xref: /openbmc/linux/fs/exec.c (revision 7b6d864b)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 
63 #include <trace/events/task.h>
64 #include "internal.h"
65 #include "coredump.h"
66 
67 #include <trace/events/sched.h>
68 
69 int suid_dumpable = 0;
70 
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73 
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 	BUG_ON(!fmt);
77 	write_lock(&binfmt_lock);
78 	insert ? list_add(&fmt->lh, &formats) :
79 		 list_add_tail(&fmt->lh, &formats);
80 	write_unlock(&binfmt_lock);
81 }
82 
83 EXPORT_SYMBOL(__register_binfmt);
84 
85 void unregister_binfmt(struct linux_binfmt * fmt)
86 {
87 	write_lock(&binfmt_lock);
88 	list_del(&fmt->lh);
89 	write_unlock(&binfmt_lock);
90 }
91 
92 EXPORT_SYMBOL(unregister_binfmt);
93 
94 static inline void put_binfmt(struct linux_binfmt * fmt)
95 {
96 	module_put(fmt->module);
97 }
98 
99 /*
100  * Note that a shared library must be both readable and executable due to
101  * security reasons.
102  *
103  * Also note that we take the address to load from from the file itself.
104  */
105 SYSCALL_DEFINE1(uselib, const char __user *, library)
106 {
107 	struct file *file;
108 	struct filename *tmp = getname(library);
109 	int error = PTR_ERR(tmp);
110 	static const struct open_flags uselib_flags = {
111 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
112 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
113 		.intent = LOOKUP_OPEN,
114 		.lookup_flags = LOOKUP_FOLLOW,
115 	};
116 
117 	if (IS_ERR(tmp))
118 		goto out;
119 
120 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
121 	putname(tmp);
122 	error = PTR_ERR(file);
123 	if (IS_ERR(file))
124 		goto out;
125 
126 	error = -EINVAL;
127 	if (!S_ISREG(file_inode(file)->i_mode))
128 		goto exit;
129 
130 	error = -EACCES;
131 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
132 		goto exit;
133 
134 	fsnotify_open(file);
135 
136 	error = -ENOEXEC;
137 	if(file->f_op) {
138 		struct linux_binfmt * fmt;
139 
140 		read_lock(&binfmt_lock);
141 		list_for_each_entry(fmt, &formats, lh) {
142 			if (!fmt->load_shlib)
143 				continue;
144 			if (!try_module_get(fmt->module))
145 				continue;
146 			read_unlock(&binfmt_lock);
147 			error = fmt->load_shlib(file);
148 			read_lock(&binfmt_lock);
149 			put_binfmt(fmt);
150 			if (error != -ENOEXEC)
151 				break;
152 		}
153 		read_unlock(&binfmt_lock);
154 	}
155 exit:
156 	fput(file);
157 out:
158   	return error;
159 }
160 
161 #ifdef CONFIG_MMU
162 /*
163  * The nascent bprm->mm is not visible until exec_mmap() but it can
164  * use a lot of memory, account these pages in current->mm temporary
165  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
166  * change the counter back via acct_arg_size(0).
167  */
168 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
169 {
170 	struct mm_struct *mm = current->mm;
171 	long diff = (long)(pages - bprm->vma_pages);
172 
173 	if (!mm || !diff)
174 		return;
175 
176 	bprm->vma_pages = pages;
177 	add_mm_counter(mm, MM_ANONPAGES, diff);
178 }
179 
180 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
181 		int write)
182 {
183 	struct page *page;
184 	int ret;
185 
186 #ifdef CONFIG_STACK_GROWSUP
187 	if (write) {
188 		ret = expand_downwards(bprm->vma, pos);
189 		if (ret < 0)
190 			return NULL;
191 	}
192 #endif
193 	ret = get_user_pages(current, bprm->mm, pos,
194 			1, write, 1, &page, NULL);
195 	if (ret <= 0)
196 		return NULL;
197 
198 	if (write) {
199 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
200 		struct rlimit *rlim;
201 
202 		acct_arg_size(bprm, size / PAGE_SIZE);
203 
204 		/*
205 		 * We've historically supported up to 32 pages (ARG_MAX)
206 		 * of argument strings even with small stacks
207 		 */
208 		if (size <= ARG_MAX)
209 			return page;
210 
211 		/*
212 		 * Limit to 1/4-th the stack size for the argv+env strings.
213 		 * This ensures that:
214 		 *  - the remaining binfmt code will not run out of stack space,
215 		 *  - the program will have a reasonable amount of stack left
216 		 *    to work from.
217 		 */
218 		rlim = current->signal->rlim;
219 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
220 			put_page(page);
221 			return NULL;
222 		}
223 	}
224 
225 	return page;
226 }
227 
228 static void put_arg_page(struct page *page)
229 {
230 	put_page(page);
231 }
232 
233 static void free_arg_page(struct linux_binprm *bprm, int i)
234 {
235 }
236 
237 static void free_arg_pages(struct linux_binprm *bprm)
238 {
239 }
240 
241 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
242 		struct page *page)
243 {
244 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
245 }
246 
247 static int __bprm_mm_init(struct linux_binprm *bprm)
248 {
249 	int err;
250 	struct vm_area_struct *vma = NULL;
251 	struct mm_struct *mm = bprm->mm;
252 
253 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
254 	if (!vma)
255 		return -ENOMEM;
256 
257 	down_write(&mm->mmap_sem);
258 	vma->vm_mm = mm;
259 
260 	/*
261 	 * Place the stack at the largest stack address the architecture
262 	 * supports. Later, we'll move this to an appropriate place. We don't
263 	 * use STACK_TOP because that can depend on attributes which aren't
264 	 * configured yet.
265 	 */
266 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
267 	vma->vm_end = STACK_TOP_MAX;
268 	vma->vm_start = vma->vm_end - PAGE_SIZE;
269 	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
270 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
271 	INIT_LIST_HEAD(&vma->anon_vma_chain);
272 
273 	err = insert_vm_struct(mm, vma);
274 	if (err)
275 		goto err;
276 
277 	mm->stack_vm = mm->total_vm = 1;
278 	up_write(&mm->mmap_sem);
279 	bprm->p = vma->vm_end - sizeof(void *);
280 	return 0;
281 err:
282 	up_write(&mm->mmap_sem);
283 	bprm->vma = NULL;
284 	kmem_cache_free(vm_area_cachep, vma);
285 	return err;
286 }
287 
288 static bool valid_arg_len(struct linux_binprm *bprm, long len)
289 {
290 	return len <= MAX_ARG_STRLEN;
291 }
292 
293 #else
294 
295 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
296 {
297 }
298 
299 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
300 		int write)
301 {
302 	struct page *page;
303 
304 	page = bprm->page[pos / PAGE_SIZE];
305 	if (!page && write) {
306 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
307 		if (!page)
308 			return NULL;
309 		bprm->page[pos / PAGE_SIZE] = page;
310 	}
311 
312 	return page;
313 }
314 
315 static void put_arg_page(struct page *page)
316 {
317 }
318 
319 static void free_arg_page(struct linux_binprm *bprm, int i)
320 {
321 	if (bprm->page[i]) {
322 		__free_page(bprm->page[i]);
323 		bprm->page[i] = NULL;
324 	}
325 }
326 
327 static void free_arg_pages(struct linux_binprm *bprm)
328 {
329 	int i;
330 
331 	for (i = 0; i < MAX_ARG_PAGES; i++)
332 		free_arg_page(bprm, i);
333 }
334 
335 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
336 		struct page *page)
337 {
338 }
339 
340 static int __bprm_mm_init(struct linux_binprm *bprm)
341 {
342 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
343 	return 0;
344 }
345 
346 static bool valid_arg_len(struct linux_binprm *bprm, long len)
347 {
348 	return len <= bprm->p;
349 }
350 
351 #endif /* CONFIG_MMU */
352 
353 /*
354  * Create a new mm_struct and populate it with a temporary stack
355  * vm_area_struct.  We don't have enough context at this point to set the stack
356  * flags, permissions, and offset, so we use temporary values.  We'll update
357  * them later in setup_arg_pages().
358  */
359 static int bprm_mm_init(struct linux_binprm *bprm)
360 {
361 	int err;
362 	struct mm_struct *mm = NULL;
363 
364 	bprm->mm = mm = mm_alloc();
365 	err = -ENOMEM;
366 	if (!mm)
367 		goto err;
368 
369 	err = init_new_context(current, mm);
370 	if (err)
371 		goto err;
372 
373 	err = __bprm_mm_init(bprm);
374 	if (err)
375 		goto err;
376 
377 	return 0;
378 
379 err:
380 	if (mm) {
381 		bprm->mm = NULL;
382 		mmdrop(mm);
383 	}
384 
385 	return err;
386 }
387 
388 struct user_arg_ptr {
389 #ifdef CONFIG_COMPAT
390 	bool is_compat;
391 #endif
392 	union {
393 		const char __user *const __user *native;
394 #ifdef CONFIG_COMPAT
395 		const compat_uptr_t __user *compat;
396 #endif
397 	} ptr;
398 };
399 
400 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
401 {
402 	const char __user *native;
403 
404 #ifdef CONFIG_COMPAT
405 	if (unlikely(argv.is_compat)) {
406 		compat_uptr_t compat;
407 
408 		if (get_user(compat, argv.ptr.compat + nr))
409 			return ERR_PTR(-EFAULT);
410 
411 		return compat_ptr(compat);
412 	}
413 #endif
414 
415 	if (get_user(native, argv.ptr.native + nr))
416 		return ERR_PTR(-EFAULT);
417 
418 	return native;
419 }
420 
421 /*
422  * count() counts the number of strings in array ARGV.
423  */
424 static int count(struct user_arg_ptr argv, int max)
425 {
426 	int i = 0;
427 
428 	if (argv.ptr.native != NULL) {
429 		for (;;) {
430 			const char __user *p = get_user_arg_ptr(argv, i);
431 
432 			if (!p)
433 				break;
434 
435 			if (IS_ERR(p))
436 				return -EFAULT;
437 
438 			if (i >= max)
439 				return -E2BIG;
440 			++i;
441 
442 			if (fatal_signal_pending(current))
443 				return -ERESTARTNOHAND;
444 			cond_resched();
445 		}
446 	}
447 	return i;
448 }
449 
450 /*
451  * 'copy_strings()' copies argument/environment strings from the old
452  * processes's memory to the new process's stack.  The call to get_user_pages()
453  * ensures the destination page is created and not swapped out.
454  */
455 static int copy_strings(int argc, struct user_arg_ptr argv,
456 			struct linux_binprm *bprm)
457 {
458 	struct page *kmapped_page = NULL;
459 	char *kaddr = NULL;
460 	unsigned long kpos = 0;
461 	int ret;
462 
463 	while (argc-- > 0) {
464 		const char __user *str;
465 		int len;
466 		unsigned long pos;
467 
468 		ret = -EFAULT;
469 		str = get_user_arg_ptr(argv, argc);
470 		if (IS_ERR(str))
471 			goto out;
472 
473 		len = strnlen_user(str, MAX_ARG_STRLEN);
474 		if (!len)
475 			goto out;
476 
477 		ret = -E2BIG;
478 		if (!valid_arg_len(bprm, len))
479 			goto out;
480 
481 		/* We're going to work our way backwords. */
482 		pos = bprm->p;
483 		str += len;
484 		bprm->p -= len;
485 
486 		while (len > 0) {
487 			int offset, bytes_to_copy;
488 
489 			if (fatal_signal_pending(current)) {
490 				ret = -ERESTARTNOHAND;
491 				goto out;
492 			}
493 			cond_resched();
494 
495 			offset = pos % PAGE_SIZE;
496 			if (offset == 0)
497 				offset = PAGE_SIZE;
498 
499 			bytes_to_copy = offset;
500 			if (bytes_to_copy > len)
501 				bytes_to_copy = len;
502 
503 			offset -= bytes_to_copy;
504 			pos -= bytes_to_copy;
505 			str -= bytes_to_copy;
506 			len -= bytes_to_copy;
507 
508 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
509 				struct page *page;
510 
511 				page = get_arg_page(bprm, pos, 1);
512 				if (!page) {
513 					ret = -E2BIG;
514 					goto out;
515 				}
516 
517 				if (kmapped_page) {
518 					flush_kernel_dcache_page(kmapped_page);
519 					kunmap(kmapped_page);
520 					put_arg_page(kmapped_page);
521 				}
522 				kmapped_page = page;
523 				kaddr = kmap(kmapped_page);
524 				kpos = pos & PAGE_MASK;
525 				flush_arg_page(bprm, kpos, kmapped_page);
526 			}
527 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
528 				ret = -EFAULT;
529 				goto out;
530 			}
531 		}
532 	}
533 	ret = 0;
534 out:
535 	if (kmapped_page) {
536 		flush_kernel_dcache_page(kmapped_page);
537 		kunmap(kmapped_page);
538 		put_arg_page(kmapped_page);
539 	}
540 	return ret;
541 }
542 
543 /*
544  * Like copy_strings, but get argv and its values from kernel memory.
545  */
546 int copy_strings_kernel(int argc, const char *const *__argv,
547 			struct linux_binprm *bprm)
548 {
549 	int r;
550 	mm_segment_t oldfs = get_fs();
551 	struct user_arg_ptr argv = {
552 		.ptr.native = (const char __user *const  __user *)__argv,
553 	};
554 
555 	set_fs(KERNEL_DS);
556 	r = copy_strings(argc, argv, bprm);
557 	set_fs(oldfs);
558 
559 	return r;
560 }
561 EXPORT_SYMBOL(copy_strings_kernel);
562 
563 #ifdef CONFIG_MMU
564 
565 /*
566  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
567  * the binfmt code determines where the new stack should reside, we shift it to
568  * its final location.  The process proceeds as follows:
569  *
570  * 1) Use shift to calculate the new vma endpoints.
571  * 2) Extend vma to cover both the old and new ranges.  This ensures the
572  *    arguments passed to subsequent functions are consistent.
573  * 3) Move vma's page tables to the new range.
574  * 4) Free up any cleared pgd range.
575  * 5) Shrink the vma to cover only the new range.
576  */
577 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
578 {
579 	struct mm_struct *mm = vma->vm_mm;
580 	unsigned long old_start = vma->vm_start;
581 	unsigned long old_end = vma->vm_end;
582 	unsigned long length = old_end - old_start;
583 	unsigned long new_start = old_start - shift;
584 	unsigned long new_end = old_end - shift;
585 	struct mmu_gather tlb;
586 
587 	BUG_ON(new_start > new_end);
588 
589 	/*
590 	 * ensure there are no vmas between where we want to go
591 	 * and where we are
592 	 */
593 	if (vma != find_vma(mm, new_start))
594 		return -EFAULT;
595 
596 	/*
597 	 * cover the whole range: [new_start, old_end)
598 	 */
599 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
600 		return -ENOMEM;
601 
602 	/*
603 	 * move the page tables downwards, on failure we rely on
604 	 * process cleanup to remove whatever mess we made.
605 	 */
606 	if (length != move_page_tables(vma, old_start,
607 				       vma, new_start, length, false))
608 		return -ENOMEM;
609 
610 	lru_add_drain();
611 	tlb_gather_mmu(&tlb, mm, 0);
612 	if (new_end > old_start) {
613 		/*
614 		 * when the old and new regions overlap clear from new_end.
615 		 */
616 		free_pgd_range(&tlb, new_end, old_end, new_end,
617 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
618 	} else {
619 		/*
620 		 * otherwise, clean from old_start; this is done to not touch
621 		 * the address space in [new_end, old_start) some architectures
622 		 * have constraints on va-space that make this illegal (IA64) -
623 		 * for the others its just a little faster.
624 		 */
625 		free_pgd_range(&tlb, old_start, old_end, new_end,
626 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
627 	}
628 	tlb_finish_mmu(&tlb, new_end, old_end);
629 
630 	/*
631 	 * Shrink the vma to just the new range.  Always succeeds.
632 	 */
633 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
634 
635 	return 0;
636 }
637 
638 /*
639  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
640  * the stack is optionally relocated, and some extra space is added.
641  */
642 int setup_arg_pages(struct linux_binprm *bprm,
643 		    unsigned long stack_top,
644 		    int executable_stack)
645 {
646 	unsigned long ret;
647 	unsigned long stack_shift;
648 	struct mm_struct *mm = current->mm;
649 	struct vm_area_struct *vma = bprm->vma;
650 	struct vm_area_struct *prev = NULL;
651 	unsigned long vm_flags;
652 	unsigned long stack_base;
653 	unsigned long stack_size;
654 	unsigned long stack_expand;
655 	unsigned long rlim_stack;
656 
657 #ifdef CONFIG_STACK_GROWSUP
658 	/* Limit stack size to 1GB */
659 	stack_base = rlimit_max(RLIMIT_STACK);
660 	if (stack_base > (1 << 30))
661 		stack_base = 1 << 30;
662 
663 	/* Make sure we didn't let the argument array grow too large. */
664 	if (vma->vm_end - vma->vm_start > stack_base)
665 		return -ENOMEM;
666 
667 	stack_base = PAGE_ALIGN(stack_top - stack_base);
668 
669 	stack_shift = vma->vm_start - stack_base;
670 	mm->arg_start = bprm->p - stack_shift;
671 	bprm->p = vma->vm_end - stack_shift;
672 #else
673 	stack_top = arch_align_stack(stack_top);
674 	stack_top = PAGE_ALIGN(stack_top);
675 
676 	if (unlikely(stack_top < mmap_min_addr) ||
677 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
678 		return -ENOMEM;
679 
680 	stack_shift = vma->vm_end - stack_top;
681 
682 	bprm->p -= stack_shift;
683 	mm->arg_start = bprm->p;
684 #endif
685 
686 	if (bprm->loader)
687 		bprm->loader -= stack_shift;
688 	bprm->exec -= stack_shift;
689 
690 	down_write(&mm->mmap_sem);
691 	vm_flags = VM_STACK_FLAGS;
692 
693 	/*
694 	 * Adjust stack execute permissions; explicitly enable for
695 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
696 	 * (arch default) otherwise.
697 	 */
698 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
699 		vm_flags |= VM_EXEC;
700 	else if (executable_stack == EXSTACK_DISABLE_X)
701 		vm_flags &= ~VM_EXEC;
702 	vm_flags |= mm->def_flags;
703 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
704 
705 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
706 			vm_flags);
707 	if (ret)
708 		goto out_unlock;
709 	BUG_ON(prev != vma);
710 
711 	/* Move stack pages down in memory. */
712 	if (stack_shift) {
713 		ret = shift_arg_pages(vma, stack_shift);
714 		if (ret)
715 			goto out_unlock;
716 	}
717 
718 	/* mprotect_fixup is overkill to remove the temporary stack flags */
719 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
720 
721 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
722 	stack_size = vma->vm_end - vma->vm_start;
723 	/*
724 	 * Align this down to a page boundary as expand_stack
725 	 * will align it up.
726 	 */
727 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
728 #ifdef CONFIG_STACK_GROWSUP
729 	if (stack_size + stack_expand > rlim_stack)
730 		stack_base = vma->vm_start + rlim_stack;
731 	else
732 		stack_base = vma->vm_end + stack_expand;
733 #else
734 	if (stack_size + stack_expand > rlim_stack)
735 		stack_base = vma->vm_end - rlim_stack;
736 	else
737 		stack_base = vma->vm_start - stack_expand;
738 #endif
739 	current->mm->start_stack = bprm->p;
740 	ret = expand_stack(vma, stack_base);
741 	if (ret)
742 		ret = -EFAULT;
743 
744 out_unlock:
745 	up_write(&mm->mmap_sem);
746 	return ret;
747 }
748 EXPORT_SYMBOL(setup_arg_pages);
749 
750 #endif /* CONFIG_MMU */
751 
752 struct file *open_exec(const char *name)
753 {
754 	struct file *file;
755 	int err;
756 	struct filename tmp = { .name = name };
757 	static const struct open_flags open_exec_flags = {
758 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
759 		.acc_mode = MAY_EXEC | MAY_OPEN,
760 		.intent = LOOKUP_OPEN,
761 		.lookup_flags = LOOKUP_FOLLOW,
762 	};
763 
764 	file = do_filp_open(AT_FDCWD, &tmp, &open_exec_flags);
765 	if (IS_ERR(file))
766 		goto out;
767 
768 	err = -EACCES;
769 	if (!S_ISREG(file_inode(file)->i_mode))
770 		goto exit;
771 
772 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
773 		goto exit;
774 
775 	fsnotify_open(file);
776 
777 	err = deny_write_access(file);
778 	if (err)
779 		goto exit;
780 
781 out:
782 	return file;
783 
784 exit:
785 	fput(file);
786 	return ERR_PTR(err);
787 }
788 EXPORT_SYMBOL(open_exec);
789 
790 int kernel_read(struct file *file, loff_t offset,
791 		char *addr, unsigned long count)
792 {
793 	mm_segment_t old_fs;
794 	loff_t pos = offset;
795 	int result;
796 
797 	old_fs = get_fs();
798 	set_fs(get_ds());
799 	/* The cast to a user pointer is valid due to the set_fs() */
800 	result = vfs_read(file, (void __user *)addr, count, &pos);
801 	set_fs(old_fs);
802 	return result;
803 }
804 
805 EXPORT_SYMBOL(kernel_read);
806 
807 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
808 {
809 	ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos);
810 	if (res > 0)
811 		flush_icache_range(addr, addr + len);
812 	return res;
813 }
814 EXPORT_SYMBOL(read_code);
815 
816 static int exec_mmap(struct mm_struct *mm)
817 {
818 	struct task_struct *tsk;
819 	struct mm_struct * old_mm, *active_mm;
820 
821 	/* Notify parent that we're no longer interested in the old VM */
822 	tsk = current;
823 	old_mm = current->mm;
824 	mm_release(tsk, old_mm);
825 
826 	if (old_mm) {
827 		sync_mm_rss(old_mm);
828 		/*
829 		 * Make sure that if there is a core dump in progress
830 		 * for the old mm, we get out and die instead of going
831 		 * through with the exec.  We must hold mmap_sem around
832 		 * checking core_state and changing tsk->mm.
833 		 */
834 		down_read(&old_mm->mmap_sem);
835 		if (unlikely(old_mm->core_state)) {
836 			up_read(&old_mm->mmap_sem);
837 			return -EINTR;
838 		}
839 	}
840 	task_lock(tsk);
841 	active_mm = tsk->active_mm;
842 	tsk->mm = mm;
843 	tsk->active_mm = mm;
844 	activate_mm(active_mm, mm);
845 	task_unlock(tsk);
846 	arch_pick_mmap_layout(mm);
847 	if (old_mm) {
848 		up_read(&old_mm->mmap_sem);
849 		BUG_ON(active_mm != old_mm);
850 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
851 		mm_update_next_owner(old_mm);
852 		mmput(old_mm);
853 		return 0;
854 	}
855 	mmdrop(active_mm);
856 	return 0;
857 }
858 
859 /*
860  * This function makes sure the current process has its own signal table,
861  * so that flush_signal_handlers can later reset the handlers without
862  * disturbing other processes.  (Other processes might share the signal
863  * table via the CLONE_SIGHAND option to clone().)
864  */
865 static int de_thread(struct task_struct *tsk)
866 {
867 	struct signal_struct *sig = tsk->signal;
868 	struct sighand_struct *oldsighand = tsk->sighand;
869 	spinlock_t *lock = &oldsighand->siglock;
870 
871 	if (thread_group_empty(tsk))
872 		goto no_thread_group;
873 
874 	/*
875 	 * Kill all other threads in the thread group.
876 	 */
877 	spin_lock_irq(lock);
878 	if (signal_group_exit(sig)) {
879 		/*
880 		 * Another group action in progress, just
881 		 * return so that the signal is processed.
882 		 */
883 		spin_unlock_irq(lock);
884 		return -EAGAIN;
885 	}
886 
887 	sig->group_exit_task = tsk;
888 	sig->notify_count = zap_other_threads(tsk);
889 	if (!thread_group_leader(tsk))
890 		sig->notify_count--;
891 
892 	while (sig->notify_count) {
893 		__set_current_state(TASK_KILLABLE);
894 		spin_unlock_irq(lock);
895 		schedule();
896 		if (unlikely(__fatal_signal_pending(tsk)))
897 			goto killed;
898 		spin_lock_irq(lock);
899 	}
900 	spin_unlock_irq(lock);
901 
902 	/*
903 	 * At this point all other threads have exited, all we have to
904 	 * do is to wait for the thread group leader to become inactive,
905 	 * and to assume its PID:
906 	 */
907 	if (!thread_group_leader(tsk)) {
908 		struct task_struct *leader = tsk->group_leader;
909 
910 		sig->notify_count = -1;	/* for exit_notify() */
911 		for (;;) {
912 			threadgroup_change_begin(tsk);
913 			write_lock_irq(&tasklist_lock);
914 			if (likely(leader->exit_state))
915 				break;
916 			__set_current_state(TASK_KILLABLE);
917 			write_unlock_irq(&tasklist_lock);
918 			threadgroup_change_end(tsk);
919 			schedule();
920 			if (unlikely(__fatal_signal_pending(tsk)))
921 				goto killed;
922 		}
923 
924 		/*
925 		 * The only record we have of the real-time age of a
926 		 * process, regardless of execs it's done, is start_time.
927 		 * All the past CPU time is accumulated in signal_struct
928 		 * from sister threads now dead.  But in this non-leader
929 		 * exec, nothing survives from the original leader thread,
930 		 * whose birth marks the true age of this process now.
931 		 * When we take on its identity by switching to its PID, we
932 		 * also take its birthdate (always earlier than our own).
933 		 */
934 		tsk->start_time = leader->start_time;
935 		tsk->real_start_time = leader->real_start_time;
936 
937 		BUG_ON(!same_thread_group(leader, tsk));
938 		BUG_ON(has_group_leader_pid(tsk));
939 		/*
940 		 * An exec() starts a new thread group with the
941 		 * TGID of the previous thread group. Rehash the
942 		 * two threads with a switched PID, and release
943 		 * the former thread group leader:
944 		 */
945 
946 		/* Become a process group leader with the old leader's pid.
947 		 * The old leader becomes a thread of the this thread group.
948 		 * Note: The old leader also uses this pid until release_task
949 		 *       is called.  Odd but simple and correct.
950 		 */
951 		tsk->pid = leader->pid;
952 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
953 		transfer_pid(leader, tsk, PIDTYPE_PGID);
954 		transfer_pid(leader, tsk, PIDTYPE_SID);
955 
956 		list_replace_rcu(&leader->tasks, &tsk->tasks);
957 		list_replace_init(&leader->sibling, &tsk->sibling);
958 
959 		tsk->group_leader = tsk;
960 		leader->group_leader = tsk;
961 
962 		tsk->exit_signal = SIGCHLD;
963 		leader->exit_signal = -1;
964 
965 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
966 		leader->exit_state = EXIT_DEAD;
967 
968 		/*
969 		 * We are going to release_task()->ptrace_unlink() silently,
970 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
971 		 * the tracer wont't block again waiting for this thread.
972 		 */
973 		if (unlikely(leader->ptrace))
974 			__wake_up_parent(leader, leader->parent);
975 		write_unlock_irq(&tasklist_lock);
976 		threadgroup_change_end(tsk);
977 
978 		release_task(leader);
979 	}
980 
981 	sig->group_exit_task = NULL;
982 	sig->notify_count = 0;
983 
984 no_thread_group:
985 	/* we have changed execution domain */
986 	tsk->exit_signal = SIGCHLD;
987 
988 	exit_itimers(sig);
989 	flush_itimer_signals();
990 
991 	if (atomic_read(&oldsighand->count) != 1) {
992 		struct sighand_struct *newsighand;
993 		/*
994 		 * This ->sighand is shared with the CLONE_SIGHAND
995 		 * but not CLONE_THREAD task, switch to the new one.
996 		 */
997 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
998 		if (!newsighand)
999 			return -ENOMEM;
1000 
1001 		atomic_set(&newsighand->count, 1);
1002 		memcpy(newsighand->action, oldsighand->action,
1003 		       sizeof(newsighand->action));
1004 
1005 		write_lock_irq(&tasklist_lock);
1006 		spin_lock(&oldsighand->siglock);
1007 		rcu_assign_pointer(tsk->sighand, newsighand);
1008 		spin_unlock(&oldsighand->siglock);
1009 		write_unlock_irq(&tasklist_lock);
1010 
1011 		__cleanup_sighand(oldsighand);
1012 	}
1013 
1014 	BUG_ON(!thread_group_leader(tsk));
1015 	return 0;
1016 
1017 killed:
1018 	/* protects against exit_notify() and __exit_signal() */
1019 	read_lock(&tasklist_lock);
1020 	sig->group_exit_task = NULL;
1021 	sig->notify_count = 0;
1022 	read_unlock(&tasklist_lock);
1023 	return -EAGAIN;
1024 }
1025 
1026 char *get_task_comm(char *buf, struct task_struct *tsk)
1027 {
1028 	/* buf must be at least sizeof(tsk->comm) in size */
1029 	task_lock(tsk);
1030 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1031 	task_unlock(tsk);
1032 	return buf;
1033 }
1034 EXPORT_SYMBOL_GPL(get_task_comm);
1035 
1036 /*
1037  * These functions flushes out all traces of the currently running executable
1038  * so that a new one can be started
1039  */
1040 
1041 void set_task_comm(struct task_struct *tsk, char *buf)
1042 {
1043 	task_lock(tsk);
1044 	trace_task_rename(tsk, buf);
1045 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1046 	task_unlock(tsk);
1047 	perf_event_comm(tsk);
1048 }
1049 
1050 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1051 {
1052 	int i, ch;
1053 
1054 	/* Copies the binary name from after last slash */
1055 	for (i = 0; (ch = *(fn++)) != '\0';) {
1056 		if (ch == '/')
1057 			i = 0; /* overwrite what we wrote */
1058 		else
1059 			if (i < len - 1)
1060 				tcomm[i++] = ch;
1061 	}
1062 	tcomm[i] = '\0';
1063 }
1064 
1065 int flush_old_exec(struct linux_binprm * bprm)
1066 {
1067 	int retval;
1068 
1069 	/*
1070 	 * Make sure we have a private signal table and that
1071 	 * we are unassociated from the previous thread group.
1072 	 */
1073 	retval = de_thread(current);
1074 	if (retval)
1075 		goto out;
1076 
1077 	set_mm_exe_file(bprm->mm, bprm->file);
1078 
1079 	filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1080 	/*
1081 	 * Release all of the old mmap stuff
1082 	 */
1083 	acct_arg_size(bprm, 0);
1084 	retval = exec_mmap(bprm->mm);
1085 	if (retval)
1086 		goto out;
1087 
1088 	bprm->mm = NULL;		/* We're using it now */
1089 
1090 	set_fs(USER_DS);
1091 	current->flags &=
1092 		~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | PF_NOFREEZE);
1093 	flush_thread();
1094 	current->personality &= ~bprm->per_clear;
1095 
1096 	return 0;
1097 
1098 out:
1099 	return retval;
1100 }
1101 EXPORT_SYMBOL(flush_old_exec);
1102 
1103 void would_dump(struct linux_binprm *bprm, struct file *file)
1104 {
1105 	if (inode_permission(file_inode(file), MAY_READ) < 0)
1106 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1107 }
1108 EXPORT_SYMBOL(would_dump);
1109 
1110 void setup_new_exec(struct linux_binprm * bprm)
1111 {
1112 	arch_pick_mmap_layout(current->mm);
1113 
1114 	/* This is the point of no return */
1115 	current->sas_ss_sp = current->sas_ss_size = 0;
1116 
1117 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1118 		set_dumpable(current->mm, SUID_DUMP_USER);
1119 	else
1120 		set_dumpable(current->mm, suid_dumpable);
1121 
1122 	set_task_comm(current, bprm->tcomm);
1123 
1124 	/* Set the new mm task size. We have to do that late because it may
1125 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1126 	 * some architectures like powerpc
1127 	 */
1128 	current->mm->task_size = TASK_SIZE;
1129 
1130 	/* install the new credentials */
1131 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1132 	    !gid_eq(bprm->cred->gid, current_egid())) {
1133 		current->pdeath_signal = 0;
1134 	} else {
1135 		would_dump(bprm, bprm->file);
1136 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1137 			set_dumpable(current->mm, suid_dumpable);
1138 	}
1139 
1140 	/* An exec changes our domain. We are no longer part of the thread
1141 	   group */
1142 
1143 	current->self_exec_id++;
1144 
1145 	flush_signal_handlers(current, 0);
1146 	do_close_on_exec(current->files);
1147 }
1148 EXPORT_SYMBOL(setup_new_exec);
1149 
1150 /*
1151  * Prepare credentials and lock ->cred_guard_mutex.
1152  * install_exec_creds() commits the new creds and drops the lock.
1153  * Or, if exec fails before, free_bprm() should release ->cred and
1154  * and unlock.
1155  */
1156 int prepare_bprm_creds(struct linux_binprm *bprm)
1157 {
1158 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1159 		return -ERESTARTNOINTR;
1160 
1161 	bprm->cred = prepare_exec_creds();
1162 	if (likely(bprm->cred))
1163 		return 0;
1164 
1165 	mutex_unlock(&current->signal->cred_guard_mutex);
1166 	return -ENOMEM;
1167 }
1168 
1169 void free_bprm(struct linux_binprm *bprm)
1170 {
1171 	free_arg_pages(bprm);
1172 	if (bprm->cred) {
1173 		mutex_unlock(&current->signal->cred_guard_mutex);
1174 		abort_creds(bprm->cred);
1175 	}
1176 	/* If a binfmt changed the interp, free it. */
1177 	if (bprm->interp != bprm->filename)
1178 		kfree(bprm->interp);
1179 	kfree(bprm);
1180 }
1181 
1182 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1183 {
1184 	/* If a binfmt changed the interp, free it first. */
1185 	if (bprm->interp != bprm->filename)
1186 		kfree(bprm->interp);
1187 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1188 	if (!bprm->interp)
1189 		return -ENOMEM;
1190 	return 0;
1191 }
1192 EXPORT_SYMBOL(bprm_change_interp);
1193 
1194 /*
1195  * install the new credentials for this executable
1196  */
1197 void install_exec_creds(struct linux_binprm *bprm)
1198 {
1199 	security_bprm_committing_creds(bprm);
1200 
1201 	commit_creds(bprm->cred);
1202 	bprm->cred = NULL;
1203 
1204 	/*
1205 	 * Disable monitoring for regular users
1206 	 * when executing setuid binaries. Must
1207 	 * wait until new credentials are committed
1208 	 * by commit_creds() above
1209 	 */
1210 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1211 		perf_event_exit_task(current);
1212 	/*
1213 	 * cred_guard_mutex must be held at least to this point to prevent
1214 	 * ptrace_attach() from altering our determination of the task's
1215 	 * credentials; any time after this it may be unlocked.
1216 	 */
1217 	security_bprm_committed_creds(bprm);
1218 	mutex_unlock(&current->signal->cred_guard_mutex);
1219 }
1220 EXPORT_SYMBOL(install_exec_creds);
1221 
1222 /*
1223  * determine how safe it is to execute the proposed program
1224  * - the caller must hold ->cred_guard_mutex to protect against
1225  *   PTRACE_ATTACH
1226  */
1227 static int check_unsafe_exec(struct linux_binprm *bprm)
1228 {
1229 	struct task_struct *p = current, *t;
1230 	unsigned n_fs;
1231 	int res = 0;
1232 
1233 	if (p->ptrace) {
1234 		if (p->ptrace & PT_PTRACE_CAP)
1235 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1236 		else
1237 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1238 	}
1239 
1240 	/*
1241 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1242 	 * mess up.
1243 	 */
1244 	if (current->no_new_privs)
1245 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1246 
1247 	n_fs = 1;
1248 	spin_lock(&p->fs->lock);
1249 	rcu_read_lock();
1250 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1251 		if (t->fs == p->fs)
1252 			n_fs++;
1253 	}
1254 	rcu_read_unlock();
1255 
1256 	if (p->fs->users > n_fs) {
1257 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1258 	} else {
1259 		res = -EAGAIN;
1260 		if (!p->fs->in_exec) {
1261 			p->fs->in_exec = 1;
1262 			res = 1;
1263 		}
1264 	}
1265 	spin_unlock(&p->fs->lock);
1266 
1267 	return res;
1268 }
1269 
1270 /*
1271  * Fill the binprm structure from the inode.
1272  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1273  *
1274  * This may be called multiple times for binary chains (scripts for example).
1275  */
1276 int prepare_binprm(struct linux_binprm *bprm)
1277 {
1278 	umode_t mode;
1279 	struct inode * inode = file_inode(bprm->file);
1280 	int retval;
1281 
1282 	mode = inode->i_mode;
1283 	if (bprm->file->f_op == NULL)
1284 		return -EACCES;
1285 
1286 	/* clear any previous set[ug]id data from a previous binary */
1287 	bprm->cred->euid = current_euid();
1288 	bprm->cred->egid = current_egid();
1289 
1290 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1291 	    !current->no_new_privs &&
1292 	    kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1293 	    kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1294 		/* Set-uid? */
1295 		if (mode & S_ISUID) {
1296 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1297 			bprm->cred->euid = inode->i_uid;
1298 		}
1299 
1300 		/* Set-gid? */
1301 		/*
1302 		 * If setgid is set but no group execute bit then this
1303 		 * is a candidate for mandatory locking, not a setgid
1304 		 * executable.
1305 		 */
1306 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1307 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1308 			bprm->cred->egid = inode->i_gid;
1309 		}
1310 	}
1311 
1312 	/* fill in binprm security blob */
1313 	retval = security_bprm_set_creds(bprm);
1314 	if (retval)
1315 		return retval;
1316 	bprm->cred_prepared = 1;
1317 
1318 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1319 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1320 }
1321 
1322 EXPORT_SYMBOL(prepare_binprm);
1323 
1324 /*
1325  * Arguments are '\0' separated strings found at the location bprm->p
1326  * points to; chop off the first by relocating brpm->p to right after
1327  * the first '\0' encountered.
1328  */
1329 int remove_arg_zero(struct linux_binprm *bprm)
1330 {
1331 	int ret = 0;
1332 	unsigned long offset;
1333 	char *kaddr;
1334 	struct page *page;
1335 
1336 	if (!bprm->argc)
1337 		return 0;
1338 
1339 	do {
1340 		offset = bprm->p & ~PAGE_MASK;
1341 		page = get_arg_page(bprm, bprm->p, 0);
1342 		if (!page) {
1343 			ret = -EFAULT;
1344 			goto out;
1345 		}
1346 		kaddr = kmap_atomic(page);
1347 
1348 		for (; offset < PAGE_SIZE && kaddr[offset];
1349 				offset++, bprm->p++)
1350 			;
1351 
1352 		kunmap_atomic(kaddr);
1353 		put_arg_page(page);
1354 
1355 		if (offset == PAGE_SIZE)
1356 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1357 	} while (offset == PAGE_SIZE);
1358 
1359 	bprm->p++;
1360 	bprm->argc--;
1361 	ret = 0;
1362 
1363 out:
1364 	return ret;
1365 }
1366 EXPORT_SYMBOL(remove_arg_zero);
1367 
1368 /*
1369  * cycle the list of binary formats handler, until one recognizes the image
1370  */
1371 int search_binary_handler(struct linux_binprm *bprm)
1372 {
1373 	unsigned int depth = bprm->recursion_depth;
1374 	int try,retval;
1375 	struct linux_binfmt *fmt;
1376 	pid_t old_pid, old_vpid;
1377 
1378 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1379 	if (depth > 5)
1380 		return -ELOOP;
1381 
1382 	retval = security_bprm_check(bprm);
1383 	if (retval)
1384 		return retval;
1385 
1386 	retval = audit_bprm(bprm);
1387 	if (retval)
1388 		return retval;
1389 
1390 	/* Need to fetch pid before load_binary changes it */
1391 	old_pid = current->pid;
1392 	rcu_read_lock();
1393 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1394 	rcu_read_unlock();
1395 
1396 	retval = -ENOENT;
1397 	for (try=0; try<2; try++) {
1398 		read_lock(&binfmt_lock);
1399 		list_for_each_entry(fmt, &formats, lh) {
1400 			int (*fn)(struct linux_binprm *) = fmt->load_binary;
1401 			if (!fn)
1402 				continue;
1403 			if (!try_module_get(fmt->module))
1404 				continue;
1405 			read_unlock(&binfmt_lock);
1406 			bprm->recursion_depth = depth + 1;
1407 			retval = fn(bprm);
1408 			bprm->recursion_depth = depth;
1409 			if (retval >= 0) {
1410 				if (depth == 0) {
1411 					trace_sched_process_exec(current, old_pid, bprm);
1412 					ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1413 				}
1414 				put_binfmt(fmt);
1415 				allow_write_access(bprm->file);
1416 				if (bprm->file)
1417 					fput(bprm->file);
1418 				bprm->file = NULL;
1419 				current->did_exec = 1;
1420 				proc_exec_connector(current);
1421 				return retval;
1422 			}
1423 			read_lock(&binfmt_lock);
1424 			put_binfmt(fmt);
1425 			if (retval != -ENOEXEC || bprm->mm == NULL)
1426 				break;
1427 			if (!bprm->file) {
1428 				read_unlock(&binfmt_lock);
1429 				return retval;
1430 			}
1431 		}
1432 		read_unlock(&binfmt_lock);
1433 #ifdef CONFIG_MODULES
1434 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1435 			break;
1436 		} else {
1437 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1438 			if (printable(bprm->buf[0]) &&
1439 			    printable(bprm->buf[1]) &&
1440 			    printable(bprm->buf[2]) &&
1441 			    printable(bprm->buf[3]))
1442 				break; /* -ENOEXEC */
1443 			if (try)
1444 				break; /* -ENOEXEC */
1445 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1446 		}
1447 #else
1448 		break;
1449 #endif
1450 	}
1451 	return retval;
1452 }
1453 
1454 EXPORT_SYMBOL(search_binary_handler);
1455 
1456 /*
1457  * sys_execve() executes a new program.
1458  */
1459 static int do_execve_common(const char *filename,
1460 				struct user_arg_ptr argv,
1461 				struct user_arg_ptr envp)
1462 {
1463 	struct linux_binprm *bprm;
1464 	struct file *file;
1465 	struct files_struct *displaced;
1466 	bool clear_in_exec;
1467 	int retval;
1468 
1469 	/*
1470 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1471 	 * set*uid() to execve() because too many poorly written programs
1472 	 * don't check setuid() return code.  Here we additionally recheck
1473 	 * whether NPROC limit is still exceeded.
1474 	 */
1475 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1476 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1477 		retval = -EAGAIN;
1478 		goto out_ret;
1479 	}
1480 
1481 	/* We're below the limit (still or again), so we don't want to make
1482 	 * further execve() calls fail. */
1483 	current->flags &= ~PF_NPROC_EXCEEDED;
1484 
1485 	retval = unshare_files(&displaced);
1486 	if (retval)
1487 		goto out_ret;
1488 
1489 	retval = -ENOMEM;
1490 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1491 	if (!bprm)
1492 		goto out_files;
1493 
1494 	retval = prepare_bprm_creds(bprm);
1495 	if (retval)
1496 		goto out_free;
1497 
1498 	retval = check_unsafe_exec(bprm);
1499 	if (retval < 0)
1500 		goto out_free;
1501 	clear_in_exec = retval;
1502 	current->in_execve = 1;
1503 
1504 	file = open_exec(filename);
1505 	retval = PTR_ERR(file);
1506 	if (IS_ERR(file))
1507 		goto out_unmark;
1508 
1509 	sched_exec();
1510 
1511 	bprm->file = file;
1512 	bprm->filename = filename;
1513 	bprm->interp = filename;
1514 
1515 	retval = bprm_mm_init(bprm);
1516 	if (retval)
1517 		goto out_file;
1518 
1519 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1520 	if ((retval = bprm->argc) < 0)
1521 		goto out;
1522 
1523 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1524 	if ((retval = bprm->envc) < 0)
1525 		goto out;
1526 
1527 	retval = prepare_binprm(bprm);
1528 	if (retval < 0)
1529 		goto out;
1530 
1531 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1532 	if (retval < 0)
1533 		goto out;
1534 
1535 	bprm->exec = bprm->p;
1536 	retval = copy_strings(bprm->envc, envp, bprm);
1537 	if (retval < 0)
1538 		goto out;
1539 
1540 	retval = copy_strings(bprm->argc, argv, bprm);
1541 	if (retval < 0)
1542 		goto out;
1543 
1544 	retval = search_binary_handler(bprm);
1545 	if (retval < 0)
1546 		goto out;
1547 
1548 	/* execve succeeded */
1549 	current->fs->in_exec = 0;
1550 	current->in_execve = 0;
1551 	acct_update_integrals(current);
1552 	free_bprm(bprm);
1553 	if (displaced)
1554 		put_files_struct(displaced);
1555 	return retval;
1556 
1557 out:
1558 	if (bprm->mm) {
1559 		acct_arg_size(bprm, 0);
1560 		mmput(bprm->mm);
1561 	}
1562 
1563 out_file:
1564 	if (bprm->file) {
1565 		allow_write_access(bprm->file);
1566 		fput(bprm->file);
1567 	}
1568 
1569 out_unmark:
1570 	if (clear_in_exec)
1571 		current->fs->in_exec = 0;
1572 	current->in_execve = 0;
1573 
1574 out_free:
1575 	free_bprm(bprm);
1576 
1577 out_files:
1578 	if (displaced)
1579 		reset_files_struct(displaced);
1580 out_ret:
1581 	return retval;
1582 }
1583 
1584 int do_execve(const char *filename,
1585 	const char __user *const __user *__argv,
1586 	const char __user *const __user *__envp)
1587 {
1588 	struct user_arg_ptr argv = { .ptr.native = __argv };
1589 	struct user_arg_ptr envp = { .ptr.native = __envp };
1590 	return do_execve_common(filename, argv, envp);
1591 }
1592 
1593 #ifdef CONFIG_COMPAT
1594 static int compat_do_execve(const char *filename,
1595 	const compat_uptr_t __user *__argv,
1596 	const compat_uptr_t __user *__envp)
1597 {
1598 	struct user_arg_ptr argv = {
1599 		.is_compat = true,
1600 		.ptr.compat = __argv,
1601 	};
1602 	struct user_arg_ptr envp = {
1603 		.is_compat = true,
1604 		.ptr.compat = __envp,
1605 	};
1606 	return do_execve_common(filename, argv, envp);
1607 }
1608 #endif
1609 
1610 void set_binfmt(struct linux_binfmt *new)
1611 {
1612 	struct mm_struct *mm = current->mm;
1613 
1614 	if (mm->binfmt)
1615 		module_put(mm->binfmt->module);
1616 
1617 	mm->binfmt = new;
1618 	if (new)
1619 		__module_get(new->module);
1620 }
1621 
1622 EXPORT_SYMBOL(set_binfmt);
1623 
1624 /*
1625  * set_dumpable converts traditional three-value dumpable to two flags and
1626  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1627  * these bits are not changed atomically.  So get_dumpable can observe the
1628  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1629  * return either old dumpable or new one by paying attention to the order of
1630  * modifying the bits.
1631  *
1632  * dumpable |   mm->flags (binary)
1633  * old  new | initial interim  final
1634  * ---------+-----------------------
1635  *  0    1  |   00      01      01
1636  *  0    2  |   00      10(*)   11
1637  *  1    0  |   01      00      00
1638  *  1    2  |   01      11      11
1639  *  2    0  |   11      10(*)   00
1640  *  2    1  |   11      11      01
1641  *
1642  * (*) get_dumpable regards interim value of 10 as 11.
1643  */
1644 void set_dumpable(struct mm_struct *mm, int value)
1645 {
1646 	switch (value) {
1647 	case SUID_DUMP_DISABLE:
1648 		clear_bit(MMF_DUMPABLE, &mm->flags);
1649 		smp_wmb();
1650 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1651 		break;
1652 	case SUID_DUMP_USER:
1653 		set_bit(MMF_DUMPABLE, &mm->flags);
1654 		smp_wmb();
1655 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1656 		break;
1657 	case SUID_DUMP_ROOT:
1658 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1659 		smp_wmb();
1660 		set_bit(MMF_DUMPABLE, &mm->flags);
1661 		break;
1662 	}
1663 }
1664 
1665 int __get_dumpable(unsigned long mm_flags)
1666 {
1667 	int ret;
1668 
1669 	ret = mm_flags & MMF_DUMPABLE_MASK;
1670 	return (ret > SUID_DUMP_USER) ? SUID_DUMP_ROOT : ret;
1671 }
1672 
1673 int get_dumpable(struct mm_struct *mm)
1674 {
1675 	return __get_dumpable(mm->flags);
1676 }
1677 
1678 SYSCALL_DEFINE3(execve,
1679 		const char __user *, filename,
1680 		const char __user *const __user *, argv,
1681 		const char __user *const __user *, envp)
1682 {
1683 	struct filename *path = getname(filename);
1684 	int error = PTR_ERR(path);
1685 	if (!IS_ERR(path)) {
1686 		error = do_execve(path->name, argv, envp);
1687 		putname(path);
1688 	}
1689 	return error;
1690 }
1691 #ifdef CONFIG_COMPAT
1692 asmlinkage long compat_sys_execve(const char __user * filename,
1693 	const compat_uptr_t __user * argv,
1694 	const compat_uptr_t __user * envp)
1695 {
1696 	struct filename *path = getname(filename);
1697 	int error = PTR_ERR(path);
1698 	if (!IS_ERR(path)) {
1699 		error = compat_do_execve(path->name, argv, envp);
1700 		putname(path);
1701 	}
1702 	return error;
1703 }
1704 #endif
1705