1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/swap.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/perf_event.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/security.h> 47 #include <linux/syscalls.h> 48 #include <linux/tsacct_kern.h> 49 #include <linux/cn_proc.h> 50 #include <linux/audit.h> 51 #include <linux/tracehook.h> 52 #include <linux/kmod.h> 53 #include <linux/fsnotify.h> 54 #include <linux/fs_struct.h> 55 #include <linux/pipe_fs_i.h> 56 #include <linux/oom.h> 57 #include <linux/compat.h> 58 59 #include <asm/uaccess.h> 60 #include <asm/mmu_context.h> 61 #include <asm/tlb.h> 62 63 #include <trace/events/task.h> 64 #include "internal.h" 65 #include "coredump.h" 66 67 #include <trace/events/sched.h> 68 69 int suid_dumpable = 0; 70 71 static LIST_HEAD(formats); 72 static DEFINE_RWLOCK(binfmt_lock); 73 74 void __register_binfmt(struct linux_binfmt * fmt, int insert) 75 { 76 BUG_ON(!fmt); 77 write_lock(&binfmt_lock); 78 insert ? list_add(&fmt->lh, &formats) : 79 list_add_tail(&fmt->lh, &formats); 80 write_unlock(&binfmt_lock); 81 } 82 83 EXPORT_SYMBOL(__register_binfmt); 84 85 void unregister_binfmt(struct linux_binfmt * fmt) 86 { 87 write_lock(&binfmt_lock); 88 list_del(&fmt->lh); 89 write_unlock(&binfmt_lock); 90 } 91 92 EXPORT_SYMBOL(unregister_binfmt); 93 94 static inline void put_binfmt(struct linux_binfmt * fmt) 95 { 96 module_put(fmt->module); 97 } 98 99 /* 100 * Note that a shared library must be both readable and executable due to 101 * security reasons. 102 * 103 * Also note that we take the address to load from from the file itself. 104 */ 105 SYSCALL_DEFINE1(uselib, const char __user *, library) 106 { 107 struct file *file; 108 struct filename *tmp = getname(library); 109 int error = PTR_ERR(tmp); 110 static const struct open_flags uselib_flags = { 111 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 112 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN, 113 .intent = LOOKUP_OPEN, 114 .lookup_flags = LOOKUP_FOLLOW, 115 }; 116 117 if (IS_ERR(tmp)) 118 goto out; 119 120 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 121 putname(tmp); 122 error = PTR_ERR(file); 123 if (IS_ERR(file)) 124 goto out; 125 126 error = -EINVAL; 127 if (!S_ISREG(file_inode(file)->i_mode)) 128 goto exit; 129 130 error = -EACCES; 131 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 132 goto exit; 133 134 fsnotify_open(file); 135 136 error = -ENOEXEC; 137 if(file->f_op) { 138 struct linux_binfmt * fmt; 139 140 read_lock(&binfmt_lock); 141 list_for_each_entry(fmt, &formats, lh) { 142 if (!fmt->load_shlib) 143 continue; 144 if (!try_module_get(fmt->module)) 145 continue; 146 read_unlock(&binfmt_lock); 147 error = fmt->load_shlib(file); 148 read_lock(&binfmt_lock); 149 put_binfmt(fmt); 150 if (error != -ENOEXEC) 151 break; 152 } 153 read_unlock(&binfmt_lock); 154 } 155 exit: 156 fput(file); 157 out: 158 return error; 159 } 160 161 #ifdef CONFIG_MMU 162 /* 163 * The nascent bprm->mm is not visible until exec_mmap() but it can 164 * use a lot of memory, account these pages in current->mm temporary 165 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 166 * change the counter back via acct_arg_size(0). 167 */ 168 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 169 { 170 struct mm_struct *mm = current->mm; 171 long diff = (long)(pages - bprm->vma_pages); 172 173 if (!mm || !diff) 174 return; 175 176 bprm->vma_pages = pages; 177 add_mm_counter(mm, MM_ANONPAGES, diff); 178 } 179 180 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 181 int write) 182 { 183 struct page *page; 184 int ret; 185 186 #ifdef CONFIG_STACK_GROWSUP 187 if (write) { 188 ret = expand_downwards(bprm->vma, pos); 189 if (ret < 0) 190 return NULL; 191 } 192 #endif 193 ret = get_user_pages(current, bprm->mm, pos, 194 1, write, 1, &page, NULL); 195 if (ret <= 0) 196 return NULL; 197 198 if (write) { 199 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 200 struct rlimit *rlim; 201 202 acct_arg_size(bprm, size / PAGE_SIZE); 203 204 /* 205 * We've historically supported up to 32 pages (ARG_MAX) 206 * of argument strings even with small stacks 207 */ 208 if (size <= ARG_MAX) 209 return page; 210 211 /* 212 * Limit to 1/4-th the stack size for the argv+env strings. 213 * This ensures that: 214 * - the remaining binfmt code will not run out of stack space, 215 * - the program will have a reasonable amount of stack left 216 * to work from. 217 */ 218 rlim = current->signal->rlim; 219 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 220 put_page(page); 221 return NULL; 222 } 223 } 224 225 return page; 226 } 227 228 static void put_arg_page(struct page *page) 229 { 230 put_page(page); 231 } 232 233 static void free_arg_page(struct linux_binprm *bprm, int i) 234 { 235 } 236 237 static void free_arg_pages(struct linux_binprm *bprm) 238 { 239 } 240 241 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 242 struct page *page) 243 { 244 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 245 } 246 247 static int __bprm_mm_init(struct linux_binprm *bprm) 248 { 249 int err; 250 struct vm_area_struct *vma = NULL; 251 struct mm_struct *mm = bprm->mm; 252 253 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 254 if (!vma) 255 return -ENOMEM; 256 257 down_write(&mm->mmap_sem); 258 vma->vm_mm = mm; 259 260 /* 261 * Place the stack at the largest stack address the architecture 262 * supports. Later, we'll move this to an appropriate place. We don't 263 * use STACK_TOP because that can depend on attributes which aren't 264 * configured yet. 265 */ 266 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 267 vma->vm_end = STACK_TOP_MAX; 268 vma->vm_start = vma->vm_end - PAGE_SIZE; 269 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 270 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 271 INIT_LIST_HEAD(&vma->anon_vma_chain); 272 273 err = insert_vm_struct(mm, vma); 274 if (err) 275 goto err; 276 277 mm->stack_vm = mm->total_vm = 1; 278 up_write(&mm->mmap_sem); 279 bprm->p = vma->vm_end - sizeof(void *); 280 return 0; 281 err: 282 up_write(&mm->mmap_sem); 283 bprm->vma = NULL; 284 kmem_cache_free(vm_area_cachep, vma); 285 return err; 286 } 287 288 static bool valid_arg_len(struct linux_binprm *bprm, long len) 289 { 290 return len <= MAX_ARG_STRLEN; 291 } 292 293 #else 294 295 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 296 { 297 } 298 299 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 300 int write) 301 { 302 struct page *page; 303 304 page = bprm->page[pos / PAGE_SIZE]; 305 if (!page && write) { 306 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 307 if (!page) 308 return NULL; 309 bprm->page[pos / PAGE_SIZE] = page; 310 } 311 312 return page; 313 } 314 315 static void put_arg_page(struct page *page) 316 { 317 } 318 319 static void free_arg_page(struct linux_binprm *bprm, int i) 320 { 321 if (bprm->page[i]) { 322 __free_page(bprm->page[i]); 323 bprm->page[i] = NULL; 324 } 325 } 326 327 static void free_arg_pages(struct linux_binprm *bprm) 328 { 329 int i; 330 331 for (i = 0; i < MAX_ARG_PAGES; i++) 332 free_arg_page(bprm, i); 333 } 334 335 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 336 struct page *page) 337 { 338 } 339 340 static int __bprm_mm_init(struct linux_binprm *bprm) 341 { 342 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 343 return 0; 344 } 345 346 static bool valid_arg_len(struct linux_binprm *bprm, long len) 347 { 348 return len <= bprm->p; 349 } 350 351 #endif /* CONFIG_MMU */ 352 353 /* 354 * Create a new mm_struct and populate it with a temporary stack 355 * vm_area_struct. We don't have enough context at this point to set the stack 356 * flags, permissions, and offset, so we use temporary values. We'll update 357 * them later in setup_arg_pages(). 358 */ 359 static int bprm_mm_init(struct linux_binprm *bprm) 360 { 361 int err; 362 struct mm_struct *mm = NULL; 363 364 bprm->mm = mm = mm_alloc(); 365 err = -ENOMEM; 366 if (!mm) 367 goto err; 368 369 err = init_new_context(current, mm); 370 if (err) 371 goto err; 372 373 err = __bprm_mm_init(bprm); 374 if (err) 375 goto err; 376 377 return 0; 378 379 err: 380 if (mm) { 381 bprm->mm = NULL; 382 mmdrop(mm); 383 } 384 385 return err; 386 } 387 388 struct user_arg_ptr { 389 #ifdef CONFIG_COMPAT 390 bool is_compat; 391 #endif 392 union { 393 const char __user *const __user *native; 394 #ifdef CONFIG_COMPAT 395 const compat_uptr_t __user *compat; 396 #endif 397 } ptr; 398 }; 399 400 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 401 { 402 const char __user *native; 403 404 #ifdef CONFIG_COMPAT 405 if (unlikely(argv.is_compat)) { 406 compat_uptr_t compat; 407 408 if (get_user(compat, argv.ptr.compat + nr)) 409 return ERR_PTR(-EFAULT); 410 411 return compat_ptr(compat); 412 } 413 #endif 414 415 if (get_user(native, argv.ptr.native + nr)) 416 return ERR_PTR(-EFAULT); 417 418 return native; 419 } 420 421 /* 422 * count() counts the number of strings in array ARGV. 423 */ 424 static int count(struct user_arg_ptr argv, int max) 425 { 426 int i = 0; 427 428 if (argv.ptr.native != NULL) { 429 for (;;) { 430 const char __user *p = get_user_arg_ptr(argv, i); 431 432 if (!p) 433 break; 434 435 if (IS_ERR(p)) 436 return -EFAULT; 437 438 if (i >= max) 439 return -E2BIG; 440 ++i; 441 442 if (fatal_signal_pending(current)) 443 return -ERESTARTNOHAND; 444 cond_resched(); 445 } 446 } 447 return i; 448 } 449 450 /* 451 * 'copy_strings()' copies argument/environment strings from the old 452 * processes's memory to the new process's stack. The call to get_user_pages() 453 * ensures the destination page is created and not swapped out. 454 */ 455 static int copy_strings(int argc, struct user_arg_ptr argv, 456 struct linux_binprm *bprm) 457 { 458 struct page *kmapped_page = NULL; 459 char *kaddr = NULL; 460 unsigned long kpos = 0; 461 int ret; 462 463 while (argc-- > 0) { 464 const char __user *str; 465 int len; 466 unsigned long pos; 467 468 ret = -EFAULT; 469 str = get_user_arg_ptr(argv, argc); 470 if (IS_ERR(str)) 471 goto out; 472 473 len = strnlen_user(str, MAX_ARG_STRLEN); 474 if (!len) 475 goto out; 476 477 ret = -E2BIG; 478 if (!valid_arg_len(bprm, len)) 479 goto out; 480 481 /* We're going to work our way backwords. */ 482 pos = bprm->p; 483 str += len; 484 bprm->p -= len; 485 486 while (len > 0) { 487 int offset, bytes_to_copy; 488 489 if (fatal_signal_pending(current)) { 490 ret = -ERESTARTNOHAND; 491 goto out; 492 } 493 cond_resched(); 494 495 offset = pos % PAGE_SIZE; 496 if (offset == 0) 497 offset = PAGE_SIZE; 498 499 bytes_to_copy = offset; 500 if (bytes_to_copy > len) 501 bytes_to_copy = len; 502 503 offset -= bytes_to_copy; 504 pos -= bytes_to_copy; 505 str -= bytes_to_copy; 506 len -= bytes_to_copy; 507 508 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 509 struct page *page; 510 511 page = get_arg_page(bprm, pos, 1); 512 if (!page) { 513 ret = -E2BIG; 514 goto out; 515 } 516 517 if (kmapped_page) { 518 flush_kernel_dcache_page(kmapped_page); 519 kunmap(kmapped_page); 520 put_arg_page(kmapped_page); 521 } 522 kmapped_page = page; 523 kaddr = kmap(kmapped_page); 524 kpos = pos & PAGE_MASK; 525 flush_arg_page(bprm, kpos, kmapped_page); 526 } 527 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 528 ret = -EFAULT; 529 goto out; 530 } 531 } 532 } 533 ret = 0; 534 out: 535 if (kmapped_page) { 536 flush_kernel_dcache_page(kmapped_page); 537 kunmap(kmapped_page); 538 put_arg_page(kmapped_page); 539 } 540 return ret; 541 } 542 543 /* 544 * Like copy_strings, but get argv and its values from kernel memory. 545 */ 546 int copy_strings_kernel(int argc, const char *const *__argv, 547 struct linux_binprm *bprm) 548 { 549 int r; 550 mm_segment_t oldfs = get_fs(); 551 struct user_arg_ptr argv = { 552 .ptr.native = (const char __user *const __user *)__argv, 553 }; 554 555 set_fs(KERNEL_DS); 556 r = copy_strings(argc, argv, bprm); 557 set_fs(oldfs); 558 559 return r; 560 } 561 EXPORT_SYMBOL(copy_strings_kernel); 562 563 #ifdef CONFIG_MMU 564 565 /* 566 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 567 * the binfmt code determines where the new stack should reside, we shift it to 568 * its final location. The process proceeds as follows: 569 * 570 * 1) Use shift to calculate the new vma endpoints. 571 * 2) Extend vma to cover both the old and new ranges. This ensures the 572 * arguments passed to subsequent functions are consistent. 573 * 3) Move vma's page tables to the new range. 574 * 4) Free up any cleared pgd range. 575 * 5) Shrink the vma to cover only the new range. 576 */ 577 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 578 { 579 struct mm_struct *mm = vma->vm_mm; 580 unsigned long old_start = vma->vm_start; 581 unsigned long old_end = vma->vm_end; 582 unsigned long length = old_end - old_start; 583 unsigned long new_start = old_start - shift; 584 unsigned long new_end = old_end - shift; 585 struct mmu_gather tlb; 586 587 BUG_ON(new_start > new_end); 588 589 /* 590 * ensure there are no vmas between where we want to go 591 * and where we are 592 */ 593 if (vma != find_vma(mm, new_start)) 594 return -EFAULT; 595 596 /* 597 * cover the whole range: [new_start, old_end) 598 */ 599 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 600 return -ENOMEM; 601 602 /* 603 * move the page tables downwards, on failure we rely on 604 * process cleanup to remove whatever mess we made. 605 */ 606 if (length != move_page_tables(vma, old_start, 607 vma, new_start, length, false)) 608 return -ENOMEM; 609 610 lru_add_drain(); 611 tlb_gather_mmu(&tlb, mm, 0); 612 if (new_end > old_start) { 613 /* 614 * when the old and new regions overlap clear from new_end. 615 */ 616 free_pgd_range(&tlb, new_end, old_end, new_end, 617 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 618 } else { 619 /* 620 * otherwise, clean from old_start; this is done to not touch 621 * the address space in [new_end, old_start) some architectures 622 * have constraints on va-space that make this illegal (IA64) - 623 * for the others its just a little faster. 624 */ 625 free_pgd_range(&tlb, old_start, old_end, new_end, 626 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 627 } 628 tlb_finish_mmu(&tlb, new_end, old_end); 629 630 /* 631 * Shrink the vma to just the new range. Always succeeds. 632 */ 633 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 634 635 return 0; 636 } 637 638 /* 639 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 640 * the stack is optionally relocated, and some extra space is added. 641 */ 642 int setup_arg_pages(struct linux_binprm *bprm, 643 unsigned long stack_top, 644 int executable_stack) 645 { 646 unsigned long ret; 647 unsigned long stack_shift; 648 struct mm_struct *mm = current->mm; 649 struct vm_area_struct *vma = bprm->vma; 650 struct vm_area_struct *prev = NULL; 651 unsigned long vm_flags; 652 unsigned long stack_base; 653 unsigned long stack_size; 654 unsigned long stack_expand; 655 unsigned long rlim_stack; 656 657 #ifdef CONFIG_STACK_GROWSUP 658 /* Limit stack size to 1GB */ 659 stack_base = rlimit_max(RLIMIT_STACK); 660 if (stack_base > (1 << 30)) 661 stack_base = 1 << 30; 662 663 /* Make sure we didn't let the argument array grow too large. */ 664 if (vma->vm_end - vma->vm_start > stack_base) 665 return -ENOMEM; 666 667 stack_base = PAGE_ALIGN(stack_top - stack_base); 668 669 stack_shift = vma->vm_start - stack_base; 670 mm->arg_start = bprm->p - stack_shift; 671 bprm->p = vma->vm_end - stack_shift; 672 #else 673 stack_top = arch_align_stack(stack_top); 674 stack_top = PAGE_ALIGN(stack_top); 675 676 if (unlikely(stack_top < mmap_min_addr) || 677 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 678 return -ENOMEM; 679 680 stack_shift = vma->vm_end - stack_top; 681 682 bprm->p -= stack_shift; 683 mm->arg_start = bprm->p; 684 #endif 685 686 if (bprm->loader) 687 bprm->loader -= stack_shift; 688 bprm->exec -= stack_shift; 689 690 down_write(&mm->mmap_sem); 691 vm_flags = VM_STACK_FLAGS; 692 693 /* 694 * Adjust stack execute permissions; explicitly enable for 695 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 696 * (arch default) otherwise. 697 */ 698 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 699 vm_flags |= VM_EXEC; 700 else if (executable_stack == EXSTACK_DISABLE_X) 701 vm_flags &= ~VM_EXEC; 702 vm_flags |= mm->def_flags; 703 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 704 705 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 706 vm_flags); 707 if (ret) 708 goto out_unlock; 709 BUG_ON(prev != vma); 710 711 /* Move stack pages down in memory. */ 712 if (stack_shift) { 713 ret = shift_arg_pages(vma, stack_shift); 714 if (ret) 715 goto out_unlock; 716 } 717 718 /* mprotect_fixup is overkill to remove the temporary stack flags */ 719 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 720 721 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 722 stack_size = vma->vm_end - vma->vm_start; 723 /* 724 * Align this down to a page boundary as expand_stack 725 * will align it up. 726 */ 727 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 728 #ifdef CONFIG_STACK_GROWSUP 729 if (stack_size + stack_expand > rlim_stack) 730 stack_base = vma->vm_start + rlim_stack; 731 else 732 stack_base = vma->vm_end + stack_expand; 733 #else 734 if (stack_size + stack_expand > rlim_stack) 735 stack_base = vma->vm_end - rlim_stack; 736 else 737 stack_base = vma->vm_start - stack_expand; 738 #endif 739 current->mm->start_stack = bprm->p; 740 ret = expand_stack(vma, stack_base); 741 if (ret) 742 ret = -EFAULT; 743 744 out_unlock: 745 up_write(&mm->mmap_sem); 746 return ret; 747 } 748 EXPORT_SYMBOL(setup_arg_pages); 749 750 #endif /* CONFIG_MMU */ 751 752 struct file *open_exec(const char *name) 753 { 754 struct file *file; 755 int err; 756 struct filename tmp = { .name = name }; 757 static const struct open_flags open_exec_flags = { 758 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 759 .acc_mode = MAY_EXEC | MAY_OPEN, 760 .intent = LOOKUP_OPEN, 761 .lookup_flags = LOOKUP_FOLLOW, 762 }; 763 764 file = do_filp_open(AT_FDCWD, &tmp, &open_exec_flags); 765 if (IS_ERR(file)) 766 goto out; 767 768 err = -EACCES; 769 if (!S_ISREG(file_inode(file)->i_mode)) 770 goto exit; 771 772 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 773 goto exit; 774 775 fsnotify_open(file); 776 777 err = deny_write_access(file); 778 if (err) 779 goto exit; 780 781 out: 782 return file; 783 784 exit: 785 fput(file); 786 return ERR_PTR(err); 787 } 788 EXPORT_SYMBOL(open_exec); 789 790 int kernel_read(struct file *file, loff_t offset, 791 char *addr, unsigned long count) 792 { 793 mm_segment_t old_fs; 794 loff_t pos = offset; 795 int result; 796 797 old_fs = get_fs(); 798 set_fs(get_ds()); 799 /* The cast to a user pointer is valid due to the set_fs() */ 800 result = vfs_read(file, (void __user *)addr, count, &pos); 801 set_fs(old_fs); 802 return result; 803 } 804 805 EXPORT_SYMBOL(kernel_read); 806 807 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 808 { 809 ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos); 810 if (res > 0) 811 flush_icache_range(addr, addr + len); 812 return res; 813 } 814 EXPORT_SYMBOL(read_code); 815 816 static int exec_mmap(struct mm_struct *mm) 817 { 818 struct task_struct *tsk; 819 struct mm_struct * old_mm, *active_mm; 820 821 /* Notify parent that we're no longer interested in the old VM */ 822 tsk = current; 823 old_mm = current->mm; 824 mm_release(tsk, old_mm); 825 826 if (old_mm) { 827 sync_mm_rss(old_mm); 828 /* 829 * Make sure that if there is a core dump in progress 830 * for the old mm, we get out and die instead of going 831 * through with the exec. We must hold mmap_sem around 832 * checking core_state and changing tsk->mm. 833 */ 834 down_read(&old_mm->mmap_sem); 835 if (unlikely(old_mm->core_state)) { 836 up_read(&old_mm->mmap_sem); 837 return -EINTR; 838 } 839 } 840 task_lock(tsk); 841 active_mm = tsk->active_mm; 842 tsk->mm = mm; 843 tsk->active_mm = mm; 844 activate_mm(active_mm, mm); 845 task_unlock(tsk); 846 arch_pick_mmap_layout(mm); 847 if (old_mm) { 848 up_read(&old_mm->mmap_sem); 849 BUG_ON(active_mm != old_mm); 850 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 851 mm_update_next_owner(old_mm); 852 mmput(old_mm); 853 return 0; 854 } 855 mmdrop(active_mm); 856 return 0; 857 } 858 859 /* 860 * This function makes sure the current process has its own signal table, 861 * so that flush_signal_handlers can later reset the handlers without 862 * disturbing other processes. (Other processes might share the signal 863 * table via the CLONE_SIGHAND option to clone().) 864 */ 865 static int de_thread(struct task_struct *tsk) 866 { 867 struct signal_struct *sig = tsk->signal; 868 struct sighand_struct *oldsighand = tsk->sighand; 869 spinlock_t *lock = &oldsighand->siglock; 870 871 if (thread_group_empty(tsk)) 872 goto no_thread_group; 873 874 /* 875 * Kill all other threads in the thread group. 876 */ 877 spin_lock_irq(lock); 878 if (signal_group_exit(sig)) { 879 /* 880 * Another group action in progress, just 881 * return so that the signal is processed. 882 */ 883 spin_unlock_irq(lock); 884 return -EAGAIN; 885 } 886 887 sig->group_exit_task = tsk; 888 sig->notify_count = zap_other_threads(tsk); 889 if (!thread_group_leader(tsk)) 890 sig->notify_count--; 891 892 while (sig->notify_count) { 893 __set_current_state(TASK_KILLABLE); 894 spin_unlock_irq(lock); 895 schedule(); 896 if (unlikely(__fatal_signal_pending(tsk))) 897 goto killed; 898 spin_lock_irq(lock); 899 } 900 spin_unlock_irq(lock); 901 902 /* 903 * At this point all other threads have exited, all we have to 904 * do is to wait for the thread group leader to become inactive, 905 * and to assume its PID: 906 */ 907 if (!thread_group_leader(tsk)) { 908 struct task_struct *leader = tsk->group_leader; 909 910 sig->notify_count = -1; /* for exit_notify() */ 911 for (;;) { 912 threadgroup_change_begin(tsk); 913 write_lock_irq(&tasklist_lock); 914 if (likely(leader->exit_state)) 915 break; 916 __set_current_state(TASK_KILLABLE); 917 write_unlock_irq(&tasklist_lock); 918 threadgroup_change_end(tsk); 919 schedule(); 920 if (unlikely(__fatal_signal_pending(tsk))) 921 goto killed; 922 } 923 924 /* 925 * The only record we have of the real-time age of a 926 * process, regardless of execs it's done, is start_time. 927 * All the past CPU time is accumulated in signal_struct 928 * from sister threads now dead. But in this non-leader 929 * exec, nothing survives from the original leader thread, 930 * whose birth marks the true age of this process now. 931 * When we take on its identity by switching to its PID, we 932 * also take its birthdate (always earlier than our own). 933 */ 934 tsk->start_time = leader->start_time; 935 tsk->real_start_time = leader->real_start_time; 936 937 BUG_ON(!same_thread_group(leader, tsk)); 938 BUG_ON(has_group_leader_pid(tsk)); 939 /* 940 * An exec() starts a new thread group with the 941 * TGID of the previous thread group. Rehash the 942 * two threads with a switched PID, and release 943 * the former thread group leader: 944 */ 945 946 /* Become a process group leader with the old leader's pid. 947 * The old leader becomes a thread of the this thread group. 948 * Note: The old leader also uses this pid until release_task 949 * is called. Odd but simple and correct. 950 */ 951 tsk->pid = leader->pid; 952 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 953 transfer_pid(leader, tsk, PIDTYPE_PGID); 954 transfer_pid(leader, tsk, PIDTYPE_SID); 955 956 list_replace_rcu(&leader->tasks, &tsk->tasks); 957 list_replace_init(&leader->sibling, &tsk->sibling); 958 959 tsk->group_leader = tsk; 960 leader->group_leader = tsk; 961 962 tsk->exit_signal = SIGCHLD; 963 leader->exit_signal = -1; 964 965 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 966 leader->exit_state = EXIT_DEAD; 967 968 /* 969 * We are going to release_task()->ptrace_unlink() silently, 970 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 971 * the tracer wont't block again waiting for this thread. 972 */ 973 if (unlikely(leader->ptrace)) 974 __wake_up_parent(leader, leader->parent); 975 write_unlock_irq(&tasklist_lock); 976 threadgroup_change_end(tsk); 977 978 release_task(leader); 979 } 980 981 sig->group_exit_task = NULL; 982 sig->notify_count = 0; 983 984 no_thread_group: 985 /* we have changed execution domain */ 986 tsk->exit_signal = SIGCHLD; 987 988 exit_itimers(sig); 989 flush_itimer_signals(); 990 991 if (atomic_read(&oldsighand->count) != 1) { 992 struct sighand_struct *newsighand; 993 /* 994 * This ->sighand is shared with the CLONE_SIGHAND 995 * but not CLONE_THREAD task, switch to the new one. 996 */ 997 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 998 if (!newsighand) 999 return -ENOMEM; 1000 1001 atomic_set(&newsighand->count, 1); 1002 memcpy(newsighand->action, oldsighand->action, 1003 sizeof(newsighand->action)); 1004 1005 write_lock_irq(&tasklist_lock); 1006 spin_lock(&oldsighand->siglock); 1007 rcu_assign_pointer(tsk->sighand, newsighand); 1008 spin_unlock(&oldsighand->siglock); 1009 write_unlock_irq(&tasklist_lock); 1010 1011 __cleanup_sighand(oldsighand); 1012 } 1013 1014 BUG_ON(!thread_group_leader(tsk)); 1015 return 0; 1016 1017 killed: 1018 /* protects against exit_notify() and __exit_signal() */ 1019 read_lock(&tasklist_lock); 1020 sig->group_exit_task = NULL; 1021 sig->notify_count = 0; 1022 read_unlock(&tasklist_lock); 1023 return -EAGAIN; 1024 } 1025 1026 char *get_task_comm(char *buf, struct task_struct *tsk) 1027 { 1028 /* buf must be at least sizeof(tsk->comm) in size */ 1029 task_lock(tsk); 1030 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1031 task_unlock(tsk); 1032 return buf; 1033 } 1034 EXPORT_SYMBOL_GPL(get_task_comm); 1035 1036 /* 1037 * These functions flushes out all traces of the currently running executable 1038 * so that a new one can be started 1039 */ 1040 1041 void set_task_comm(struct task_struct *tsk, char *buf) 1042 { 1043 task_lock(tsk); 1044 trace_task_rename(tsk, buf); 1045 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1046 task_unlock(tsk); 1047 perf_event_comm(tsk); 1048 } 1049 1050 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len) 1051 { 1052 int i, ch; 1053 1054 /* Copies the binary name from after last slash */ 1055 for (i = 0; (ch = *(fn++)) != '\0';) { 1056 if (ch == '/') 1057 i = 0; /* overwrite what we wrote */ 1058 else 1059 if (i < len - 1) 1060 tcomm[i++] = ch; 1061 } 1062 tcomm[i] = '\0'; 1063 } 1064 1065 int flush_old_exec(struct linux_binprm * bprm) 1066 { 1067 int retval; 1068 1069 /* 1070 * Make sure we have a private signal table and that 1071 * we are unassociated from the previous thread group. 1072 */ 1073 retval = de_thread(current); 1074 if (retval) 1075 goto out; 1076 1077 set_mm_exe_file(bprm->mm, bprm->file); 1078 1079 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm)); 1080 /* 1081 * Release all of the old mmap stuff 1082 */ 1083 acct_arg_size(bprm, 0); 1084 retval = exec_mmap(bprm->mm); 1085 if (retval) 1086 goto out; 1087 1088 bprm->mm = NULL; /* We're using it now */ 1089 1090 set_fs(USER_DS); 1091 current->flags &= 1092 ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | PF_NOFREEZE); 1093 flush_thread(); 1094 current->personality &= ~bprm->per_clear; 1095 1096 return 0; 1097 1098 out: 1099 return retval; 1100 } 1101 EXPORT_SYMBOL(flush_old_exec); 1102 1103 void would_dump(struct linux_binprm *bprm, struct file *file) 1104 { 1105 if (inode_permission(file_inode(file), MAY_READ) < 0) 1106 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1107 } 1108 EXPORT_SYMBOL(would_dump); 1109 1110 void setup_new_exec(struct linux_binprm * bprm) 1111 { 1112 arch_pick_mmap_layout(current->mm); 1113 1114 /* This is the point of no return */ 1115 current->sas_ss_sp = current->sas_ss_size = 0; 1116 1117 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid())) 1118 set_dumpable(current->mm, SUID_DUMP_USER); 1119 else 1120 set_dumpable(current->mm, suid_dumpable); 1121 1122 set_task_comm(current, bprm->tcomm); 1123 1124 /* Set the new mm task size. We have to do that late because it may 1125 * depend on TIF_32BIT which is only updated in flush_thread() on 1126 * some architectures like powerpc 1127 */ 1128 current->mm->task_size = TASK_SIZE; 1129 1130 /* install the new credentials */ 1131 if (!uid_eq(bprm->cred->uid, current_euid()) || 1132 !gid_eq(bprm->cred->gid, current_egid())) { 1133 current->pdeath_signal = 0; 1134 } else { 1135 would_dump(bprm, bprm->file); 1136 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) 1137 set_dumpable(current->mm, suid_dumpable); 1138 } 1139 1140 /* An exec changes our domain. We are no longer part of the thread 1141 group */ 1142 1143 current->self_exec_id++; 1144 1145 flush_signal_handlers(current, 0); 1146 do_close_on_exec(current->files); 1147 } 1148 EXPORT_SYMBOL(setup_new_exec); 1149 1150 /* 1151 * Prepare credentials and lock ->cred_guard_mutex. 1152 * install_exec_creds() commits the new creds and drops the lock. 1153 * Or, if exec fails before, free_bprm() should release ->cred and 1154 * and unlock. 1155 */ 1156 int prepare_bprm_creds(struct linux_binprm *bprm) 1157 { 1158 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1159 return -ERESTARTNOINTR; 1160 1161 bprm->cred = prepare_exec_creds(); 1162 if (likely(bprm->cred)) 1163 return 0; 1164 1165 mutex_unlock(¤t->signal->cred_guard_mutex); 1166 return -ENOMEM; 1167 } 1168 1169 void free_bprm(struct linux_binprm *bprm) 1170 { 1171 free_arg_pages(bprm); 1172 if (bprm->cred) { 1173 mutex_unlock(¤t->signal->cred_guard_mutex); 1174 abort_creds(bprm->cred); 1175 } 1176 /* If a binfmt changed the interp, free it. */ 1177 if (bprm->interp != bprm->filename) 1178 kfree(bprm->interp); 1179 kfree(bprm); 1180 } 1181 1182 int bprm_change_interp(char *interp, struct linux_binprm *bprm) 1183 { 1184 /* If a binfmt changed the interp, free it first. */ 1185 if (bprm->interp != bprm->filename) 1186 kfree(bprm->interp); 1187 bprm->interp = kstrdup(interp, GFP_KERNEL); 1188 if (!bprm->interp) 1189 return -ENOMEM; 1190 return 0; 1191 } 1192 EXPORT_SYMBOL(bprm_change_interp); 1193 1194 /* 1195 * install the new credentials for this executable 1196 */ 1197 void install_exec_creds(struct linux_binprm *bprm) 1198 { 1199 security_bprm_committing_creds(bprm); 1200 1201 commit_creds(bprm->cred); 1202 bprm->cred = NULL; 1203 1204 /* 1205 * Disable monitoring for regular users 1206 * when executing setuid binaries. Must 1207 * wait until new credentials are committed 1208 * by commit_creds() above 1209 */ 1210 if (get_dumpable(current->mm) != SUID_DUMP_USER) 1211 perf_event_exit_task(current); 1212 /* 1213 * cred_guard_mutex must be held at least to this point to prevent 1214 * ptrace_attach() from altering our determination of the task's 1215 * credentials; any time after this it may be unlocked. 1216 */ 1217 security_bprm_committed_creds(bprm); 1218 mutex_unlock(¤t->signal->cred_guard_mutex); 1219 } 1220 EXPORT_SYMBOL(install_exec_creds); 1221 1222 /* 1223 * determine how safe it is to execute the proposed program 1224 * - the caller must hold ->cred_guard_mutex to protect against 1225 * PTRACE_ATTACH 1226 */ 1227 static int check_unsafe_exec(struct linux_binprm *bprm) 1228 { 1229 struct task_struct *p = current, *t; 1230 unsigned n_fs; 1231 int res = 0; 1232 1233 if (p->ptrace) { 1234 if (p->ptrace & PT_PTRACE_CAP) 1235 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP; 1236 else 1237 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1238 } 1239 1240 /* 1241 * This isn't strictly necessary, but it makes it harder for LSMs to 1242 * mess up. 1243 */ 1244 if (current->no_new_privs) 1245 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1246 1247 n_fs = 1; 1248 spin_lock(&p->fs->lock); 1249 rcu_read_lock(); 1250 for (t = next_thread(p); t != p; t = next_thread(t)) { 1251 if (t->fs == p->fs) 1252 n_fs++; 1253 } 1254 rcu_read_unlock(); 1255 1256 if (p->fs->users > n_fs) { 1257 bprm->unsafe |= LSM_UNSAFE_SHARE; 1258 } else { 1259 res = -EAGAIN; 1260 if (!p->fs->in_exec) { 1261 p->fs->in_exec = 1; 1262 res = 1; 1263 } 1264 } 1265 spin_unlock(&p->fs->lock); 1266 1267 return res; 1268 } 1269 1270 /* 1271 * Fill the binprm structure from the inode. 1272 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1273 * 1274 * This may be called multiple times for binary chains (scripts for example). 1275 */ 1276 int prepare_binprm(struct linux_binprm *bprm) 1277 { 1278 umode_t mode; 1279 struct inode * inode = file_inode(bprm->file); 1280 int retval; 1281 1282 mode = inode->i_mode; 1283 if (bprm->file->f_op == NULL) 1284 return -EACCES; 1285 1286 /* clear any previous set[ug]id data from a previous binary */ 1287 bprm->cred->euid = current_euid(); 1288 bprm->cred->egid = current_egid(); 1289 1290 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) && 1291 !current->no_new_privs && 1292 kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) && 1293 kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) { 1294 /* Set-uid? */ 1295 if (mode & S_ISUID) { 1296 bprm->per_clear |= PER_CLEAR_ON_SETID; 1297 bprm->cred->euid = inode->i_uid; 1298 } 1299 1300 /* Set-gid? */ 1301 /* 1302 * If setgid is set but no group execute bit then this 1303 * is a candidate for mandatory locking, not a setgid 1304 * executable. 1305 */ 1306 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1307 bprm->per_clear |= PER_CLEAR_ON_SETID; 1308 bprm->cred->egid = inode->i_gid; 1309 } 1310 } 1311 1312 /* fill in binprm security blob */ 1313 retval = security_bprm_set_creds(bprm); 1314 if (retval) 1315 return retval; 1316 bprm->cred_prepared = 1; 1317 1318 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1319 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1320 } 1321 1322 EXPORT_SYMBOL(prepare_binprm); 1323 1324 /* 1325 * Arguments are '\0' separated strings found at the location bprm->p 1326 * points to; chop off the first by relocating brpm->p to right after 1327 * the first '\0' encountered. 1328 */ 1329 int remove_arg_zero(struct linux_binprm *bprm) 1330 { 1331 int ret = 0; 1332 unsigned long offset; 1333 char *kaddr; 1334 struct page *page; 1335 1336 if (!bprm->argc) 1337 return 0; 1338 1339 do { 1340 offset = bprm->p & ~PAGE_MASK; 1341 page = get_arg_page(bprm, bprm->p, 0); 1342 if (!page) { 1343 ret = -EFAULT; 1344 goto out; 1345 } 1346 kaddr = kmap_atomic(page); 1347 1348 for (; offset < PAGE_SIZE && kaddr[offset]; 1349 offset++, bprm->p++) 1350 ; 1351 1352 kunmap_atomic(kaddr); 1353 put_arg_page(page); 1354 1355 if (offset == PAGE_SIZE) 1356 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1357 } while (offset == PAGE_SIZE); 1358 1359 bprm->p++; 1360 bprm->argc--; 1361 ret = 0; 1362 1363 out: 1364 return ret; 1365 } 1366 EXPORT_SYMBOL(remove_arg_zero); 1367 1368 /* 1369 * cycle the list of binary formats handler, until one recognizes the image 1370 */ 1371 int search_binary_handler(struct linux_binprm *bprm) 1372 { 1373 unsigned int depth = bprm->recursion_depth; 1374 int try,retval; 1375 struct linux_binfmt *fmt; 1376 pid_t old_pid, old_vpid; 1377 1378 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1379 if (depth > 5) 1380 return -ELOOP; 1381 1382 retval = security_bprm_check(bprm); 1383 if (retval) 1384 return retval; 1385 1386 retval = audit_bprm(bprm); 1387 if (retval) 1388 return retval; 1389 1390 /* Need to fetch pid before load_binary changes it */ 1391 old_pid = current->pid; 1392 rcu_read_lock(); 1393 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1394 rcu_read_unlock(); 1395 1396 retval = -ENOENT; 1397 for (try=0; try<2; try++) { 1398 read_lock(&binfmt_lock); 1399 list_for_each_entry(fmt, &formats, lh) { 1400 int (*fn)(struct linux_binprm *) = fmt->load_binary; 1401 if (!fn) 1402 continue; 1403 if (!try_module_get(fmt->module)) 1404 continue; 1405 read_unlock(&binfmt_lock); 1406 bprm->recursion_depth = depth + 1; 1407 retval = fn(bprm); 1408 bprm->recursion_depth = depth; 1409 if (retval >= 0) { 1410 if (depth == 0) { 1411 trace_sched_process_exec(current, old_pid, bprm); 1412 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1413 } 1414 put_binfmt(fmt); 1415 allow_write_access(bprm->file); 1416 if (bprm->file) 1417 fput(bprm->file); 1418 bprm->file = NULL; 1419 current->did_exec = 1; 1420 proc_exec_connector(current); 1421 return retval; 1422 } 1423 read_lock(&binfmt_lock); 1424 put_binfmt(fmt); 1425 if (retval != -ENOEXEC || bprm->mm == NULL) 1426 break; 1427 if (!bprm->file) { 1428 read_unlock(&binfmt_lock); 1429 return retval; 1430 } 1431 } 1432 read_unlock(&binfmt_lock); 1433 #ifdef CONFIG_MODULES 1434 if (retval != -ENOEXEC || bprm->mm == NULL) { 1435 break; 1436 } else { 1437 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1438 if (printable(bprm->buf[0]) && 1439 printable(bprm->buf[1]) && 1440 printable(bprm->buf[2]) && 1441 printable(bprm->buf[3])) 1442 break; /* -ENOEXEC */ 1443 if (try) 1444 break; /* -ENOEXEC */ 1445 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1446 } 1447 #else 1448 break; 1449 #endif 1450 } 1451 return retval; 1452 } 1453 1454 EXPORT_SYMBOL(search_binary_handler); 1455 1456 /* 1457 * sys_execve() executes a new program. 1458 */ 1459 static int do_execve_common(const char *filename, 1460 struct user_arg_ptr argv, 1461 struct user_arg_ptr envp) 1462 { 1463 struct linux_binprm *bprm; 1464 struct file *file; 1465 struct files_struct *displaced; 1466 bool clear_in_exec; 1467 int retval; 1468 1469 /* 1470 * We move the actual failure in case of RLIMIT_NPROC excess from 1471 * set*uid() to execve() because too many poorly written programs 1472 * don't check setuid() return code. Here we additionally recheck 1473 * whether NPROC limit is still exceeded. 1474 */ 1475 if ((current->flags & PF_NPROC_EXCEEDED) && 1476 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1477 retval = -EAGAIN; 1478 goto out_ret; 1479 } 1480 1481 /* We're below the limit (still or again), so we don't want to make 1482 * further execve() calls fail. */ 1483 current->flags &= ~PF_NPROC_EXCEEDED; 1484 1485 retval = unshare_files(&displaced); 1486 if (retval) 1487 goto out_ret; 1488 1489 retval = -ENOMEM; 1490 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1491 if (!bprm) 1492 goto out_files; 1493 1494 retval = prepare_bprm_creds(bprm); 1495 if (retval) 1496 goto out_free; 1497 1498 retval = check_unsafe_exec(bprm); 1499 if (retval < 0) 1500 goto out_free; 1501 clear_in_exec = retval; 1502 current->in_execve = 1; 1503 1504 file = open_exec(filename); 1505 retval = PTR_ERR(file); 1506 if (IS_ERR(file)) 1507 goto out_unmark; 1508 1509 sched_exec(); 1510 1511 bprm->file = file; 1512 bprm->filename = filename; 1513 bprm->interp = filename; 1514 1515 retval = bprm_mm_init(bprm); 1516 if (retval) 1517 goto out_file; 1518 1519 bprm->argc = count(argv, MAX_ARG_STRINGS); 1520 if ((retval = bprm->argc) < 0) 1521 goto out; 1522 1523 bprm->envc = count(envp, MAX_ARG_STRINGS); 1524 if ((retval = bprm->envc) < 0) 1525 goto out; 1526 1527 retval = prepare_binprm(bprm); 1528 if (retval < 0) 1529 goto out; 1530 1531 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1532 if (retval < 0) 1533 goto out; 1534 1535 bprm->exec = bprm->p; 1536 retval = copy_strings(bprm->envc, envp, bprm); 1537 if (retval < 0) 1538 goto out; 1539 1540 retval = copy_strings(bprm->argc, argv, bprm); 1541 if (retval < 0) 1542 goto out; 1543 1544 retval = search_binary_handler(bprm); 1545 if (retval < 0) 1546 goto out; 1547 1548 /* execve succeeded */ 1549 current->fs->in_exec = 0; 1550 current->in_execve = 0; 1551 acct_update_integrals(current); 1552 free_bprm(bprm); 1553 if (displaced) 1554 put_files_struct(displaced); 1555 return retval; 1556 1557 out: 1558 if (bprm->mm) { 1559 acct_arg_size(bprm, 0); 1560 mmput(bprm->mm); 1561 } 1562 1563 out_file: 1564 if (bprm->file) { 1565 allow_write_access(bprm->file); 1566 fput(bprm->file); 1567 } 1568 1569 out_unmark: 1570 if (clear_in_exec) 1571 current->fs->in_exec = 0; 1572 current->in_execve = 0; 1573 1574 out_free: 1575 free_bprm(bprm); 1576 1577 out_files: 1578 if (displaced) 1579 reset_files_struct(displaced); 1580 out_ret: 1581 return retval; 1582 } 1583 1584 int do_execve(const char *filename, 1585 const char __user *const __user *__argv, 1586 const char __user *const __user *__envp) 1587 { 1588 struct user_arg_ptr argv = { .ptr.native = __argv }; 1589 struct user_arg_ptr envp = { .ptr.native = __envp }; 1590 return do_execve_common(filename, argv, envp); 1591 } 1592 1593 #ifdef CONFIG_COMPAT 1594 static int compat_do_execve(const char *filename, 1595 const compat_uptr_t __user *__argv, 1596 const compat_uptr_t __user *__envp) 1597 { 1598 struct user_arg_ptr argv = { 1599 .is_compat = true, 1600 .ptr.compat = __argv, 1601 }; 1602 struct user_arg_ptr envp = { 1603 .is_compat = true, 1604 .ptr.compat = __envp, 1605 }; 1606 return do_execve_common(filename, argv, envp); 1607 } 1608 #endif 1609 1610 void set_binfmt(struct linux_binfmt *new) 1611 { 1612 struct mm_struct *mm = current->mm; 1613 1614 if (mm->binfmt) 1615 module_put(mm->binfmt->module); 1616 1617 mm->binfmt = new; 1618 if (new) 1619 __module_get(new->module); 1620 } 1621 1622 EXPORT_SYMBOL(set_binfmt); 1623 1624 /* 1625 * set_dumpable converts traditional three-value dumpable to two flags and 1626 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1627 * these bits are not changed atomically. So get_dumpable can observe the 1628 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1629 * return either old dumpable or new one by paying attention to the order of 1630 * modifying the bits. 1631 * 1632 * dumpable | mm->flags (binary) 1633 * old new | initial interim final 1634 * ---------+----------------------- 1635 * 0 1 | 00 01 01 1636 * 0 2 | 00 10(*) 11 1637 * 1 0 | 01 00 00 1638 * 1 2 | 01 11 11 1639 * 2 0 | 11 10(*) 00 1640 * 2 1 | 11 11 01 1641 * 1642 * (*) get_dumpable regards interim value of 10 as 11. 1643 */ 1644 void set_dumpable(struct mm_struct *mm, int value) 1645 { 1646 switch (value) { 1647 case SUID_DUMP_DISABLE: 1648 clear_bit(MMF_DUMPABLE, &mm->flags); 1649 smp_wmb(); 1650 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1651 break; 1652 case SUID_DUMP_USER: 1653 set_bit(MMF_DUMPABLE, &mm->flags); 1654 smp_wmb(); 1655 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1656 break; 1657 case SUID_DUMP_ROOT: 1658 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1659 smp_wmb(); 1660 set_bit(MMF_DUMPABLE, &mm->flags); 1661 break; 1662 } 1663 } 1664 1665 int __get_dumpable(unsigned long mm_flags) 1666 { 1667 int ret; 1668 1669 ret = mm_flags & MMF_DUMPABLE_MASK; 1670 return (ret > SUID_DUMP_USER) ? SUID_DUMP_ROOT : ret; 1671 } 1672 1673 int get_dumpable(struct mm_struct *mm) 1674 { 1675 return __get_dumpable(mm->flags); 1676 } 1677 1678 SYSCALL_DEFINE3(execve, 1679 const char __user *, filename, 1680 const char __user *const __user *, argv, 1681 const char __user *const __user *, envp) 1682 { 1683 struct filename *path = getname(filename); 1684 int error = PTR_ERR(path); 1685 if (!IS_ERR(path)) { 1686 error = do_execve(path->name, argv, envp); 1687 putname(path); 1688 } 1689 return error; 1690 } 1691 #ifdef CONFIG_COMPAT 1692 asmlinkage long compat_sys_execve(const char __user * filename, 1693 const compat_uptr_t __user * argv, 1694 const compat_uptr_t __user * envp) 1695 { 1696 struct filename *path = getname(filename); 1697 int error = PTR_ERR(path); 1698 if (!IS_ERR(path)) { 1699 error = compat_do_execve(path->name, argv, envp); 1700 putname(path); 1701 } 1702 return error; 1703 } 1704 #endif 1705