1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 67 #include <linux/time_namespace.h> 68 #include <linux/user_events.h> 69 70 #include <linux/uaccess.h> 71 #include <asm/mmu_context.h> 72 #include <asm/tlb.h> 73 74 #include <trace/events/task.h> 75 #include "internal.h" 76 77 #include <trace/events/sched.h> 78 79 static int bprm_creds_from_file(struct linux_binprm *bprm); 80 81 int suid_dumpable = 0; 82 83 static LIST_HEAD(formats); 84 static DEFINE_RWLOCK(binfmt_lock); 85 86 void __register_binfmt(struct linux_binfmt * fmt, int insert) 87 { 88 write_lock(&binfmt_lock); 89 insert ? list_add(&fmt->lh, &formats) : 90 list_add_tail(&fmt->lh, &formats); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(__register_binfmt); 95 96 void unregister_binfmt(struct linux_binfmt * fmt) 97 { 98 write_lock(&binfmt_lock); 99 list_del(&fmt->lh); 100 write_unlock(&binfmt_lock); 101 } 102 103 EXPORT_SYMBOL(unregister_binfmt); 104 105 static inline void put_binfmt(struct linux_binfmt * fmt) 106 { 107 module_put(fmt->module); 108 } 109 110 bool path_noexec(const struct path *path) 111 { 112 return (path->mnt->mnt_flags & MNT_NOEXEC) || 113 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 114 } 115 116 #ifdef CONFIG_USELIB 117 /* 118 * Note that a shared library must be both readable and executable due to 119 * security reasons. 120 * 121 * Also note that we take the address to load from the file itself. 122 */ 123 SYSCALL_DEFINE1(uselib, const char __user *, library) 124 { 125 struct linux_binfmt *fmt; 126 struct file *file; 127 struct filename *tmp = getname(library); 128 int error = PTR_ERR(tmp); 129 static const struct open_flags uselib_flags = { 130 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 131 .acc_mode = MAY_READ | MAY_EXEC, 132 .intent = LOOKUP_OPEN, 133 .lookup_flags = LOOKUP_FOLLOW, 134 }; 135 136 if (IS_ERR(tmp)) 137 goto out; 138 139 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 140 putname(tmp); 141 error = PTR_ERR(file); 142 if (IS_ERR(file)) 143 goto out; 144 145 /* 146 * may_open() has already checked for this, so it should be 147 * impossible to trip now. But we need to be extra cautious 148 * and check again at the very end too. 149 */ 150 error = -EACCES; 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 152 path_noexec(&file->f_path))) 153 goto exit; 154 155 error = -ENOEXEC; 156 157 read_lock(&binfmt_lock); 158 list_for_each_entry(fmt, &formats, lh) { 159 if (!fmt->load_shlib) 160 continue; 161 if (!try_module_get(fmt->module)) 162 continue; 163 read_unlock(&binfmt_lock); 164 error = fmt->load_shlib(file); 165 read_lock(&binfmt_lock); 166 put_binfmt(fmt); 167 if (error != -ENOEXEC) 168 break; 169 } 170 read_unlock(&binfmt_lock); 171 exit: 172 fput(file); 173 out: 174 return error; 175 } 176 #endif /* #ifdef CONFIG_USELIB */ 177 178 #ifdef CONFIG_MMU 179 /* 180 * The nascent bprm->mm is not visible until exec_mmap() but it can 181 * use a lot of memory, account these pages in current->mm temporary 182 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 183 * change the counter back via acct_arg_size(0). 184 */ 185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 186 { 187 struct mm_struct *mm = current->mm; 188 long diff = (long)(pages - bprm->vma_pages); 189 190 if (!mm || !diff) 191 return; 192 193 bprm->vma_pages = pages; 194 add_mm_counter(mm, MM_ANONPAGES, diff); 195 } 196 197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 198 int write) 199 { 200 struct page *page; 201 int ret; 202 unsigned int gup_flags = 0; 203 204 #ifdef CONFIG_STACK_GROWSUP 205 if (write) { 206 ret = expand_downwards(bprm->vma, pos); 207 if (ret < 0) 208 return NULL; 209 } 210 #endif 211 212 if (write) 213 gup_flags |= FOLL_WRITE; 214 215 /* 216 * We are doing an exec(). 'current' is the process 217 * doing the exec and bprm->mm is the new process's mm. 218 */ 219 mmap_read_lock(bprm->mm); 220 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags, 221 &page, NULL, NULL); 222 mmap_read_unlock(bprm->mm); 223 if (ret <= 0) 224 return NULL; 225 226 if (write) 227 acct_arg_size(bprm, vma_pages(bprm->vma)); 228 229 return page; 230 } 231 232 static void put_arg_page(struct page *page) 233 { 234 put_page(page); 235 } 236 237 static void free_arg_pages(struct linux_binprm *bprm) 238 { 239 } 240 241 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 242 struct page *page) 243 { 244 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 245 } 246 247 static int __bprm_mm_init(struct linux_binprm *bprm) 248 { 249 int err; 250 struct vm_area_struct *vma = NULL; 251 struct mm_struct *mm = bprm->mm; 252 253 bprm->vma = vma = vm_area_alloc(mm); 254 if (!vma) 255 return -ENOMEM; 256 vma_set_anonymous(vma); 257 258 if (mmap_write_lock_killable(mm)) { 259 err = -EINTR; 260 goto err_free; 261 } 262 263 /* 264 * Place the stack at the largest stack address the architecture 265 * supports. Later, we'll move this to an appropriate place. We don't 266 * use STACK_TOP because that can depend on attributes which aren't 267 * configured yet. 268 */ 269 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 270 vma->vm_end = STACK_TOP_MAX; 271 vma->vm_start = vma->vm_end - PAGE_SIZE; 272 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP); 273 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 274 275 err = insert_vm_struct(mm, vma); 276 if (err) 277 goto err; 278 279 mm->stack_vm = mm->total_vm = 1; 280 mmap_write_unlock(mm); 281 bprm->p = vma->vm_end - sizeof(void *); 282 return 0; 283 err: 284 mmap_write_unlock(mm); 285 err_free: 286 bprm->vma = NULL; 287 vm_area_free(vma); 288 return err; 289 } 290 291 static bool valid_arg_len(struct linux_binprm *bprm, long len) 292 { 293 return len <= MAX_ARG_STRLEN; 294 } 295 296 #else 297 298 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 299 { 300 } 301 302 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 303 int write) 304 { 305 struct page *page; 306 307 page = bprm->page[pos / PAGE_SIZE]; 308 if (!page && write) { 309 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 310 if (!page) 311 return NULL; 312 bprm->page[pos / PAGE_SIZE] = page; 313 } 314 315 return page; 316 } 317 318 static void put_arg_page(struct page *page) 319 { 320 } 321 322 static void free_arg_page(struct linux_binprm *bprm, int i) 323 { 324 if (bprm->page[i]) { 325 __free_page(bprm->page[i]); 326 bprm->page[i] = NULL; 327 } 328 } 329 330 static void free_arg_pages(struct linux_binprm *bprm) 331 { 332 int i; 333 334 for (i = 0; i < MAX_ARG_PAGES; i++) 335 free_arg_page(bprm, i); 336 } 337 338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 339 struct page *page) 340 { 341 } 342 343 static int __bprm_mm_init(struct linux_binprm *bprm) 344 { 345 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 346 return 0; 347 } 348 349 static bool valid_arg_len(struct linux_binprm *bprm, long len) 350 { 351 return len <= bprm->p; 352 } 353 354 #endif /* CONFIG_MMU */ 355 356 /* 357 * Create a new mm_struct and populate it with a temporary stack 358 * vm_area_struct. We don't have enough context at this point to set the stack 359 * flags, permissions, and offset, so we use temporary values. We'll update 360 * them later in setup_arg_pages(). 361 */ 362 static int bprm_mm_init(struct linux_binprm *bprm) 363 { 364 int err; 365 struct mm_struct *mm = NULL; 366 367 bprm->mm = mm = mm_alloc(); 368 err = -ENOMEM; 369 if (!mm) 370 goto err; 371 372 /* Save current stack limit for all calculations made during exec. */ 373 task_lock(current->group_leader); 374 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 375 task_unlock(current->group_leader); 376 377 err = __bprm_mm_init(bprm); 378 if (err) 379 goto err; 380 381 return 0; 382 383 err: 384 if (mm) { 385 bprm->mm = NULL; 386 mmdrop(mm); 387 } 388 389 return err; 390 } 391 392 struct user_arg_ptr { 393 #ifdef CONFIG_COMPAT 394 bool is_compat; 395 #endif 396 union { 397 const char __user *const __user *native; 398 #ifdef CONFIG_COMPAT 399 const compat_uptr_t __user *compat; 400 #endif 401 } ptr; 402 }; 403 404 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 405 { 406 const char __user *native; 407 408 #ifdef CONFIG_COMPAT 409 if (unlikely(argv.is_compat)) { 410 compat_uptr_t compat; 411 412 if (get_user(compat, argv.ptr.compat + nr)) 413 return ERR_PTR(-EFAULT); 414 415 return compat_ptr(compat); 416 } 417 #endif 418 419 if (get_user(native, argv.ptr.native + nr)) 420 return ERR_PTR(-EFAULT); 421 422 return native; 423 } 424 425 /* 426 * count() counts the number of strings in array ARGV. 427 */ 428 static int count(struct user_arg_ptr argv, int max) 429 { 430 int i = 0; 431 432 if (argv.ptr.native != NULL) { 433 for (;;) { 434 const char __user *p = get_user_arg_ptr(argv, i); 435 436 if (!p) 437 break; 438 439 if (IS_ERR(p)) 440 return -EFAULT; 441 442 if (i >= max) 443 return -E2BIG; 444 ++i; 445 446 if (fatal_signal_pending(current)) 447 return -ERESTARTNOHAND; 448 cond_resched(); 449 } 450 } 451 return i; 452 } 453 454 static int count_strings_kernel(const char *const *argv) 455 { 456 int i; 457 458 if (!argv) 459 return 0; 460 461 for (i = 0; argv[i]; ++i) { 462 if (i >= MAX_ARG_STRINGS) 463 return -E2BIG; 464 if (fatal_signal_pending(current)) 465 return -ERESTARTNOHAND; 466 cond_resched(); 467 } 468 return i; 469 } 470 471 static int bprm_stack_limits(struct linux_binprm *bprm) 472 { 473 unsigned long limit, ptr_size; 474 475 /* 476 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 477 * (whichever is smaller) for the argv+env strings. 478 * This ensures that: 479 * - the remaining binfmt code will not run out of stack space, 480 * - the program will have a reasonable amount of stack left 481 * to work from. 482 */ 483 limit = _STK_LIM / 4 * 3; 484 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 485 /* 486 * We've historically supported up to 32 pages (ARG_MAX) 487 * of argument strings even with small stacks 488 */ 489 limit = max_t(unsigned long, limit, ARG_MAX); 490 /* 491 * We must account for the size of all the argv and envp pointers to 492 * the argv and envp strings, since they will also take up space in 493 * the stack. They aren't stored until much later when we can't 494 * signal to the parent that the child has run out of stack space. 495 * Instead, calculate it here so it's possible to fail gracefully. 496 * 497 * In the case of argc = 0, make sure there is space for adding a 498 * empty string (which will bump argc to 1), to ensure confused 499 * userspace programs don't start processing from argv[1], thinking 500 * argc can never be 0, to keep them from walking envp by accident. 501 * See do_execveat_common(). 502 */ 503 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *); 504 if (limit <= ptr_size) 505 return -E2BIG; 506 limit -= ptr_size; 507 508 bprm->argmin = bprm->p - limit; 509 return 0; 510 } 511 512 /* 513 * 'copy_strings()' copies argument/environment strings from the old 514 * processes's memory to the new process's stack. The call to get_user_pages() 515 * ensures the destination page is created and not swapped out. 516 */ 517 static int copy_strings(int argc, struct user_arg_ptr argv, 518 struct linux_binprm *bprm) 519 { 520 struct page *kmapped_page = NULL; 521 char *kaddr = NULL; 522 unsigned long kpos = 0; 523 int ret; 524 525 while (argc-- > 0) { 526 const char __user *str; 527 int len; 528 unsigned long pos; 529 530 ret = -EFAULT; 531 str = get_user_arg_ptr(argv, argc); 532 if (IS_ERR(str)) 533 goto out; 534 535 len = strnlen_user(str, MAX_ARG_STRLEN); 536 if (!len) 537 goto out; 538 539 ret = -E2BIG; 540 if (!valid_arg_len(bprm, len)) 541 goto out; 542 543 /* We're going to work our way backwards. */ 544 pos = bprm->p; 545 str += len; 546 bprm->p -= len; 547 #ifdef CONFIG_MMU 548 if (bprm->p < bprm->argmin) 549 goto out; 550 #endif 551 552 while (len > 0) { 553 int offset, bytes_to_copy; 554 555 if (fatal_signal_pending(current)) { 556 ret = -ERESTARTNOHAND; 557 goto out; 558 } 559 cond_resched(); 560 561 offset = pos % PAGE_SIZE; 562 if (offset == 0) 563 offset = PAGE_SIZE; 564 565 bytes_to_copy = offset; 566 if (bytes_to_copy > len) 567 bytes_to_copy = len; 568 569 offset -= bytes_to_copy; 570 pos -= bytes_to_copy; 571 str -= bytes_to_copy; 572 len -= bytes_to_copy; 573 574 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 575 struct page *page; 576 577 page = get_arg_page(bprm, pos, 1); 578 if (!page) { 579 ret = -E2BIG; 580 goto out; 581 } 582 583 if (kmapped_page) { 584 flush_dcache_page(kmapped_page); 585 kunmap_local(kaddr); 586 put_arg_page(kmapped_page); 587 } 588 kmapped_page = page; 589 kaddr = kmap_local_page(kmapped_page); 590 kpos = pos & PAGE_MASK; 591 flush_arg_page(bprm, kpos, kmapped_page); 592 } 593 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 594 ret = -EFAULT; 595 goto out; 596 } 597 } 598 } 599 ret = 0; 600 out: 601 if (kmapped_page) { 602 flush_dcache_page(kmapped_page); 603 kunmap_local(kaddr); 604 put_arg_page(kmapped_page); 605 } 606 return ret; 607 } 608 609 /* 610 * Copy and argument/environment string from the kernel to the processes stack. 611 */ 612 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 613 { 614 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 615 unsigned long pos = bprm->p; 616 617 if (len == 0) 618 return -EFAULT; 619 if (!valid_arg_len(bprm, len)) 620 return -E2BIG; 621 622 /* We're going to work our way backwards. */ 623 arg += len; 624 bprm->p -= len; 625 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 626 return -E2BIG; 627 628 while (len > 0) { 629 unsigned int bytes_to_copy = min_t(unsigned int, len, 630 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 631 struct page *page; 632 633 pos -= bytes_to_copy; 634 arg -= bytes_to_copy; 635 len -= bytes_to_copy; 636 637 page = get_arg_page(bprm, pos, 1); 638 if (!page) 639 return -E2BIG; 640 flush_arg_page(bprm, pos & PAGE_MASK, page); 641 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 642 put_arg_page(page); 643 } 644 645 return 0; 646 } 647 EXPORT_SYMBOL(copy_string_kernel); 648 649 static int copy_strings_kernel(int argc, const char *const *argv, 650 struct linux_binprm *bprm) 651 { 652 while (argc-- > 0) { 653 int ret = copy_string_kernel(argv[argc], bprm); 654 if (ret < 0) 655 return ret; 656 if (fatal_signal_pending(current)) 657 return -ERESTARTNOHAND; 658 cond_resched(); 659 } 660 return 0; 661 } 662 663 #ifdef CONFIG_MMU 664 665 /* 666 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 667 * the binfmt code determines where the new stack should reside, we shift it to 668 * its final location. The process proceeds as follows: 669 * 670 * 1) Use shift to calculate the new vma endpoints. 671 * 2) Extend vma to cover both the old and new ranges. This ensures the 672 * arguments passed to subsequent functions are consistent. 673 * 3) Move vma's page tables to the new range. 674 * 4) Free up any cleared pgd range. 675 * 5) Shrink the vma to cover only the new range. 676 */ 677 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 678 { 679 struct mm_struct *mm = vma->vm_mm; 680 unsigned long old_start = vma->vm_start; 681 unsigned long old_end = vma->vm_end; 682 unsigned long length = old_end - old_start; 683 unsigned long new_start = old_start - shift; 684 unsigned long new_end = old_end - shift; 685 VMA_ITERATOR(vmi, mm, new_start); 686 struct vm_area_struct *next; 687 struct mmu_gather tlb; 688 689 BUG_ON(new_start > new_end); 690 691 /* 692 * ensure there are no vmas between where we want to go 693 * and where we are 694 */ 695 if (vma != vma_next(&vmi)) 696 return -EFAULT; 697 698 /* 699 * cover the whole range: [new_start, old_end) 700 */ 701 if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL)) 702 return -ENOMEM; 703 704 /* 705 * move the page tables downwards, on failure we rely on 706 * process cleanup to remove whatever mess we made. 707 */ 708 if (length != move_page_tables(vma, old_start, 709 vma, new_start, length, false)) 710 return -ENOMEM; 711 712 lru_add_drain(); 713 tlb_gather_mmu(&tlb, mm); 714 next = vma_next(&vmi); 715 if (new_end > old_start) { 716 /* 717 * when the old and new regions overlap clear from new_end. 718 */ 719 free_pgd_range(&tlb, new_end, old_end, new_end, 720 next ? next->vm_start : USER_PGTABLES_CEILING); 721 } else { 722 /* 723 * otherwise, clean from old_start; this is done to not touch 724 * the address space in [new_end, old_start) some architectures 725 * have constraints on va-space that make this illegal (IA64) - 726 * for the others its just a little faster. 727 */ 728 free_pgd_range(&tlb, old_start, old_end, new_end, 729 next ? next->vm_start : USER_PGTABLES_CEILING); 730 } 731 tlb_finish_mmu(&tlb); 732 733 vma_prev(&vmi); 734 /* Shrink the vma to just the new range */ 735 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff); 736 } 737 738 /* 739 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 740 * the stack is optionally relocated, and some extra space is added. 741 */ 742 int setup_arg_pages(struct linux_binprm *bprm, 743 unsigned long stack_top, 744 int executable_stack) 745 { 746 unsigned long ret; 747 unsigned long stack_shift; 748 struct mm_struct *mm = current->mm; 749 struct vm_area_struct *vma = bprm->vma; 750 struct vm_area_struct *prev = NULL; 751 unsigned long vm_flags; 752 unsigned long stack_base; 753 unsigned long stack_size; 754 unsigned long stack_expand; 755 unsigned long rlim_stack; 756 struct mmu_gather tlb; 757 struct vma_iterator vmi; 758 759 #ifdef CONFIG_STACK_GROWSUP 760 /* Limit stack size */ 761 stack_base = bprm->rlim_stack.rlim_max; 762 763 stack_base = calc_max_stack_size(stack_base); 764 765 /* Add space for stack randomization. */ 766 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 767 768 /* Make sure we didn't let the argument array grow too large. */ 769 if (vma->vm_end - vma->vm_start > stack_base) 770 return -ENOMEM; 771 772 stack_base = PAGE_ALIGN(stack_top - stack_base); 773 774 stack_shift = vma->vm_start - stack_base; 775 mm->arg_start = bprm->p - stack_shift; 776 bprm->p = vma->vm_end - stack_shift; 777 #else 778 stack_top = arch_align_stack(stack_top); 779 stack_top = PAGE_ALIGN(stack_top); 780 781 if (unlikely(stack_top < mmap_min_addr) || 782 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 783 return -ENOMEM; 784 785 stack_shift = vma->vm_end - stack_top; 786 787 bprm->p -= stack_shift; 788 mm->arg_start = bprm->p; 789 #endif 790 791 if (bprm->loader) 792 bprm->loader -= stack_shift; 793 bprm->exec -= stack_shift; 794 795 if (mmap_write_lock_killable(mm)) 796 return -EINTR; 797 798 vm_flags = VM_STACK_FLAGS; 799 800 /* 801 * Adjust stack execute permissions; explicitly enable for 802 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 803 * (arch default) otherwise. 804 */ 805 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 806 vm_flags |= VM_EXEC; 807 else if (executable_stack == EXSTACK_DISABLE_X) 808 vm_flags &= ~VM_EXEC; 809 vm_flags |= mm->def_flags; 810 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 811 812 vma_iter_init(&vmi, mm, vma->vm_start); 813 814 tlb_gather_mmu(&tlb, mm); 815 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end, 816 vm_flags); 817 tlb_finish_mmu(&tlb); 818 819 if (ret) 820 goto out_unlock; 821 BUG_ON(prev != vma); 822 823 if (unlikely(vm_flags & VM_EXEC)) { 824 pr_warn_once("process '%pD4' started with executable stack\n", 825 bprm->file); 826 } 827 828 /* Move stack pages down in memory. */ 829 if (stack_shift) { 830 ret = shift_arg_pages(vma, stack_shift); 831 if (ret) 832 goto out_unlock; 833 } 834 835 /* mprotect_fixup is overkill to remove the temporary stack flags */ 836 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP); 837 838 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 839 stack_size = vma->vm_end - vma->vm_start; 840 /* 841 * Align this down to a page boundary as expand_stack 842 * will align it up. 843 */ 844 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 845 846 stack_expand = min(rlim_stack, stack_size + stack_expand); 847 848 #ifdef CONFIG_STACK_GROWSUP 849 stack_base = vma->vm_start + stack_expand; 850 #else 851 stack_base = vma->vm_end - stack_expand; 852 #endif 853 current->mm->start_stack = bprm->p; 854 ret = expand_stack(vma, stack_base); 855 if (ret) 856 ret = -EFAULT; 857 858 out_unlock: 859 mmap_write_unlock(mm); 860 return ret; 861 } 862 EXPORT_SYMBOL(setup_arg_pages); 863 864 #else 865 866 /* 867 * Transfer the program arguments and environment from the holding pages 868 * onto the stack. The provided stack pointer is adjusted accordingly. 869 */ 870 int transfer_args_to_stack(struct linux_binprm *bprm, 871 unsigned long *sp_location) 872 { 873 unsigned long index, stop, sp; 874 int ret = 0; 875 876 stop = bprm->p >> PAGE_SHIFT; 877 sp = *sp_location; 878 879 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 880 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 881 char *src = kmap_local_page(bprm->page[index]) + offset; 882 sp -= PAGE_SIZE - offset; 883 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 884 ret = -EFAULT; 885 kunmap_local(src); 886 if (ret) 887 goto out; 888 } 889 890 *sp_location = sp; 891 892 out: 893 return ret; 894 } 895 EXPORT_SYMBOL(transfer_args_to_stack); 896 897 #endif /* CONFIG_MMU */ 898 899 static struct file *do_open_execat(int fd, struct filename *name, int flags) 900 { 901 struct file *file; 902 int err; 903 struct open_flags open_exec_flags = { 904 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 905 .acc_mode = MAY_EXEC, 906 .intent = LOOKUP_OPEN, 907 .lookup_flags = LOOKUP_FOLLOW, 908 }; 909 910 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 911 return ERR_PTR(-EINVAL); 912 if (flags & AT_SYMLINK_NOFOLLOW) 913 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 914 if (flags & AT_EMPTY_PATH) 915 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 916 917 file = do_filp_open(fd, name, &open_exec_flags); 918 if (IS_ERR(file)) 919 goto out; 920 921 /* 922 * may_open() has already checked for this, so it should be 923 * impossible to trip now. But we need to be extra cautious 924 * and check again at the very end too. 925 */ 926 err = -EACCES; 927 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 928 path_noexec(&file->f_path))) 929 goto exit; 930 931 err = deny_write_access(file); 932 if (err) 933 goto exit; 934 935 out: 936 return file; 937 938 exit: 939 fput(file); 940 return ERR_PTR(err); 941 } 942 943 struct file *open_exec(const char *name) 944 { 945 struct filename *filename = getname_kernel(name); 946 struct file *f = ERR_CAST(filename); 947 948 if (!IS_ERR(filename)) { 949 f = do_open_execat(AT_FDCWD, filename, 0); 950 putname(filename); 951 } 952 return f; 953 } 954 EXPORT_SYMBOL(open_exec); 955 956 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) 957 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 958 { 959 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 960 if (res > 0) 961 flush_icache_user_range(addr, addr + len); 962 return res; 963 } 964 EXPORT_SYMBOL(read_code); 965 #endif 966 967 /* 968 * Maps the mm_struct mm into the current task struct. 969 * On success, this function returns with exec_update_lock 970 * held for writing. 971 */ 972 static int exec_mmap(struct mm_struct *mm) 973 { 974 struct task_struct *tsk; 975 struct mm_struct *old_mm, *active_mm; 976 int ret; 977 978 /* Notify parent that we're no longer interested in the old VM */ 979 tsk = current; 980 old_mm = current->mm; 981 exec_mm_release(tsk, old_mm); 982 if (old_mm) 983 sync_mm_rss(old_mm); 984 985 ret = down_write_killable(&tsk->signal->exec_update_lock); 986 if (ret) 987 return ret; 988 989 if (old_mm) { 990 /* 991 * If there is a pending fatal signal perhaps a signal 992 * whose default action is to create a coredump get 993 * out and die instead of going through with the exec. 994 */ 995 ret = mmap_read_lock_killable(old_mm); 996 if (ret) { 997 up_write(&tsk->signal->exec_update_lock); 998 return ret; 999 } 1000 } 1001 1002 task_lock(tsk); 1003 membarrier_exec_mmap(mm); 1004 1005 local_irq_disable(); 1006 active_mm = tsk->active_mm; 1007 tsk->active_mm = mm; 1008 tsk->mm = mm; 1009 mm_init_cid(mm); 1010 /* 1011 * This prevents preemption while active_mm is being loaded and 1012 * it and mm are being updated, which could cause problems for 1013 * lazy tlb mm refcounting when these are updated by context 1014 * switches. Not all architectures can handle irqs off over 1015 * activate_mm yet. 1016 */ 1017 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1018 local_irq_enable(); 1019 activate_mm(active_mm, mm); 1020 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1021 local_irq_enable(); 1022 lru_gen_add_mm(mm); 1023 task_unlock(tsk); 1024 lru_gen_use_mm(mm); 1025 if (old_mm) { 1026 mmap_read_unlock(old_mm); 1027 BUG_ON(active_mm != old_mm); 1028 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1029 mm_update_next_owner(old_mm); 1030 mmput(old_mm); 1031 return 0; 1032 } 1033 mmdrop_lazy_tlb(active_mm); 1034 return 0; 1035 } 1036 1037 static int de_thread(struct task_struct *tsk) 1038 { 1039 struct signal_struct *sig = tsk->signal; 1040 struct sighand_struct *oldsighand = tsk->sighand; 1041 spinlock_t *lock = &oldsighand->siglock; 1042 1043 if (thread_group_empty(tsk)) 1044 goto no_thread_group; 1045 1046 /* 1047 * Kill all other threads in the thread group. 1048 */ 1049 spin_lock_irq(lock); 1050 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1051 /* 1052 * Another group action in progress, just 1053 * return so that the signal is processed. 1054 */ 1055 spin_unlock_irq(lock); 1056 return -EAGAIN; 1057 } 1058 1059 sig->group_exec_task = tsk; 1060 sig->notify_count = zap_other_threads(tsk); 1061 if (!thread_group_leader(tsk)) 1062 sig->notify_count--; 1063 1064 while (sig->notify_count) { 1065 __set_current_state(TASK_KILLABLE); 1066 spin_unlock_irq(lock); 1067 schedule(); 1068 if (__fatal_signal_pending(tsk)) 1069 goto killed; 1070 spin_lock_irq(lock); 1071 } 1072 spin_unlock_irq(lock); 1073 1074 /* 1075 * At this point all other threads have exited, all we have to 1076 * do is to wait for the thread group leader to become inactive, 1077 * and to assume its PID: 1078 */ 1079 if (!thread_group_leader(tsk)) { 1080 struct task_struct *leader = tsk->group_leader; 1081 1082 for (;;) { 1083 cgroup_threadgroup_change_begin(tsk); 1084 write_lock_irq(&tasklist_lock); 1085 /* 1086 * Do this under tasklist_lock to ensure that 1087 * exit_notify() can't miss ->group_exec_task 1088 */ 1089 sig->notify_count = -1; 1090 if (likely(leader->exit_state)) 1091 break; 1092 __set_current_state(TASK_KILLABLE); 1093 write_unlock_irq(&tasklist_lock); 1094 cgroup_threadgroup_change_end(tsk); 1095 schedule(); 1096 if (__fatal_signal_pending(tsk)) 1097 goto killed; 1098 } 1099 1100 /* 1101 * The only record we have of the real-time age of a 1102 * process, regardless of execs it's done, is start_time. 1103 * All the past CPU time is accumulated in signal_struct 1104 * from sister threads now dead. But in this non-leader 1105 * exec, nothing survives from the original leader thread, 1106 * whose birth marks the true age of this process now. 1107 * When we take on its identity by switching to its PID, we 1108 * also take its birthdate (always earlier than our own). 1109 */ 1110 tsk->start_time = leader->start_time; 1111 tsk->start_boottime = leader->start_boottime; 1112 1113 BUG_ON(!same_thread_group(leader, tsk)); 1114 /* 1115 * An exec() starts a new thread group with the 1116 * TGID of the previous thread group. Rehash the 1117 * two threads with a switched PID, and release 1118 * the former thread group leader: 1119 */ 1120 1121 /* Become a process group leader with the old leader's pid. 1122 * The old leader becomes a thread of the this thread group. 1123 */ 1124 exchange_tids(tsk, leader); 1125 transfer_pid(leader, tsk, PIDTYPE_TGID); 1126 transfer_pid(leader, tsk, PIDTYPE_PGID); 1127 transfer_pid(leader, tsk, PIDTYPE_SID); 1128 1129 list_replace_rcu(&leader->tasks, &tsk->tasks); 1130 list_replace_init(&leader->sibling, &tsk->sibling); 1131 1132 tsk->group_leader = tsk; 1133 leader->group_leader = tsk; 1134 1135 tsk->exit_signal = SIGCHLD; 1136 leader->exit_signal = -1; 1137 1138 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1139 leader->exit_state = EXIT_DEAD; 1140 1141 /* 1142 * We are going to release_task()->ptrace_unlink() silently, 1143 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1144 * the tracer won't block again waiting for this thread. 1145 */ 1146 if (unlikely(leader->ptrace)) 1147 __wake_up_parent(leader, leader->parent); 1148 write_unlock_irq(&tasklist_lock); 1149 cgroup_threadgroup_change_end(tsk); 1150 1151 release_task(leader); 1152 } 1153 1154 sig->group_exec_task = NULL; 1155 sig->notify_count = 0; 1156 1157 no_thread_group: 1158 /* we have changed execution domain */ 1159 tsk->exit_signal = SIGCHLD; 1160 1161 BUG_ON(!thread_group_leader(tsk)); 1162 return 0; 1163 1164 killed: 1165 /* protects against exit_notify() and __exit_signal() */ 1166 read_lock(&tasklist_lock); 1167 sig->group_exec_task = NULL; 1168 sig->notify_count = 0; 1169 read_unlock(&tasklist_lock); 1170 return -EAGAIN; 1171 } 1172 1173 1174 /* 1175 * This function makes sure the current process has its own signal table, 1176 * so that flush_signal_handlers can later reset the handlers without 1177 * disturbing other processes. (Other processes might share the signal 1178 * table via the CLONE_SIGHAND option to clone().) 1179 */ 1180 static int unshare_sighand(struct task_struct *me) 1181 { 1182 struct sighand_struct *oldsighand = me->sighand; 1183 1184 if (refcount_read(&oldsighand->count) != 1) { 1185 struct sighand_struct *newsighand; 1186 /* 1187 * This ->sighand is shared with the CLONE_SIGHAND 1188 * but not CLONE_THREAD task, switch to the new one. 1189 */ 1190 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1191 if (!newsighand) 1192 return -ENOMEM; 1193 1194 refcount_set(&newsighand->count, 1); 1195 1196 write_lock_irq(&tasklist_lock); 1197 spin_lock(&oldsighand->siglock); 1198 memcpy(newsighand->action, oldsighand->action, 1199 sizeof(newsighand->action)); 1200 rcu_assign_pointer(me->sighand, newsighand); 1201 spin_unlock(&oldsighand->siglock); 1202 write_unlock_irq(&tasklist_lock); 1203 1204 __cleanup_sighand(oldsighand); 1205 } 1206 return 0; 1207 } 1208 1209 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1210 { 1211 task_lock(tsk); 1212 /* Always NUL terminated and zero-padded */ 1213 strscpy_pad(buf, tsk->comm, buf_size); 1214 task_unlock(tsk); 1215 return buf; 1216 } 1217 EXPORT_SYMBOL_GPL(__get_task_comm); 1218 1219 /* 1220 * These functions flushes out all traces of the currently running executable 1221 * so that a new one can be started 1222 */ 1223 1224 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1225 { 1226 task_lock(tsk); 1227 trace_task_rename(tsk, buf); 1228 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1229 task_unlock(tsk); 1230 perf_event_comm(tsk, exec); 1231 } 1232 1233 /* 1234 * Calling this is the point of no return. None of the failures will be 1235 * seen by userspace since either the process is already taking a fatal 1236 * signal (via de_thread() or coredump), or will have SEGV raised 1237 * (after exec_mmap()) by search_binary_handler (see below). 1238 */ 1239 int begin_new_exec(struct linux_binprm * bprm) 1240 { 1241 struct task_struct *me = current; 1242 int retval; 1243 1244 /* Once we are committed compute the creds */ 1245 retval = bprm_creds_from_file(bprm); 1246 if (retval) 1247 return retval; 1248 1249 /* 1250 * Ensure all future errors are fatal. 1251 */ 1252 bprm->point_of_no_return = true; 1253 1254 /* 1255 * Make this the only thread in the thread group. 1256 */ 1257 retval = de_thread(me); 1258 if (retval) 1259 goto out; 1260 1261 /* 1262 * Cancel any io_uring activity across execve 1263 */ 1264 io_uring_task_cancel(); 1265 1266 /* Ensure the files table is not shared. */ 1267 retval = unshare_files(); 1268 if (retval) 1269 goto out; 1270 1271 /* 1272 * Must be called _before_ exec_mmap() as bprm->mm is 1273 * not visible until then. This also enables the update 1274 * to be lockless. 1275 */ 1276 retval = set_mm_exe_file(bprm->mm, bprm->file); 1277 if (retval) 1278 goto out; 1279 1280 /* If the binary is not readable then enforce mm->dumpable=0 */ 1281 would_dump(bprm, bprm->file); 1282 if (bprm->have_execfd) 1283 would_dump(bprm, bprm->executable); 1284 1285 /* 1286 * Release all of the old mmap stuff 1287 */ 1288 acct_arg_size(bprm, 0); 1289 retval = exec_mmap(bprm->mm); 1290 if (retval) 1291 goto out; 1292 1293 bprm->mm = NULL; 1294 1295 retval = exec_task_namespaces(); 1296 if (retval) 1297 goto out_unlock; 1298 1299 #ifdef CONFIG_POSIX_TIMERS 1300 spin_lock_irq(&me->sighand->siglock); 1301 posix_cpu_timers_exit(me); 1302 spin_unlock_irq(&me->sighand->siglock); 1303 exit_itimers(me); 1304 flush_itimer_signals(); 1305 #endif 1306 1307 /* 1308 * Make the signal table private. 1309 */ 1310 retval = unshare_sighand(me); 1311 if (retval) 1312 goto out_unlock; 1313 1314 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1315 PF_NOFREEZE | PF_NO_SETAFFINITY); 1316 flush_thread(); 1317 me->personality &= ~bprm->per_clear; 1318 1319 clear_syscall_work_syscall_user_dispatch(me); 1320 1321 /* 1322 * We have to apply CLOEXEC before we change whether the process is 1323 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1324 * trying to access the should-be-closed file descriptors of a process 1325 * undergoing exec(2). 1326 */ 1327 do_close_on_exec(me->files); 1328 1329 if (bprm->secureexec) { 1330 /* Make sure parent cannot signal privileged process. */ 1331 me->pdeath_signal = 0; 1332 1333 /* 1334 * For secureexec, reset the stack limit to sane default to 1335 * avoid bad behavior from the prior rlimits. This has to 1336 * happen before arch_pick_mmap_layout(), which examines 1337 * RLIMIT_STACK, but after the point of no return to avoid 1338 * needing to clean up the change on failure. 1339 */ 1340 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1341 bprm->rlim_stack.rlim_cur = _STK_LIM; 1342 } 1343 1344 me->sas_ss_sp = me->sas_ss_size = 0; 1345 1346 /* 1347 * Figure out dumpability. Note that this checking only of current 1348 * is wrong, but userspace depends on it. This should be testing 1349 * bprm->secureexec instead. 1350 */ 1351 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1352 !(uid_eq(current_euid(), current_uid()) && 1353 gid_eq(current_egid(), current_gid()))) 1354 set_dumpable(current->mm, suid_dumpable); 1355 else 1356 set_dumpable(current->mm, SUID_DUMP_USER); 1357 1358 perf_event_exec(); 1359 __set_task_comm(me, kbasename(bprm->filename), true); 1360 1361 /* An exec changes our domain. We are no longer part of the thread 1362 group */ 1363 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1364 flush_signal_handlers(me, 0); 1365 1366 retval = set_cred_ucounts(bprm->cred); 1367 if (retval < 0) 1368 goto out_unlock; 1369 1370 /* 1371 * install the new credentials for this executable 1372 */ 1373 security_bprm_committing_creds(bprm); 1374 1375 commit_creds(bprm->cred); 1376 bprm->cred = NULL; 1377 1378 /* 1379 * Disable monitoring for regular users 1380 * when executing setuid binaries. Must 1381 * wait until new credentials are committed 1382 * by commit_creds() above 1383 */ 1384 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1385 perf_event_exit_task(me); 1386 /* 1387 * cred_guard_mutex must be held at least to this point to prevent 1388 * ptrace_attach() from altering our determination of the task's 1389 * credentials; any time after this it may be unlocked. 1390 */ 1391 security_bprm_committed_creds(bprm); 1392 1393 /* Pass the opened binary to the interpreter. */ 1394 if (bprm->have_execfd) { 1395 retval = get_unused_fd_flags(0); 1396 if (retval < 0) 1397 goto out_unlock; 1398 fd_install(retval, bprm->executable); 1399 bprm->executable = NULL; 1400 bprm->execfd = retval; 1401 } 1402 return 0; 1403 1404 out_unlock: 1405 up_write(&me->signal->exec_update_lock); 1406 out: 1407 return retval; 1408 } 1409 EXPORT_SYMBOL(begin_new_exec); 1410 1411 void would_dump(struct linux_binprm *bprm, struct file *file) 1412 { 1413 struct inode *inode = file_inode(file); 1414 struct mnt_idmap *idmap = file_mnt_idmap(file); 1415 if (inode_permission(idmap, inode, MAY_READ) < 0) { 1416 struct user_namespace *old, *user_ns; 1417 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1418 1419 /* Ensure mm->user_ns contains the executable */ 1420 user_ns = old = bprm->mm->user_ns; 1421 while ((user_ns != &init_user_ns) && 1422 !privileged_wrt_inode_uidgid(user_ns, idmap, inode)) 1423 user_ns = user_ns->parent; 1424 1425 if (old != user_ns) { 1426 bprm->mm->user_ns = get_user_ns(user_ns); 1427 put_user_ns(old); 1428 } 1429 } 1430 } 1431 EXPORT_SYMBOL(would_dump); 1432 1433 void setup_new_exec(struct linux_binprm * bprm) 1434 { 1435 /* Setup things that can depend upon the personality */ 1436 struct task_struct *me = current; 1437 1438 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1439 1440 arch_setup_new_exec(); 1441 1442 /* Set the new mm task size. We have to do that late because it may 1443 * depend on TIF_32BIT which is only updated in flush_thread() on 1444 * some architectures like powerpc 1445 */ 1446 me->mm->task_size = TASK_SIZE; 1447 up_write(&me->signal->exec_update_lock); 1448 mutex_unlock(&me->signal->cred_guard_mutex); 1449 } 1450 EXPORT_SYMBOL(setup_new_exec); 1451 1452 /* Runs immediately before start_thread() takes over. */ 1453 void finalize_exec(struct linux_binprm *bprm) 1454 { 1455 /* Store any stack rlimit changes before starting thread. */ 1456 task_lock(current->group_leader); 1457 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1458 task_unlock(current->group_leader); 1459 } 1460 EXPORT_SYMBOL(finalize_exec); 1461 1462 /* 1463 * Prepare credentials and lock ->cred_guard_mutex. 1464 * setup_new_exec() commits the new creds and drops the lock. 1465 * Or, if exec fails before, free_bprm() should release ->cred 1466 * and unlock. 1467 */ 1468 static int prepare_bprm_creds(struct linux_binprm *bprm) 1469 { 1470 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1471 return -ERESTARTNOINTR; 1472 1473 bprm->cred = prepare_exec_creds(); 1474 if (likely(bprm->cred)) 1475 return 0; 1476 1477 mutex_unlock(¤t->signal->cred_guard_mutex); 1478 return -ENOMEM; 1479 } 1480 1481 static void free_bprm(struct linux_binprm *bprm) 1482 { 1483 if (bprm->mm) { 1484 acct_arg_size(bprm, 0); 1485 mmput(bprm->mm); 1486 } 1487 free_arg_pages(bprm); 1488 if (bprm->cred) { 1489 mutex_unlock(¤t->signal->cred_guard_mutex); 1490 abort_creds(bprm->cred); 1491 } 1492 if (bprm->file) { 1493 allow_write_access(bprm->file); 1494 fput(bprm->file); 1495 } 1496 if (bprm->executable) 1497 fput(bprm->executable); 1498 /* If a binfmt changed the interp, free it. */ 1499 if (bprm->interp != bprm->filename) 1500 kfree(bprm->interp); 1501 kfree(bprm->fdpath); 1502 kfree(bprm); 1503 } 1504 1505 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1506 { 1507 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1508 int retval = -ENOMEM; 1509 if (!bprm) 1510 goto out; 1511 1512 if (fd == AT_FDCWD || filename->name[0] == '/') { 1513 bprm->filename = filename->name; 1514 } else { 1515 if (filename->name[0] == '\0') 1516 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1517 else 1518 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1519 fd, filename->name); 1520 if (!bprm->fdpath) 1521 goto out_free; 1522 1523 bprm->filename = bprm->fdpath; 1524 } 1525 bprm->interp = bprm->filename; 1526 1527 retval = bprm_mm_init(bprm); 1528 if (retval) 1529 goto out_free; 1530 return bprm; 1531 1532 out_free: 1533 free_bprm(bprm); 1534 out: 1535 return ERR_PTR(retval); 1536 } 1537 1538 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1539 { 1540 /* If a binfmt changed the interp, free it first. */ 1541 if (bprm->interp != bprm->filename) 1542 kfree(bprm->interp); 1543 bprm->interp = kstrdup(interp, GFP_KERNEL); 1544 if (!bprm->interp) 1545 return -ENOMEM; 1546 return 0; 1547 } 1548 EXPORT_SYMBOL(bprm_change_interp); 1549 1550 /* 1551 * determine how safe it is to execute the proposed program 1552 * - the caller must hold ->cred_guard_mutex to protect against 1553 * PTRACE_ATTACH or seccomp thread-sync 1554 */ 1555 static void check_unsafe_exec(struct linux_binprm *bprm) 1556 { 1557 struct task_struct *p = current, *t; 1558 unsigned n_fs; 1559 1560 if (p->ptrace) 1561 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1562 1563 /* 1564 * This isn't strictly necessary, but it makes it harder for LSMs to 1565 * mess up. 1566 */ 1567 if (task_no_new_privs(current)) 1568 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1569 1570 /* 1571 * If another task is sharing our fs, we cannot safely 1572 * suid exec because the differently privileged task 1573 * will be able to manipulate the current directory, etc. 1574 * It would be nice to force an unshare instead... 1575 */ 1576 t = p; 1577 n_fs = 1; 1578 spin_lock(&p->fs->lock); 1579 rcu_read_lock(); 1580 while_each_thread(p, t) { 1581 if (t->fs == p->fs) 1582 n_fs++; 1583 } 1584 rcu_read_unlock(); 1585 1586 if (p->fs->users > n_fs) 1587 bprm->unsafe |= LSM_UNSAFE_SHARE; 1588 else 1589 p->fs->in_exec = 1; 1590 spin_unlock(&p->fs->lock); 1591 } 1592 1593 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1594 { 1595 /* Handle suid and sgid on files */ 1596 struct mnt_idmap *idmap; 1597 struct inode *inode = file_inode(file); 1598 unsigned int mode; 1599 vfsuid_t vfsuid; 1600 vfsgid_t vfsgid; 1601 1602 if (!mnt_may_suid(file->f_path.mnt)) 1603 return; 1604 1605 if (task_no_new_privs(current)) 1606 return; 1607 1608 mode = READ_ONCE(inode->i_mode); 1609 if (!(mode & (S_ISUID|S_ISGID))) 1610 return; 1611 1612 idmap = file_mnt_idmap(file); 1613 1614 /* Be careful if suid/sgid is set */ 1615 inode_lock(inode); 1616 1617 /* reload atomically mode/uid/gid now that lock held */ 1618 mode = inode->i_mode; 1619 vfsuid = i_uid_into_vfsuid(idmap, inode); 1620 vfsgid = i_gid_into_vfsgid(idmap, inode); 1621 inode_unlock(inode); 1622 1623 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1624 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) || 1625 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid)) 1626 return; 1627 1628 if (mode & S_ISUID) { 1629 bprm->per_clear |= PER_CLEAR_ON_SETID; 1630 bprm->cred->euid = vfsuid_into_kuid(vfsuid); 1631 } 1632 1633 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1634 bprm->per_clear |= PER_CLEAR_ON_SETID; 1635 bprm->cred->egid = vfsgid_into_kgid(vfsgid); 1636 } 1637 } 1638 1639 /* 1640 * Compute brpm->cred based upon the final binary. 1641 */ 1642 static int bprm_creds_from_file(struct linux_binprm *bprm) 1643 { 1644 /* Compute creds based on which file? */ 1645 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1646 1647 bprm_fill_uid(bprm, file); 1648 return security_bprm_creds_from_file(bprm, file); 1649 } 1650 1651 /* 1652 * Fill the binprm structure from the inode. 1653 * Read the first BINPRM_BUF_SIZE bytes 1654 * 1655 * This may be called multiple times for binary chains (scripts for example). 1656 */ 1657 static int prepare_binprm(struct linux_binprm *bprm) 1658 { 1659 loff_t pos = 0; 1660 1661 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1662 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1663 } 1664 1665 /* 1666 * Arguments are '\0' separated strings found at the location bprm->p 1667 * points to; chop off the first by relocating brpm->p to right after 1668 * the first '\0' encountered. 1669 */ 1670 int remove_arg_zero(struct linux_binprm *bprm) 1671 { 1672 int ret = 0; 1673 unsigned long offset; 1674 char *kaddr; 1675 struct page *page; 1676 1677 if (!bprm->argc) 1678 return 0; 1679 1680 do { 1681 offset = bprm->p & ~PAGE_MASK; 1682 page = get_arg_page(bprm, bprm->p, 0); 1683 if (!page) { 1684 ret = -EFAULT; 1685 goto out; 1686 } 1687 kaddr = kmap_local_page(page); 1688 1689 for (; offset < PAGE_SIZE && kaddr[offset]; 1690 offset++, bprm->p++) 1691 ; 1692 1693 kunmap_local(kaddr); 1694 put_arg_page(page); 1695 } while (offset == PAGE_SIZE); 1696 1697 bprm->p++; 1698 bprm->argc--; 1699 ret = 0; 1700 1701 out: 1702 return ret; 1703 } 1704 EXPORT_SYMBOL(remove_arg_zero); 1705 1706 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1707 /* 1708 * cycle the list of binary formats handler, until one recognizes the image 1709 */ 1710 static int search_binary_handler(struct linux_binprm *bprm) 1711 { 1712 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1713 struct linux_binfmt *fmt; 1714 int retval; 1715 1716 retval = prepare_binprm(bprm); 1717 if (retval < 0) 1718 return retval; 1719 1720 retval = security_bprm_check(bprm); 1721 if (retval) 1722 return retval; 1723 1724 retval = -ENOENT; 1725 retry: 1726 read_lock(&binfmt_lock); 1727 list_for_each_entry(fmt, &formats, lh) { 1728 if (!try_module_get(fmt->module)) 1729 continue; 1730 read_unlock(&binfmt_lock); 1731 1732 retval = fmt->load_binary(bprm); 1733 1734 read_lock(&binfmt_lock); 1735 put_binfmt(fmt); 1736 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1737 read_unlock(&binfmt_lock); 1738 return retval; 1739 } 1740 } 1741 read_unlock(&binfmt_lock); 1742 1743 if (need_retry) { 1744 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1745 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1746 return retval; 1747 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1748 return retval; 1749 need_retry = false; 1750 goto retry; 1751 } 1752 1753 return retval; 1754 } 1755 1756 /* binfmt handlers will call back into begin_new_exec() on success. */ 1757 static int exec_binprm(struct linux_binprm *bprm) 1758 { 1759 pid_t old_pid, old_vpid; 1760 int ret, depth; 1761 1762 /* Need to fetch pid before load_binary changes it */ 1763 old_pid = current->pid; 1764 rcu_read_lock(); 1765 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1766 rcu_read_unlock(); 1767 1768 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1769 for (depth = 0;; depth++) { 1770 struct file *exec; 1771 if (depth > 5) 1772 return -ELOOP; 1773 1774 ret = search_binary_handler(bprm); 1775 if (ret < 0) 1776 return ret; 1777 if (!bprm->interpreter) 1778 break; 1779 1780 exec = bprm->file; 1781 bprm->file = bprm->interpreter; 1782 bprm->interpreter = NULL; 1783 1784 allow_write_access(exec); 1785 if (unlikely(bprm->have_execfd)) { 1786 if (bprm->executable) { 1787 fput(exec); 1788 return -ENOEXEC; 1789 } 1790 bprm->executable = exec; 1791 } else 1792 fput(exec); 1793 } 1794 1795 audit_bprm(bprm); 1796 trace_sched_process_exec(current, old_pid, bprm); 1797 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1798 proc_exec_connector(current); 1799 return 0; 1800 } 1801 1802 /* 1803 * sys_execve() executes a new program. 1804 */ 1805 static int bprm_execve(struct linux_binprm *bprm, 1806 int fd, struct filename *filename, int flags) 1807 { 1808 struct file *file; 1809 int retval; 1810 1811 retval = prepare_bprm_creds(bprm); 1812 if (retval) 1813 return retval; 1814 1815 /* 1816 * Check for unsafe execution states before exec_binprm(), which 1817 * will call back into begin_new_exec(), into bprm_creds_from_file(), 1818 * where setuid-ness is evaluated. 1819 */ 1820 check_unsafe_exec(bprm); 1821 current->in_execve = 1; 1822 sched_mm_cid_before_execve(current); 1823 1824 file = do_open_execat(fd, filename, flags); 1825 retval = PTR_ERR(file); 1826 if (IS_ERR(file)) 1827 goto out_unmark; 1828 1829 sched_exec(); 1830 1831 bprm->file = file; 1832 /* 1833 * Record that a name derived from an O_CLOEXEC fd will be 1834 * inaccessible after exec. This allows the code in exec to 1835 * choose to fail when the executable is not mmaped into the 1836 * interpreter and an open file descriptor is not passed to 1837 * the interpreter. This makes for a better user experience 1838 * than having the interpreter start and then immediately fail 1839 * when it finds the executable is inaccessible. 1840 */ 1841 if (bprm->fdpath && get_close_on_exec(fd)) 1842 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1843 1844 /* Set the unchanging part of bprm->cred */ 1845 retval = security_bprm_creds_for_exec(bprm); 1846 if (retval) 1847 goto out; 1848 1849 retval = exec_binprm(bprm); 1850 if (retval < 0) 1851 goto out; 1852 1853 sched_mm_cid_after_execve(current); 1854 /* execve succeeded */ 1855 current->fs->in_exec = 0; 1856 current->in_execve = 0; 1857 rseq_execve(current); 1858 user_events_execve(current); 1859 acct_update_integrals(current); 1860 task_numa_free(current, false); 1861 return retval; 1862 1863 out: 1864 /* 1865 * If past the point of no return ensure the code never 1866 * returns to the userspace process. Use an existing fatal 1867 * signal if present otherwise terminate the process with 1868 * SIGSEGV. 1869 */ 1870 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1871 force_fatal_sig(SIGSEGV); 1872 1873 out_unmark: 1874 sched_mm_cid_after_execve(current); 1875 current->fs->in_exec = 0; 1876 current->in_execve = 0; 1877 1878 return retval; 1879 } 1880 1881 static int do_execveat_common(int fd, struct filename *filename, 1882 struct user_arg_ptr argv, 1883 struct user_arg_ptr envp, 1884 int flags) 1885 { 1886 struct linux_binprm *bprm; 1887 int retval; 1888 1889 if (IS_ERR(filename)) 1890 return PTR_ERR(filename); 1891 1892 /* 1893 * We move the actual failure in case of RLIMIT_NPROC excess from 1894 * set*uid() to execve() because too many poorly written programs 1895 * don't check setuid() return code. Here we additionally recheck 1896 * whether NPROC limit is still exceeded. 1897 */ 1898 if ((current->flags & PF_NPROC_EXCEEDED) && 1899 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1900 retval = -EAGAIN; 1901 goto out_ret; 1902 } 1903 1904 /* We're below the limit (still or again), so we don't want to make 1905 * further execve() calls fail. */ 1906 current->flags &= ~PF_NPROC_EXCEEDED; 1907 1908 bprm = alloc_bprm(fd, filename); 1909 if (IS_ERR(bprm)) { 1910 retval = PTR_ERR(bprm); 1911 goto out_ret; 1912 } 1913 1914 retval = count(argv, MAX_ARG_STRINGS); 1915 if (retval == 0) 1916 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1917 current->comm, bprm->filename); 1918 if (retval < 0) 1919 goto out_free; 1920 bprm->argc = retval; 1921 1922 retval = count(envp, MAX_ARG_STRINGS); 1923 if (retval < 0) 1924 goto out_free; 1925 bprm->envc = retval; 1926 1927 retval = bprm_stack_limits(bprm); 1928 if (retval < 0) 1929 goto out_free; 1930 1931 retval = copy_string_kernel(bprm->filename, bprm); 1932 if (retval < 0) 1933 goto out_free; 1934 bprm->exec = bprm->p; 1935 1936 retval = copy_strings(bprm->envc, envp, bprm); 1937 if (retval < 0) 1938 goto out_free; 1939 1940 retval = copy_strings(bprm->argc, argv, bprm); 1941 if (retval < 0) 1942 goto out_free; 1943 1944 /* 1945 * When argv is empty, add an empty string ("") as argv[0] to 1946 * ensure confused userspace programs that start processing 1947 * from argv[1] won't end up walking envp. See also 1948 * bprm_stack_limits(). 1949 */ 1950 if (bprm->argc == 0) { 1951 retval = copy_string_kernel("", bprm); 1952 if (retval < 0) 1953 goto out_free; 1954 bprm->argc = 1; 1955 } 1956 1957 retval = bprm_execve(bprm, fd, filename, flags); 1958 out_free: 1959 free_bprm(bprm); 1960 1961 out_ret: 1962 putname(filename); 1963 return retval; 1964 } 1965 1966 int kernel_execve(const char *kernel_filename, 1967 const char *const *argv, const char *const *envp) 1968 { 1969 struct filename *filename; 1970 struct linux_binprm *bprm; 1971 int fd = AT_FDCWD; 1972 int retval; 1973 1974 /* It is non-sense for kernel threads to call execve */ 1975 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1976 return -EINVAL; 1977 1978 filename = getname_kernel(kernel_filename); 1979 if (IS_ERR(filename)) 1980 return PTR_ERR(filename); 1981 1982 bprm = alloc_bprm(fd, filename); 1983 if (IS_ERR(bprm)) { 1984 retval = PTR_ERR(bprm); 1985 goto out_ret; 1986 } 1987 1988 retval = count_strings_kernel(argv); 1989 if (WARN_ON_ONCE(retval == 0)) 1990 retval = -EINVAL; 1991 if (retval < 0) 1992 goto out_free; 1993 bprm->argc = retval; 1994 1995 retval = count_strings_kernel(envp); 1996 if (retval < 0) 1997 goto out_free; 1998 bprm->envc = retval; 1999 2000 retval = bprm_stack_limits(bprm); 2001 if (retval < 0) 2002 goto out_free; 2003 2004 retval = copy_string_kernel(bprm->filename, bprm); 2005 if (retval < 0) 2006 goto out_free; 2007 bprm->exec = bprm->p; 2008 2009 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2010 if (retval < 0) 2011 goto out_free; 2012 2013 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2014 if (retval < 0) 2015 goto out_free; 2016 2017 retval = bprm_execve(bprm, fd, filename, 0); 2018 out_free: 2019 free_bprm(bprm); 2020 out_ret: 2021 putname(filename); 2022 return retval; 2023 } 2024 2025 static int do_execve(struct filename *filename, 2026 const char __user *const __user *__argv, 2027 const char __user *const __user *__envp) 2028 { 2029 struct user_arg_ptr argv = { .ptr.native = __argv }; 2030 struct user_arg_ptr envp = { .ptr.native = __envp }; 2031 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2032 } 2033 2034 static int do_execveat(int fd, struct filename *filename, 2035 const char __user *const __user *__argv, 2036 const char __user *const __user *__envp, 2037 int flags) 2038 { 2039 struct user_arg_ptr argv = { .ptr.native = __argv }; 2040 struct user_arg_ptr envp = { .ptr.native = __envp }; 2041 2042 return do_execveat_common(fd, filename, argv, envp, flags); 2043 } 2044 2045 #ifdef CONFIG_COMPAT 2046 static int compat_do_execve(struct filename *filename, 2047 const compat_uptr_t __user *__argv, 2048 const compat_uptr_t __user *__envp) 2049 { 2050 struct user_arg_ptr argv = { 2051 .is_compat = true, 2052 .ptr.compat = __argv, 2053 }; 2054 struct user_arg_ptr envp = { 2055 .is_compat = true, 2056 .ptr.compat = __envp, 2057 }; 2058 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2059 } 2060 2061 static int compat_do_execveat(int fd, struct filename *filename, 2062 const compat_uptr_t __user *__argv, 2063 const compat_uptr_t __user *__envp, 2064 int flags) 2065 { 2066 struct user_arg_ptr argv = { 2067 .is_compat = true, 2068 .ptr.compat = __argv, 2069 }; 2070 struct user_arg_ptr envp = { 2071 .is_compat = true, 2072 .ptr.compat = __envp, 2073 }; 2074 return do_execveat_common(fd, filename, argv, envp, flags); 2075 } 2076 #endif 2077 2078 void set_binfmt(struct linux_binfmt *new) 2079 { 2080 struct mm_struct *mm = current->mm; 2081 2082 if (mm->binfmt) 2083 module_put(mm->binfmt->module); 2084 2085 mm->binfmt = new; 2086 if (new) 2087 __module_get(new->module); 2088 } 2089 EXPORT_SYMBOL(set_binfmt); 2090 2091 /* 2092 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2093 */ 2094 void set_dumpable(struct mm_struct *mm, int value) 2095 { 2096 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2097 return; 2098 2099 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2100 } 2101 2102 SYSCALL_DEFINE3(execve, 2103 const char __user *, filename, 2104 const char __user *const __user *, argv, 2105 const char __user *const __user *, envp) 2106 { 2107 return do_execve(getname(filename), argv, envp); 2108 } 2109 2110 SYSCALL_DEFINE5(execveat, 2111 int, fd, const char __user *, filename, 2112 const char __user *const __user *, argv, 2113 const char __user *const __user *, envp, 2114 int, flags) 2115 { 2116 return do_execveat(fd, 2117 getname_uflags(filename, flags), 2118 argv, envp, flags); 2119 } 2120 2121 #ifdef CONFIG_COMPAT 2122 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2123 const compat_uptr_t __user *, argv, 2124 const compat_uptr_t __user *, envp) 2125 { 2126 return compat_do_execve(getname(filename), argv, envp); 2127 } 2128 2129 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2130 const char __user *, filename, 2131 const compat_uptr_t __user *, argv, 2132 const compat_uptr_t __user *, envp, 2133 int, flags) 2134 { 2135 return compat_do_execveat(fd, 2136 getname_uflags(filename, flags), 2137 argv, envp, flags); 2138 } 2139 #endif 2140 2141 #ifdef CONFIG_SYSCTL 2142 2143 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write, 2144 void *buffer, size_t *lenp, loff_t *ppos) 2145 { 2146 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2147 2148 if (!error) 2149 validate_coredump_safety(); 2150 return error; 2151 } 2152 2153 static struct ctl_table fs_exec_sysctls[] = { 2154 { 2155 .procname = "suid_dumpable", 2156 .data = &suid_dumpable, 2157 .maxlen = sizeof(int), 2158 .mode = 0644, 2159 .proc_handler = proc_dointvec_minmax_coredump, 2160 .extra1 = SYSCTL_ZERO, 2161 .extra2 = SYSCTL_TWO, 2162 }, 2163 { } 2164 }; 2165 2166 static int __init init_fs_exec_sysctls(void) 2167 { 2168 register_sysctl_init("fs", fs_exec_sysctls); 2169 return 0; 2170 } 2171 2172 fs_initcall(init_fs_exec_sysctls); 2173 #endif /* CONFIG_SYSCTL */ 2174