xref: /openbmc/linux/fs/exec.c (revision 7caf62de)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 
63 #include <trace/events/task.h>
64 #include "internal.h"
65 
66 #include <trace/events/sched.h>
67 
68 int suid_dumpable = 0;
69 
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72 
73 void __register_binfmt(struct linux_binfmt * fmt, int insert)
74 {
75 	BUG_ON(!fmt);
76 	if (WARN_ON(!fmt->load_binary))
77 		return;
78 	write_lock(&binfmt_lock);
79 	insert ? list_add(&fmt->lh, &formats) :
80 		 list_add_tail(&fmt->lh, &formats);
81 	write_unlock(&binfmt_lock);
82 }
83 
84 EXPORT_SYMBOL(__register_binfmt);
85 
86 void unregister_binfmt(struct linux_binfmt * fmt)
87 {
88 	write_lock(&binfmt_lock);
89 	list_del(&fmt->lh);
90 	write_unlock(&binfmt_lock);
91 }
92 
93 EXPORT_SYMBOL(unregister_binfmt);
94 
95 static inline void put_binfmt(struct linux_binfmt * fmt)
96 {
97 	module_put(fmt->module);
98 }
99 
100 /*
101  * Note that a shared library must be both readable and executable due to
102  * security reasons.
103  *
104  * Also note that we take the address to load from from the file itself.
105  */
106 SYSCALL_DEFINE1(uselib, const char __user *, library)
107 {
108 	struct linux_binfmt *fmt;
109 	struct file *file;
110 	struct filename *tmp = getname(library);
111 	int error = PTR_ERR(tmp);
112 	static const struct open_flags uselib_flags = {
113 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
114 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
115 		.intent = LOOKUP_OPEN,
116 		.lookup_flags = LOOKUP_FOLLOW,
117 	};
118 
119 	if (IS_ERR(tmp))
120 		goto out;
121 
122 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
123 	putname(tmp);
124 	error = PTR_ERR(file);
125 	if (IS_ERR(file))
126 		goto out;
127 
128 	error = -EINVAL;
129 	if (!S_ISREG(file_inode(file)->i_mode))
130 		goto exit;
131 
132 	error = -EACCES;
133 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
134 		goto exit;
135 
136 	fsnotify_open(file);
137 
138 	error = -ENOEXEC;
139 
140 	read_lock(&binfmt_lock);
141 	list_for_each_entry(fmt, &formats, lh) {
142 		if (!fmt->load_shlib)
143 			continue;
144 		if (!try_module_get(fmt->module))
145 			continue;
146 		read_unlock(&binfmt_lock);
147 		error = fmt->load_shlib(file);
148 		read_lock(&binfmt_lock);
149 		put_binfmt(fmt);
150 		if (error != -ENOEXEC)
151 			break;
152 	}
153 	read_unlock(&binfmt_lock);
154 exit:
155 	fput(file);
156 out:
157   	return error;
158 }
159 
160 #ifdef CONFIG_MMU
161 /*
162  * The nascent bprm->mm is not visible until exec_mmap() but it can
163  * use a lot of memory, account these pages in current->mm temporary
164  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
165  * change the counter back via acct_arg_size(0).
166  */
167 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
168 {
169 	struct mm_struct *mm = current->mm;
170 	long diff = (long)(pages - bprm->vma_pages);
171 
172 	if (!mm || !diff)
173 		return;
174 
175 	bprm->vma_pages = pages;
176 	add_mm_counter(mm, MM_ANONPAGES, diff);
177 }
178 
179 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
180 		int write)
181 {
182 	struct page *page;
183 	int ret;
184 
185 #ifdef CONFIG_STACK_GROWSUP
186 	if (write) {
187 		ret = expand_downwards(bprm->vma, pos);
188 		if (ret < 0)
189 			return NULL;
190 	}
191 #endif
192 	ret = get_user_pages(current, bprm->mm, pos,
193 			1, write, 1, &page, NULL);
194 	if (ret <= 0)
195 		return NULL;
196 
197 	if (write) {
198 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
199 		struct rlimit *rlim;
200 
201 		acct_arg_size(bprm, size / PAGE_SIZE);
202 
203 		/*
204 		 * We've historically supported up to 32 pages (ARG_MAX)
205 		 * of argument strings even with small stacks
206 		 */
207 		if (size <= ARG_MAX)
208 			return page;
209 
210 		/*
211 		 * Limit to 1/4-th the stack size for the argv+env strings.
212 		 * This ensures that:
213 		 *  - the remaining binfmt code will not run out of stack space,
214 		 *  - the program will have a reasonable amount of stack left
215 		 *    to work from.
216 		 */
217 		rlim = current->signal->rlim;
218 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
219 			put_page(page);
220 			return NULL;
221 		}
222 	}
223 
224 	return page;
225 }
226 
227 static void put_arg_page(struct page *page)
228 {
229 	put_page(page);
230 }
231 
232 static void free_arg_page(struct linux_binprm *bprm, int i)
233 {
234 }
235 
236 static void free_arg_pages(struct linux_binprm *bprm)
237 {
238 }
239 
240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241 		struct page *page)
242 {
243 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244 }
245 
246 static int __bprm_mm_init(struct linux_binprm *bprm)
247 {
248 	int err;
249 	struct vm_area_struct *vma = NULL;
250 	struct mm_struct *mm = bprm->mm;
251 
252 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
253 	if (!vma)
254 		return -ENOMEM;
255 
256 	down_write(&mm->mmap_sem);
257 	vma->vm_mm = mm;
258 
259 	/*
260 	 * Place the stack at the largest stack address the architecture
261 	 * supports. Later, we'll move this to an appropriate place. We don't
262 	 * use STACK_TOP because that can depend on attributes which aren't
263 	 * configured yet.
264 	 */
265 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266 	vma->vm_end = STACK_TOP_MAX;
267 	vma->vm_start = vma->vm_end - PAGE_SIZE;
268 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270 	INIT_LIST_HEAD(&vma->anon_vma_chain);
271 
272 	err = insert_vm_struct(mm, vma);
273 	if (err)
274 		goto err;
275 
276 	mm->stack_vm = mm->total_vm = 1;
277 	up_write(&mm->mmap_sem);
278 	bprm->p = vma->vm_end - sizeof(void *);
279 	return 0;
280 err:
281 	up_write(&mm->mmap_sem);
282 	bprm->vma = NULL;
283 	kmem_cache_free(vm_area_cachep, vma);
284 	return err;
285 }
286 
287 static bool valid_arg_len(struct linux_binprm *bprm, long len)
288 {
289 	return len <= MAX_ARG_STRLEN;
290 }
291 
292 #else
293 
294 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
295 {
296 }
297 
298 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
299 		int write)
300 {
301 	struct page *page;
302 
303 	page = bprm->page[pos / PAGE_SIZE];
304 	if (!page && write) {
305 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
306 		if (!page)
307 			return NULL;
308 		bprm->page[pos / PAGE_SIZE] = page;
309 	}
310 
311 	return page;
312 }
313 
314 static void put_arg_page(struct page *page)
315 {
316 }
317 
318 static void free_arg_page(struct linux_binprm *bprm, int i)
319 {
320 	if (bprm->page[i]) {
321 		__free_page(bprm->page[i]);
322 		bprm->page[i] = NULL;
323 	}
324 }
325 
326 static void free_arg_pages(struct linux_binprm *bprm)
327 {
328 	int i;
329 
330 	for (i = 0; i < MAX_ARG_PAGES; i++)
331 		free_arg_page(bprm, i);
332 }
333 
334 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
335 		struct page *page)
336 {
337 }
338 
339 static int __bprm_mm_init(struct linux_binprm *bprm)
340 {
341 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
342 	return 0;
343 }
344 
345 static bool valid_arg_len(struct linux_binprm *bprm, long len)
346 {
347 	return len <= bprm->p;
348 }
349 
350 #endif /* CONFIG_MMU */
351 
352 /*
353  * Create a new mm_struct and populate it with a temporary stack
354  * vm_area_struct.  We don't have enough context at this point to set the stack
355  * flags, permissions, and offset, so we use temporary values.  We'll update
356  * them later in setup_arg_pages().
357  */
358 static int bprm_mm_init(struct linux_binprm *bprm)
359 {
360 	int err;
361 	struct mm_struct *mm = NULL;
362 
363 	bprm->mm = mm = mm_alloc();
364 	err = -ENOMEM;
365 	if (!mm)
366 		goto err;
367 
368 	err = init_new_context(current, mm);
369 	if (err)
370 		goto err;
371 
372 	err = __bprm_mm_init(bprm);
373 	if (err)
374 		goto err;
375 
376 	return 0;
377 
378 err:
379 	if (mm) {
380 		bprm->mm = NULL;
381 		mmdrop(mm);
382 	}
383 
384 	return err;
385 }
386 
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389 	bool is_compat;
390 #endif
391 	union {
392 		const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394 		const compat_uptr_t __user *compat;
395 #endif
396 	} ptr;
397 };
398 
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 {
401 	const char __user *native;
402 
403 #ifdef CONFIG_COMPAT
404 	if (unlikely(argv.is_compat)) {
405 		compat_uptr_t compat;
406 
407 		if (get_user(compat, argv.ptr.compat + nr))
408 			return ERR_PTR(-EFAULT);
409 
410 		return compat_ptr(compat);
411 	}
412 #endif
413 
414 	if (get_user(native, argv.ptr.native + nr))
415 		return ERR_PTR(-EFAULT);
416 
417 	return native;
418 }
419 
420 /*
421  * count() counts the number of strings in array ARGV.
422  */
423 static int count(struct user_arg_ptr argv, int max)
424 {
425 	int i = 0;
426 
427 	if (argv.ptr.native != NULL) {
428 		for (;;) {
429 			const char __user *p = get_user_arg_ptr(argv, i);
430 
431 			if (!p)
432 				break;
433 
434 			if (IS_ERR(p))
435 				return -EFAULT;
436 
437 			if (i >= max)
438 				return -E2BIG;
439 			++i;
440 
441 			if (fatal_signal_pending(current))
442 				return -ERESTARTNOHAND;
443 			cond_resched();
444 		}
445 	}
446 	return i;
447 }
448 
449 /*
450  * 'copy_strings()' copies argument/environment strings from the old
451  * processes's memory to the new process's stack.  The call to get_user_pages()
452  * ensures the destination page is created and not swapped out.
453  */
454 static int copy_strings(int argc, struct user_arg_ptr argv,
455 			struct linux_binprm *bprm)
456 {
457 	struct page *kmapped_page = NULL;
458 	char *kaddr = NULL;
459 	unsigned long kpos = 0;
460 	int ret;
461 
462 	while (argc-- > 0) {
463 		const char __user *str;
464 		int len;
465 		unsigned long pos;
466 
467 		ret = -EFAULT;
468 		str = get_user_arg_ptr(argv, argc);
469 		if (IS_ERR(str))
470 			goto out;
471 
472 		len = strnlen_user(str, MAX_ARG_STRLEN);
473 		if (!len)
474 			goto out;
475 
476 		ret = -E2BIG;
477 		if (!valid_arg_len(bprm, len))
478 			goto out;
479 
480 		/* We're going to work our way backwords. */
481 		pos = bprm->p;
482 		str += len;
483 		bprm->p -= len;
484 
485 		while (len > 0) {
486 			int offset, bytes_to_copy;
487 
488 			if (fatal_signal_pending(current)) {
489 				ret = -ERESTARTNOHAND;
490 				goto out;
491 			}
492 			cond_resched();
493 
494 			offset = pos % PAGE_SIZE;
495 			if (offset == 0)
496 				offset = PAGE_SIZE;
497 
498 			bytes_to_copy = offset;
499 			if (bytes_to_copy > len)
500 				bytes_to_copy = len;
501 
502 			offset -= bytes_to_copy;
503 			pos -= bytes_to_copy;
504 			str -= bytes_to_copy;
505 			len -= bytes_to_copy;
506 
507 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
508 				struct page *page;
509 
510 				page = get_arg_page(bprm, pos, 1);
511 				if (!page) {
512 					ret = -E2BIG;
513 					goto out;
514 				}
515 
516 				if (kmapped_page) {
517 					flush_kernel_dcache_page(kmapped_page);
518 					kunmap(kmapped_page);
519 					put_arg_page(kmapped_page);
520 				}
521 				kmapped_page = page;
522 				kaddr = kmap(kmapped_page);
523 				kpos = pos & PAGE_MASK;
524 				flush_arg_page(bprm, kpos, kmapped_page);
525 			}
526 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
527 				ret = -EFAULT;
528 				goto out;
529 			}
530 		}
531 	}
532 	ret = 0;
533 out:
534 	if (kmapped_page) {
535 		flush_kernel_dcache_page(kmapped_page);
536 		kunmap(kmapped_page);
537 		put_arg_page(kmapped_page);
538 	}
539 	return ret;
540 }
541 
542 /*
543  * Like copy_strings, but get argv and its values from kernel memory.
544  */
545 int copy_strings_kernel(int argc, const char *const *__argv,
546 			struct linux_binprm *bprm)
547 {
548 	int r;
549 	mm_segment_t oldfs = get_fs();
550 	struct user_arg_ptr argv = {
551 		.ptr.native = (const char __user *const  __user *)__argv,
552 	};
553 
554 	set_fs(KERNEL_DS);
555 	r = copy_strings(argc, argv, bprm);
556 	set_fs(oldfs);
557 
558 	return r;
559 }
560 EXPORT_SYMBOL(copy_strings_kernel);
561 
562 #ifdef CONFIG_MMU
563 
564 /*
565  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
566  * the binfmt code determines where the new stack should reside, we shift it to
567  * its final location.  The process proceeds as follows:
568  *
569  * 1) Use shift to calculate the new vma endpoints.
570  * 2) Extend vma to cover both the old and new ranges.  This ensures the
571  *    arguments passed to subsequent functions are consistent.
572  * 3) Move vma's page tables to the new range.
573  * 4) Free up any cleared pgd range.
574  * 5) Shrink the vma to cover only the new range.
575  */
576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
577 {
578 	struct mm_struct *mm = vma->vm_mm;
579 	unsigned long old_start = vma->vm_start;
580 	unsigned long old_end = vma->vm_end;
581 	unsigned long length = old_end - old_start;
582 	unsigned long new_start = old_start - shift;
583 	unsigned long new_end = old_end - shift;
584 	struct mmu_gather tlb;
585 
586 	BUG_ON(new_start > new_end);
587 
588 	/*
589 	 * ensure there are no vmas between where we want to go
590 	 * and where we are
591 	 */
592 	if (vma != find_vma(mm, new_start))
593 		return -EFAULT;
594 
595 	/*
596 	 * cover the whole range: [new_start, old_end)
597 	 */
598 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
599 		return -ENOMEM;
600 
601 	/*
602 	 * move the page tables downwards, on failure we rely on
603 	 * process cleanup to remove whatever mess we made.
604 	 */
605 	if (length != move_page_tables(vma, old_start,
606 				       vma, new_start, length, false))
607 		return -ENOMEM;
608 
609 	lru_add_drain();
610 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
611 	if (new_end > old_start) {
612 		/*
613 		 * when the old and new regions overlap clear from new_end.
614 		 */
615 		free_pgd_range(&tlb, new_end, old_end, new_end,
616 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
617 	} else {
618 		/*
619 		 * otherwise, clean from old_start; this is done to not touch
620 		 * the address space in [new_end, old_start) some architectures
621 		 * have constraints on va-space that make this illegal (IA64) -
622 		 * for the others its just a little faster.
623 		 */
624 		free_pgd_range(&tlb, old_start, old_end, new_end,
625 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
626 	}
627 	tlb_finish_mmu(&tlb, old_start, old_end);
628 
629 	/*
630 	 * Shrink the vma to just the new range.  Always succeeds.
631 	 */
632 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
633 
634 	return 0;
635 }
636 
637 /*
638  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
639  * the stack is optionally relocated, and some extra space is added.
640  */
641 int setup_arg_pages(struct linux_binprm *bprm,
642 		    unsigned long stack_top,
643 		    int executable_stack)
644 {
645 	unsigned long ret;
646 	unsigned long stack_shift;
647 	struct mm_struct *mm = current->mm;
648 	struct vm_area_struct *vma = bprm->vma;
649 	struct vm_area_struct *prev = NULL;
650 	unsigned long vm_flags;
651 	unsigned long stack_base;
652 	unsigned long stack_size;
653 	unsigned long stack_expand;
654 	unsigned long rlim_stack;
655 
656 #ifdef CONFIG_STACK_GROWSUP
657 	/* Limit stack size to 1GB */
658 	stack_base = rlimit_max(RLIMIT_STACK);
659 	if (stack_base > (1 << 30))
660 		stack_base = 1 << 30;
661 
662 	/* Make sure we didn't let the argument array grow too large. */
663 	if (vma->vm_end - vma->vm_start > stack_base)
664 		return -ENOMEM;
665 
666 	stack_base = PAGE_ALIGN(stack_top - stack_base);
667 
668 	stack_shift = vma->vm_start - stack_base;
669 	mm->arg_start = bprm->p - stack_shift;
670 	bprm->p = vma->vm_end - stack_shift;
671 #else
672 	stack_top = arch_align_stack(stack_top);
673 	stack_top = PAGE_ALIGN(stack_top);
674 
675 	if (unlikely(stack_top < mmap_min_addr) ||
676 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
677 		return -ENOMEM;
678 
679 	stack_shift = vma->vm_end - stack_top;
680 
681 	bprm->p -= stack_shift;
682 	mm->arg_start = bprm->p;
683 #endif
684 
685 	if (bprm->loader)
686 		bprm->loader -= stack_shift;
687 	bprm->exec -= stack_shift;
688 
689 	down_write(&mm->mmap_sem);
690 	vm_flags = VM_STACK_FLAGS;
691 
692 	/*
693 	 * Adjust stack execute permissions; explicitly enable for
694 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
695 	 * (arch default) otherwise.
696 	 */
697 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
698 		vm_flags |= VM_EXEC;
699 	else if (executable_stack == EXSTACK_DISABLE_X)
700 		vm_flags &= ~VM_EXEC;
701 	vm_flags |= mm->def_flags;
702 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
703 
704 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
705 			vm_flags);
706 	if (ret)
707 		goto out_unlock;
708 	BUG_ON(prev != vma);
709 
710 	/* Move stack pages down in memory. */
711 	if (stack_shift) {
712 		ret = shift_arg_pages(vma, stack_shift);
713 		if (ret)
714 			goto out_unlock;
715 	}
716 
717 	/* mprotect_fixup is overkill to remove the temporary stack flags */
718 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
719 
720 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
721 	stack_size = vma->vm_end - vma->vm_start;
722 	/*
723 	 * Align this down to a page boundary as expand_stack
724 	 * will align it up.
725 	 */
726 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
727 #ifdef CONFIG_STACK_GROWSUP
728 	if (stack_size + stack_expand > rlim_stack)
729 		stack_base = vma->vm_start + rlim_stack;
730 	else
731 		stack_base = vma->vm_end + stack_expand;
732 #else
733 	if (stack_size + stack_expand > rlim_stack)
734 		stack_base = vma->vm_end - rlim_stack;
735 	else
736 		stack_base = vma->vm_start - stack_expand;
737 #endif
738 	current->mm->start_stack = bprm->p;
739 	ret = expand_stack(vma, stack_base);
740 	if (ret)
741 		ret = -EFAULT;
742 
743 out_unlock:
744 	up_write(&mm->mmap_sem);
745 	return ret;
746 }
747 EXPORT_SYMBOL(setup_arg_pages);
748 
749 #endif /* CONFIG_MMU */
750 
751 static struct file *do_open_exec(struct filename *name)
752 {
753 	struct file *file;
754 	int err;
755 	static const struct open_flags open_exec_flags = {
756 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
757 		.acc_mode = MAY_EXEC | MAY_OPEN,
758 		.intent = LOOKUP_OPEN,
759 		.lookup_flags = LOOKUP_FOLLOW,
760 	};
761 
762 	file = do_filp_open(AT_FDCWD, name, &open_exec_flags);
763 	if (IS_ERR(file))
764 		goto out;
765 
766 	err = -EACCES;
767 	if (!S_ISREG(file_inode(file)->i_mode))
768 		goto exit;
769 
770 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
771 		goto exit;
772 
773 	fsnotify_open(file);
774 
775 	err = deny_write_access(file);
776 	if (err)
777 		goto exit;
778 
779 out:
780 	return file;
781 
782 exit:
783 	fput(file);
784 	return ERR_PTR(err);
785 }
786 
787 struct file *open_exec(const char *name)
788 {
789 	struct filename tmp = { .name = name };
790 	return do_open_exec(&tmp);
791 }
792 EXPORT_SYMBOL(open_exec);
793 
794 int kernel_read(struct file *file, loff_t offset,
795 		char *addr, unsigned long count)
796 {
797 	mm_segment_t old_fs;
798 	loff_t pos = offset;
799 	int result;
800 
801 	old_fs = get_fs();
802 	set_fs(get_ds());
803 	/* The cast to a user pointer is valid due to the set_fs() */
804 	result = vfs_read(file, (void __user *)addr, count, &pos);
805 	set_fs(old_fs);
806 	return result;
807 }
808 
809 EXPORT_SYMBOL(kernel_read);
810 
811 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
812 {
813 	ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos);
814 	if (res > 0)
815 		flush_icache_range(addr, addr + len);
816 	return res;
817 }
818 EXPORT_SYMBOL(read_code);
819 
820 static int exec_mmap(struct mm_struct *mm)
821 {
822 	struct task_struct *tsk;
823 	struct mm_struct * old_mm, *active_mm;
824 
825 	/* Notify parent that we're no longer interested in the old VM */
826 	tsk = current;
827 	old_mm = current->mm;
828 	mm_release(tsk, old_mm);
829 
830 	if (old_mm) {
831 		sync_mm_rss(old_mm);
832 		/*
833 		 * Make sure that if there is a core dump in progress
834 		 * for the old mm, we get out and die instead of going
835 		 * through with the exec.  We must hold mmap_sem around
836 		 * checking core_state and changing tsk->mm.
837 		 */
838 		down_read(&old_mm->mmap_sem);
839 		if (unlikely(old_mm->core_state)) {
840 			up_read(&old_mm->mmap_sem);
841 			return -EINTR;
842 		}
843 	}
844 	task_lock(tsk);
845 	active_mm = tsk->active_mm;
846 	tsk->mm = mm;
847 	tsk->active_mm = mm;
848 	activate_mm(active_mm, mm);
849 	task_unlock(tsk);
850 	if (old_mm) {
851 		up_read(&old_mm->mmap_sem);
852 		BUG_ON(active_mm != old_mm);
853 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
854 		mm_update_next_owner(old_mm);
855 		mmput(old_mm);
856 		return 0;
857 	}
858 	mmdrop(active_mm);
859 	return 0;
860 }
861 
862 /*
863  * This function makes sure the current process has its own signal table,
864  * so that flush_signal_handlers can later reset the handlers without
865  * disturbing other processes.  (Other processes might share the signal
866  * table via the CLONE_SIGHAND option to clone().)
867  */
868 static int de_thread(struct task_struct *tsk)
869 {
870 	struct signal_struct *sig = tsk->signal;
871 	struct sighand_struct *oldsighand = tsk->sighand;
872 	spinlock_t *lock = &oldsighand->siglock;
873 
874 	if (thread_group_empty(tsk))
875 		goto no_thread_group;
876 
877 	/*
878 	 * Kill all other threads in the thread group.
879 	 */
880 	spin_lock_irq(lock);
881 	if (signal_group_exit(sig)) {
882 		/*
883 		 * Another group action in progress, just
884 		 * return so that the signal is processed.
885 		 */
886 		spin_unlock_irq(lock);
887 		return -EAGAIN;
888 	}
889 
890 	sig->group_exit_task = tsk;
891 	sig->notify_count = zap_other_threads(tsk);
892 	if (!thread_group_leader(tsk))
893 		sig->notify_count--;
894 
895 	while (sig->notify_count) {
896 		__set_current_state(TASK_KILLABLE);
897 		spin_unlock_irq(lock);
898 		schedule();
899 		if (unlikely(__fatal_signal_pending(tsk)))
900 			goto killed;
901 		spin_lock_irq(lock);
902 	}
903 	spin_unlock_irq(lock);
904 
905 	/*
906 	 * At this point all other threads have exited, all we have to
907 	 * do is to wait for the thread group leader to become inactive,
908 	 * and to assume its PID:
909 	 */
910 	if (!thread_group_leader(tsk)) {
911 		struct task_struct *leader = tsk->group_leader;
912 
913 		sig->notify_count = -1;	/* for exit_notify() */
914 		for (;;) {
915 			threadgroup_change_begin(tsk);
916 			write_lock_irq(&tasklist_lock);
917 			if (likely(leader->exit_state))
918 				break;
919 			__set_current_state(TASK_KILLABLE);
920 			write_unlock_irq(&tasklist_lock);
921 			threadgroup_change_end(tsk);
922 			schedule();
923 			if (unlikely(__fatal_signal_pending(tsk)))
924 				goto killed;
925 		}
926 
927 		/*
928 		 * The only record we have of the real-time age of a
929 		 * process, regardless of execs it's done, is start_time.
930 		 * All the past CPU time is accumulated in signal_struct
931 		 * from sister threads now dead.  But in this non-leader
932 		 * exec, nothing survives from the original leader thread,
933 		 * whose birth marks the true age of this process now.
934 		 * When we take on its identity by switching to its PID, we
935 		 * also take its birthdate (always earlier than our own).
936 		 */
937 		tsk->start_time = leader->start_time;
938 		tsk->real_start_time = leader->real_start_time;
939 
940 		BUG_ON(!same_thread_group(leader, tsk));
941 		BUG_ON(has_group_leader_pid(tsk));
942 		/*
943 		 * An exec() starts a new thread group with the
944 		 * TGID of the previous thread group. Rehash the
945 		 * two threads with a switched PID, and release
946 		 * the former thread group leader:
947 		 */
948 
949 		/* Become a process group leader with the old leader's pid.
950 		 * The old leader becomes a thread of the this thread group.
951 		 * Note: The old leader also uses this pid until release_task
952 		 *       is called.  Odd but simple and correct.
953 		 */
954 		tsk->pid = leader->pid;
955 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
956 		transfer_pid(leader, tsk, PIDTYPE_PGID);
957 		transfer_pid(leader, tsk, PIDTYPE_SID);
958 
959 		list_replace_rcu(&leader->tasks, &tsk->tasks);
960 		list_replace_init(&leader->sibling, &tsk->sibling);
961 
962 		tsk->group_leader = tsk;
963 		leader->group_leader = tsk;
964 
965 		tsk->exit_signal = SIGCHLD;
966 		leader->exit_signal = -1;
967 
968 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
969 		leader->exit_state = EXIT_DEAD;
970 
971 		/*
972 		 * We are going to release_task()->ptrace_unlink() silently,
973 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
974 		 * the tracer wont't block again waiting for this thread.
975 		 */
976 		if (unlikely(leader->ptrace))
977 			__wake_up_parent(leader, leader->parent);
978 		write_unlock_irq(&tasklist_lock);
979 		threadgroup_change_end(tsk);
980 
981 		release_task(leader);
982 	}
983 
984 	sig->group_exit_task = NULL;
985 	sig->notify_count = 0;
986 
987 no_thread_group:
988 	/* we have changed execution domain */
989 	tsk->exit_signal = SIGCHLD;
990 
991 	exit_itimers(sig);
992 	flush_itimer_signals();
993 
994 	if (atomic_read(&oldsighand->count) != 1) {
995 		struct sighand_struct *newsighand;
996 		/*
997 		 * This ->sighand is shared with the CLONE_SIGHAND
998 		 * but not CLONE_THREAD task, switch to the new one.
999 		 */
1000 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1001 		if (!newsighand)
1002 			return -ENOMEM;
1003 
1004 		atomic_set(&newsighand->count, 1);
1005 		memcpy(newsighand->action, oldsighand->action,
1006 		       sizeof(newsighand->action));
1007 
1008 		write_lock_irq(&tasklist_lock);
1009 		spin_lock(&oldsighand->siglock);
1010 		rcu_assign_pointer(tsk->sighand, newsighand);
1011 		spin_unlock(&oldsighand->siglock);
1012 		write_unlock_irq(&tasklist_lock);
1013 
1014 		__cleanup_sighand(oldsighand);
1015 	}
1016 
1017 	BUG_ON(!thread_group_leader(tsk));
1018 	return 0;
1019 
1020 killed:
1021 	/* protects against exit_notify() and __exit_signal() */
1022 	read_lock(&tasklist_lock);
1023 	sig->group_exit_task = NULL;
1024 	sig->notify_count = 0;
1025 	read_unlock(&tasklist_lock);
1026 	return -EAGAIN;
1027 }
1028 
1029 char *get_task_comm(char *buf, struct task_struct *tsk)
1030 {
1031 	/* buf must be at least sizeof(tsk->comm) in size */
1032 	task_lock(tsk);
1033 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1034 	task_unlock(tsk);
1035 	return buf;
1036 }
1037 EXPORT_SYMBOL_GPL(get_task_comm);
1038 
1039 /*
1040  * These functions flushes out all traces of the currently running executable
1041  * so that a new one can be started
1042  */
1043 
1044 void set_task_comm(struct task_struct *tsk, char *buf)
1045 {
1046 	task_lock(tsk);
1047 	trace_task_rename(tsk, buf);
1048 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1049 	task_unlock(tsk);
1050 	perf_event_comm(tsk);
1051 }
1052 
1053 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1054 {
1055 	int i, ch;
1056 
1057 	/* Copies the binary name from after last slash */
1058 	for (i = 0; (ch = *(fn++)) != '\0';) {
1059 		if (ch == '/')
1060 			i = 0; /* overwrite what we wrote */
1061 		else
1062 			if (i < len - 1)
1063 				tcomm[i++] = ch;
1064 	}
1065 	tcomm[i] = '\0';
1066 }
1067 
1068 int flush_old_exec(struct linux_binprm * bprm)
1069 {
1070 	int retval;
1071 
1072 	/*
1073 	 * Make sure we have a private signal table and that
1074 	 * we are unassociated from the previous thread group.
1075 	 */
1076 	retval = de_thread(current);
1077 	if (retval)
1078 		goto out;
1079 
1080 	set_mm_exe_file(bprm->mm, bprm->file);
1081 
1082 	filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1083 	/*
1084 	 * Release all of the old mmap stuff
1085 	 */
1086 	acct_arg_size(bprm, 0);
1087 	retval = exec_mmap(bprm->mm);
1088 	if (retval)
1089 		goto out;
1090 
1091 	bprm->mm = NULL;		/* We're using it now */
1092 
1093 	set_fs(USER_DS);
1094 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1095 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1096 	flush_thread();
1097 	current->personality &= ~bprm->per_clear;
1098 
1099 	return 0;
1100 
1101 out:
1102 	return retval;
1103 }
1104 EXPORT_SYMBOL(flush_old_exec);
1105 
1106 void would_dump(struct linux_binprm *bprm, struct file *file)
1107 {
1108 	if (inode_permission(file_inode(file), MAY_READ) < 0)
1109 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1110 }
1111 EXPORT_SYMBOL(would_dump);
1112 
1113 void setup_new_exec(struct linux_binprm * bprm)
1114 {
1115 	arch_pick_mmap_layout(current->mm);
1116 
1117 	/* This is the point of no return */
1118 	current->sas_ss_sp = current->sas_ss_size = 0;
1119 
1120 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1121 		set_dumpable(current->mm, SUID_DUMP_USER);
1122 	else
1123 		set_dumpable(current->mm, suid_dumpable);
1124 
1125 	set_task_comm(current, bprm->tcomm);
1126 
1127 	/* Set the new mm task size. We have to do that late because it may
1128 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1129 	 * some architectures like powerpc
1130 	 */
1131 	current->mm->task_size = TASK_SIZE;
1132 
1133 	/* install the new credentials */
1134 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1135 	    !gid_eq(bprm->cred->gid, current_egid())) {
1136 		current->pdeath_signal = 0;
1137 	} else {
1138 		would_dump(bprm, bprm->file);
1139 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1140 			set_dumpable(current->mm, suid_dumpable);
1141 	}
1142 
1143 	/* An exec changes our domain. We are no longer part of the thread
1144 	   group */
1145 	current->self_exec_id++;
1146 	flush_signal_handlers(current, 0);
1147 	do_close_on_exec(current->files);
1148 }
1149 EXPORT_SYMBOL(setup_new_exec);
1150 
1151 /*
1152  * Prepare credentials and lock ->cred_guard_mutex.
1153  * install_exec_creds() commits the new creds and drops the lock.
1154  * Or, if exec fails before, free_bprm() should release ->cred and
1155  * and unlock.
1156  */
1157 int prepare_bprm_creds(struct linux_binprm *bprm)
1158 {
1159 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1160 		return -ERESTARTNOINTR;
1161 
1162 	bprm->cred = prepare_exec_creds();
1163 	if (likely(bprm->cred))
1164 		return 0;
1165 
1166 	mutex_unlock(&current->signal->cred_guard_mutex);
1167 	return -ENOMEM;
1168 }
1169 
1170 static void free_bprm(struct linux_binprm *bprm)
1171 {
1172 	free_arg_pages(bprm);
1173 	if (bprm->cred) {
1174 		mutex_unlock(&current->signal->cred_guard_mutex);
1175 		abort_creds(bprm->cred);
1176 	}
1177 	if (bprm->file) {
1178 		allow_write_access(bprm->file);
1179 		fput(bprm->file);
1180 	}
1181 	/* If a binfmt changed the interp, free it. */
1182 	if (bprm->interp != bprm->filename)
1183 		kfree(bprm->interp);
1184 	kfree(bprm);
1185 }
1186 
1187 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1188 {
1189 	/* If a binfmt changed the interp, free it first. */
1190 	if (bprm->interp != bprm->filename)
1191 		kfree(bprm->interp);
1192 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1193 	if (!bprm->interp)
1194 		return -ENOMEM;
1195 	return 0;
1196 }
1197 EXPORT_SYMBOL(bprm_change_interp);
1198 
1199 /*
1200  * install the new credentials for this executable
1201  */
1202 void install_exec_creds(struct linux_binprm *bprm)
1203 {
1204 	security_bprm_committing_creds(bprm);
1205 
1206 	commit_creds(bprm->cred);
1207 	bprm->cred = NULL;
1208 
1209 	/*
1210 	 * Disable monitoring for regular users
1211 	 * when executing setuid binaries. Must
1212 	 * wait until new credentials are committed
1213 	 * by commit_creds() above
1214 	 */
1215 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1216 		perf_event_exit_task(current);
1217 	/*
1218 	 * cred_guard_mutex must be held at least to this point to prevent
1219 	 * ptrace_attach() from altering our determination of the task's
1220 	 * credentials; any time after this it may be unlocked.
1221 	 */
1222 	security_bprm_committed_creds(bprm);
1223 	mutex_unlock(&current->signal->cred_guard_mutex);
1224 }
1225 EXPORT_SYMBOL(install_exec_creds);
1226 
1227 /*
1228  * determine how safe it is to execute the proposed program
1229  * - the caller must hold ->cred_guard_mutex to protect against
1230  *   PTRACE_ATTACH
1231  */
1232 static void check_unsafe_exec(struct linux_binprm *bprm)
1233 {
1234 	struct task_struct *p = current, *t;
1235 	unsigned n_fs;
1236 
1237 	if (p->ptrace) {
1238 		if (p->ptrace & PT_PTRACE_CAP)
1239 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1240 		else
1241 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1242 	}
1243 
1244 	/*
1245 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1246 	 * mess up.
1247 	 */
1248 	if (current->no_new_privs)
1249 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1250 
1251 	t = p;
1252 	n_fs = 1;
1253 	spin_lock(&p->fs->lock);
1254 	rcu_read_lock();
1255 	while_each_thread(p, t) {
1256 		if (t->fs == p->fs)
1257 			n_fs++;
1258 	}
1259 	rcu_read_unlock();
1260 
1261 	if (p->fs->users > n_fs)
1262 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1263 	else
1264 		p->fs->in_exec = 1;
1265 	spin_unlock(&p->fs->lock);
1266 }
1267 
1268 /*
1269  * Fill the binprm structure from the inode.
1270  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1271  *
1272  * This may be called multiple times for binary chains (scripts for example).
1273  */
1274 int prepare_binprm(struct linux_binprm *bprm)
1275 {
1276 	struct inode *inode = file_inode(bprm->file);
1277 	umode_t mode = inode->i_mode;
1278 	int retval;
1279 
1280 
1281 	/* clear any previous set[ug]id data from a previous binary */
1282 	bprm->cred->euid = current_euid();
1283 	bprm->cred->egid = current_egid();
1284 
1285 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1286 	    !current->no_new_privs &&
1287 	    kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1288 	    kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1289 		/* Set-uid? */
1290 		if (mode & S_ISUID) {
1291 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1292 			bprm->cred->euid = inode->i_uid;
1293 		}
1294 
1295 		/* Set-gid? */
1296 		/*
1297 		 * If setgid is set but no group execute bit then this
1298 		 * is a candidate for mandatory locking, not a setgid
1299 		 * executable.
1300 		 */
1301 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1302 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1303 			bprm->cred->egid = inode->i_gid;
1304 		}
1305 	}
1306 
1307 	/* fill in binprm security blob */
1308 	retval = security_bprm_set_creds(bprm);
1309 	if (retval)
1310 		return retval;
1311 	bprm->cred_prepared = 1;
1312 
1313 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1314 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1315 }
1316 
1317 EXPORT_SYMBOL(prepare_binprm);
1318 
1319 /*
1320  * Arguments are '\0' separated strings found at the location bprm->p
1321  * points to; chop off the first by relocating brpm->p to right after
1322  * the first '\0' encountered.
1323  */
1324 int remove_arg_zero(struct linux_binprm *bprm)
1325 {
1326 	int ret = 0;
1327 	unsigned long offset;
1328 	char *kaddr;
1329 	struct page *page;
1330 
1331 	if (!bprm->argc)
1332 		return 0;
1333 
1334 	do {
1335 		offset = bprm->p & ~PAGE_MASK;
1336 		page = get_arg_page(bprm, bprm->p, 0);
1337 		if (!page) {
1338 			ret = -EFAULT;
1339 			goto out;
1340 		}
1341 		kaddr = kmap_atomic(page);
1342 
1343 		for (; offset < PAGE_SIZE && kaddr[offset];
1344 				offset++, bprm->p++)
1345 			;
1346 
1347 		kunmap_atomic(kaddr);
1348 		put_arg_page(page);
1349 
1350 		if (offset == PAGE_SIZE)
1351 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1352 	} while (offset == PAGE_SIZE);
1353 
1354 	bprm->p++;
1355 	bprm->argc--;
1356 	ret = 0;
1357 
1358 out:
1359 	return ret;
1360 }
1361 EXPORT_SYMBOL(remove_arg_zero);
1362 
1363 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1364 /*
1365  * cycle the list of binary formats handler, until one recognizes the image
1366  */
1367 int search_binary_handler(struct linux_binprm *bprm)
1368 {
1369 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1370 	struct linux_binfmt *fmt;
1371 	int retval;
1372 
1373 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1374 	if (bprm->recursion_depth > 5)
1375 		return -ELOOP;
1376 
1377 	retval = security_bprm_check(bprm);
1378 	if (retval)
1379 		return retval;
1380 
1381 	retval = -ENOENT;
1382  retry:
1383 	read_lock(&binfmt_lock);
1384 	list_for_each_entry(fmt, &formats, lh) {
1385 		if (!try_module_get(fmt->module))
1386 			continue;
1387 		read_unlock(&binfmt_lock);
1388 		bprm->recursion_depth++;
1389 		retval = fmt->load_binary(bprm);
1390 		bprm->recursion_depth--;
1391 		if (retval >= 0 || retval != -ENOEXEC ||
1392 		    bprm->mm == NULL || bprm->file == NULL) {
1393 			put_binfmt(fmt);
1394 			return retval;
1395 		}
1396 		read_lock(&binfmt_lock);
1397 		put_binfmt(fmt);
1398 	}
1399 	read_unlock(&binfmt_lock);
1400 
1401 	if (need_retry && retval == -ENOEXEC) {
1402 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1403 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1404 			return retval;
1405 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1406 			return retval;
1407 		need_retry = false;
1408 		goto retry;
1409 	}
1410 
1411 	return retval;
1412 }
1413 EXPORT_SYMBOL(search_binary_handler);
1414 
1415 static int exec_binprm(struct linux_binprm *bprm)
1416 {
1417 	pid_t old_pid, old_vpid;
1418 	int ret;
1419 
1420 	/* Need to fetch pid before load_binary changes it */
1421 	old_pid = current->pid;
1422 	rcu_read_lock();
1423 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1424 	rcu_read_unlock();
1425 
1426 	ret = search_binary_handler(bprm);
1427 	if (ret >= 0) {
1428 		audit_bprm(bprm);
1429 		trace_sched_process_exec(current, old_pid, bprm);
1430 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1431 		proc_exec_connector(current);
1432 	}
1433 
1434 	return ret;
1435 }
1436 
1437 /*
1438  * sys_execve() executes a new program.
1439  */
1440 static int do_execve_common(struct filename *filename,
1441 				struct user_arg_ptr argv,
1442 				struct user_arg_ptr envp)
1443 {
1444 	struct linux_binprm *bprm;
1445 	struct file *file;
1446 	struct files_struct *displaced;
1447 	int retval;
1448 
1449 	if (IS_ERR(filename))
1450 		return PTR_ERR(filename);
1451 
1452 	/*
1453 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1454 	 * set*uid() to execve() because too many poorly written programs
1455 	 * don't check setuid() return code.  Here we additionally recheck
1456 	 * whether NPROC limit is still exceeded.
1457 	 */
1458 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1459 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1460 		retval = -EAGAIN;
1461 		goto out_ret;
1462 	}
1463 
1464 	/* We're below the limit (still or again), so we don't want to make
1465 	 * further execve() calls fail. */
1466 	current->flags &= ~PF_NPROC_EXCEEDED;
1467 
1468 	retval = unshare_files(&displaced);
1469 	if (retval)
1470 		goto out_ret;
1471 
1472 	retval = -ENOMEM;
1473 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1474 	if (!bprm)
1475 		goto out_files;
1476 
1477 	retval = prepare_bprm_creds(bprm);
1478 	if (retval)
1479 		goto out_free;
1480 
1481 	check_unsafe_exec(bprm);
1482 	current->in_execve = 1;
1483 
1484 	file = do_open_exec(filename);
1485 	retval = PTR_ERR(file);
1486 	if (IS_ERR(file))
1487 		goto out_unmark;
1488 
1489 	sched_exec();
1490 
1491 	bprm->file = file;
1492 	bprm->filename = bprm->interp = filename->name;
1493 
1494 	retval = bprm_mm_init(bprm);
1495 	if (retval)
1496 		goto out_unmark;
1497 
1498 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1499 	if ((retval = bprm->argc) < 0)
1500 		goto out;
1501 
1502 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1503 	if ((retval = bprm->envc) < 0)
1504 		goto out;
1505 
1506 	retval = prepare_binprm(bprm);
1507 	if (retval < 0)
1508 		goto out;
1509 
1510 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1511 	if (retval < 0)
1512 		goto out;
1513 
1514 	bprm->exec = bprm->p;
1515 	retval = copy_strings(bprm->envc, envp, bprm);
1516 	if (retval < 0)
1517 		goto out;
1518 
1519 	retval = copy_strings(bprm->argc, argv, bprm);
1520 	if (retval < 0)
1521 		goto out;
1522 
1523 	retval = exec_binprm(bprm);
1524 	if (retval < 0)
1525 		goto out;
1526 
1527 	/* execve succeeded */
1528 	current->fs->in_exec = 0;
1529 	current->in_execve = 0;
1530 	acct_update_integrals(current);
1531 	task_numa_free(current);
1532 	free_bprm(bprm);
1533 	putname(filename);
1534 	if (displaced)
1535 		put_files_struct(displaced);
1536 	return retval;
1537 
1538 out:
1539 	if (bprm->mm) {
1540 		acct_arg_size(bprm, 0);
1541 		mmput(bprm->mm);
1542 	}
1543 
1544 out_unmark:
1545 	current->fs->in_exec = 0;
1546 	current->in_execve = 0;
1547 
1548 out_free:
1549 	free_bprm(bprm);
1550 
1551 out_files:
1552 	if (displaced)
1553 		reset_files_struct(displaced);
1554 out_ret:
1555 	putname(filename);
1556 	return retval;
1557 }
1558 
1559 int do_execve(struct filename *filename,
1560 	const char __user *const __user *__argv,
1561 	const char __user *const __user *__envp)
1562 {
1563 	struct user_arg_ptr argv = { .ptr.native = __argv };
1564 	struct user_arg_ptr envp = { .ptr.native = __envp };
1565 	return do_execve_common(filename, argv, envp);
1566 }
1567 
1568 #ifdef CONFIG_COMPAT
1569 static int compat_do_execve(struct filename *filename,
1570 	const compat_uptr_t __user *__argv,
1571 	const compat_uptr_t __user *__envp)
1572 {
1573 	struct user_arg_ptr argv = {
1574 		.is_compat = true,
1575 		.ptr.compat = __argv,
1576 	};
1577 	struct user_arg_ptr envp = {
1578 		.is_compat = true,
1579 		.ptr.compat = __envp,
1580 	};
1581 	return do_execve_common(filename, argv, envp);
1582 }
1583 #endif
1584 
1585 void set_binfmt(struct linux_binfmt *new)
1586 {
1587 	struct mm_struct *mm = current->mm;
1588 
1589 	if (mm->binfmt)
1590 		module_put(mm->binfmt->module);
1591 
1592 	mm->binfmt = new;
1593 	if (new)
1594 		__module_get(new->module);
1595 }
1596 EXPORT_SYMBOL(set_binfmt);
1597 
1598 /*
1599  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1600  */
1601 void set_dumpable(struct mm_struct *mm, int value)
1602 {
1603 	unsigned long old, new;
1604 
1605 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1606 		return;
1607 
1608 	do {
1609 		old = ACCESS_ONCE(mm->flags);
1610 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1611 	} while (cmpxchg(&mm->flags, old, new) != old);
1612 }
1613 
1614 SYSCALL_DEFINE3(execve,
1615 		const char __user *, filename,
1616 		const char __user *const __user *, argv,
1617 		const char __user *const __user *, envp)
1618 {
1619 	return do_execve(getname(filename), argv, envp);
1620 }
1621 #ifdef CONFIG_COMPAT
1622 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1623 	const compat_uptr_t __user *, argv,
1624 	const compat_uptr_t __user *, envp)
1625 {
1626 	return compat_do_execve(getname(filename), argv, envp);
1627 }
1628 #endif
1629