERESTARTNOHAND;
558 				goto out;
559 			}
560 			cond_resched();
561 
562 			offset = pos % PAGE_SIZE;
563 			if (offset == 0)
564 				offset = PAGE_SIZE;
565 
566 			bytes_to_copy = offset;
567 			if (bytes_to_copy > len)
568 				bytes_to_copy = len;
569 
570 			offset -= bytes_to_copy;
571 			pos -= bytes_to_copy;
572 			str -= bytes_to_copy;
573 			len -= bytes_to_copy;
574 
575 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
576 				struct page *page;
577 
578 				page = get_arg_page(bprm, pos, 1);
579 				if (!page) {
580 					ret = -E2BIG;
581 					goto out;
582 				}
583 
584 				if (kmapped_page) {
585 					flush_dcache_page(kmapped_page);
586 					kunmap_local(kaddr);
587 					put_arg_page(kmapped_page);
588 				}
589 				kmapped_page = page;
590 				kaddr = kmap_local_page(kmapped_page);
591 				kpos = pos & PAGE_MASK;
592 				flush_arg_page(bprm, kpos, kmapped_page);
593 			}
594 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
595 				ret = -EFAULT;
596 				goto out;
597 			}
598 		}
599 	}
600 	ret = 0;
601 out:
602 	if (kmapped_page) {
603 		flush_dcache_page(kmapped_page);
604 		kunmap_local(kaddr);
605 		put_arg_page(kmapped_page);
606 	}
607 	return ret;
608 }
609 
610 /*
611  * Copy and argument/environment string from the kernel to the processes stack.
612  */
613 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
614 {
615 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
616 	unsigned long pos = bprm->p;
617 
618 	if (len == 0)
619 		return -EFAULT;
620 	if (!valid_arg_len(bprm, len))
621 		return -E2BIG;
622 
623 	/* We're going to work our way backwards. */
624 	arg += len;
625 	bprm->p -= len;
626 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
627 		return -E2BIG;
628 
629 	while (len > 0) {
630 		unsigned int bytes_to_copy = min_t(unsigned int, len,
631 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
632 		struct page *page;
633 
634 		pos -= bytes_to_copy;
635 		arg -= bytes_to_copy;
636 		len -= bytes_to_copy;
637 
638 		page = get_arg_page(bprm, pos, 1);
639 		if (!page)
640 			return -E2BIG;
641 		flush_arg_page(bprm, pos & PAGE_MASK, page);
642 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
643 		put_arg_page(page);
644 	}
645 
646 	return 0;
647 }
648 EXPORT_SYMBOL(copy_string_kernel);
649 
650 static int copy_strings_kernel(int argc, const char *const *argv,
651 			       struct linux_binprm *bprm)
652 {
653 	while (argc-- > 0) {
654 		int ret = copy_string_kernel(argv[argc], bprm);
655 		if (ret < 0)
656 			return ret;
657 		if (fatal_signal_pending(current))
658 			return -ERESTARTNOHAND;
659 		cond_resched();
660 	}
661 	return 0;
662 }
663 
664 #ifdef CONFIG_MMU
665 
666 /*
667  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
668  * the binfmt code determines where the new stack should reside, we shift it to
669  * its final location.  The process proceeds as follows:
670  *
671  * 1) Use shift to calculate the new vma endpoints.
672  * 2) Extend vma to cover both the old and new ranges.  This ensures the
673  *    arguments passed to subsequent functions are consistent.
674  * 3) Move vma's page tables to the new range.
675  * 4) Free up any cleared pgd range.
676  * 5) Shrink the vma to cover only the new range.
677  */
678 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
679 {
680 	struct mm_struct *mm = vma->vm_mm;
681 	unsigned long old_start = vma->vm_start;
682 	unsigned long old_end = vma->vm_end;
683 	unsigned long length = old_end - old_start;
684 	unsigned long new_start = old_start - shift;
685 	unsigned long new_end = old_end - shift;
686 	VMA_ITERATOR(vmi, mm, new_start);
687 	struct vm_area_struct *next;
688 	struct mmu_gather tlb;
689 
690 	BUG_ON(new_start > new_end);
691 
692 	/*
693 	 * ensure there are no vmas between where we want to go
694 	 * and where we are
695 	 */
696 	if (vma != vma_next(&vmi))
697 		return -EFAULT;
698 
699 	/*
700 	 * cover the whole range: [new_start, old_end)
701 	 */
702 	if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
703 		return -ENOMEM;
704 
705 	/*
706 	 * move the page tables downwards, on failure we rely on
707 	 * process cleanup to remove whatever mess we made.
708 	 */
709 	if (length != move_page_tables(vma, old_start,
710 				       vma, new_start, length, false))
711 		return -ENOMEM;
712 
713 	lru_add_drain();
714 	tlb_gather_mmu(&tlb, mm);
715 	next = vma_next(&vmi);
716 	if (new_end > old_start) {
717 		/*
718 		 * when the old and new regions overlap clear from new_end.
719 		 */
720 		free_pgd_range(&tlb, new_end, old_end, new_end,
721 			next ? next->vm_start : USER_PGTABLES_CEILING);
722 	} else {
723 		/*
724 		 * otherwise, clean from old_start; this is done to not touch
725 		 * the address space in [new_end, old_start) some architectures
726 		 * have constraints on va-space that make this illegal (IA64) -
727 		 * for the others its just a little faster.
728 		 */
729 		free_pgd_range(&tlb, old_start, old_end, new_end,
730 			next ? next->vm_start : USER_PGTABLES_CEILING);
731 	}
732 	tlb_finish_mmu(&tlb);
733 
734 	vma_prev(&vmi);
735 	/* Shrink the vma to just the new range */
736 	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
737 }
738 
739 /*
740  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
741  * the stack is optionally relocated, and some extra space is added.
742  */
743 int setup_arg_pages(struct linux_binprm *bprm,
744 		    unsigned long stack_top,
745 		    int executable_stack)
746 {
747 	unsigned long ret;
748 	unsigned long stack_shift;
749 	struct mm_struct *mm = current->mm;
750 	struct vm_area_struct *vma = bprm->vma;
751 	struct vm_area_struct *prev = NULL;
752 	unsigned long vm_flags;
753 	unsigned long stack_base;
754 	unsigned long stack_size;
755 	unsigned long stack_expand;
756 	unsigned long rlim_stack;
757 	struct mmu_gather tlb;
758 	struct vma_iterator vmi;
759 
760 #ifdef CONFIG_STACK_GROWSUP
761 	/* Limit stack size */
762 	stack_base = bprm->rlim_stack.rlim_max;
763 
764 	stack_base = calc_max_stack_size(stack_base);
765 
766 	/* Add space for stack randomization. */
767 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
768 
769 	/* Make sure we didn't let the argument array grow too large. */
770 	if (vma->vm_end - vma->vm_start > stack_base)
771 		return -ENOMEM;
772 
773 	stack_base = PAGE_ALIGN(stack_top - stack_base);
774 
775 	stack_shift = vma->vm_start - stack_base;
776 	mm->arg_start = bprm->p - stack_shift;
777 	bprm->p = vma->vm_end - stack_shift;
778 #else
779 	stack_top = arch_align_stack(stack_top);
780 	stack_top = PAGE_ALIGN(stack_top);
781 
782 	if (unlikely(stack_top < mmap_min_addr) ||
783 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
784 		return -ENOMEM;
785 
786 	stack_shift = vma->vm_end - stack_top;
787 
788 	bprm->p -= stack_shift;
789 	mm->arg_start = bprm->p;
790 #endif
791 
792 	if (bprm->loader)
793 		bprm->loader -= stack_shift;
794 	bprm->exec -= stack_shift;
795 
796 	if (mmap_write_lock_killable(mm))
797 		return -EINTR;
798 
799 	vm_flags = VM_STACK_FLAGS;
800 
801 	/*
802 	 * Adjust stack execute permissions; explicitly enable for
803 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
804 	 * (arch default) otherwise.
805 	 */
806 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
807 		vm_flags |= VM_EXEC;
808 	else if (executable_stack == EXSTACK_DISABLE_X)
809 		vm_flags &= ~VM_EXEC;
810 	vm_flags |= mm->def_flags;
811 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
812 
813 	vma_iter_init(&vmi, mm, vma->vm_start);
814 
815 	tlb_gather_mmu(&tlb, mm);
816 	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
817 			vm_flags);
818 	tlb_finish_mmu(&tlb);
819 
820 	if (ret)
821 		goto out_unlock;
822 	BUG_ON(prev != vma);
823 
824 	if (unlikely(vm_flags & VM_EXEC)) {
825 		pr_warn_once("process '%pD4' started with executable stack\n",
826 			     bprm->file);
827 	}
828 
829 	/* Move stack pages down in memory. */
830 	if (stack_shift) {
831 		ret = shift_arg_pages(vma, stack_shift);
832 		if (ret)
833 			goto out_unlock;
834 	}
835 
836 	/* mprotect_fixup is overkill to remove the temporary stack flags */
837 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
838 
839 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
840 	stack_size = vma->vm_end - vma->vm_start;
841 	/*
842 	 * Align this down to a page boundary as expand_stack
843 	 * will align it up.
844 	 */
845 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
846 
847 	stack_expand = min(rlim_stack, stack_size + stack_expand);
848 
849 #ifdef CONFIG_STACK_GROWSUP
850 	stack_base = vma->vm_start + stack_expand;
851 #else
852 	stack_base = vma->vm_end - stack_expand;
853 #endif
854 	current->mm->start_stack = bprm->p;
855 	ret = expand_stack(vma, stack_base);
856 	if (ret)
857 		ret = -EFAULT;
858 
859 out_unlock:
860 	mmap_write_unlock(mm);
861 	return ret;
862 }
863 EXPORT_SYMBOL(setup_arg_pages);
864 
865 #else
866 
867 /*
868  * Transfer the program arguments and environment from the holding pages
869  * onto the stack. The provided stack pointer is adjusted accordingly.
870  */
871 int transfer_args_to_stack(struct linux_binprm *bprm,
872 			   unsigned long *sp_location)
873 {
874 	unsigned long index, stop, sp;
875 	int ret = 0;
876 
877 	stop = bprm->p >> PAGE_SHIFT;
878 	sp = *sp_location;
879 
880 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
881 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
882 		char *src = kmap_local_page(bprm->page[index]) + offset;
883 		sp -= PAGE_SIZE - offset;
884 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
885 			ret = -EFAULT;
886 		kunmap_local(src);
887 		if (ret)
888 			goto out;
889 	}
890 
891 	*sp_location = sp;
892 
893 out:
894 	return ret;
895 }
896 EXPORT_SYMBOL(transfer_args_to_stack);
897 
898 #endif /* CONFIG_MMU */
899 
900 static struct file *do_open_execat(int fd, struct filename *name, int flags)
901 {
902 	struct file *file;
903 	int err;
904 	struct open_flags open_exec_flags = {
905 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
906 		.acc_mode = MAY_EXEC,
907 		.intent = LOOKUP_OPEN,
908 		.lookup_flags = LOOKUP_FOLLOW,
909 	};
910 
911 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
912 		return ERR_PTR(-EINVAL);
913 	if (flags & AT_SYMLINK_NOFOLLOW)
914 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
915 	if (flags & AT_EMPTY_PATH)
916 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
917 
918 	file = do_filp_open(fd, name, &open_exec_flags);
919 	if (IS_ERR(file))
920 		goto out;
921 
922 	/*
923 	 * may_open() has already checked for this, so it should be
924 	 * impossible to trip now. But we need to be extra cautious
925 	 * and check again at the very end too.
926 	 */
927 	err = -EACCES;
928 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
929 			 path_noexec(&file->f_path)))
930 		goto exit;
931 
932 	err = deny_write_access(file);
933 	if (err)
934 		goto exit;
935 
936 	if (name->name[0] != '\0')
937 		fsnotify_open(file);
938 
939 out:
940 	return file;
941 
942 exit:
943 	fput(file);
944 	return ERR_PTR(err);
945 }
946 
947 struct file *open_exec(const char *name)
948 {
949 	struct filename *filename = getname_kernel(name);
950 	struct file *f = ERR_CAST(filename);
951 
952 	if (!IS_ERR(filename)) {
953 		f = do_open_execat(AT_FDCWD, filename, 0);
954 		putname(filename);
955 	}
956 	return f;
957 }
958 EXPORT_SYMBOL(open_exec);
959 
960 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
961 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
962 {
963 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
964 	if (res > 0)
965 		flush_icache_user_range(addr, addr + len);
966 	return res;
967 }
968 EXPORT_SYMBOL(read_code);
969 #endif
970 
971 /*
972  * Maps the mm_struct mm into the current task struct.
973  * On success, this function returns with exec_update_lock
974  * held for writing.
975  */
976 static int exec_mmap(struct mm_struct *mm)
977 {
978 	struct task_struct *tsk;
979 	struct mm_struct *old_mm, *active_mm;
980 	int ret;
981 
982 	/* Notify parent that we're no longer interested in the old VM */
983 	tsk = current;
984 	old_mm = current->mm;
985 	exec_mm_release(tsk, old_mm);
986 	if (old_mm)
987 		sync_mm_rss(old_mm);
988 
989 	ret = down_write_killable(&tsk->signal->exec_update_lock);
990 	if (ret)
991 		return ret;
992 
993 	if (old_mm) {
994 		/*
995 		 * If there is a pending fatal signal perhaps a signal
996 		 * whose default action is to create a coredump get
997 		 * out and die instead of going through with the exec.
998 		 */
999 		ret = mmap_read_lock_killable(old_mm);
1000 		if (ret) {
1001 			up_write(&tsk->signal->exec_update_lock);
1002 			return ret;
1003 		}
1004 	}
1005 
1006 	task_lock(tsk);
1007 	membarrier_exec_mmap(mm);
1008 
1009 	local_irq_disable();
1010 	active_mm = tsk->active_mm;
1011 	tsk->active_mm = mm;
1012 	tsk->mm = mm;
1013 	mm_init_cid(mm);
1014 	/*
1015 	 * This prevents preemption while active_mm is being loaded and
1016 	 * it and mm are being updated, which could cause problems for
1017 	 * lazy tlb mm refcounting when these are updated by context
1018 	 * switches. Not all architectures can handle irqs off over
1019 	 * activate_mm yet.
1020 	 */
1021 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1022 		local_irq_enable();
1023 	activate_mm(active_mm, mm);
1024 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1025 		local_irq_enable();
1026 	lru_gen_add_mm(mm);
1027 	task_unlock(tsk);
1028 	lru_gen_use_mm(mm);
1029 	if (old_mm) {
1030 		mmap_read_unlock(old_mm);
1031 		BUG_ON(active_mm != old_mm);
1032 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1033 		mm_update_next_owner(old_mm);
1034 		mmput(old_mm);
1035 		return 0;
1036 	}
1037 	mmdrop(active_mm);
1038 	return 0;
1039 }
1040 
1041 static int de_thread(struct task_struct *tsk)
1042 {
1043 	struct signal_struct *sig = tsk->signal;
1044 	struct sighand_struct *oldsighand = tsk->sighand;
1045 	spinlock_t *lock = &oldsighand->siglock;
1046 
1047 	if (thread_group_empty(tsk))
1048 		goto no_thread_group;
1049 
1050 	/*
1051 	 * Kill all other threads in the thread group.
1052 	 */
1053 	spin_lock_irq(lock);
1054 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1055 		/*
1056 		 * Another group action in progress, just
1057 		 * return so that the signal is processed.
1058 		 */
1059 		spin_unlock_irq(lock);
1060 		return -EAGAIN;
1061 	}
1062 
1063 	sig->group_exec_task = tsk;
1064 	sig->notify_count = zap_other_threads(tsk);
1065 	if (!thread_group_leader(tsk))
1066 		sig->notify_count--;
1067 
1068 	while (sig->notify_count) {
1069 		__set_current_state(TASK_KILLABLE);
1070 		spin_unlock_irq(lock);
1071 		schedule();
1072 		if (__fatal_signal_pending(tsk))
1073 			goto killed;
1074 		spin_lock_irq(lock);
1075 	}
1076 	spin_unlock_irq(lock);
1077 
1078 	/*
1079 	 * At this point all other threads have exited, all we have to
1080 	 * do is to wait for the thread group leader to become inactive,
1081 	 * and to assume its PID:
1082 	 */
1083 	if (!thread_group_leader(tsk)) {
1084 		struct task_struct *leader = tsk->group_leader;
1085 
1086 		for (;;) {
1087 			cgroup_threadgroup_change_begin(tsk);
1088 			write_lock_irq(&tasklist_lock);
1089 			/*
1090 			 * Do this under tasklist_lock to ensure that
1091 			 * exit_notify() can't miss ->group_exec_task
1092 			 */
1093 			sig->notify_count = -1;
1094 			if (likely(leader->exit_state))
1095 				break;
1096 			__set_current_state(TASK_KILLABLE);
1097 			write_unlock_irq(&tasklist_lock);
1098 			cgroup_threadgroup_change_end(tsk);
1099 			schedule();
1100 			if (__fatal_signal_pending(tsk))
1101 				goto killed;
1102 		}
1103 
1104 		/*
1105 		 * The only record we have of the real-time age of a
1106 		 * process, regardless of execs it's done, is start_time.
1107 		 * All the past CPU time is accumulated in signal_struct
1108 		 * from sister threads now dead.  But in this non-leader
1109 		 * exec, nothing survives from the original leader thread,
1110 		 * whose birth marks the true age of this process now.
1111 		 * When we take on its identity by switching to its PID, we
1112 		 * also take its birthdate (always earlier than our own).
1113 		 */
1114 		tsk->start_time = leader->start_time;
1115 		tsk->start_boottime = leader->start_boottime;
1116 
1117 		BUG_ON(!same_thread_group(leader, tsk));
1118 		/*
1119 		 * An exec() starts a new thread group with the
1120 		 * TGID of the previous thread group. Rehash the
1121 		 * two threads with a switched PID, and release
1122 		 * the former thread group leader:
1123 		 */
1124 
1125 		/* Become a process group leader with the old leader's pid.
1126 		 * The old leader becomes a thread of the this thread group.
1127 		 */
1128 		exchange_tids(tsk, leader);
1129 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1130 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1131 		transfer_pid(leader, tsk, PIDTYPE_SID);
1132 
1133 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1134 		list_replace_init(&leader->sibling, &tsk->sibling);
1135 
1136 		tsk->group_leader = tsk;
1137 		leader->group_leader = tsk;
1138 
1139 		tsk->exit_signal = SIGCHLD;
1140 		leader->exit_signal = -1;
1141 
1142 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1143 		leader->exit_state = EXIT_DEAD;
1144 
1145 		/*
1146 		 * We are going to release_task()->ptrace_unlink() silently,
1147 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1148 		 * the tracer won't block again waiting for this thread.
1149 		 */
1150 		if (unlikely(leader->ptrace))
1151 			__wake_up_parent(leader, leader->parent);
1152 		write_unlock_irq(&tasklist_lock);
1153 		cgroup_threadgroup_change_end(tsk);
1154 
1155 		release_task(leader);
1156 	}
1157 
1158 	sig->group_exec_task = NULL;
1159 	sig->notify_count = 0;
1160 
1161 no_thread_group:
1162 	/* we have changed execution domain */
1163 	tsk->exit_signal = SIGCHLD;
1164 
1165 	BUG_ON(!thread_group_leader(tsk));
1166 	return 0;
1167 
1168 killed:
1169 	/* protects against exit_notify() and __exit_signal() */
1170 	read_lock(&tasklist_lock);
1171 	sig->group_exec_task = NULL;
1172 	sig->notify_count = 0;
1173 	read_unlock(&tasklist_lock);
1174 	return -EAGAIN;
1175 }
1176 
1177 
1178 /*
1179  * This function makes sure the current process has its own signal table,
1180  * so that flush_signal_handlers can later reset the handlers without
1181  * disturbing other processes.  (Other processes might share the signal
1182  * table via the CLONE_SIGHAND option to clone().)
1183  */
1184 static int unshare_sighand(struct task_struct *me)
1185 {
1186 	struct sighand_struct *oldsighand = me->sighand;
1187 
1188 	if (refcount_read(&oldsighand->count) != 1) {
1189 		struct sighand_struct *newsighand;
1190 		/*
1191 		 * This ->sighand is shared with the CLONE_SIGHAND
1192 		 * but not CLONE_THREAD task, switch to the new one.
1193 		 */
1194 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1195 		if (!newsighand)
1196 			return -ENOMEM;
1197 
1198 		refcount_set(&newsighand->count, 1);
1199 
1200 		write_lock_irq(&tasklist_lock);
1201 		spin_lock(&oldsighand->siglock);
1202 		memcpy(newsighand->action, oldsighand->action,
1203 		       sizeof(newsighand->action));
1204 		rcu_assign_pointer(me->sighand, newsighand);
1205 		spin_unlock(&oldsighand->siglock);
1206 		write_unlock_irq(&tasklist_lock);
1207 
1208 		__cleanup_sighand(oldsighand);
1209 	}
1210 	return 0;
1211 }
1212 
1213 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1214 {
1215 	task_lock(tsk);
1216 	/* Always NUL terminated and zero-padded */
1217 	strscpy_pad(buf, tsk->comm, buf_size);
1218 	task_unlock(tsk);
1219 	return buf;
1220 }
1221 EXPORT_SYMBOL_GPL(__get_task_comm);
1222 
1223 /*
1224  * These functions flushes out all traces of the currently running executable
1225  * so that a new one can be started
1226  */
1227 
1228 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1229 {
1230 	task_lock(tsk);
1231 	trace_task_rename(tsk, buf);
1232 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1233 	task_unlock(tsk);
1234 	perf_event_comm(tsk, exec);
1235 }
1236 
1237 /*
1238  * Calling this is the point of no return. None of the failures will be
1239  * seen by userspace since either the process is already taking a fatal
1240  * signal (via de_thread() or coredump), or will have SEGV raised
1241  * (after exec_mmap()) by search_binary_handler (see below).
1242  */
1243 int begin_new_exec(struct linux_binprm * bprm)
1244 {
1245 	struct task_struct *me = current;
1246 	int retval;
1247 
1248 	/* Once we are committed compute the creds */
1249 	retval = bprm_creds_from_file(bprm);
1250 	if (retval)
1251 		return retval;
1252 
1253 	/*
1254 	 * Ensure all future errors are fatal.
1255 	 */
1256 	bprm->point_of_no_return = true;
1257 
1258 	/*
1259 	 * Make this the only thread in the thread group.
1260 	 */
1261 	retval = de_thread(me);
1262 	if (retval)
1263 		goto out;
1264 
1265 	/*
1266 	 * Cancel any io_uring activity across execve
1267 	 */
1268 	io_uring_task_cancel();
1269 
1270 	/* Ensure the files table is not shared. */
1271 	retval = unshare_files();
1272 	if (retval)
1273 		goto out;
1274 
1275 	/*
1276 	 * Must be called _before_ exec_mmap() as bprm->mm is
1277 	 * not visible until then. This also enables the update
1278 	 * to be lockless.
1279 	 */
1280 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1281 	if (retval)
1282 		goto out;
1283 
1284 	/* If the binary is not readable then enforce mm->dumpable=0 */
1285 	would_dump(bprm, bprm->file);
1286 	if (bprm->have_execfd)
1287 		would_dump(bprm, bprm->executable);
1288 
1289 	/*
1290 	 * Release all of the old mmap stuff
1291 	 */
1292 	acct_arg_size(bprm, 0);
1293 	retval = exec_mmap(bprm->mm);
1294 	if (retval)
1295 		goto out;
1296 
1297 	bprm->mm = NULL;
1298 
1299 	retval = exec_task_namespaces();
1300 	if (retval)
1301 		goto out_unlock;
1302 
1303 #ifdef CONFIG_POSIX_TIMERS
1304 	spin_lock_irq(&me->sighand->siglock);
1305 	posix_cpu_timers_exit(me);
1306 	spin_unlock_irq(&me->sighand->siglock);
1307 	exit_itimers(me);
1308 	flush_itimer_signals();
1309 #endif
1310 
1311 	/*
1312 	 * Make the signal table private.
1313 	 */
1314 	retval = unshare_sighand(me);
1315 	if (retval)
1316 		goto out_unlock;
1317 
1318 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1319 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1320 	flush_thread();
1321 	me->personality &= ~bprm->per_clear;
1322 
1323 	clear_syscall_work_syscall_user_dispatch(me);
1324 
1325 	/*
1326 	 * We have to apply CLOEXEC before we change whether the process is
1327 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1328 	 * trying to access the should-be-closed file descriptors of a process
1329 	 * undergoing exec(2).
1330 	 */
1331 	do_close_on_exec(me->files);
1332 
1333 	if (bprm->secureexec) {
1334 		/* Make sure parent cannot signal privileged process. */
1335 		me->pdeath_signal = 0;
1336 
1337 		/*
1338 		 * For secureexec, reset the stack limit to sane default to
1339 		 * avoid bad behavior from the prior rlimits. This has to
1340 		 * happen before arch_pick_mmap_layout(), which examines
1341 		 * RLIMIT_STACK, but after the point of no return to avoid
1342 		 * needing to clean up the change on failure.
1343 		 */
1344 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1345 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1346 	}
1347 
1348 	me->sas_ss_sp = me->sas_ss_size = 0;
1349 
1350 	/*
1351 	 * Figure out dumpability. Note that this checking only of current
1352 	 * is wrong, but userspace depends on it. This should be testing
1353 	 * bprm->secureexec instead.
1354 	 */
1355 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1356 	    !(uid_eq(current_euid(), current_uid()) &&
1357 	      gid_eq(current_egid(), current_gid())))
1358 		set_dumpable(current->mm, suid_dumpable);
1359 	else
1360 		set_dumpable(current->mm, SUID_DUMP_USER);
1361 
1362 	perf_event_exec();
1363 	__set_task_comm(me, kbasename(bprm->filename), true);
1364 
1365 	/* An exec changes our domain. We are no longer part of the thread
1366 	   group */
1367 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1368 	flush_signal_handlers(me, 0);
1369 
1370 	retval = set_cred_ucounts(bprm->cred);
1371 	if (retval < 0)
1372 		goto out_unlock;
1373 
1374 	/*
1375 	 * install the new credentials for this executable
1376 	 */
1377 	security_bprm_committing_creds(bprm);
1378 
1379 	commit_creds(bprm->cred);
1380 	bprm->cred = NULL;
1381 
1382 	/*
1383 	 * Disable monitoring for regular users
1384 	 * when executing setuid binaries. Must
1385 	 * wait until new credentials are committed
1386 	 * by commit_creds() above
1387 	 */
1388 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1389 		perf_event_exit_task(me);
1390 	/*
1391 	 * cred_guard_mutex must be held at least to this point to prevent
1392 	 * ptrace_attach() from altering our determination of the task's
1393 	 * credentials; any time after this it may be unlocked.
1394 	 */
1395 	security_bprm_committed_creds(bprm);
1396 
1397 	/* Pass the opened binary to the interpreter. */
1398 	if (bprm->have_execfd) {
1399 		retval = get_unused_fd_flags(0);
1400 		if (retval < 0)
1401 			goto out_unlock;
1402 		fd_install(retval, bprm->executable);
1403 		bprm->executable = NULL;
1404 		bprm->execfd = retval;
1405 	}
1406 	return 0;
1407 
1408 out_unlock:
1409 	up_write(&me->signal->exec_update_lock);
1410 out:
1411 	return retval;
1412 }
1413 EXPORT_SYMBOL(begin_new_exec);
1414 
1415 void would_dump(struct linux_binprm *bprm, struct file *file)
1416 {
1417 	struct inode *inode = file_inode(file);
1418 	struct mnt_idmap *idmap = file_mnt_idmap(file);
1419 	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1420 		struct user_namespace *old, *user_ns;
1421 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1422 
1423 		/* Ensure mm->user_ns contains the executable */
1424 		user_ns = old = bprm->mm->user_ns;
1425 		while ((user_ns != &init_user_ns) &&
1426 		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1427 			user_ns = user_ns->parent;
1428 
1429 		if (old != user_ns) {
1430 			bprm->mm->user_ns = get_user_ns(user_ns);
1431 			put_user_ns(old);
1432 		}
1433 	}
1434 }
1435 EXPORT_SYMBOL(would_dump);
1436 
1437 void setup_new_exec(struct linux_binprm * bprm)
1438 {
1439 	/* Setup things that can depend upon the personality */
1440 	struct task_struct *me = current;
1441 
1442 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1443 
1444 	arch_setup_new_exec();
1445 
1446 	/* Set the new mm task size. We have to do that late because it may
1447 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1448 	 * some architectures like powerpc
1449 	 */
1450 	me->mm->task_size = TASK_SIZE;
1451 	up_write(&me->signal->exec_update_lock);
1452 	mutex_unlock(&me->signal->cred_guard_mutex);
1453 }
1454 EXPORT_SYMBOL(setup_new_exec);
1455 
1456 /* Runs immediately before start_thread() takes over. */
1457 void finalize_exec(struct linux_binprm *bprm)
1458 {
1459 	/* Store any stack rlimit changes before starting thread. */
1460 	task_lock(current->group_leader);
1461 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1462 	task_unlock(current->group_leader);
1463 }
1464 EXPORT_SYMBOL(finalize_exec);
1465 
1466 /*
1467  * Prepare credentials and lock ->cred_guard_mutex.
1468  * setup_new_exec() commits the new creds and drops the lock.
1469  * Or, if exec fails before, free_bprm() should release ->cred
1470  * and unlock.
1471  */
1472 static int prepare_bprm_creds(struct linux_binprm *bprm)
1473 {
1474 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1475 		return -ERESTARTNOINTR;
1476 
1477 	bprm->cred = prepare_exec_creds();
1478 	if (likely(bprm->cred))
1479 		return 0;
1480 
1481 	mutex_unlock(&current->signal->cred_guard_mutex);
1482 	return -ENOMEM;
1483 }
1484 
1485 static void free_bprm(struct linux_binprm *bprm)
1486 {
1487 	if (bprm->mm) {
1488 		acct_arg_size(bprm, 0);
1489 		mmput(bprm->mm);
1490 	}
1491 	free_arg_pages(bprm);
1492 	if (bprm->cred) {
1493 		mutex_unlock(&current->signal->cred_guard_mutex);
1494 		abort_creds(bprm->cred);
1495 	}
1496 	if (bprm->file) {
1497 		allow_write_access(bprm->file);
1498 		fput(bprm->file);
1499 	}
1500 	if (bprm->executable)
1501 		fput(bprm->executable);
1502 	/* If a binfmt changed the interp, free it. */
1503 	if (bprm->interp != bprm->filename)
1504 		kfree(bprm->interp);
1505 	kfree(bprm->fdpath);
1506 	kfree(bprm);
1507 }
1508 
1509 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1510 {
1511 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1512 	int retval = -ENOMEM;
1513 	if (!bprm)
1514 		goto out;
1515 
1516 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1517 		bprm->filename = filename->name;
1518 	} else {
1519 		if (filename->name[0] == '\0')
1520 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1521 		else
1522 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1523 						  fd, filename->name);
1524 		if (!bprm->fdpath)
1525 			goto out_free;
1526 
1527 		bprm->filename = bprm->fdpath;
1528 	}
1529 	bprm->interp = bprm->filename;
1530 
1531 	retval = bprm_mm_init(bprm);
1532 	if (retval)
1533 		goto out_free;
1534 	return bprm;
1535 
1536 out_free:
1537 	free_bprm(bprm);
1538 out:
1539 	return ERR_PTR(retval);
1540 }
1541 
1542 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1543 {
1544 	/* If a binfmt changed the interp, free it first. */
1545 	if (bprm->interp != bprm->filename)
1546 		kfree(bprm->interp);
1547 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1548 	if (!bprm->interp)
1549 		return -ENOMEM;
1550 	return 0;
1551 }
1552 EXPORT_SYMBOL(bprm_change_interp);
1553 
1554 /*
1555  * determine how safe it is to execute the proposed program
1556  * - the caller must hold ->cred_guard_mutex to protect against
1557  *   PTRACE_ATTACH or seccomp thread-sync
1558  */
1559 static void check_unsafe_exec(struct linux_binprm *bprm)
1560 {
1561 	struct task_struct *p = current, *t;
1562 	unsigned n_fs;
1563 
1564 	if (p->ptrace)
1565 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1566 
1567 	/*
1568 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1569 	 * mess up.
1570 	 */
1571 	if (task_no_new_privs(current))
1572 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1573 
1574 	/*
1575 	 * If another task is sharing our fs, we cannot safely
1576 	 * suid exec because the differently privileged task
1577 	 * will be able to manipulate the current directory, etc.
1578 	 * It would be nice to force an unshare instead...
1579 	 */
1580 	t = p;
1581 	n_fs = 1;
1582 	spin_lock(&p->fs->lock);
1583 	rcu_read_lock();
1584 	while_each_thread(p, t) {
1585 		if (t->fs == p->fs)
1586 			n_fs++;
1587 	}
1588 	rcu_read_unlock();
1589 
1590 	if (p->fs->users > n_fs)
1591 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1592 	else
1593 		p->fs->in_exec = 1;
1594 	spin_unlock(&p->fs->lock);
1595 }
1596 
1597 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1598 {
1599 	/* Handle suid and sgid on files */
1600 	struct mnt_idmap *idmap;
1601 	struct inode *inode = file_inode(file);
1602 	unsigned int mode;
1603 	vfsuid_t vfsuid;
1604 	vfsgid_t vfsgid;
1605 
1606 	if (!mnt_may_suid(file->f_path.mnt))
1607 		return;
1608 
1609 	if (task_no_new_privs(current))
1610 		return;
1611 
1612 	mode = READ_ONCE(inode->i_mode);
1613 	if (!(mode & (S_ISUID|S_ISGID)))
1614 		return;
1615 
1616 	idmap = file_mnt_idmap(file);
1617 
1618 	/* Be careful if suid/sgid is set */
1619 	inode_lock(inode);
1620 
1621 	/* reload atomically mode/uid/gid now that lock held */
1622 	mode = inode->i_mode;
1623 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1624 	vfsgid = i_gid_into_vfsgid(idmap, inode);
1625 	inode_unlock(inode);
1626 
1627 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1628 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1629 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1630 		return;
1631 
1632 	if (mode & S_ISUID) {
1633 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1634 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1635 	}
1636 
1637 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1638 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1639 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1640 	}
1641 }
1642 
1643 /*
1644  * Compute brpm->cred based upon the final binary.
1645  */
1646 static int bprm_creds_from_file(struct linux_binprm *bprm)
1647 {
1648 	/* Compute creds based on which file? */
1649 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1650 
1651 	bprm_fill_uid(bprm, file);
1652 	return security_bprm_creds_from_file(bprm, file);
1653 }
1654 
1655 /*
1656  * Fill the binprm structure from the inode.
1657  * Read the first BINPRM_BUF_SIZE bytes
1658  *
1659  * This may be called multiple times for binary chains (scripts for example).
1660  */
1661 static int prepare_binprm(struct linux_binprm *bprm)
1662 {
1663 	loff_t pos = 0;
1664 
1665 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1666 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1667 }
1668 
1669 /*
1670  * Arguments are '\0' separated strings found at the location bprm->p
1671  * points to; chop off the first by relocating brpm->p to right after
1672  * the first '\0' encountered.
1673  */
1674 int remove_arg_zero(struct linux_binprm *bprm)
1675 {
1676 	int ret = 0;
1677 	unsigned long offset;
1678 	char *kaddr;
1679 	struct page *page;
1680 
1681 	if (!bprm->argc)
1682 		return 0;
1683 
1684 	do {
1685 		offset = bprm->p & ~PAGE_MASK;
1686 		page = get_arg_page(bprm, bprm->p, 0);
1687 		if (!page) {
1688 			ret = -EFAULT;
1689 			goto out;
1690 		}
1691 		kaddr = kmap_local_page(page);
1692 
1693 		for (; offset < PAGE_SIZE && kaddr[offset];
1694 				offset++, bprm->p++)
1695 			;
1696 
1697 		kunmap_local(kaddr);
1698 		put_arg_page(page);
1699 	} while (offset == PAGE_SIZE);
1700 
1701 	bprm->p++;
1702 	bprm->argc--;
1703 	ret = 0;
1704 
1705 out:
1706 	return ret;
1707 }
1708 EXPORT_SYMBOL(remove_arg_zero);
1709 
1710 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1711 /*
1712  * cycle the list of binary formats handler, until one recognizes the image
1713  */
1714 static int search_binary_handler(struct linux_binprm *bprm)
1715 {
1716 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1717 	struct linux_binfmt *fmt;
1718 	int retval;
1719 
1720 	retval = prepare_binprm(bprm);
1721 	if (retval < 0)
1722 		return retval;
1723 
1724 	retval = security_bprm_check(bprm);
1725 	if (retval)
1726 		return retval;
1727 
1728 	retval = -ENOENT;
1729  retry:
1730 	read_lock(&binfmt_lock);
1731 	list_for_each_entry(fmt, &formats, lh) {
1732 		if (!try_module_get(fmt->module))
1733 			continue;
1734 		read_unlock(&binfmt_lock);
1735 
1736 		retval = fmt->load_binary(bprm);
1737 
1738 		read_lock(&binfmt_lock);
1739 		put_binfmt(fmt);
1740 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1741 			read_unlock(&binfmt_lock);
1742 			return retval;
1743 		}
1744 	}
1745 	read_unlock(&binfmt_lock);
1746 
1747 	if (need_retry) {
1748 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1749 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1750 			return retval;
1751 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1752 			return retval;
1753 		need_retry = false;
1754 		goto retry;
1755 	}
1756 
1757 	return retval;
1758 }
1759 
1760 /* binfmt handlers will call back into begin_new_exec() on success. */
1761 static int exec_binprm(struct linux_binprm *bprm)
1762 {
1763 	pid_t old_pid, old_vpid;
1764 	int ret, depth;
1765 
1766 	/* Need to fetch pid before load_binary changes it */
1767 	old_pid = current->pid;
1768 	rcu_read_lock();
1769 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1770 	rcu_read_unlock();
1771 
1772 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1773 	for (depth = 0;; depth++) {
1774 		struct file *exec;
1775 		if (depth > 5)
1776 			return -ELOOP;
1777 
1778 		ret = search_binary_handler(bprm);
1779 		if (ret < 0)
1780 			return ret;
1781 		if (!bprm->interpreter)
1782 			break;
1783 
1784 		exec = bprm->file;
1785 		bprm->file = bprm->interpreter;
1786 		bprm->interpreter = NULL;
1787 
1788 		allow_write_access(exec);
1789 		if (unlikely(bprm->have_execfd)) {
1790 			if (bprm->executable) {
1791 				fput(exec);
1792 				return -ENOEXEC;
1793 			}
1794 			bprm->executable = exec;
1795 		} else
1796 			fput(exec);
1797 	}
1798 
1799 	audit_bprm(bprm);
1800 	trace_sched_process_exec(current, old_pid, bprm);
1801 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1802 	proc_exec_connector(current);
1803 	return 0;
1804 }
1805 
1806 /*
1807  * sys_execve() executes a new program.
1808  */
1809 static int bprm_execve(struct linux_binprm *bprm,
1810 		       int fd, struct filename *filename, int flags)
1811 {
1812 	struct file *file;
1813 	int retval;
1814 
1815 	retval = prepare_bprm_creds(bprm);
1816 	if (retval)
1817 		return retval;
1818 
1819 	/*
1820 	 * Check for unsafe execution states before exec_binprm(), which
1821 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1822 	 * where setuid-ness is evaluated.
1823 	 */
1824 	check_unsafe_exec(bprm);
1825 	current->in_execve = 1;
1826 	sched_mm_cid_before_execve(current);
1827 
1828 	file = do_open_execat(fd, filename, flags);
1829 	retval = PTR_ERR(file);
1830 	if (IS_ERR(file))
1831 		goto out_unmark;
1832 
1833 	sched_exec();
1834 
1835 	bprm->file = file;
1836 	/*
1837 	 * Record that a name derived from an O_CLOEXEC fd will be
1838 	 * inaccessible after exec.  This allows the code in exec to
1839 	 * choose to fail when the executable is not mmaped into the
1840 	 * interpreter and an open file descriptor is not passed to
1841 	 * the interpreter.  This makes for a better user experience
1842 	 * than having the interpreter start and then immediately fail
1843 	 * when it finds the executable is inaccessible.
1844 	 */
1845 	if (bprm->fdpath && get_close_on_exec(fd))
1846 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1847 
1848 	/* Set the unchanging part of bprm->cred */
1849 	retval = security_bprm_creds_for_exec(bprm);
1850 	if (retval)
1851 		goto out;
1852 
1853 	retval = exec_binprm(bprm);
1854 	if (retval < 0)
1855 		goto out;
1856 
1857 	sched_mm_cid_after_execve(current);
1858 	/* execve succeeded */
1859 	current->fs->in_exec = 0;
1860 	current->in_execve = 0;
1861 	rseq_execve(current);
1862 	acct_update_integrals(current);
1863 	task_numa_free(current, false);
1864 	return retval;
1865 
1866 out:
1867 	/*
1868 	 * If past the point of no return ensure the code never
1869 	 * returns to the userspace process.  Use an existing fatal
1870 	 * signal if present otherwise terminate the process with
1871 	 * SIGSEGV.
1872 	 */
1873 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1874 		force_fatal_sig(SIGSEGV);
1875 
1876 out_unmark:
1877 	sched_mm_cid_after_execve(current);
1878 	current->fs->in_exec = 0;
1879 	current->in_execve = 0;
1880 
1881 	return retval;
1882 }
1883 
1884 static int do_execveat_common(int fd, struct filename *filename,
1885 			      struct user_arg_ptr argv,
1886 			      struct user_arg_ptr envp,
1887 			      int flags)
1888 {
1889 	struct linux_binprm *bprm;
1890 	int retval;
1891 
1892 	if (IS_ERR(filename))
1893 		return PTR_ERR(filename);
1894 
1895 	/*
1896 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1897 	 * set*uid() to execve() because too many poorly written programs
1898 	 * don't check setuid() return code.  Here we additionally recheck
1899 	 * whether NPROC limit is still exceeded.
1900 	 */
1901 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1902 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1903 		retval = -EAGAIN;
1904 		goto out_ret;
1905 	}
1906 
1907 	/* We're below the limit (still or again), so we don't want to make
1908 	 * further execve() calls fail. */
1909 	current->flags &= ~PF_NPROC_EXCEEDED;
1910 
1911 	bprm = alloc_bprm(fd, filename);
1912 	if (IS_ERR(bprm)) {
1913 		retval = PTR_ERR(bprm);
1914 		goto out_ret;
1915 	}
1916 
1917 	retval = count(argv, MAX_ARG_STRINGS);
1918 	if (retval == 0)
1919 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1920 			     current->comm, bprm->filename);
1921 	if (retval < 0)
1922 		goto out_free;
1923 	bprm->argc = retval;
1924 
1925 	retval = count(envp, MAX_ARG_STRINGS);
1926 	if (retval < 0)
1927 		goto out_free;
1928 	bprm->envc = retval;
1929 
1930 	retval = bprm_stack_limits(bprm);
1931 	if (retval < 0)
1932 		goto out_free;
1933 
1934 	retval = copy_string_kernel(bprm->filename, bprm);
1935 	if (retval < 0)
1936 		goto out_free;
1937 	bprm->exec = bprm->p;
1938 
1939 	retval = copy_strings(bprm->envc, envp, bprm);
1940 	if (retval < 0)
1941 		goto out_free;
1942 
1943 	retval = copy_strings(bprm->argc, argv, bprm);
1944 	if (retval < 0)
1945 		goto out_free;
1946 
1947 	/*
1948 	 * When argv is empty, add an empty string ("") as argv[0] to
1949 	 * ensure confused userspace programs that start processing
1950 	 * from argv[1] won't end up walking envp. See also
1951 	 * bprm_stack_limits().
1952 	 */
1953 	if (bprm->argc == 0) {
1954 		retval = copy_string_kernel("", bprm);
1955 		if (retval < 0)
1956 			goto out_free;
1957 		bprm->argc = 1;
1958 	}
1959 
1960 	retval = bprm_execve(bprm, fd, filename, flags);
1961 out_free:
1962 	free_bprm(bprm);
1963 
1964 out_ret:
1965 	putname(filename);
1966 	return retval;
1967 }
1968 
1969 int kernel_execve(const char *kernel_filename,
1970 		  const char *const *argv, const char *const *envp)
1971 {
1972 	struct filename *filename;
1973 	struct linux_binprm *bprm;
1974 	int fd = AT_FDCWD;
1975 	int retval;
1976 
1977 	/* It is non-sense for kernel threads to call execve */
1978 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1979 		return -EINVAL;
1980 
1981 	filename = getname_kernel(kernel_filename);
1982 	if (IS_ERR(filename))
1983 		return PTR_ERR(filename);
1984 
1985 	bprm = alloc_bprm(fd, filename);
1986 	if (IS_ERR(bprm)) {
1987 		retval = PTR_ERR(bprm);
1988 		goto out_ret;
1989 	}
1990 
1991 	retval = count_strings_kernel(argv);
1992 	if (WARN_ON_ONCE(retval == 0))
1993 		retval = -EINVAL;
1994 	if (retval < 0)
1995 		goto out_free;
1996 	bprm->argc = retval;
1997 
1998 	retval = count_strings_kernel(envp);
1999 	if (retval < 0)
2000 		goto out_free;
2001 	bprm->envc = retval;
2002 
2003 	retval = bprm_stack_limits(bprm);
2004 	if (retval < 0)
2005 		goto out_free;
2006 
2007 	retval = copy_string_kernel(bprm->filename, bprm);
2008 	if (retval < 0)
2009 		goto out_free;
2010 	bprm->exec = bprm->p;
2011 
2012 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2013 	if (retval < 0)
2014 		goto out_free;
2015 
2016 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2017 	if (retval < 0)
2018 		goto out_free;
2019 
2020 	retval = bprm_execve(bprm, fd, filename, 0);
2021 out_free:
2022 	free_bprm(bprm);
2023 out_ret:
2024 	putname(filename);
2025 	return retval;
2026 }
2027 
2028 static int do_execve(struct filename *filename,
2029 	const char __user *const __user *__argv,
2030 	const char __user *const __user *__envp)
2031 {
2032 	struct user_arg_ptr argv = { .ptr.native = __argv };
2033 	struct user_arg_ptr envp = { .ptr.native = __envp };
2034 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2035 }
2036 
2037 static int do_execveat(int fd, struct filename *filename,
2038 		const char __user *const __user *__argv,
2039 		const char __user *const __user *__envp,
2040 		int flags)
2041 {
2042 	struct user_arg_ptr argv = { .ptr.native = __argv };
2043 	struct user_arg_ptr envp = { .ptr.native = __envp };
2044 
2045 	return do_execveat_common(fd, filename, argv, envp, flags);
2046 }
2047 
2048 #ifdef CONFIG_COMPAT
2049 static int compat_do_execve(struct filename *filename,
2050 	const compat_uptr_t __user *__argv,
2051 	const compat_uptr_t __user *__envp)
2052 {
2053 	struct user_arg_ptr argv = {
2054 		.is_compat = true,
2055 		.ptr.compat = __argv,
2056 	};
2057 	struct user_arg_ptr envp = {
2058 		.is_compat = true,
2059 		.ptr.compat = __envp,
2060 	};
2061 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2062 }
2063 
2064 static int compat_do_execveat(int fd, struct filename *filename,
2065 			      const compat_uptr_t __user *__argv,
2066 			      const compat_uptr_t __user *__envp,
2067 			      int flags)
2068 {
2069 	struct user_arg_ptr argv = {
2070 		.is_compat = true,
2071 		.ptr.compat = __argv,
2072 	};
2073 	struct user_arg_ptr envp = {
2074 		.is_compat = true,
2075 		.ptr.compat = __envp,
2076 	};
2077 	return do_execveat_common(fd, filename, argv, envp, flags);
2078 }
2079 #endif
2080 
2081 void set_binfmt(struct linux_binfmt *new)
2082 {
2083 	struct mm_struct *mm = current->mm;
2084 
2085 	if (mm->binfmt)
2086 		module_put(mm->binfmt->module);
2087 
2088 	mm->binfmt = new;
2089 	if (new)
2090 		__module_get(new->module);
2091 }
2092 EXPORT_SYMBOL(set_binfmt);
2093 
2094 /*
2095  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2096  */
2097 void set_dumpable(struct mm_struct *mm, int value)
2098 {
2099 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2100 		return;
2101 
2102 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2103 }
2104 
2105 SYSCALL_DEFINE3(execve,
2106 		const char __user *, filename,
2107 		const char __user *const __user *, argv,
2108 		const char __user *const __user *, envp)
2109 {
2110 	return do_execve(getname(filename), argv, envp);
2111 }
2112 
2113 SYSCALL_DEFINE5(execveat,
2114 		int, fd, const char __user *, filename,
2115 		const char __user *const __user *, argv,
2116 		const char __user *const __user *, envp,
2117 		int, flags)
2118 {
2119 	return do_execveat(fd,
2120 			   getname_uflags(filename, flags),
2121 			   argv, envp, flags);
2122 }
2123 
2124 #ifdef CONFIG_COMPAT
2125 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2126 	const compat_uptr_t __user *, argv,
2127 	const compat_uptr_t __user *, envp)
2128 {
2129 	return compat_do_execve(getname(filename), argv, envp);
2130 }
2131 
2132 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2133 		       const char __user *, filename,
2134 		       const compat_uptr_t __user *, argv,
2135 		       const compat_uptr_t __user *, envp,
2136 		       int,  flags)
2137 {
2138 	return compat_do_execveat(fd,
2139 				  getname_uflags(filename, flags),
2140 				  argv, envp, flags);
2141 }
2142 #endif
2143 
2144 #ifdef CONFIG_SYSCTL
2145 
2146 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2147 		void *buffer, size_t *lenp, loff_t *ppos)
2148 {
2149 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2150 
2151 	if (!error)
2152 		validate_coredump_safety();
2153 	return error;
2154 }
2155 
2156 static struct ctl_table fs_exec_sysctls[] = {
2157 	{
2158 		.procname	= "suid_dumpable",
2159 		.data		= &suid_dumpable,
2160 		.maxlen		= sizeof(int),
2161 		.mode		= 0644,
2162 		.proc_handler	= proc_dointvec_minmax_coredump,
2163 		.extra1		= SYSCTL_ZERO,
2164 		.extra2		= SYSCTL_TWO,
2165 	},
2166 	{ }
2167 };
2168 
2169 static int __init init_fs_exec_sysctls(void)
2170 {
2171 	register_sysctl_init("fs", fs_exec_sysctls);
2172 	return 0;
2173 }
2174 
2175 fs_initcall(init_fs_exec_sysctls);
2176 #endif /* CONFIG_SYSCTL */
2177