xref: /openbmc/linux/fs/exec.c (revision 7b8c9d7b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 
70 #include <linux/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/tlb.h>
73 
74 #include <trace/events/task.h>
75 #include "internal.h"
76 
77 #include <trace/events/sched.h>
78 
79 static int bprm_creds_from_file(struct linux_binprm *bprm);
80 
81 int suid_dumpable = 0;
82 
83 static LIST_HEAD(formats);
84 static DEFINE_RWLOCK(binfmt_lock);
85 
86 void __register_binfmt(struct linux_binfmt * fmt, int insert)
87 {
88 	write_lock(&binfmt_lock);
89 	insert ? list_add(&fmt->lh, &formats) :
90 		 list_add_tail(&fmt->lh, &formats);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(__register_binfmt);
95 
96 void unregister_binfmt(struct linux_binfmt * fmt)
97 {
98 	write_lock(&binfmt_lock);
99 	list_del(&fmt->lh);
100 	write_unlock(&binfmt_lock);
101 }
102 
103 EXPORT_SYMBOL(unregister_binfmt);
104 
105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107 	module_put(fmt->module);
108 }
109 
110 bool path_noexec(const struct path *path)
111 {
112 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
113 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
114 }
115 
116 #ifdef CONFIG_USELIB
117 /*
118  * Note that a shared library must be both readable and executable due to
119  * security reasons.
120  *
121  * Also note that we take the address to load from the file itself.
122  */
123 SYSCALL_DEFINE1(uselib, const char __user *, library)
124 {
125 	struct linux_binfmt *fmt;
126 	struct file *file;
127 	struct filename *tmp = getname(library);
128 	int error = PTR_ERR(tmp);
129 	static const struct open_flags uselib_flags = {
130 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
131 		.acc_mode = MAY_READ | MAY_EXEC,
132 		.intent = LOOKUP_OPEN,
133 		.lookup_flags = LOOKUP_FOLLOW,
134 	};
135 
136 	if (IS_ERR(tmp))
137 		goto out;
138 
139 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
140 	putname(tmp);
141 	error = PTR_ERR(file);
142 	if (IS_ERR(file))
143 		goto out;
144 
145 	/*
146 	 * may_open() has already checked for this, so it should be
147 	 * impossible to trip now. But we need to be extra cautious
148 	 * and check again at the very end too.
149 	 */
150 	error = -EACCES;
151 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
152 			 path_noexec(&file->f_path)))
153 		goto exit;
154 
155 	error = -ENOEXEC;
156 
157 	read_lock(&binfmt_lock);
158 	list_for_each_entry(fmt, &formats, lh) {
159 		if (!fmt->load_shlib)
160 			continue;
161 		if (!try_module_get(fmt->module))
162 			continue;
163 		read_unlock(&binfmt_lock);
164 		error = fmt->load_shlib(file);
165 		read_lock(&binfmt_lock);
166 		put_binfmt(fmt);
167 		if (error != -ENOEXEC)
168 			break;
169 	}
170 	read_unlock(&binfmt_lock);
171 exit:
172 	fput(file);
173 out:
174 	return error;
175 }
176 #endif /* #ifdef CONFIG_USELIB */
177 
178 #ifdef CONFIG_MMU
179 /*
180  * The nascent bprm->mm is not visible until exec_mmap() but it can
181  * use a lot of memory, account these pages in current->mm temporary
182  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
183  * change the counter back via acct_arg_size(0).
184  */
185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
186 {
187 	struct mm_struct *mm = current->mm;
188 	long diff = (long)(pages - bprm->vma_pages);
189 
190 	if (!mm || !diff)
191 		return;
192 
193 	bprm->vma_pages = pages;
194 	add_mm_counter(mm, MM_ANONPAGES, diff);
195 }
196 
197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
198 		int write)
199 {
200 	struct page *page;
201 	int ret;
202 	unsigned int gup_flags = 0;
203 
204 #ifdef CONFIG_STACK_GROWSUP
205 	if (write) {
206 		ret = expand_downwards(bprm->vma, pos);
207 		if (ret < 0)
208 			return NULL;
209 	}
210 #endif
211 
212 	if (write)
213 		gup_flags |= FOLL_WRITE;
214 
215 	/*
216 	 * We are doing an exec().  'current' is the process
217 	 * doing the exec and bprm->mm is the new process's mm.
218 	 */
219 	mmap_read_lock(bprm->mm);
220 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
221 			&page, NULL, NULL);
222 	mmap_read_unlock(bprm->mm);
223 	if (ret <= 0)
224 		return NULL;
225 
226 	if (write)
227 		acct_arg_size(bprm, vma_pages(bprm->vma));
228 
229 	return page;
230 }
231 
232 static void put_arg_page(struct page *page)
233 {
234 	put_page(page);
235 }
236 
237 static void free_arg_pages(struct linux_binprm *bprm)
238 {
239 }
240 
241 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
242 		struct page *page)
243 {
244 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
245 }
246 
247 static int __bprm_mm_init(struct linux_binprm *bprm)
248 {
249 	int err;
250 	struct vm_area_struct *vma = NULL;
251 	struct mm_struct *mm = bprm->mm;
252 
253 	bprm->vma = vma = vm_area_alloc(mm);
254 	if (!vma)
255 		return -ENOMEM;
256 	vma_set_anonymous(vma);
257 
258 	if (mmap_write_lock_killable(mm)) {
259 		err = -EINTR;
260 		goto err_free;
261 	}
262 
263 	/*
264 	 * Place the stack at the largest stack address the architecture
265 	 * supports. Later, we'll move this to an appropriate place. We don't
266 	 * use STACK_TOP because that can depend on attributes which aren't
267 	 * configured yet.
268 	 */
269 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
270 	vma->vm_end = STACK_TOP_MAX;
271 	vma->vm_start = vma->vm_end - PAGE_SIZE;
272 	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
273 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
274 
275 	err = insert_vm_struct(mm, vma);
276 	if (err)
277 		goto err;
278 
279 	mm->stack_vm = mm->total_vm = 1;
280 	mmap_write_unlock(mm);
281 	bprm->p = vma->vm_end - sizeof(void *);
282 	return 0;
283 err:
284 	mmap_write_unlock(mm);
285 err_free:
286 	bprm->vma = NULL;
287 	vm_area_free(vma);
288 	return err;
289 }
290 
291 static bool valid_arg_len(struct linux_binprm *bprm, long len)
292 {
293 	return len <= MAX_ARG_STRLEN;
294 }
295 
296 #else
297 
298 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
299 {
300 }
301 
302 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
303 		int write)
304 {
305 	struct page *page;
306 
307 	page = bprm->page[pos / PAGE_SIZE];
308 	if (!page && write) {
309 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
310 		if (!page)
311 			return NULL;
312 		bprm->page[pos / PAGE_SIZE] = page;
313 	}
314 
315 	return page;
316 }
317 
318 static void put_arg_page(struct page *page)
319 {
320 }
321 
322 static void free_arg_page(struct linux_binprm *bprm, int i)
323 {
324 	if (bprm->page[i]) {
325 		__free_page(bprm->page[i]);
326 		bprm->page[i] = NULL;
327 	}
328 }
329 
330 static void free_arg_pages(struct linux_binprm *bprm)
331 {
332 	int i;
333 
334 	for (i = 0; i < MAX_ARG_PAGES; i++)
335 		free_arg_page(bprm, i);
336 }
337 
338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
339 		struct page *page)
340 {
341 }
342 
343 static int __bprm_mm_init(struct linux_binprm *bprm)
344 {
345 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
346 	return 0;
347 }
348 
349 static bool valid_arg_len(struct linux_binprm *bprm, long len)
350 {
351 	return len <= bprm->p;
352 }
353 
354 #endif /* CONFIG_MMU */
355 
356 /*
357  * Create a new mm_struct and populate it with a temporary stack
358  * vm_area_struct.  We don't have enough context at this point to set the stack
359  * flags, permissions, and offset, so we use temporary values.  We'll update
360  * them later in setup_arg_pages().
361  */
362 static int bprm_mm_init(struct linux_binprm *bprm)
363 {
364 	int err;
365 	struct mm_struct *mm = NULL;
366 
367 	bprm->mm = mm = mm_alloc();
368 	err = -ENOMEM;
369 	if (!mm)
370 		goto err;
371 
372 	/* Save current stack limit for all calculations made during exec. */
373 	task_lock(current->group_leader);
374 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
375 	task_unlock(current->group_leader);
376 
377 	err = __bprm_mm_init(bprm);
378 	if (err)
379 		goto err;
380 
381 	return 0;
382 
383 err:
384 	if (mm) {
385 		bprm->mm = NULL;
386 		mmdrop(mm);
387 	}
388 
389 	return err;
390 }
391 
392 struct user_arg_ptr {
393 #ifdef CONFIG_COMPAT
394 	bool is_compat;
395 #endif
396 	union {
397 		const char __user *const __user *native;
398 #ifdef CONFIG_COMPAT
399 		const compat_uptr_t __user *compat;
400 #endif
401 	} ptr;
402 };
403 
404 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
405 {
406 	const char __user *native;
407 
408 #ifdef CONFIG_COMPAT
409 	if (unlikely(argv.is_compat)) {
410 		compat_uptr_t compat;
411 
412 		if (get_user(compat, argv.ptr.compat + nr))
413 			return ERR_PTR(-EFAULT);
414 
415 		return compat_ptr(compat);
416 	}
417 #endif
418 
419 	if (get_user(native, argv.ptr.native + nr))
420 		return ERR_PTR(-EFAULT);
421 
422 	return native;
423 }
424 
425 /*
426  * count() counts the number of strings in array ARGV.
427  */
428 static int count(struct user_arg_ptr argv, int max)
429 {
430 	int i = 0;
431 
432 	if (argv.ptr.native != NULL) {
433 		for (;;) {
434 			const char __user *p = get_user_arg_ptr(argv, i);
435 
436 			if (!p)
437 				break;
438 
439 			if (IS_ERR(p))
440 				return -EFAULT;
441 
442 			if (i >= max)
443 				return -E2BIG;
444 			++i;
445 
446 			if (fatal_signal_pending(current))
447 				return -ERESTARTNOHAND;
448 			cond_resched();
449 		}
450 	}
451 	return i;
452 }
453 
454 static int count_strings_kernel(const char *const *argv)
455 {
456 	int i;
457 
458 	if (!argv)
459 		return 0;
460 
461 	for (i = 0; argv[i]; ++i) {
462 		if (i >= MAX_ARG_STRINGS)
463 			return -E2BIG;
464 		if (fatal_signal_pending(current))
465 			return -ERESTARTNOHAND;
466 		cond_resched();
467 	}
468 	return i;
469 }
470 
471 static int bprm_stack_limits(struct linux_binprm *bprm)
472 {
473 	unsigned long limit, ptr_size;
474 
475 	/*
476 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
477 	 * (whichever is smaller) for the argv+env strings.
478 	 * This ensures that:
479 	 *  - the remaining binfmt code will not run out of stack space,
480 	 *  - the program will have a reasonable amount of stack left
481 	 *    to work from.
482 	 */
483 	limit = _STK_LIM / 4 * 3;
484 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
485 	/*
486 	 * We've historically supported up to 32 pages (ARG_MAX)
487 	 * of argument strings even with small stacks
488 	 */
489 	limit = max_t(unsigned long, limit, ARG_MAX);
490 	/*
491 	 * We must account for the size of all the argv and envp pointers to
492 	 * the argv and envp strings, since they will also take up space in
493 	 * the stack. They aren't stored until much later when we can't
494 	 * signal to the parent that the child has run out of stack space.
495 	 * Instead, calculate it here so it's possible to fail gracefully.
496 	 *
497 	 * In the case of argc = 0, make sure there is space for adding a
498 	 * empty string (which will bump argc to 1), to ensure confused
499 	 * userspace programs don't start processing from argv[1], thinking
500 	 * argc can never be 0, to keep them from walking envp by accident.
501 	 * See do_execveat_common().
502 	 */
503 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
504 	if (limit <= ptr_size)
505 		return -E2BIG;
506 	limit -= ptr_size;
507 
508 	bprm->argmin = bprm->p - limit;
509 	return 0;
510 }
511 
512 /*
513  * 'copy_strings()' copies argument/environment strings from the old
514  * processes's memory to the new process's stack.  The call to get_user_pages()
515  * ensures the destination page is created and not swapped out.
516  */
517 static int copy_strings(int argc, struct user_arg_ptr argv,
518 			struct linux_binprm *bprm)
519 {
520 	struct page *kmapped_page = NULL;
521 	char *kaddr = NULL;
522 	unsigned long kpos = 0;
523 	int ret;
524 
525 	while (argc-- > 0) {
526 		const char __user *str;
527 		int len;
528 		unsigned long pos;
529 
530 		ret = -EFAULT;
531 		str = get_user_arg_ptr(argv, argc);
532 		if (IS_ERR(str))
533 			goto out;
534 
535 		len = strnlen_user(str, MAX_ARG_STRLEN);
536 		if (!len)
537 			goto out;
538 
539 		ret = -E2BIG;
540 		if (!valid_arg_len(bprm, len))
541 			goto out;
542 
543 		/* We're going to work our way backwards. */
544 		pos = bprm->p;
545 		str += len;
546 		bprm->p -= len;
547 #ifdef CONFIG_MMU
548 		if (bprm->p < bprm->argmin)
549 			goto out;
550 #endif
551 
552 		while (len > 0) {
553 			int offset, bytes_to_copy;
554 
555 			if (fatal_signal_pending(current)) {
556 				ret = -ERESTARTNOHAND;
557 				goto out;
558 			}
559 			cond_resched();
560 
561 			offset = pos % PAGE_SIZE;
562 			if (offset == 0)
563 				offset = PAGE_SIZE;
564 
565 			bytes_to_copy = offset;
566 			if (bytes_to_copy > len)
567 				bytes_to_copy = len;
568 
569 			offset -= bytes_to_copy;
570 			pos -= bytes_to_copy;
571 			str -= bytes_to_copy;
572 			len -= bytes_to_copy;
573 
574 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
575 				struct page *page;
576 
577 				page = get_arg_page(bprm, pos, 1);
578 				if (!page) {
579 					ret = -E2BIG;
580 					goto out;
581 				}
582 
583 				if (kmapped_page) {
584 					flush_dcache_page(kmapped_page);
585 					kunmap_local(kaddr);
586 					put_arg_page(kmapped_page);
587 				}
588 				kmapped_page = page;
589 				kaddr = kmap_local_page(kmapped_page);
590 				kpos = pos & PAGE_MASK;
591 				flush_arg_page(bprm, kpos, kmapped_page);
592 			}
593 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
594 				ret = -EFAULT;
595 				goto out;
596 			}
597 		}
598 	}
599 	ret = 0;
600 out:
601 	if (kmapped_page) {
602 		flush_dcache_page(kmapped_page);
603 		kunmap_local(kaddr);
604 		put_arg_page(kmapped_page);
605 	}
606 	return ret;
607 }
608 
609 /*
610  * Copy and argument/environment string from the kernel to the processes stack.
611  */
612 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
613 {
614 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
615 	unsigned long pos = bprm->p;
616 
617 	if (len == 0)
618 		return -EFAULT;
619 	if (!valid_arg_len(bprm, len))
620 		return -E2BIG;
621 
622 	/* We're going to work our way backwards. */
623 	arg += len;
624 	bprm->p -= len;
625 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
626 		return -E2BIG;
627 
628 	while (len > 0) {
629 		unsigned int bytes_to_copy = min_t(unsigned int, len,
630 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
631 		struct page *page;
632 
633 		pos -= bytes_to_copy;
634 		arg -= bytes_to_copy;
635 		len -= bytes_to_copy;
636 
637 		page = get_arg_page(bprm, pos, 1);
638 		if (!page)
639 			return -E2BIG;
640 		flush_arg_page(bprm, pos & PAGE_MASK, page);
641 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
642 		put_arg_page(page);
643 	}
644 
645 	return 0;
646 }
647 EXPORT_SYMBOL(copy_string_kernel);
648 
649 static int copy_strings_kernel(int argc, const char *const *argv,
650 			       struct linux_binprm *bprm)
651 {
652 	while (argc-- > 0) {
653 		int ret = copy_string_kernel(argv[argc], bprm);
654 		if (ret < 0)
655 			return ret;
656 		if (fatal_signal_pending(current))
657 			return -ERESTARTNOHAND;
658 		cond_resched();
659 	}
660 	return 0;
661 }
662 
663 #ifdef CONFIG_MMU
664 
665 /*
666  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
667  * the binfmt code determines where the new stack should reside, we shift it to
668  * its final location.  The process proceeds as follows:
669  *
670  * 1) Use shift to calculate the new vma endpoints.
671  * 2) Extend vma to cover both the old and new ranges.  This ensures the
672  *    arguments passed to subsequent functions are consistent.
673  * 3) Move vma's page tables to the new range.
674  * 4) Free up any cleared pgd range.
675  * 5) Shrink the vma to cover only the new range.
676  */
677 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
678 {
679 	struct mm_struct *mm = vma->vm_mm;
680 	unsigned long old_start = vma->vm_start;
681 	unsigned long old_end = vma->vm_end;
682 	unsigned long length = old_end - old_start;
683 	unsigned long new_start = old_start - shift;
684 	unsigned long new_end = old_end - shift;
685 	VMA_ITERATOR(vmi, mm, new_start);
686 	struct vm_area_struct *next;
687 	struct mmu_gather tlb;
688 
689 	BUG_ON(new_start > new_end);
690 
691 	/*
692 	 * ensure there are no vmas between where we want to go
693 	 * and where we are
694 	 */
695 	if (vma != vma_next(&vmi))
696 		return -EFAULT;
697 
698 	/*
699 	 * cover the whole range: [new_start, old_end)
700 	 */
701 	if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
702 		return -ENOMEM;
703 
704 	/*
705 	 * move the page tables downwards, on failure we rely on
706 	 * process cleanup to remove whatever mess we made.
707 	 */
708 	if (length != move_page_tables(vma, old_start,
709 				       vma, new_start, length, false))
710 		return -ENOMEM;
711 
712 	lru_add_drain();
713 	tlb_gather_mmu(&tlb, mm);
714 	next = vma_next(&vmi);
715 	if (new_end > old_start) {
716 		/*
717 		 * when the old and new regions overlap clear from new_end.
718 		 */
719 		free_pgd_range(&tlb, new_end, old_end, new_end,
720 			next ? next->vm_start : USER_PGTABLES_CEILING);
721 	} else {
722 		/*
723 		 * otherwise, clean from old_start; this is done to not touch
724 		 * the address space in [new_end, old_start) some architectures
725 		 * have constraints on va-space that make this illegal (IA64) -
726 		 * for the others its just a little faster.
727 		 */
728 		free_pgd_range(&tlb, old_start, old_end, new_end,
729 			next ? next->vm_start : USER_PGTABLES_CEILING);
730 	}
731 	tlb_finish_mmu(&tlb);
732 
733 	vma_prev(&vmi);
734 	/* Shrink the vma to just the new range */
735 	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
736 }
737 
738 /*
739  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
740  * the stack is optionally relocated, and some extra space is added.
741  */
742 int setup_arg_pages(struct linux_binprm *bprm,
743 		    unsigned long stack_top,
744 		    int executable_stack)
745 {
746 	unsigned long ret;
747 	unsigned long stack_shift;
748 	struct mm_struct *mm = current->mm;
749 	struct vm_area_struct *vma = bprm->vma;
750 	struct vm_area_struct *prev = NULL;
751 	unsigned long vm_flags;
752 	unsigned long stack_base;
753 	unsigned long stack_size;
754 	unsigned long stack_expand;
755 	unsigned long rlim_stack;
756 	struct mmu_gather tlb;
757 	struct vma_iterator vmi;
758 
759 #ifdef CONFIG_STACK_GROWSUP
760 	/* Limit stack size */
761 	stack_base = bprm->rlim_stack.rlim_max;
762 
763 	stack_base = calc_max_stack_size(stack_base);
764 
765 	/* Add space for stack randomization. */
766 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
767 
768 	/* Make sure we didn't let the argument array grow too large. */
769 	if (vma->vm_end - vma->vm_start > stack_base)
770 		return -ENOMEM;
771 
772 	stack_base = PAGE_ALIGN(stack_top - stack_base);
773 
774 	stack_shift = vma->vm_start - stack_base;
775 	mm->arg_start = bprm->p - stack_shift;
776 	bprm->p = vma->vm_end - stack_shift;
777 #else
778 	stack_top = arch_align_stack(stack_top);
779 	stack_top = PAGE_ALIGN(stack_top);
780 
781 	if (unlikely(stack_top < mmap_min_addr) ||
782 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
783 		return -ENOMEM;
784 
785 	stack_shift = vma->vm_end - stack_top;
786 
787 	bprm->p -= stack_shift;
788 	mm->arg_start = bprm->p;
789 #endif
790 
791 	if (bprm->loader)
792 		bprm->loader -= stack_shift;
793 	bprm->exec -= stack_shift;
794 
795 	if (mmap_write_lock_killable(mm))
796 		return -EINTR;
797 
798 	vm_flags = VM_STACK_FLAGS;
799 
800 	/*
801 	 * Adjust stack execute permissions; explicitly enable for
802 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
803 	 * (arch default) otherwise.
804 	 */
805 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
806 		vm_flags |= VM_EXEC;
807 	else if (executable_stack == EXSTACK_DISABLE_X)
808 		vm_flags &= ~VM_EXEC;
809 	vm_flags |= mm->def_flags;
810 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
811 
812 	vma_iter_init(&vmi, mm, vma->vm_start);
813 
814 	tlb_gather_mmu(&tlb, mm);
815 	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
816 			vm_flags);
817 	tlb_finish_mmu(&tlb);
818 
819 	if (ret)
820 		goto out_unlock;
821 	BUG_ON(prev != vma);
822 
823 	if (unlikely(vm_flags & VM_EXEC)) {
824 		pr_warn_once("process '%pD4' started with executable stack\n",
825 			     bprm->file);
826 	}
827 
828 	/* Move stack pages down in memory. */
829 	if (stack_shift) {
830 		ret = shift_arg_pages(vma, stack_shift);
831 		if (ret)
832 			goto out_unlock;
833 	}
834 
835 	/* mprotect_fixup is overkill to remove the temporary stack flags */
836 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
837 
838 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
839 	stack_size = vma->vm_end - vma->vm_start;
840 	/*
841 	 * Align this down to a page boundary as expand_stack
842 	 * will align it up.
843 	 */
844 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
845 
846 	stack_expand = min(rlim_stack, stack_size + stack_expand);
847 
848 #ifdef CONFIG_STACK_GROWSUP
849 	stack_base = vma->vm_start + stack_expand;
850 #else
851 	stack_base = vma->vm_end - stack_expand;
852 #endif
853 	current->mm->start_stack = bprm->p;
854 	ret = expand_stack(vma, stack_base);
855 	if (ret)
856 		ret = -EFAULT;
857 
858 out_unlock:
859 	mmap_write_unlock(mm);
860 	return ret;
861 }
862 EXPORT_SYMBOL(setup_arg_pages);
863 
864 #else
865 
866 /*
867  * Transfer the program arguments and environment from the holding pages
868  * onto the stack. The provided stack pointer is adjusted accordingly.
869  */
870 int transfer_args_to_stack(struct linux_binprm *bprm,
871 			   unsigned long *sp_location)
872 {
873 	unsigned long index, stop, sp;
874 	int ret = 0;
875 
876 	stop = bprm->p >> PAGE_SHIFT;
877 	sp = *sp_location;
878 
879 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
880 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
881 		char *src = kmap_local_page(bprm->page[index]) + offset;
882 		sp -= PAGE_SIZE - offset;
883 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
884 			ret = -EFAULT;
885 		kunmap_local(src);
886 		if (ret)
887 			goto out;
888 	}
889 
890 	*sp_location = sp;
891 
892 out:
893 	return ret;
894 }
895 EXPORT_SYMBOL(transfer_args_to_stack);
896 
897 #endif /* CONFIG_MMU */
898 
899 static struct file *do_open_execat(int fd, struct filename *name, int flags)
900 {
901 	struct file *file;
902 	int err;
903 	struct open_flags open_exec_flags = {
904 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
905 		.acc_mode = MAY_EXEC,
906 		.intent = LOOKUP_OPEN,
907 		.lookup_flags = LOOKUP_FOLLOW,
908 	};
909 
910 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
911 		return ERR_PTR(-EINVAL);
912 	if (flags & AT_SYMLINK_NOFOLLOW)
913 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
914 	if (flags & AT_EMPTY_PATH)
915 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
916 
917 	file = do_filp_open(fd, name, &open_exec_flags);
918 	if (IS_ERR(file))
919 		goto out;
920 
921 	/*
922 	 * may_open() has already checked for this, so it should be
923 	 * impossible to trip now. But we need to be extra cautious
924 	 * and check again at the very end too.
925 	 */
926 	err = -EACCES;
927 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
928 			 path_noexec(&file->f_path)))
929 		goto exit;
930 
931 	err = deny_write_access(file);
932 	if (err)
933 		goto exit;
934 
935 out:
936 	return file;
937 
938 exit:
939 	fput(file);
940 	return ERR_PTR(err);
941 }
942 
943 struct file *open_exec(const char *name)
944 {
945 	struct filename *filename = getname_kernel(name);
946 	struct file *f = ERR_CAST(filename);
947 
948 	if (!IS_ERR(filename)) {
949 		f = do_open_execat(AT_FDCWD, filename, 0);
950 		putname(filename);
951 	}
952 	return f;
953 }
954 EXPORT_SYMBOL(open_exec);
955 
956 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
957 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
958 {
959 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
960 	if (res > 0)
961 		flush_icache_user_range(addr, addr + len);
962 	return res;
963 }
964 EXPORT_SYMBOL(read_code);
965 #endif
966 
967 /*
968  * Maps the mm_struct mm into the current task struct.
969  * On success, this function returns with exec_update_lock
970  * held for writing.
971  */
972 static int exec_mmap(struct mm_struct *mm)
973 {
974 	struct task_struct *tsk;
975 	struct mm_struct *old_mm, *active_mm;
976 	int ret;
977 
978 	/* Notify parent that we're no longer interested in the old VM */
979 	tsk = current;
980 	old_mm = current->mm;
981 	exec_mm_release(tsk, old_mm);
982 	if (old_mm)
983 		sync_mm_rss(old_mm);
984 
985 	ret = down_write_killable(&tsk->signal->exec_update_lock);
986 	if (ret)
987 		return ret;
988 
989 	if (old_mm) {
990 		/*
991 		 * If there is a pending fatal signal perhaps a signal
992 		 * whose default action is to create a coredump get
993 		 * out and die instead of going through with the exec.
994 		 */
995 		ret = mmap_read_lock_killable(old_mm);
996 		if (ret) {
997 			up_write(&tsk->signal->exec_update_lock);
998 			return ret;
999 		}
1000 	}
1001 
1002 	task_lock(tsk);
1003 	membarrier_exec_mmap(mm);
1004 
1005 	local_irq_disable();
1006 	active_mm = tsk->active_mm;
1007 	tsk->active_mm = mm;
1008 	tsk->mm = mm;
1009 	mm_init_cid(mm);
1010 	/*
1011 	 * This prevents preemption while active_mm is being loaded and
1012 	 * it and mm are being updated, which could cause problems for
1013 	 * lazy tlb mm refcounting when these are updated by context
1014 	 * switches. Not all architectures can handle irqs off over
1015 	 * activate_mm yet.
1016 	 */
1017 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1018 		local_irq_enable();
1019 	activate_mm(active_mm, mm);
1020 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1021 		local_irq_enable();
1022 	lru_gen_add_mm(mm);
1023 	task_unlock(tsk);
1024 	lru_gen_use_mm(mm);
1025 	if (old_mm) {
1026 		mmap_read_unlock(old_mm);
1027 		BUG_ON(active_mm != old_mm);
1028 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1029 		mm_update_next_owner(old_mm);
1030 		mmput(old_mm);
1031 		return 0;
1032 	}
1033 	mmdrop_lazy_tlb(active_mm);
1034 	return 0;
1035 }
1036 
1037 static int de_thread(struct task_struct *tsk)
1038 {
1039 	struct signal_struct *sig = tsk->signal;
1040 	struct sighand_struct *oldsighand = tsk->sighand;
1041 	spinlock_t *lock = &oldsighand->siglock;
1042 
1043 	if (thread_group_empty(tsk))
1044 		goto no_thread_group;
1045 
1046 	/*
1047 	 * Kill all other threads in the thread group.
1048 	 */
1049 	spin_lock_irq(lock);
1050 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1051 		/*
1052 		 * Another group action in progress, just
1053 		 * return so that the signal is processed.
1054 		 */
1055 		spin_unlock_irq(lock);
1056 		return -EAGAIN;
1057 	}
1058 
1059 	sig->group_exec_task = tsk;
1060 	sig->notify_count = zap_other_threads(tsk);
1061 	if (!thread_group_leader(tsk))
1062 		sig->notify_count--;
1063 
1064 	while (sig->notify_count) {
1065 		__set_current_state(TASK_KILLABLE);
1066 		spin_unlock_irq(lock);
1067 		schedule();
1068 		if (__fatal_signal_pending(tsk))
1069 			goto killed;
1070 		spin_lock_irq(lock);
1071 	}
1072 	spin_unlock_irq(lock);
1073 
1074 	/*
1075 	 * At this point all other threads have exited, all we have to
1076 	 * do is to wait for the thread group leader to become inactive,
1077 	 * and to assume its PID:
1078 	 */
1079 	if (!thread_group_leader(tsk)) {
1080 		struct task_struct *leader = tsk->group_leader;
1081 
1082 		for (;;) {
1083 			cgroup_threadgroup_change_begin(tsk);
1084 			write_lock_irq(&tasklist_lock);
1085 			/*
1086 			 * Do this under tasklist_lock to ensure that
1087 			 * exit_notify() can't miss ->group_exec_task
1088 			 */
1089 			sig->notify_count = -1;
1090 			if (likely(leader->exit_state))
1091 				break;
1092 			__set_current_state(TASK_KILLABLE);
1093 			write_unlock_irq(&tasklist_lock);
1094 			cgroup_threadgroup_change_end(tsk);
1095 			schedule();
1096 			if (__fatal_signal_pending(tsk))
1097 				goto killed;
1098 		}
1099 
1100 		/*
1101 		 * The only record we have of the real-time age of a
1102 		 * process, regardless of execs it's done, is start_time.
1103 		 * All the past CPU time is accumulated in signal_struct
1104 		 * from sister threads now dead.  But in this non-leader
1105 		 * exec, nothing survives from the original leader thread,
1106 		 * whose birth marks the true age of this process now.
1107 		 * When we take on its identity by switching to its PID, we
1108 		 * also take its birthdate (always earlier than our own).
1109 		 */
1110 		tsk->start_time = leader->start_time;
1111 		tsk->start_boottime = leader->start_boottime;
1112 
1113 		BUG_ON(!same_thread_group(leader, tsk));
1114 		/*
1115 		 * An exec() starts a new thread group with the
1116 		 * TGID of the previous thread group. Rehash the
1117 		 * two threads with a switched PID, and release
1118 		 * the former thread group leader:
1119 		 */
1120 
1121 		/* Become a process group leader with the old leader's pid.
1122 		 * The old leader becomes a thread of the this thread group.
1123 		 */
1124 		exchange_tids(tsk, leader);
1125 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1126 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1127 		transfer_pid(leader, tsk, PIDTYPE_SID);
1128 
1129 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1130 		list_replace_init(&leader->sibling, &tsk->sibling);
1131 
1132 		tsk->group_leader = tsk;
1133 		leader->group_leader = tsk;
1134 
1135 		tsk->exit_signal = SIGCHLD;
1136 		leader->exit_signal = -1;
1137 
1138 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1139 		leader->exit_state = EXIT_DEAD;
1140 
1141 		/*
1142 		 * We are going to release_task()->ptrace_unlink() silently,
1143 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1144 		 * the tracer won't block again waiting for this thread.
1145 		 */
1146 		if (unlikely(leader->ptrace))
1147 			__wake_up_parent(leader, leader->parent);
1148 		write_unlock_irq(&tasklist_lock);
1149 		cgroup_threadgroup_change_end(tsk);
1150 
1151 		release_task(leader);
1152 	}
1153 
1154 	sig->group_exec_task = NULL;
1155 	sig->notify_count = 0;
1156 
1157 no_thread_group:
1158 	/* we have changed execution domain */
1159 	tsk->exit_signal = SIGCHLD;
1160 
1161 	BUG_ON(!thread_group_leader(tsk));
1162 	return 0;
1163 
1164 killed:
1165 	/* protects against exit_notify() and __exit_signal() */
1166 	read_lock(&tasklist_lock);
1167 	sig->group_exec_task = NULL;
1168 	sig->notify_count = 0;
1169 	read_unlock(&tasklist_lock);
1170 	return -EAGAIN;
1171 }
1172 
1173 
1174 /*
1175  * This function makes sure the current process has its own signal table,
1176  * so that flush_signal_handlers can later reset the handlers without
1177  * disturbing other processes.  (Other processes might share the signal
1178  * table via the CLONE_SIGHAND option to clone().)
1179  */
1180 static int unshare_sighand(struct task_struct *me)
1181 {
1182 	struct sighand_struct *oldsighand = me->sighand;
1183 
1184 	if (refcount_read(&oldsighand->count) != 1) {
1185 		struct sighand_struct *newsighand;
1186 		/*
1187 		 * This ->sighand is shared with the CLONE_SIGHAND
1188 		 * but not CLONE_THREAD task, switch to the new one.
1189 		 */
1190 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1191 		if (!newsighand)
1192 			return -ENOMEM;
1193 
1194 		refcount_set(&newsighand->count, 1);
1195 
1196 		write_lock_irq(&tasklist_lock);
1197 		spin_lock(&oldsighand->siglock);
1198 		memcpy(newsighand->action, oldsighand->action,
1199 		       sizeof(newsighand->action));
1200 		rcu_assign_pointer(me->sighand, newsighand);
1201 		spin_unlock(&oldsighand->siglock);
1202 		write_unlock_irq(&tasklist_lock);
1203 
1204 		__cleanup_sighand(oldsighand);
1205 	}
1206 	return 0;
1207 }
1208 
1209 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1210 {
1211 	task_lock(tsk);
1212 	/* Always NUL terminated and zero-padded */
1213 	strscpy_pad(buf, tsk->comm, buf_size);
1214 	task_unlock(tsk);
1215 	return buf;
1216 }
1217 EXPORT_SYMBOL_GPL(__get_task_comm);
1218 
1219 /*
1220  * These functions flushes out all traces of the currently running executable
1221  * so that a new one can be started
1222  */
1223 
1224 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1225 {
1226 	task_lock(tsk);
1227 	trace_task_rename(tsk, buf);
1228 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1229 	task_unlock(tsk);
1230 	perf_event_comm(tsk, exec);
1231 }
1232 
1233 /*
1234  * Calling this is the point of no return. None of the failures will be
1235  * seen by userspace since either the process is already taking a fatal
1236  * signal (via de_thread() or coredump), or will have SEGV raised
1237  * (after exec_mmap()) by search_binary_handler (see below).
1238  */
1239 int begin_new_exec(struct linux_binprm * bprm)
1240 {
1241 	struct task_struct *me = current;
1242 	int retval;
1243 
1244 	/* Once we are committed compute the creds */
1245 	retval = bprm_creds_from_file(bprm);
1246 	if (retval)
1247 		return retval;
1248 
1249 	/*
1250 	 * Ensure all future errors are fatal.
1251 	 */
1252 	bprm->point_of_no_return = true;
1253 
1254 	/*
1255 	 * Make this the only thread in the thread group.
1256 	 */
1257 	retval = de_thread(me);
1258 	if (retval)
1259 		goto out;
1260 
1261 	/*
1262 	 * Cancel any io_uring activity across execve
1263 	 */
1264 	io_uring_task_cancel();
1265 
1266 	/* Ensure the files table is not shared. */
1267 	retval = unshare_files();
1268 	if (retval)
1269 		goto out;
1270 
1271 	/*
1272 	 * Must be called _before_ exec_mmap() as bprm->mm is
1273 	 * not visible until then. This also enables the update
1274 	 * to be lockless.
1275 	 */
1276 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1277 	if (retval)
1278 		goto out;
1279 
1280 	/* If the binary is not readable then enforce mm->dumpable=0 */
1281 	would_dump(bprm, bprm->file);
1282 	if (bprm->have_execfd)
1283 		would_dump(bprm, bprm->executable);
1284 
1285 	/*
1286 	 * Release all of the old mmap stuff
1287 	 */
1288 	acct_arg_size(bprm, 0);
1289 	retval = exec_mmap(bprm->mm);
1290 	if (retval)
1291 		goto out;
1292 
1293 	bprm->mm = NULL;
1294 
1295 	retval = exec_task_namespaces();
1296 	if (retval)
1297 		goto out_unlock;
1298 
1299 #ifdef CONFIG_POSIX_TIMERS
1300 	spin_lock_irq(&me->sighand->siglock);
1301 	posix_cpu_timers_exit(me);
1302 	spin_unlock_irq(&me->sighand->siglock);
1303 	exit_itimers(me);
1304 	flush_itimer_signals();
1305 #endif
1306 
1307 	/*
1308 	 * Make the signal table private.
1309 	 */
1310 	retval = unshare_sighand(me);
1311 	if (retval)
1312 		goto out_unlock;
1313 
1314 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1315 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1316 	flush_thread();
1317 	me->personality &= ~bprm->per_clear;
1318 
1319 	clear_syscall_work_syscall_user_dispatch(me);
1320 
1321 	/*
1322 	 * We have to apply CLOEXEC before we change whether the process is
1323 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1324 	 * trying to access the should-be-closed file descriptors of a process
1325 	 * undergoing exec(2).
1326 	 */
1327 	do_close_on_exec(me->files);
1328 
1329 	if (bprm->secureexec) {
1330 		/* Make sure parent cannot signal privileged process. */
1331 		me->pdeath_signal = 0;
1332 
1333 		/*
1334 		 * For secureexec, reset the stack limit to sane default to
1335 		 * avoid bad behavior from the prior rlimits. This has to
1336 		 * happen before arch_pick_mmap_layout(), which examines
1337 		 * RLIMIT_STACK, but after the point of no return to avoid
1338 		 * needing to clean up the change on failure.
1339 		 */
1340 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1341 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1342 	}
1343 
1344 	me->sas_ss_sp = me->sas_ss_size = 0;
1345 
1346 	/*
1347 	 * Figure out dumpability. Note that this checking only of current
1348 	 * is wrong, but userspace depends on it. This should be testing
1349 	 * bprm->secureexec instead.
1350 	 */
1351 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1352 	    !(uid_eq(current_euid(), current_uid()) &&
1353 	      gid_eq(current_egid(), current_gid())))
1354 		set_dumpable(current->mm, suid_dumpable);
1355 	else
1356 		set_dumpable(current->mm, SUID_DUMP_USER);
1357 
1358 	perf_event_exec();
1359 	__set_task_comm(me, kbasename(bprm->filename), true);
1360 
1361 	/* An exec changes our domain. We are no longer part of the thread
1362 	   group */
1363 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1364 	flush_signal_handlers(me, 0);
1365 
1366 	retval = set_cred_ucounts(bprm->cred);
1367 	if (retval < 0)
1368 		goto out_unlock;
1369 
1370 	/*
1371 	 * install the new credentials for this executable
1372 	 */
1373 	security_bprm_committing_creds(bprm);
1374 
1375 	commit_creds(bprm->cred);
1376 	bprm->cred = NULL;
1377 
1378 	/*
1379 	 * Disable monitoring for regular users
1380 	 * when executing setuid binaries. Must
1381 	 * wait until new credentials are committed
1382 	 * by commit_creds() above
1383 	 */
1384 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1385 		perf_event_exit_task(me);
1386 	/*
1387 	 * cred_guard_mutex must be held at least to this point to prevent
1388 	 * ptrace_attach() from altering our determination of the task's
1389 	 * credentials; any time after this it may be unlocked.
1390 	 */
1391 	security_bprm_committed_creds(bprm);
1392 
1393 	/* Pass the opened binary to the interpreter. */
1394 	if (bprm->have_execfd) {
1395 		retval = get_unused_fd_flags(0);
1396 		if (retval < 0)
1397 			goto out_unlock;
1398 		fd_install(retval, bprm->executable);
1399 		bprm->executable = NULL;
1400 		bprm->execfd = retval;
1401 	}
1402 	return 0;
1403 
1404 out_unlock:
1405 	up_write(&me->signal->exec_update_lock);
1406 out:
1407 	return retval;
1408 }
1409 EXPORT_SYMBOL(begin_new_exec);
1410 
1411 void would_dump(struct linux_binprm *bprm, struct file *file)
1412 {
1413 	struct inode *inode = file_inode(file);
1414 	struct mnt_idmap *idmap = file_mnt_idmap(file);
1415 	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1416 		struct user_namespace *old, *user_ns;
1417 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1418 
1419 		/* Ensure mm->user_ns contains the executable */
1420 		user_ns = old = bprm->mm->user_ns;
1421 		while ((user_ns != &init_user_ns) &&
1422 		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1423 			user_ns = user_ns->parent;
1424 
1425 		if (old != user_ns) {
1426 			bprm->mm->user_ns = get_user_ns(user_ns);
1427 			put_user_ns(old);
1428 		}
1429 	}
1430 }
1431 EXPORT_SYMBOL(would_dump);
1432 
1433 void setup_new_exec(struct linux_binprm * bprm)
1434 {
1435 	/* Setup things that can depend upon the personality */
1436 	struct task_struct *me = current;
1437 
1438 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1439 
1440 	arch_setup_new_exec();
1441 
1442 	/* Set the new mm task size. We have to do that late because it may
1443 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1444 	 * some architectures like powerpc
1445 	 */
1446 	me->mm->task_size = TASK_SIZE;
1447 	up_write(&me->signal->exec_update_lock);
1448 	mutex_unlock(&me->signal->cred_guard_mutex);
1449 }
1450 EXPORT_SYMBOL(setup_new_exec);
1451 
1452 /* Runs immediately before start_thread() takes over. */
1453 void finalize_exec(struct linux_binprm *bprm)
1454 {
1455 	/* Store any stack rlimit changes before starting thread. */
1456 	task_lock(current->group_leader);
1457 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1458 	task_unlock(current->group_leader);
1459 }
1460 EXPORT_SYMBOL(finalize_exec);
1461 
1462 /*
1463  * Prepare credentials and lock ->cred_guard_mutex.
1464  * setup_new_exec() commits the new creds and drops the lock.
1465  * Or, if exec fails before, free_bprm() should release ->cred
1466  * and unlock.
1467  */
1468 static int prepare_bprm_creds(struct linux_binprm *bprm)
1469 {
1470 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1471 		return -ERESTARTNOINTR;
1472 
1473 	bprm->cred = prepare_exec_creds();
1474 	if (likely(bprm->cred))
1475 		return 0;
1476 
1477 	mutex_unlock(&current->signal->cred_guard_mutex);
1478 	return -ENOMEM;
1479 }
1480 
1481 static void free_bprm(struct linux_binprm *bprm)
1482 {
1483 	if (bprm->mm) {
1484 		acct_arg_size(bprm, 0);
1485 		mmput(bprm->mm);
1486 	}
1487 	free_arg_pages(bprm);
1488 	if (bprm->cred) {
1489 		mutex_unlock(&current->signal->cred_guard_mutex);
1490 		abort_creds(bprm->cred);
1491 	}
1492 	if (bprm->file) {
1493 		allow_write_access(bprm->file);
1494 		fput(bprm->file);
1495 	}
1496 	if (bprm->executable)
1497 		fput(bprm->executable);
1498 	/* If a binfmt changed the interp, free it. */
1499 	if (bprm->interp != bprm->filename)
1500 		kfree(bprm->interp);
1501 	kfree(bprm->fdpath);
1502 	kfree(bprm);
1503 }
1504 
1505 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1506 {
1507 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1508 	int retval = -ENOMEM;
1509 	if (!bprm)
1510 		goto out;
1511 
1512 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1513 		bprm->filename = filename->name;
1514 	} else {
1515 		if (filename->name[0] == '\0')
1516 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1517 		else
1518 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1519 						  fd, filename->name);
1520 		if (!bprm->fdpath)
1521 			goto out_free;
1522 
1523 		bprm->filename = bprm->fdpath;
1524 	}
1525 	bprm->interp = bprm->filename;
1526 
1527 	retval = bprm_mm_init(bprm);
1528 	if (retval)
1529 		goto out_free;
1530 	return bprm;
1531 
1532 out_free:
1533 	free_bprm(bprm);
1534 out:
1535 	return ERR_PTR(retval);
1536 }
1537 
1538 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1539 {
1540 	/* If a binfmt changed the interp, free it first. */
1541 	if (bprm->interp != bprm->filename)
1542 		kfree(bprm->interp);
1543 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1544 	if (!bprm->interp)
1545 		return -ENOMEM;
1546 	return 0;
1547 }
1548 EXPORT_SYMBOL(bprm_change_interp);
1549 
1550 /*
1551  * determine how safe it is to execute the proposed program
1552  * - the caller must hold ->cred_guard_mutex to protect against
1553  *   PTRACE_ATTACH or seccomp thread-sync
1554  */
1555 static void check_unsafe_exec(struct linux_binprm *bprm)
1556 {
1557 	struct task_struct *p = current, *t;
1558 	unsigned n_fs;
1559 
1560 	if (p->ptrace)
1561 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1562 
1563 	/*
1564 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1565 	 * mess up.
1566 	 */
1567 	if (task_no_new_privs(current))
1568 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1569 
1570 	/*
1571 	 * If another task is sharing our fs, we cannot safely
1572 	 * suid exec because the differently privileged task
1573 	 * will be able to manipulate the current directory, etc.
1574 	 * It would be nice to force an unshare instead...
1575 	 */
1576 	t = p;
1577 	n_fs = 1;
1578 	spin_lock(&p->fs->lock);
1579 	rcu_read_lock();
1580 	while_each_thread(p, t) {
1581 		if (t->fs == p->fs)
1582 			n_fs++;
1583 	}
1584 	rcu_read_unlock();
1585 
1586 	if (p->fs->users > n_fs)
1587 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1588 	else
1589 		p->fs->in_exec = 1;
1590 	spin_unlock(&p->fs->lock);
1591 }
1592 
1593 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1594 {
1595 	/* Handle suid and sgid on files */
1596 	struct mnt_idmap *idmap;
1597 	struct inode *inode = file_inode(file);
1598 	unsigned int mode;
1599 	vfsuid_t vfsuid;
1600 	vfsgid_t vfsgid;
1601 
1602 	if (!mnt_may_suid(file->f_path.mnt))
1603 		return;
1604 
1605 	if (task_no_new_privs(current))
1606 		return;
1607 
1608 	mode = READ_ONCE(inode->i_mode);
1609 	if (!(mode & (S_ISUID|S_ISGID)))
1610 		return;
1611 
1612 	idmap = file_mnt_idmap(file);
1613 
1614 	/* Be careful if suid/sgid is set */
1615 	inode_lock(inode);
1616 
1617 	/* reload atomically mode/uid/gid now that lock held */
1618 	mode = inode->i_mode;
1619 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1620 	vfsgid = i_gid_into_vfsgid(idmap, inode);
1621 	inode_unlock(inode);
1622 
1623 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1624 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1625 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1626 		return;
1627 
1628 	if (mode & S_ISUID) {
1629 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1630 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1631 	}
1632 
1633 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1634 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1635 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1636 	}
1637 }
1638 
1639 /*
1640  * Compute brpm->cred based upon the final binary.
1641  */
1642 static int bprm_creds_from_file(struct linux_binprm *bprm)
1643 {
1644 	/* Compute creds based on which file? */
1645 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1646 
1647 	bprm_fill_uid(bprm, file);
1648 	return security_bprm_creds_from_file(bprm, file);
1649 }
1650 
1651 /*
1652  * Fill the binprm structure from the inode.
1653  * Read the first BINPRM_BUF_SIZE bytes
1654  *
1655  * This may be called multiple times for binary chains (scripts for example).
1656  */
1657 static int prepare_binprm(struct linux_binprm *bprm)
1658 {
1659 	loff_t pos = 0;
1660 
1661 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1662 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1663 }
1664 
1665 /*
1666  * Arguments are '\0' separated strings found at the location bprm->p
1667  * points to; chop off the first by relocating brpm->p to right after
1668  * the first '\0' encountered.
1669  */
1670 int remove_arg_zero(struct linux_binprm *bprm)
1671 {
1672 	int ret = 0;
1673 	unsigned long offset;
1674 	char *kaddr;
1675 	struct page *page;
1676 
1677 	if (!bprm->argc)
1678 		return 0;
1679 
1680 	do {
1681 		offset = bprm->p & ~PAGE_MASK;
1682 		page = get_arg_page(bprm, bprm->p, 0);
1683 		if (!page) {
1684 			ret = -EFAULT;
1685 			goto out;
1686 		}
1687 		kaddr = kmap_local_page(page);
1688 
1689 		for (; offset < PAGE_SIZE && kaddr[offset];
1690 				offset++, bprm->p++)
1691 			;
1692 
1693 		kunmap_local(kaddr);
1694 		put_arg_page(page);
1695 	} while (offset == PAGE_SIZE);
1696 
1697 	bprm->p++;
1698 	bprm->argc--;
1699 	ret = 0;
1700 
1701 out:
1702 	return ret;
1703 }
1704 EXPORT_SYMBOL(remove_arg_zero);
1705 
1706 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1707 /*
1708  * cycle the list of binary formats handler, until one recognizes the image
1709  */
1710 static int search_binary_handler(struct linux_binprm *bprm)
1711 {
1712 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1713 	struct linux_binfmt *fmt;
1714 	int retval;
1715 
1716 	retval = prepare_binprm(bprm);
1717 	if (retval < 0)
1718 		return retval;
1719 
1720 	retval = security_bprm_check(bprm);
1721 	if (retval)
1722 		return retval;
1723 
1724 	retval = -ENOENT;
1725  retry:
1726 	read_lock(&binfmt_lock);
1727 	list_for_each_entry(fmt, &formats, lh) {
1728 		if (!try_module_get(fmt->module))
1729 			continue;
1730 		read_unlock(&binfmt_lock);
1731 
1732 		retval = fmt->load_binary(bprm);
1733 
1734 		read_lock(&binfmt_lock);
1735 		put_binfmt(fmt);
1736 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1737 			read_unlock(&binfmt_lock);
1738 			return retval;
1739 		}
1740 	}
1741 	read_unlock(&binfmt_lock);
1742 
1743 	if (need_retry) {
1744 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1745 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1746 			return retval;
1747 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1748 			return retval;
1749 		need_retry = false;
1750 		goto retry;
1751 	}
1752 
1753 	return retval;
1754 }
1755 
1756 /* binfmt handlers will call back into begin_new_exec() on success. */
1757 static int exec_binprm(struct linux_binprm *bprm)
1758 {
1759 	pid_t old_pid, old_vpid;
1760 	int ret, depth;
1761 
1762 	/* Need to fetch pid before load_binary changes it */
1763 	old_pid = current->pid;
1764 	rcu_read_lock();
1765 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1766 	rcu_read_unlock();
1767 
1768 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1769 	for (depth = 0;; depth++) {
1770 		struct file *exec;
1771 		if (depth > 5)
1772 			return -ELOOP;
1773 
1774 		ret = search_binary_handler(bprm);
1775 		if (ret < 0)
1776 			return ret;
1777 		if (!bprm->interpreter)
1778 			break;
1779 
1780 		exec = bprm->file;
1781 		bprm->file = bprm->interpreter;
1782 		bprm->interpreter = NULL;
1783 
1784 		allow_write_access(exec);
1785 		if (unlikely(bprm->have_execfd)) {
1786 			if (bprm->executable) {
1787 				fput(exec);
1788 				return -ENOEXEC;
1789 			}
1790 			bprm->executable = exec;
1791 		} else
1792 			fput(exec);
1793 	}
1794 
1795 	audit_bprm(bprm);
1796 	trace_sched_process_exec(current, old_pid, bprm);
1797 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1798 	proc_exec_connector(current);
1799 	return 0;
1800 }
1801 
1802 /*
1803  * sys_execve() executes a new program.
1804  */
1805 static int bprm_execve(struct linux_binprm *bprm,
1806 		       int fd, struct filename *filename, int flags)
1807 {
1808 	struct file *file;
1809 	int retval;
1810 
1811 	retval = prepare_bprm_creds(bprm);
1812 	if (retval)
1813 		return retval;
1814 
1815 	/*
1816 	 * Check for unsafe execution states before exec_binprm(), which
1817 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1818 	 * where setuid-ness is evaluated.
1819 	 */
1820 	check_unsafe_exec(bprm);
1821 	current->in_execve = 1;
1822 	sched_mm_cid_before_execve(current);
1823 
1824 	file = do_open_execat(fd, filename, flags);
1825 	retval = PTR_ERR(file);
1826 	if (IS_ERR(file))
1827 		goto out_unmark;
1828 
1829 	sched_exec();
1830 
1831 	bprm->file = file;
1832 	/*
1833 	 * Record that a name derived from an O_CLOEXEC fd will be
1834 	 * inaccessible after exec.  This allows the code in exec to
1835 	 * choose to fail when the executable is not mmaped into the
1836 	 * interpreter and an open file descriptor is not passed to
1837 	 * the interpreter.  This makes for a better user experience
1838 	 * than having the interpreter start and then immediately fail
1839 	 * when it finds the executable is inaccessible.
1840 	 */
1841 	if (bprm->fdpath && get_close_on_exec(fd))
1842 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1843 
1844 	/* Set the unchanging part of bprm->cred */
1845 	retval = security_bprm_creds_for_exec(bprm);
1846 	if (retval)
1847 		goto out;
1848 
1849 	retval = exec_binprm(bprm);
1850 	if (retval < 0)
1851 		goto out;
1852 
1853 	sched_mm_cid_after_execve(current);
1854 	/* execve succeeded */
1855 	current->fs->in_exec = 0;
1856 	current->in_execve = 0;
1857 	rseq_execve(current);
1858 	user_events_execve(current);
1859 	acct_update_integrals(current);
1860 	task_numa_free(current, false);
1861 	return retval;
1862 
1863 out:
1864 	/*
1865 	 * If past the point of no return ensure the code never
1866 	 * returns to the userspace process.  Use an existing fatal
1867 	 * signal if present otherwise terminate the process with
1868 	 * SIGSEGV.
1869 	 */
1870 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1871 		force_fatal_sig(SIGSEGV);
1872 
1873 out_unmark:
1874 	sched_mm_cid_after_execve(current);
1875 	current->fs->in_exec = 0;
1876 	current->in_execve = 0;
1877 
1878 	return retval;
1879 }
1880 
1881 static int do_execveat_common(int fd, struct filename *filename,
1882 			      struct user_arg_ptr argv,
1883 			      struct user_arg_ptr envp,
1884 			      int flags)
1885 {
1886 	struct linux_binprm *bprm;
1887 	int retval;
1888 
1889 	if (IS_ERR(filename))
1890 		return PTR_ERR(filename);
1891 
1892 	/*
1893 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1894 	 * set*uid() to execve() because too many poorly written programs
1895 	 * don't check setuid() return code.  Here we additionally recheck
1896 	 * whether NPROC limit is still exceeded.
1897 	 */
1898 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1899 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1900 		retval = -EAGAIN;
1901 		goto out_ret;
1902 	}
1903 
1904 	/* We're below the limit (still or again), so we don't want to make
1905 	 * further execve() calls fail. */
1906 	current->flags &= ~PF_NPROC_EXCEEDED;
1907 
1908 	bprm = alloc_bprm(fd, filename);
1909 	if (IS_ERR(bprm)) {
1910 		retval = PTR_ERR(bprm);
1911 		goto out_ret;
1912 	}
1913 
1914 	retval = count(argv, MAX_ARG_STRINGS);
1915 	if (retval == 0)
1916 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1917 			     current->comm, bprm->filename);
1918 	if (retval < 0)
1919 		goto out_free;
1920 	bprm->argc = retval;
1921 
1922 	retval = count(envp, MAX_ARG_STRINGS);
1923 	if (retval < 0)
1924 		goto out_free;
1925 	bprm->envc = retval;
1926 
1927 	retval = bprm_stack_limits(bprm);
1928 	if (retval < 0)
1929 		goto out_free;
1930 
1931 	retval = copy_string_kernel(bprm->filename, bprm);
1932 	if (retval < 0)
1933 		goto out_free;
1934 	bprm->exec = bprm->p;
1935 
1936 	retval = copy_strings(bprm->envc, envp, bprm);
1937 	if (retval < 0)
1938 		goto out_free;
1939 
1940 	retval = copy_strings(bprm->argc, argv, bprm);
1941 	if (retval < 0)
1942 		goto out_free;
1943 
1944 	/*
1945 	 * When argv is empty, add an empty string ("") as argv[0] to
1946 	 * ensure confused userspace programs that start processing
1947 	 * from argv[1] won't end up walking envp. See also
1948 	 * bprm_stack_limits().
1949 	 */
1950 	if (bprm->argc == 0) {
1951 		retval = copy_string_kernel("", bprm);
1952 		if (retval < 0)
1953 			goto out_free;
1954 		bprm->argc = 1;
1955 	}
1956 
1957 	retval = bprm_execve(bprm, fd, filename, flags);
1958 out_free:
1959 	free_bprm(bprm);
1960 
1961 out_ret:
1962 	putname(filename);
1963 	return retval;
1964 }
1965 
1966 int kernel_execve(const char *kernel_filename,
1967 		  const char *const *argv, const char *const *envp)
1968 {
1969 	struct filename *filename;
1970 	struct linux_binprm *bprm;
1971 	int fd = AT_FDCWD;
1972 	int retval;
1973 
1974 	/* It is non-sense for kernel threads to call execve */
1975 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1976 		return -EINVAL;
1977 
1978 	filename = getname_kernel(kernel_filename);
1979 	if (IS_ERR(filename))
1980 		return PTR_ERR(filename);
1981 
1982 	bprm = alloc_bprm(fd, filename);
1983 	if (IS_ERR(bprm)) {
1984 		retval = PTR_ERR(bprm);
1985 		goto out_ret;
1986 	}
1987 
1988 	retval = count_strings_kernel(argv);
1989 	if (WARN_ON_ONCE(retval == 0))
1990 		retval = -EINVAL;
1991 	if (retval < 0)
1992 		goto out_free;
1993 	bprm->argc = retval;
1994 
1995 	retval = count_strings_kernel(envp);
1996 	if (retval < 0)
1997 		goto out_free;
1998 	bprm->envc = retval;
1999 
2000 	retval = bprm_stack_limits(bprm);
2001 	if (retval < 0)
2002 		goto out_free;
2003 
2004 	retval = copy_string_kernel(bprm->filename, bprm);
2005 	if (retval < 0)
2006 		goto out_free;
2007 	bprm->exec = bprm->p;
2008 
2009 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2010 	if (retval < 0)
2011 		goto out_free;
2012 
2013 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2014 	if (retval < 0)
2015 		goto out_free;
2016 
2017 	retval = bprm_execve(bprm, fd, filename, 0);
2018 out_free:
2019 	free_bprm(bprm);
2020 out_ret:
2021 	putname(filename);
2022 	return retval;
2023 }
2024 
2025 static int do_execve(struct filename *filename,
2026 	const char __user *const __user *__argv,
2027 	const char __user *const __user *__envp)
2028 {
2029 	struct user_arg_ptr argv = { .ptr.native = __argv };
2030 	struct user_arg_ptr envp = { .ptr.native = __envp };
2031 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2032 }
2033 
2034 static int do_execveat(int fd, struct filename *filename,
2035 		const char __user *const __user *__argv,
2036 		const char __user *const __user *__envp,
2037 		int flags)
2038 {
2039 	struct user_arg_ptr argv = { .ptr.native = __argv };
2040 	struct user_arg_ptr envp = { .ptr.native = __envp };
2041 
2042 	return do_execveat_common(fd, filename, argv, envp, flags);
2043 }
2044 
2045 #ifdef CONFIG_COMPAT
2046 static int compat_do_execve(struct filename *filename,
2047 	const compat_uptr_t __user *__argv,
2048 	const compat_uptr_t __user *__envp)
2049 {
2050 	struct user_arg_ptr argv = {
2051 		.is_compat = true,
2052 		.ptr.compat = __argv,
2053 	};
2054 	struct user_arg_ptr envp = {
2055 		.is_compat = true,
2056 		.ptr.compat = __envp,
2057 	};
2058 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2059 }
2060 
2061 static int compat_do_execveat(int fd, struct filename *filename,
2062 			      const compat_uptr_t __user *__argv,
2063 			      const compat_uptr_t __user *__envp,
2064 			      int flags)
2065 {
2066 	struct user_arg_ptr argv = {
2067 		.is_compat = true,
2068 		.ptr.compat = __argv,
2069 	};
2070 	struct user_arg_ptr envp = {
2071 		.is_compat = true,
2072 		.ptr.compat = __envp,
2073 	};
2074 	return do_execveat_common(fd, filename, argv, envp, flags);
2075 }
2076 #endif
2077 
2078 void set_binfmt(struct linux_binfmt *new)
2079 {
2080 	struct mm_struct *mm = current->mm;
2081 
2082 	if (mm->binfmt)
2083 		module_put(mm->binfmt->module);
2084 
2085 	mm->binfmt = new;
2086 	if (new)
2087 		__module_get(new->module);
2088 }
2089 EXPORT_SYMBOL(set_binfmt);
2090 
2091 /*
2092  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2093  */
2094 void set_dumpable(struct mm_struct *mm, int value)
2095 {
2096 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2097 		return;
2098 
2099 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2100 }
2101 
2102 SYSCALL_DEFINE3(execve,
2103 		const char __user *, filename,
2104 		const char __user *const __user *, argv,
2105 		const char __user *const __user *, envp)
2106 {
2107 	return do_execve(getname(filename), argv, envp);
2108 }
2109 
2110 SYSCALL_DEFINE5(execveat,
2111 		int, fd, const char __user *, filename,
2112 		const char __user *const __user *, argv,
2113 		const char __user *const __user *, envp,
2114 		int, flags)
2115 {
2116 	return do_execveat(fd,
2117 			   getname_uflags(filename, flags),
2118 			   argv, envp, flags);
2119 }
2120 
2121 #ifdef CONFIG_COMPAT
2122 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2123 	const compat_uptr_t __user *, argv,
2124 	const compat_uptr_t __user *, envp)
2125 {
2126 	return compat_do_execve(getname(filename), argv, envp);
2127 }
2128 
2129 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2130 		       const char __user *, filename,
2131 		       const compat_uptr_t __user *, argv,
2132 		       const compat_uptr_t __user *, envp,
2133 		       int,  flags)
2134 {
2135 	return compat_do_execveat(fd,
2136 				  getname_uflags(filename, flags),
2137 				  argv, envp, flags);
2138 }
2139 #endif
2140 
2141 #ifdef CONFIG_SYSCTL
2142 
2143 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2144 		void *buffer, size_t *lenp, loff_t *ppos)
2145 {
2146 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2147 
2148 	if (!error)
2149 		validate_coredump_safety();
2150 	return error;
2151 }
2152 
2153 static struct ctl_table fs_exec_sysctls[] = {
2154 	{
2155 		.procname	= "suid_dumpable",
2156 		.data		= &suid_dumpable,
2157 		.maxlen		= sizeof(int),
2158 		.mode		= 0644,
2159 		.proc_handler	= proc_dointvec_minmax_coredump,
2160 		.extra1		= SYSCTL_ZERO,
2161 		.extra2		= SYSCTL_TWO,
2162 	},
2163 	{ }
2164 };
2165 
2166 static int __init init_fs_exec_sysctls(void)
2167 {
2168 	register_sysctl_init("fs", fs_exec_sysctls);
2169 	return 0;
2170 }
2171 
2172 fs_initcall(init_fs_exec_sysctls);
2173 #endif /* CONFIG_SYSCTL */
2174