xref: /openbmc/linux/fs/exec.c (revision 7490ca1e)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 
63 #include <trace/events/task.h>
64 #include "internal.h"
65 
66 int core_uses_pid;
67 char core_pattern[CORENAME_MAX_SIZE] = "core";
68 unsigned int core_pipe_limit;
69 int suid_dumpable = 0;
70 
71 struct core_name {
72 	char *corename;
73 	int used, size;
74 };
75 static atomic_t call_count = ATOMIC_INIT(1);
76 
77 /* The maximal length of core_pattern is also specified in sysctl.c */
78 
79 static LIST_HEAD(formats);
80 static DEFINE_RWLOCK(binfmt_lock);
81 
82 int __register_binfmt(struct linux_binfmt * fmt, int insert)
83 {
84 	if (!fmt)
85 		return -EINVAL;
86 	write_lock(&binfmt_lock);
87 	insert ? list_add(&fmt->lh, &formats) :
88 		 list_add_tail(&fmt->lh, &formats);
89 	write_unlock(&binfmt_lock);
90 	return 0;
91 }
92 
93 EXPORT_SYMBOL(__register_binfmt);
94 
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 	write_lock(&binfmt_lock);
98 	list_del(&fmt->lh);
99 	write_unlock(&binfmt_lock);
100 }
101 
102 EXPORT_SYMBOL(unregister_binfmt);
103 
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 	module_put(fmt->module);
107 }
108 
109 /*
110  * Note that a shared library must be both readable and executable due to
111  * security reasons.
112  *
113  * Also note that we take the address to load from from the file itself.
114  */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117 	struct file *file;
118 	char *tmp = getname(library);
119 	int error = PTR_ERR(tmp);
120 	static const struct open_flags uselib_flags = {
121 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
122 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
123 		.intent = LOOKUP_OPEN
124 	};
125 
126 	if (IS_ERR(tmp))
127 		goto out;
128 
129 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
130 	putname(tmp);
131 	error = PTR_ERR(file);
132 	if (IS_ERR(file))
133 		goto out;
134 
135 	error = -EINVAL;
136 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
137 		goto exit;
138 
139 	error = -EACCES;
140 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
141 		goto exit;
142 
143 	fsnotify_open(file);
144 
145 	error = -ENOEXEC;
146 	if(file->f_op) {
147 		struct linux_binfmt * fmt;
148 
149 		read_lock(&binfmt_lock);
150 		list_for_each_entry(fmt, &formats, lh) {
151 			if (!fmt->load_shlib)
152 				continue;
153 			if (!try_module_get(fmt->module))
154 				continue;
155 			read_unlock(&binfmt_lock);
156 			error = fmt->load_shlib(file);
157 			read_lock(&binfmt_lock);
158 			put_binfmt(fmt);
159 			if (error != -ENOEXEC)
160 				break;
161 		}
162 		read_unlock(&binfmt_lock);
163 	}
164 exit:
165 	fput(file);
166 out:
167   	return error;
168 }
169 
170 #ifdef CONFIG_MMU
171 /*
172  * The nascent bprm->mm is not visible until exec_mmap() but it can
173  * use a lot of memory, account these pages in current->mm temporary
174  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175  * change the counter back via acct_arg_size(0).
176  */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179 	struct mm_struct *mm = current->mm;
180 	long diff = (long)(pages - bprm->vma_pages);
181 
182 	if (!mm || !diff)
183 		return;
184 
185 	bprm->vma_pages = pages;
186 	add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188 
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 		int write)
191 {
192 	struct page *page;
193 	int ret;
194 
195 #ifdef CONFIG_STACK_GROWSUP
196 	if (write) {
197 		ret = expand_downwards(bprm->vma, pos);
198 		if (ret < 0)
199 			return NULL;
200 	}
201 #endif
202 	ret = get_user_pages(current, bprm->mm, pos,
203 			1, write, 1, &page, NULL);
204 	if (ret <= 0)
205 		return NULL;
206 
207 	if (write) {
208 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
209 		struct rlimit *rlim;
210 
211 		acct_arg_size(bprm, size / PAGE_SIZE);
212 
213 		/*
214 		 * We've historically supported up to 32 pages (ARG_MAX)
215 		 * of argument strings even with small stacks
216 		 */
217 		if (size <= ARG_MAX)
218 			return page;
219 
220 		/*
221 		 * Limit to 1/4-th the stack size for the argv+env strings.
222 		 * This ensures that:
223 		 *  - the remaining binfmt code will not run out of stack space,
224 		 *  - the program will have a reasonable amount of stack left
225 		 *    to work from.
226 		 */
227 		rlim = current->signal->rlim;
228 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
229 			put_page(page);
230 			return NULL;
231 		}
232 	}
233 
234 	return page;
235 }
236 
237 static void put_arg_page(struct page *page)
238 {
239 	put_page(page);
240 }
241 
242 static void free_arg_page(struct linux_binprm *bprm, int i)
243 {
244 }
245 
246 static void free_arg_pages(struct linux_binprm *bprm)
247 {
248 }
249 
250 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
251 		struct page *page)
252 {
253 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
254 }
255 
256 static int __bprm_mm_init(struct linux_binprm *bprm)
257 {
258 	int err;
259 	struct vm_area_struct *vma = NULL;
260 	struct mm_struct *mm = bprm->mm;
261 
262 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
263 	if (!vma)
264 		return -ENOMEM;
265 
266 	down_write(&mm->mmap_sem);
267 	vma->vm_mm = mm;
268 
269 	/*
270 	 * Place the stack at the largest stack address the architecture
271 	 * supports. Later, we'll move this to an appropriate place. We don't
272 	 * use STACK_TOP because that can depend on attributes which aren't
273 	 * configured yet.
274 	 */
275 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276 	vma->vm_end = STACK_TOP_MAX;
277 	vma->vm_start = vma->vm_end - PAGE_SIZE;
278 	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
279 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
280 	INIT_LIST_HEAD(&vma->anon_vma_chain);
281 
282 	err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
283 	if (err)
284 		goto err;
285 
286 	err = insert_vm_struct(mm, vma);
287 	if (err)
288 		goto err;
289 
290 	mm->stack_vm = mm->total_vm = 1;
291 	up_write(&mm->mmap_sem);
292 	bprm->p = vma->vm_end - sizeof(void *);
293 	return 0;
294 err:
295 	up_write(&mm->mmap_sem);
296 	bprm->vma = NULL;
297 	kmem_cache_free(vm_area_cachep, vma);
298 	return err;
299 }
300 
301 static bool valid_arg_len(struct linux_binprm *bprm, long len)
302 {
303 	return len <= MAX_ARG_STRLEN;
304 }
305 
306 #else
307 
308 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
309 {
310 }
311 
312 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
313 		int write)
314 {
315 	struct page *page;
316 
317 	page = bprm->page[pos / PAGE_SIZE];
318 	if (!page && write) {
319 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
320 		if (!page)
321 			return NULL;
322 		bprm->page[pos / PAGE_SIZE] = page;
323 	}
324 
325 	return page;
326 }
327 
328 static void put_arg_page(struct page *page)
329 {
330 }
331 
332 static void free_arg_page(struct linux_binprm *bprm, int i)
333 {
334 	if (bprm->page[i]) {
335 		__free_page(bprm->page[i]);
336 		bprm->page[i] = NULL;
337 	}
338 }
339 
340 static void free_arg_pages(struct linux_binprm *bprm)
341 {
342 	int i;
343 
344 	for (i = 0; i < MAX_ARG_PAGES; i++)
345 		free_arg_page(bprm, i);
346 }
347 
348 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
349 		struct page *page)
350 {
351 }
352 
353 static int __bprm_mm_init(struct linux_binprm *bprm)
354 {
355 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
356 	return 0;
357 }
358 
359 static bool valid_arg_len(struct linux_binprm *bprm, long len)
360 {
361 	return len <= bprm->p;
362 }
363 
364 #endif /* CONFIG_MMU */
365 
366 /*
367  * Create a new mm_struct and populate it with a temporary stack
368  * vm_area_struct.  We don't have enough context at this point to set the stack
369  * flags, permissions, and offset, so we use temporary values.  We'll update
370  * them later in setup_arg_pages().
371  */
372 int bprm_mm_init(struct linux_binprm *bprm)
373 {
374 	int err;
375 	struct mm_struct *mm = NULL;
376 
377 	bprm->mm = mm = mm_alloc();
378 	err = -ENOMEM;
379 	if (!mm)
380 		goto err;
381 
382 	err = init_new_context(current, mm);
383 	if (err)
384 		goto err;
385 
386 	err = __bprm_mm_init(bprm);
387 	if (err)
388 		goto err;
389 
390 	return 0;
391 
392 err:
393 	if (mm) {
394 		bprm->mm = NULL;
395 		mmdrop(mm);
396 	}
397 
398 	return err;
399 }
400 
401 struct user_arg_ptr {
402 #ifdef CONFIG_COMPAT
403 	bool is_compat;
404 #endif
405 	union {
406 		const char __user *const __user *native;
407 #ifdef CONFIG_COMPAT
408 		compat_uptr_t __user *compat;
409 #endif
410 	} ptr;
411 };
412 
413 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
414 {
415 	const char __user *native;
416 
417 #ifdef CONFIG_COMPAT
418 	if (unlikely(argv.is_compat)) {
419 		compat_uptr_t compat;
420 
421 		if (get_user(compat, argv.ptr.compat + nr))
422 			return ERR_PTR(-EFAULT);
423 
424 		return compat_ptr(compat);
425 	}
426 #endif
427 
428 	if (get_user(native, argv.ptr.native + nr))
429 		return ERR_PTR(-EFAULT);
430 
431 	return native;
432 }
433 
434 /*
435  * count() counts the number of strings in array ARGV.
436  */
437 static int count(struct user_arg_ptr argv, int max)
438 {
439 	int i = 0;
440 
441 	if (argv.ptr.native != NULL) {
442 		for (;;) {
443 			const char __user *p = get_user_arg_ptr(argv, i);
444 
445 			if (!p)
446 				break;
447 
448 			if (IS_ERR(p))
449 				return -EFAULT;
450 
451 			if (i++ >= max)
452 				return -E2BIG;
453 
454 			if (fatal_signal_pending(current))
455 				return -ERESTARTNOHAND;
456 			cond_resched();
457 		}
458 	}
459 	return i;
460 }
461 
462 /*
463  * 'copy_strings()' copies argument/environment strings from the old
464  * processes's memory to the new process's stack.  The call to get_user_pages()
465  * ensures the destination page is created and not swapped out.
466  */
467 static int copy_strings(int argc, struct user_arg_ptr argv,
468 			struct linux_binprm *bprm)
469 {
470 	struct page *kmapped_page = NULL;
471 	char *kaddr = NULL;
472 	unsigned long kpos = 0;
473 	int ret;
474 
475 	while (argc-- > 0) {
476 		const char __user *str;
477 		int len;
478 		unsigned long pos;
479 
480 		ret = -EFAULT;
481 		str = get_user_arg_ptr(argv, argc);
482 		if (IS_ERR(str))
483 			goto out;
484 
485 		len = strnlen_user(str, MAX_ARG_STRLEN);
486 		if (!len)
487 			goto out;
488 
489 		ret = -E2BIG;
490 		if (!valid_arg_len(bprm, len))
491 			goto out;
492 
493 		/* We're going to work our way backwords. */
494 		pos = bprm->p;
495 		str += len;
496 		bprm->p -= len;
497 
498 		while (len > 0) {
499 			int offset, bytes_to_copy;
500 
501 			if (fatal_signal_pending(current)) {
502 				ret = -ERESTARTNOHAND;
503 				goto out;
504 			}
505 			cond_resched();
506 
507 			offset = pos % PAGE_SIZE;
508 			if (offset == 0)
509 				offset = PAGE_SIZE;
510 
511 			bytes_to_copy = offset;
512 			if (bytes_to_copy > len)
513 				bytes_to_copy = len;
514 
515 			offset -= bytes_to_copy;
516 			pos -= bytes_to_copy;
517 			str -= bytes_to_copy;
518 			len -= bytes_to_copy;
519 
520 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
521 				struct page *page;
522 
523 				page = get_arg_page(bprm, pos, 1);
524 				if (!page) {
525 					ret = -E2BIG;
526 					goto out;
527 				}
528 
529 				if (kmapped_page) {
530 					flush_kernel_dcache_page(kmapped_page);
531 					kunmap(kmapped_page);
532 					put_arg_page(kmapped_page);
533 				}
534 				kmapped_page = page;
535 				kaddr = kmap(kmapped_page);
536 				kpos = pos & PAGE_MASK;
537 				flush_arg_page(bprm, kpos, kmapped_page);
538 			}
539 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
540 				ret = -EFAULT;
541 				goto out;
542 			}
543 		}
544 	}
545 	ret = 0;
546 out:
547 	if (kmapped_page) {
548 		flush_kernel_dcache_page(kmapped_page);
549 		kunmap(kmapped_page);
550 		put_arg_page(kmapped_page);
551 	}
552 	return ret;
553 }
554 
555 /*
556  * Like copy_strings, but get argv and its values from kernel memory.
557  */
558 int copy_strings_kernel(int argc, const char *const *__argv,
559 			struct linux_binprm *bprm)
560 {
561 	int r;
562 	mm_segment_t oldfs = get_fs();
563 	struct user_arg_ptr argv = {
564 		.ptr.native = (const char __user *const  __user *)__argv,
565 	};
566 
567 	set_fs(KERNEL_DS);
568 	r = copy_strings(argc, argv, bprm);
569 	set_fs(oldfs);
570 
571 	return r;
572 }
573 EXPORT_SYMBOL(copy_strings_kernel);
574 
575 #ifdef CONFIG_MMU
576 
577 /*
578  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
579  * the binfmt code determines where the new stack should reside, we shift it to
580  * its final location.  The process proceeds as follows:
581  *
582  * 1) Use shift to calculate the new vma endpoints.
583  * 2) Extend vma to cover both the old and new ranges.  This ensures the
584  *    arguments passed to subsequent functions are consistent.
585  * 3) Move vma's page tables to the new range.
586  * 4) Free up any cleared pgd range.
587  * 5) Shrink the vma to cover only the new range.
588  */
589 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
590 {
591 	struct mm_struct *mm = vma->vm_mm;
592 	unsigned long old_start = vma->vm_start;
593 	unsigned long old_end = vma->vm_end;
594 	unsigned long length = old_end - old_start;
595 	unsigned long new_start = old_start - shift;
596 	unsigned long new_end = old_end - shift;
597 	struct mmu_gather tlb;
598 
599 	BUG_ON(new_start > new_end);
600 
601 	/*
602 	 * ensure there are no vmas between where we want to go
603 	 * and where we are
604 	 */
605 	if (vma != find_vma(mm, new_start))
606 		return -EFAULT;
607 
608 	/*
609 	 * cover the whole range: [new_start, old_end)
610 	 */
611 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
612 		return -ENOMEM;
613 
614 	/*
615 	 * move the page tables downwards, on failure we rely on
616 	 * process cleanup to remove whatever mess we made.
617 	 */
618 	if (length != move_page_tables(vma, old_start,
619 				       vma, new_start, length))
620 		return -ENOMEM;
621 
622 	lru_add_drain();
623 	tlb_gather_mmu(&tlb, mm, 0);
624 	if (new_end > old_start) {
625 		/*
626 		 * when the old and new regions overlap clear from new_end.
627 		 */
628 		free_pgd_range(&tlb, new_end, old_end, new_end,
629 			vma->vm_next ? vma->vm_next->vm_start : 0);
630 	} else {
631 		/*
632 		 * otherwise, clean from old_start; this is done to not touch
633 		 * the address space in [new_end, old_start) some architectures
634 		 * have constraints on va-space that make this illegal (IA64) -
635 		 * for the others its just a little faster.
636 		 */
637 		free_pgd_range(&tlb, old_start, old_end, new_end,
638 			vma->vm_next ? vma->vm_next->vm_start : 0);
639 	}
640 	tlb_finish_mmu(&tlb, new_end, old_end);
641 
642 	/*
643 	 * Shrink the vma to just the new range.  Always succeeds.
644 	 */
645 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
646 
647 	return 0;
648 }
649 
650 /*
651  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
652  * the stack is optionally relocated, and some extra space is added.
653  */
654 int setup_arg_pages(struct linux_binprm *bprm,
655 		    unsigned long stack_top,
656 		    int executable_stack)
657 {
658 	unsigned long ret;
659 	unsigned long stack_shift;
660 	struct mm_struct *mm = current->mm;
661 	struct vm_area_struct *vma = bprm->vma;
662 	struct vm_area_struct *prev = NULL;
663 	unsigned long vm_flags;
664 	unsigned long stack_base;
665 	unsigned long stack_size;
666 	unsigned long stack_expand;
667 	unsigned long rlim_stack;
668 
669 #ifdef CONFIG_STACK_GROWSUP
670 	/* Limit stack size to 1GB */
671 	stack_base = rlimit_max(RLIMIT_STACK);
672 	if (stack_base > (1 << 30))
673 		stack_base = 1 << 30;
674 
675 	/* Make sure we didn't let the argument array grow too large. */
676 	if (vma->vm_end - vma->vm_start > stack_base)
677 		return -ENOMEM;
678 
679 	stack_base = PAGE_ALIGN(stack_top - stack_base);
680 
681 	stack_shift = vma->vm_start - stack_base;
682 	mm->arg_start = bprm->p - stack_shift;
683 	bprm->p = vma->vm_end - stack_shift;
684 #else
685 	stack_top = arch_align_stack(stack_top);
686 	stack_top = PAGE_ALIGN(stack_top);
687 
688 	if (unlikely(stack_top < mmap_min_addr) ||
689 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
690 		return -ENOMEM;
691 
692 	stack_shift = vma->vm_end - stack_top;
693 
694 	bprm->p -= stack_shift;
695 	mm->arg_start = bprm->p;
696 #endif
697 
698 	if (bprm->loader)
699 		bprm->loader -= stack_shift;
700 	bprm->exec -= stack_shift;
701 
702 	down_write(&mm->mmap_sem);
703 	vm_flags = VM_STACK_FLAGS;
704 
705 	/*
706 	 * Adjust stack execute permissions; explicitly enable for
707 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
708 	 * (arch default) otherwise.
709 	 */
710 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
711 		vm_flags |= VM_EXEC;
712 	else if (executable_stack == EXSTACK_DISABLE_X)
713 		vm_flags &= ~VM_EXEC;
714 	vm_flags |= mm->def_flags;
715 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
716 
717 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
718 			vm_flags);
719 	if (ret)
720 		goto out_unlock;
721 	BUG_ON(prev != vma);
722 
723 	/* Move stack pages down in memory. */
724 	if (stack_shift) {
725 		ret = shift_arg_pages(vma, stack_shift);
726 		if (ret)
727 			goto out_unlock;
728 	}
729 
730 	/* mprotect_fixup is overkill to remove the temporary stack flags */
731 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
732 
733 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
734 	stack_size = vma->vm_end - vma->vm_start;
735 	/*
736 	 * Align this down to a page boundary as expand_stack
737 	 * will align it up.
738 	 */
739 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
740 #ifdef CONFIG_STACK_GROWSUP
741 	if (stack_size + stack_expand > rlim_stack)
742 		stack_base = vma->vm_start + rlim_stack;
743 	else
744 		stack_base = vma->vm_end + stack_expand;
745 #else
746 	if (stack_size + stack_expand > rlim_stack)
747 		stack_base = vma->vm_end - rlim_stack;
748 	else
749 		stack_base = vma->vm_start - stack_expand;
750 #endif
751 	current->mm->start_stack = bprm->p;
752 	ret = expand_stack(vma, stack_base);
753 	if (ret)
754 		ret = -EFAULT;
755 
756 out_unlock:
757 	up_write(&mm->mmap_sem);
758 	return ret;
759 }
760 EXPORT_SYMBOL(setup_arg_pages);
761 
762 #endif /* CONFIG_MMU */
763 
764 struct file *open_exec(const char *name)
765 {
766 	struct file *file;
767 	int err;
768 	static const struct open_flags open_exec_flags = {
769 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
770 		.acc_mode = MAY_EXEC | MAY_OPEN,
771 		.intent = LOOKUP_OPEN
772 	};
773 
774 	file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
775 	if (IS_ERR(file))
776 		goto out;
777 
778 	err = -EACCES;
779 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
780 		goto exit;
781 
782 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
783 		goto exit;
784 
785 	fsnotify_open(file);
786 
787 	err = deny_write_access(file);
788 	if (err)
789 		goto exit;
790 
791 out:
792 	return file;
793 
794 exit:
795 	fput(file);
796 	return ERR_PTR(err);
797 }
798 EXPORT_SYMBOL(open_exec);
799 
800 int kernel_read(struct file *file, loff_t offset,
801 		char *addr, unsigned long count)
802 {
803 	mm_segment_t old_fs;
804 	loff_t pos = offset;
805 	int result;
806 
807 	old_fs = get_fs();
808 	set_fs(get_ds());
809 	/* The cast to a user pointer is valid due to the set_fs() */
810 	result = vfs_read(file, (void __user *)addr, count, &pos);
811 	set_fs(old_fs);
812 	return result;
813 }
814 
815 EXPORT_SYMBOL(kernel_read);
816 
817 static int exec_mmap(struct mm_struct *mm)
818 {
819 	struct task_struct *tsk;
820 	struct mm_struct * old_mm, *active_mm;
821 
822 	/* Notify parent that we're no longer interested in the old VM */
823 	tsk = current;
824 	old_mm = current->mm;
825 	sync_mm_rss(tsk, old_mm);
826 	mm_release(tsk, old_mm);
827 
828 	if (old_mm) {
829 		/*
830 		 * Make sure that if there is a core dump in progress
831 		 * for the old mm, we get out and die instead of going
832 		 * through with the exec.  We must hold mmap_sem around
833 		 * checking core_state and changing tsk->mm.
834 		 */
835 		down_read(&old_mm->mmap_sem);
836 		if (unlikely(old_mm->core_state)) {
837 			up_read(&old_mm->mmap_sem);
838 			return -EINTR;
839 		}
840 	}
841 	task_lock(tsk);
842 	active_mm = tsk->active_mm;
843 	tsk->mm = mm;
844 	tsk->active_mm = mm;
845 	activate_mm(active_mm, mm);
846 	task_unlock(tsk);
847 	arch_pick_mmap_layout(mm);
848 	if (old_mm) {
849 		up_read(&old_mm->mmap_sem);
850 		BUG_ON(active_mm != old_mm);
851 		mm_update_next_owner(old_mm);
852 		mmput(old_mm);
853 		return 0;
854 	}
855 	mmdrop(active_mm);
856 	return 0;
857 }
858 
859 /*
860  * This function makes sure the current process has its own signal table,
861  * so that flush_signal_handlers can later reset the handlers without
862  * disturbing other processes.  (Other processes might share the signal
863  * table via the CLONE_SIGHAND option to clone().)
864  */
865 static int de_thread(struct task_struct *tsk)
866 {
867 	struct signal_struct *sig = tsk->signal;
868 	struct sighand_struct *oldsighand = tsk->sighand;
869 	spinlock_t *lock = &oldsighand->siglock;
870 
871 	if (thread_group_empty(tsk))
872 		goto no_thread_group;
873 
874 	/*
875 	 * Kill all other threads in the thread group.
876 	 */
877 	spin_lock_irq(lock);
878 	if (signal_group_exit(sig)) {
879 		/*
880 		 * Another group action in progress, just
881 		 * return so that the signal is processed.
882 		 */
883 		spin_unlock_irq(lock);
884 		return -EAGAIN;
885 	}
886 
887 	sig->group_exit_task = tsk;
888 	sig->notify_count = zap_other_threads(tsk);
889 	if (!thread_group_leader(tsk))
890 		sig->notify_count--;
891 
892 	while (sig->notify_count) {
893 		__set_current_state(TASK_UNINTERRUPTIBLE);
894 		spin_unlock_irq(lock);
895 		schedule();
896 		spin_lock_irq(lock);
897 	}
898 	spin_unlock_irq(lock);
899 
900 	/*
901 	 * At this point all other threads have exited, all we have to
902 	 * do is to wait for the thread group leader to become inactive,
903 	 * and to assume its PID:
904 	 */
905 	if (!thread_group_leader(tsk)) {
906 		struct task_struct *leader = tsk->group_leader;
907 
908 		sig->notify_count = -1;	/* for exit_notify() */
909 		for (;;) {
910 			write_lock_irq(&tasklist_lock);
911 			if (likely(leader->exit_state))
912 				break;
913 			__set_current_state(TASK_UNINTERRUPTIBLE);
914 			write_unlock_irq(&tasklist_lock);
915 			schedule();
916 		}
917 
918 		/*
919 		 * The only record we have of the real-time age of a
920 		 * process, regardless of execs it's done, is start_time.
921 		 * All the past CPU time is accumulated in signal_struct
922 		 * from sister threads now dead.  But in this non-leader
923 		 * exec, nothing survives from the original leader thread,
924 		 * whose birth marks the true age of this process now.
925 		 * When we take on its identity by switching to its PID, we
926 		 * also take its birthdate (always earlier than our own).
927 		 */
928 		tsk->start_time = leader->start_time;
929 
930 		BUG_ON(!same_thread_group(leader, tsk));
931 		BUG_ON(has_group_leader_pid(tsk));
932 		/*
933 		 * An exec() starts a new thread group with the
934 		 * TGID of the previous thread group. Rehash the
935 		 * two threads with a switched PID, and release
936 		 * the former thread group leader:
937 		 */
938 
939 		/* Become a process group leader with the old leader's pid.
940 		 * The old leader becomes a thread of the this thread group.
941 		 * Note: The old leader also uses this pid until release_task
942 		 *       is called.  Odd but simple and correct.
943 		 */
944 		detach_pid(tsk, PIDTYPE_PID);
945 		tsk->pid = leader->pid;
946 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
947 		transfer_pid(leader, tsk, PIDTYPE_PGID);
948 		transfer_pid(leader, tsk, PIDTYPE_SID);
949 
950 		list_replace_rcu(&leader->tasks, &tsk->tasks);
951 		list_replace_init(&leader->sibling, &tsk->sibling);
952 
953 		tsk->group_leader = tsk;
954 		leader->group_leader = tsk;
955 
956 		tsk->exit_signal = SIGCHLD;
957 		leader->exit_signal = -1;
958 
959 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
960 		leader->exit_state = EXIT_DEAD;
961 
962 		/*
963 		 * We are going to release_task()->ptrace_unlink() silently,
964 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
965 		 * the tracer wont't block again waiting for this thread.
966 		 */
967 		if (unlikely(leader->ptrace))
968 			__wake_up_parent(leader, leader->parent);
969 		write_unlock_irq(&tasklist_lock);
970 
971 		release_task(leader);
972 	}
973 
974 	sig->group_exit_task = NULL;
975 	sig->notify_count = 0;
976 
977 no_thread_group:
978 	if (current->mm)
979 		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
980 
981 	exit_itimers(sig);
982 	flush_itimer_signals();
983 
984 	if (atomic_read(&oldsighand->count) != 1) {
985 		struct sighand_struct *newsighand;
986 		/*
987 		 * This ->sighand is shared with the CLONE_SIGHAND
988 		 * but not CLONE_THREAD task, switch to the new one.
989 		 */
990 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
991 		if (!newsighand)
992 			return -ENOMEM;
993 
994 		atomic_set(&newsighand->count, 1);
995 		memcpy(newsighand->action, oldsighand->action,
996 		       sizeof(newsighand->action));
997 
998 		write_lock_irq(&tasklist_lock);
999 		spin_lock(&oldsighand->siglock);
1000 		rcu_assign_pointer(tsk->sighand, newsighand);
1001 		spin_unlock(&oldsighand->siglock);
1002 		write_unlock_irq(&tasklist_lock);
1003 
1004 		__cleanup_sighand(oldsighand);
1005 	}
1006 
1007 	BUG_ON(!thread_group_leader(tsk));
1008 	return 0;
1009 }
1010 
1011 /*
1012  * These functions flushes out all traces of the currently running executable
1013  * so that a new one can be started
1014  */
1015 static void flush_old_files(struct files_struct * files)
1016 {
1017 	long j = -1;
1018 	struct fdtable *fdt;
1019 
1020 	spin_lock(&files->file_lock);
1021 	for (;;) {
1022 		unsigned long set, i;
1023 
1024 		j++;
1025 		i = j * __NFDBITS;
1026 		fdt = files_fdtable(files);
1027 		if (i >= fdt->max_fds)
1028 			break;
1029 		set = fdt->close_on_exec->fds_bits[j];
1030 		if (!set)
1031 			continue;
1032 		fdt->close_on_exec->fds_bits[j] = 0;
1033 		spin_unlock(&files->file_lock);
1034 		for ( ; set ; i++,set >>= 1) {
1035 			if (set & 1) {
1036 				sys_close(i);
1037 			}
1038 		}
1039 		spin_lock(&files->file_lock);
1040 
1041 	}
1042 	spin_unlock(&files->file_lock);
1043 }
1044 
1045 char *get_task_comm(char *buf, struct task_struct *tsk)
1046 {
1047 	/* buf must be at least sizeof(tsk->comm) in size */
1048 	task_lock(tsk);
1049 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1050 	task_unlock(tsk);
1051 	return buf;
1052 }
1053 EXPORT_SYMBOL_GPL(get_task_comm);
1054 
1055 void set_task_comm(struct task_struct *tsk, char *buf)
1056 {
1057 	task_lock(tsk);
1058 
1059 	trace_task_rename(tsk, buf);
1060 
1061 	/*
1062 	 * Threads may access current->comm without holding
1063 	 * the task lock, so write the string carefully.
1064 	 * Readers without a lock may see incomplete new
1065 	 * names but are safe from non-terminating string reads.
1066 	 */
1067 	memset(tsk->comm, 0, TASK_COMM_LEN);
1068 	wmb();
1069 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1070 	task_unlock(tsk);
1071 	perf_event_comm(tsk);
1072 }
1073 
1074 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1075 {
1076 	int i, ch;
1077 
1078 	/* Copies the binary name from after last slash */
1079 	for (i = 0; (ch = *(fn++)) != '\0';) {
1080 		if (ch == '/')
1081 			i = 0; /* overwrite what we wrote */
1082 		else
1083 			if (i < len - 1)
1084 				tcomm[i++] = ch;
1085 	}
1086 	tcomm[i] = '\0';
1087 }
1088 
1089 int flush_old_exec(struct linux_binprm * bprm)
1090 {
1091 	int retval;
1092 
1093 	/*
1094 	 * Make sure we have a private signal table and that
1095 	 * we are unassociated from the previous thread group.
1096 	 */
1097 	retval = de_thread(current);
1098 	if (retval)
1099 		goto out;
1100 
1101 	set_mm_exe_file(bprm->mm, bprm->file);
1102 
1103 	filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1104 	/*
1105 	 * Release all of the old mmap stuff
1106 	 */
1107 	acct_arg_size(bprm, 0);
1108 	retval = exec_mmap(bprm->mm);
1109 	if (retval)
1110 		goto out;
1111 
1112 	bprm->mm = NULL;		/* We're using it now */
1113 
1114 	set_fs(USER_DS);
1115 	current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1116 	flush_thread();
1117 	current->personality &= ~bprm->per_clear;
1118 
1119 	return 0;
1120 
1121 out:
1122 	return retval;
1123 }
1124 EXPORT_SYMBOL(flush_old_exec);
1125 
1126 void would_dump(struct linux_binprm *bprm, struct file *file)
1127 {
1128 	if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1129 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1130 }
1131 EXPORT_SYMBOL(would_dump);
1132 
1133 void setup_new_exec(struct linux_binprm * bprm)
1134 {
1135 	arch_pick_mmap_layout(current->mm);
1136 
1137 	/* This is the point of no return */
1138 	current->sas_ss_sp = current->sas_ss_size = 0;
1139 
1140 	if (current_euid() == current_uid() && current_egid() == current_gid())
1141 		set_dumpable(current->mm, 1);
1142 	else
1143 		set_dumpable(current->mm, suid_dumpable);
1144 
1145 	set_task_comm(current, bprm->tcomm);
1146 
1147 	/* Set the new mm task size. We have to do that late because it may
1148 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1149 	 * some architectures like powerpc
1150 	 */
1151 	current->mm->task_size = TASK_SIZE;
1152 
1153 	/* install the new credentials */
1154 	if (bprm->cred->uid != current_euid() ||
1155 	    bprm->cred->gid != current_egid()) {
1156 		current->pdeath_signal = 0;
1157 	} else {
1158 		would_dump(bprm, bprm->file);
1159 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1160 			set_dumpable(current->mm, suid_dumpable);
1161 	}
1162 
1163 	/*
1164 	 * Flush performance counters when crossing a
1165 	 * security domain:
1166 	 */
1167 	if (!get_dumpable(current->mm))
1168 		perf_event_exit_task(current);
1169 
1170 	/* An exec changes our domain. We are no longer part of the thread
1171 	   group */
1172 
1173 	current->self_exec_id++;
1174 
1175 	flush_signal_handlers(current, 0);
1176 	flush_old_files(current->files);
1177 }
1178 EXPORT_SYMBOL(setup_new_exec);
1179 
1180 /*
1181  * Prepare credentials and lock ->cred_guard_mutex.
1182  * install_exec_creds() commits the new creds and drops the lock.
1183  * Or, if exec fails before, free_bprm() should release ->cred and
1184  * and unlock.
1185  */
1186 int prepare_bprm_creds(struct linux_binprm *bprm)
1187 {
1188 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1189 		return -ERESTARTNOINTR;
1190 
1191 	bprm->cred = prepare_exec_creds();
1192 	if (likely(bprm->cred))
1193 		return 0;
1194 
1195 	mutex_unlock(&current->signal->cred_guard_mutex);
1196 	return -ENOMEM;
1197 }
1198 
1199 void free_bprm(struct linux_binprm *bprm)
1200 {
1201 	free_arg_pages(bprm);
1202 	if (bprm->cred) {
1203 		mutex_unlock(&current->signal->cred_guard_mutex);
1204 		abort_creds(bprm->cred);
1205 	}
1206 	kfree(bprm);
1207 }
1208 
1209 /*
1210  * install the new credentials for this executable
1211  */
1212 void install_exec_creds(struct linux_binprm *bprm)
1213 {
1214 	security_bprm_committing_creds(bprm);
1215 
1216 	commit_creds(bprm->cred);
1217 	bprm->cred = NULL;
1218 	/*
1219 	 * cred_guard_mutex must be held at least to this point to prevent
1220 	 * ptrace_attach() from altering our determination of the task's
1221 	 * credentials; any time after this it may be unlocked.
1222 	 */
1223 	security_bprm_committed_creds(bprm);
1224 	mutex_unlock(&current->signal->cred_guard_mutex);
1225 }
1226 EXPORT_SYMBOL(install_exec_creds);
1227 
1228 /*
1229  * determine how safe it is to execute the proposed program
1230  * - the caller must hold ->cred_guard_mutex to protect against
1231  *   PTRACE_ATTACH
1232  */
1233 static int check_unsafe_exec(struct linux_binprm *bprm)
1234 {
1235 	struct task_struct *p = current, *t;
1236 	unsigned n_fs;
1237 	int res = 0;
1238 
1239 	if (p->ptrace) {
1240 		if (p->ptrace & PT_PTRACE_CAP)
1241 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1242 		else
1243 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1244 	}
1245 
1246 	n_fs = 1;
1247 	spin_lock(&p->fs->lock);
1248 	rcu_read_lock();
1249 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1250 		if (t->fs == p->fs)
1251 			n_fs++;
1252 	}
1253 	rcu_read_unlock();
1254 
1255 	if (p->fs->users > n_fs) {
1256 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1257 	} else {
1258 		res = -EAGAIN;
1259 		if (!p->fs->in_exec) {
1260 			p->fs->in_exec = 1;
1261 			res = 1;
1262 		}
1263 	}
1264 	spin_unlock(&p->fs->lock);
1265 
1266 	return res;
1267 }
1268 
1269 /*
1270  * Fill the binprm structure from the inode.
1271  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1272  *
1273  * This may be called multiple times for binary chains (scripts for example).
1274  */
1275 int prepare_binprm(struct linux_binprm *bprm)
1276 {
1277 	umode_t mode;
1278 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1279 	int retval;
1280 
1281 	mode = inode->i_mode;
1282 	if (bprm->file->f_op == NULL)
1283 		return -EACCES;
1284 
1285 	/* clear any previous set[ug]id data from a previous binary */
1286 	bprm->cred->euid = current_euid();
1287 	bprm->cred->egid = current_egid();
1288 
1289 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1290 		/* Set-uid? */
1291 		if (mode & S_ISUID) {
1292 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1293 			bprm->cred->euid = inode->i_uid;
1294 		}
1295 
1296 		/* Set-gid? */
1297 		/*
1298 		 * If setgid is set but no group execute bit then this
1299 		 * is a candidate for mandatory locking, not a setgid
1300 		 * executable.
1301 		 */
1302 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1303 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1304 			bprm->cred->egid = inode->i_gid;
1305 		}
1306 	}
1307 
1308 	/* fill in binprm security blob */
1309 	retval = security_bprm_set_creds(bprm);
1310 	if (retval)
1311 		return retval;
1312 	bprm->cred_prepared = 1;
1313 
1314 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1315 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1316 }
1317 
1318 EXPORT_SYMBOL(prepare_binprm);
1319 
1320 /*
1321  * Arguments are '\0' separated strings found at the location bprm->p
1322  * points to; chop off the first by relocating brpm->p to right after
1323  * the first '\0' encountered.
1324  */
1325 int remove_arg_zero(struct linux_binprm *bprm)
1326 {
1327 	int ret = 0;
1328 	unsigned long offset;
1329 	char *kaddr;
1330 	struct page *page;
1331 
1332 	if (!bprm->argc)
1333 		return 0;
1334 
1335 	do {
1336 		offset = bprm->p & ~PAGE_MASK;
1337 		page = get_arg_page(bprm, bprm->p, 0);
1338 		if (!page) {
1339 			ret = -EFAULT;
1340 			goto out;
1341 		}
1342 		kaddr = kmap_atomic(page, KM_USER0);
1343 
1344 		for (; offset < PAGE_SIZE && kaddr[offset];
1345 				offset++, bprm->p++)
1346 			;
1347 
1348 		kunmap_atomic(kaddr, KM_USER0);
1349 		put_arg_page(page);
1350 
1351 		if (offset == PAGE_SIZE)
1352 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1353 	} while (offset == PAGE_SIZE);
1354 
1355 	bprm->p++;
1356 	bprm->argc--;
1357 	ret = 0;
1358 
1359 out:
1360 	return ret;
1361 }
1362 EXPORT_SYMBOL(remove_arg_zero);
1363 
1364 /*
1365  * cycle the list of binary formats handler, until one recognizes the image
1366  */
1367 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1368 {
1369 	unsigned int depth = bprm->recursion_depth;
1370 	int try,retval;
1371 	struct linux_binfmt *fmt;
1372 	pid_t old_pid;
1373 
1374 	retval = security_bprm_check(bprm);
1375 	if (retval)
1376 		return retval;
1377 
1378 	retval = audit_bprm(bprm);
1379 	if (retval)
1380 		return retval;
1381 
1382 	/* Need to fetch pid before load_binary changes it */
1383 	rcu_read_lock();
1384 	old_pid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1385 	rcu_read_unlock();
1386 
1387 	retval = -ENOENT;
1388 	for (try=0; try<2; try++) {
1389 		read_lock(&binfmt_lock);
1390 		list_for_each_entry(fmt, &formats, lh) {
1391 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1392 			if (!fn)
1393 				continue;
1394 			if (!try_module_get(fmt->module))
1395 				continue;
1396 			read_unlock(&binfmt_lock);
1397 			retval = fn(bprm, regs);
1398 			/*
1399 			 * Restore the depth counter to its starting value
1400 			 * in this call, so we don't have to rely on every
1401 			 * load_binary function to restore it on return.
1402 			 */
1403 			bprm->recursion_depth = depth;
1404 			if (retval >= 0) {
1405 				if (depth == 0)
1406 					ptrace_event(PTRACE_EVENT_EXEC,
1407 							old_pid);
1408 				put_binfmt(fmt);
1409 				allow_write_access(bprm->file);
1410 				if (bprm->file)
1411 					fput(bprm->file);
1412 				bprm->file = NULL;
1413 				current->did_exec = 1;
1414 				proc_exec_connector(current);
1415 				return retval;
1416 			}
1417 			read_lock(&binfmt_lock);
1418 			put_binfmt(fmt);
1419 			if (retval != -ENOEXEC || bprm->mm == NULL)
1420 				break;
1421 			if (!bprm->file) {
1422 				read_unlock(&binfmt_lock);
1423 				return retval;
1424 			}
1425 		}
1426 		read_unlock(&binfmt_lock);
1427 #ifdef CONFIG_MODULES
1428 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1429 			break;
1430 		} else {
1431 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1432 			if (printable(bprm->buf[0]) &&
1433 			    printable(bprm->buf[1]) &&
1434 			    printable(bprm->buf[2]) &&
1435 			    printable(bprm->buf[3]))
1436 				break; /* -ENOEXEC */
1437 			if (try)
1438 				break; /* -ENOEXEC */
1439 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1440 		}
1441 #else
1442 		break;
1443 #endif
1444 	}
1445 	return retval;
1446 }
1447 
1448 EXPORT_SYMBOL(search_binary_handler);
1449 
1450 /*
1451  * sys_execve() executes a new program.
1452  */
1453 static int do_execve_common(const char *filename,
1454 				struct user_arg_ptr argv,
1455 				struct user_arg_ptr envp,
1456 				struct pt_regs *regs)
1457 {
1458 	struct linux_binprm *bprm;
1459 	struct file *file;
1460 	struct files_struct *displaced;
1461 	bool clear_in_exec;
1462 	int retval;
1463 	const struct cred *cred = current_cred();
1464 
1465 	/*
1466 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1467 	 * set*uid() to execve() because too many poorly written programs
1468 	 * don't check setuid() return code.  Here we additionally recheck
1469 	 * whether NPROC limit is still exceeded.
1470 	 */
1471 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1472 	    atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1473 		retval = -EAGAIN;
1474 		goto out_ret;
1475 	}
1476 
1477 	/* We're below the limit (still or again), so we don't want to make
1478 	 * further execve() calls fail. */
1479 	current->flags &= ~PF_NPROC_EXCEEDED;
1480 
1481 	retval = unshare_files(&displaced);
1482 	if (retval)
1483 		goto out_ret;
1484 
1485 	retval = -ENOMEM;
1486 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1487 	if (!bprm)
1488 		goto out_files;
1489 
1490 	retval = prepare_bprm_creds(bprm);
1491 	if (retval)
1492 		goto out_free;
1493 
1494 	retval = check_unsafe_exec(bprm);
1495 	if (retval < 0)
1496 		goto out_free;
1497 	clear_in_exec = retval;
1498 	current->in_execve = 1;
1499 
1500 	file = open_exec(filename);
1501 	retval = PTR_ERR(file);
1502 	if (IS_ERR(file))
1503 		goto out_unmark;
1504 
1505 	sched_exec();
1506 
1507 	bprm->file = file;
1508 	bprm->filename = filename;
1509 	bprm->interp = filename;
1510 
1511 	retval = bprm_mm_init(bprm);
1512 	if (retval)
1513 		goto out_file;
1514 
1515 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1516 	if ((retval = bprm->argc) < 0)
1517 		goto out;
1518 
1519 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1520 	if ((retval = bprm->envc) < 0)
1521 		goto out;
1522 
1523 	retval = prepare_binprm(bprm);
1524 	if (retval < 0)
1525 		goto out;
1526 
1527 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1528 	if (retval < 0)
1529 		goto out;
1530 
1531 	bprm->exec = bprm->p;
1532 	retval = copy_strings(bprm->envc, envp, bprm);
1533 	if (retval < 0)
1534 		goto out;
1535 
1536 	retval = copy_strings(bprm->argc, argv, bprm);
1537 	if (retval < 0)
1538 		goto out;
1539 
1540 	retval = search_binary_handler(bprm,regs);
1541 	if (retval < 0)
1542 		goto out;
1543 
1544 	/* execve succeeded */
1545 	current->fs->in_exec = 0;
1546 	current->in_execve = 0;
1547 	acct_update_integrals(current);
1548 	free_bprm(bprm);
1549 	if (displaced)
1550 		put_files_struct(displaced);
1551 	return retval;
1552 
1553 out:
1554 	if (bprm->mm) {
1555 		acct_arg_size(bprm, 0);
1556 		mmput(bprm->mm);
1557 	}
1558 
1559 out_file:
1560 	if (bprm->file) {
1561 		allow_write_access(bprm->file);
1562 		fput(bprm->file);
1563 	}
1564 
1565 out_unmark:
1566 	if (clear_in_exec)
1567 		current->fs->in_exec = 0;
1568 	current->in_execve = 0;
1569 
1570 out_free:
1571 	free_bprm(bprm);
1572 
1573 out_files:
1574 	if (displaced)
1575 		reset_files_struct(displaced);
1576 out_ret:
1577 	return retval;
1578 }
1579 
1580 int do_execve(const char *filename,
1581 	const char __user *const __user *__argv,
1582 	const char __user *const __user *__envp,
1583 	struct pt_regs *regs)
1584 {
1585 	struct user_arg_ptr argv = { .ptr.native = __argv };
1586 	struct user_arg_ptr envp = { .ptr.native = __envp };
1587 	return do_execve_common(filename, argv, envp, regs);
1588 }
1589 
1590 #ifdef CONFIG_COMPAT
1591 int compat_do_execve(char *filename,
1592 	compat_uptr_t __user *__argv,
1593 	compat_uptr_t __user *__envp,
1594 	struct pt_regs *regs)
1595 {
1596 	struct user_arg_ptr argv = {
1597 		.is_compat = true,
1598 		.ptr.compat = __argv,
1599 	};
1600 	struct user_arg_ptr envp = {
1601 		.is_compat = true,
1602 		.ptr.compat = __envp,
1603 	};
1604 	return do_execve_common(filename, argv, envp, regs);
1605 }
1606 #endif
1607 
1608 void set_binfmt(struct linux_binfmt *new)
1609 {
1610 	struct mm_struct *mm = current->mm;
1611 
1612 	if (mm->binfmt)
1613 		module_put(mm->binfmt->module);
1614 
1615 	mm->binfmt = new;
1616 	if (new)
1617 		__module_get(new->module);
1618 }
1619 
1620 EXPORT_SYMBOL(set_binfmt);
1621 
1622 static int expand_corename(struct core_name *cn)
1623 {
1624 	char *old_corename = cn->corename;
1625 
1626 	cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1627 	cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1628 
1629 	if (!cn->corename) {
1630 		kfree(old_corename);
1631 		return -ENOMEM;
1632 	}
1633 
1634 	return 0;
1635 }
1636 
1637 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1638 {
1639 	char *cur;
1640 	int need;
1641 	int ret;
1642 	va_list arg;
1643 
1644 	va_start(arg, fmt);
1645 	need = vsnprintf(NULL, 0, fmt, arg);
1646 	va_end(arg);
1647 
1648 	if (likely(need < cn->size - cn->used - 1))
1649 		goto out_printf;
1650 
1651 	ret = expand_corename(cn);
1652 	if (ret)
1653 		goto expand_fail;
1654 
1655 out_printf:
1656 	cur = cn->corename + cn->used;
1657 	va_start(arg, fmt);
1658 	vsnprintf(cur, need + 1, fmt, arg);
1659 	va_end(arg);
1660 	cn->used += need;
1661 	return 0;
1662 
1663 expand_fail:
1664 	return ret;
1665 }
1666 
1667 static void cn_escape(char *str)
1668 {
1669 	for (; *str; str++)
1670 		if (*str == '/')
1671 			*str = '!';
1672 }
1673 
1674 static int cn_print_exe_file(struct core_name *cn)
1675 {
1676 	struct file *exe_file;
1677 	char *pathbuf, *path;
1678 	int ret;
1679 
1680 	exe_file = get_mm_exe_file(current->mm);
1681 	if (!exe_file) {
1682 		char *commstart = cn->corename + cn->used;
1683 		ret = cn_printf(cn, "%s (path unknown)", current->comm);
1684 		cn_escape(commstart);
1685 		return ret;
1686 	}
1687 
1688 	pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1689 	if (!pathbuf) {
1690 		ret = -ENOMEM;
1691 		goto put_exe_file;
1692 	}
1693 
1694 	path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1695 	if (IS_ERR(path)) {
1696 		ret = PTR_ERR(path);
1697 		goto free_buf;
1698 	}
1699 
1700 	cn_escape(path);
1701 
1702 	ret = cn_printf(cn, "%s", path);
1703 
1704 free_buf:
1705 	kfree(pathbuf);
1706 put_exe_file:
1707 	fput(exe_file);
1708 	return ret;
1709 }
1710 
1711 /* format_corename will inspect the pattern parameter, and output a
1712  * name into corename, which must have space for at least
1713  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1714  */
1715 static int format_corename(struct core_name *cn, long signr)
1716 {
1717 	const struct cred *cred = current_cred();
1718 	const char *pat_ptr = core_pattern;
1719 	int ispipe = (*pat_ptr == '|');
1720 	int pid_in_pattern = 0;
1721 	int err = 0;
1722 
1723 	cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1724 	cn->corename = kmalloc(cn->size, GFP_KERNEL);
1725 	cn->used = 0;
1726 
1727 	if (!cn->corename)
1728 		return -ENOMEM;
1729 
1730 	/* Repeat as long as we have more pattern to process and more output
1731 	   space */
1732 	while (*pat_ptr) {
1733 		if (*pat_ptr != '%') {
1734 			if (*pat_ptr == 0)
1735 				goto out;
1736 			err = cn_printf(cn, "%c", *pat_ptr++);
1737 		} else {
1738 			switch (*++pat_ptr) {
1739 			/* single % at the end, drop that */
1740 			case 0:
1741 				goto out;
1742 			/* Double percent, output one percent */
1743 			case '%':
1744 				err = cn_printf(cn, "%c", '%');
1745 				break;
1746 			/* pid */
1747 			case 'p':
1748 				pid_in_pattern = 1;
1749 				err = cn_printf(cn, "%d",
1750 					      task_tgid_vnr(current));
1751 				break;
1752 			/* uid */
1753 			case 'u':
1754 				err = cn_printf(cn, "%d", cred->uid);
1755 				break;
1756 			/* gid */
1757 			case 'g':
1758 				err = cn_printf(cn, "%d", cred->gid);
1759 				break;
1760 			/* signal that caused the coredump */
1761 			case 's':
1762 				err = cn_printf(cn, "%ld", signr);
1763 				break;
1764 			/* UNIX time of coredump */
1765 			case 't': {
1766 				struct timeval tv;
1767 				do_gettimeofday(&tv);
1768 				err = cn_printf(cn, "%lu", tv.tv_sec);
1769 				break;
1770 			}
1771 			/* hostname */
1772 			case 'h': {
1773 				char *namestart = cn->corename + cn->used;
1774 				down_read(&uts_sem);
1775 				err = cn_printf(cn, "%s",
1776 					      utsname()->nodename);
1777 				up_read(&uts_sem);
1778 				cn_escape(namestart);
1779 				break;
1780 			}
1781 			/* executable */
1782 			case 'e': {
1783 				char *commstart = cn->corename + cn->used;
1784 				err = cn_printf(cn, "%s", current->comm);
1785 				cn_escape(commstart);
1786 				break;
1787 			}
1788 			case 'E':
1789 				err = cn_print_exe_file(cn);
1790 				break;
1791 			/* core limit size */
1792 			case 'c':
1793 				err = cn_printf(cn, "%lu",
1794 					      rlimit(RLIMIT_CORE));
1795 				break;
1796 			default:
1797 				break;
1798 			}
1799 			++pat_ptr;
1800 		}
1801 
1802 		if (err)
1803 			return err;
1804 	}
1805 
1806 	/* Backward compatibility with core_uses_pid:
1807 	 *
1808 	 * If core_pattern does not include a %p (as is the default)
1809 	 * and core_uses_pid is set, then .%pid will be appended to
1810 	 * the filename. Do not do this for piped commands. */
1811 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1812 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1813 		if (err)
1814 			return err;
1815 	}
1816 out:
1817 	return ispipe;
1818 }
1819 
1820 static int zap_process(struct task_struct *start, int exit_code)
1821 {
1822 	struct task_struct *t;
1823 	int nr = 0;
1824 
1825 	start->signal->flags = SIGNAL_GROUP_EXIT;
1826 	start->signal->group_exit_code = exit_code;
1827 	start->signal->group_stop_count = 0;
1828 
1829 	t = start;
1830 	do {
1831 		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1832 		if (t != current && t->mm) {
1833 			sigaddset(&t->pending.signal, SIGKILL);
1834 			signal_wake_up(t, 1);
1835 			nr++;
1836 		}
1837 	} while_each_thread(start, t);
1838 
1839 	return nr;
1840 }
1841 
1842 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1843 				struct core_state *core_state, int exit_code)
1844 {
1845 	struct task_struct *g, *p;
1846 	unsigned long flags;
1847 	int nr = -EAGAIN;
1848 
1849 	spin_lock_irq(&tsk->sighand->siglock);
1850 	if (!signal_group_exit(tsk->signal)) {
1851 		mm->core_state = core_state;
1852 		nr = zap_process(tsk, exit_code);
1853 	}
1854 	spin_unlock_irq(&tsk->sighand->siglock);
1855 	if (unlikely(nr < 0))
1856 		return nr;
1857 
1858 	if (atomic_read(&mm->mm_users) == nr + 1)
1859 		goto done;
1860 	/*
1861 	 * We should find and kill all tasks which use this mm, and we should
1862 	 * count them correctly into ->nr_threads. We don't take tasklist
1863 	 * lock, but this is safe wrt:
1864 	 *
1865 	 * fork:
1866 	 *	None of sub-threads can fork after zap_process(leader). All
1867 	 *	processes which were created before this point should be
1868 	 *	visible to zap_threads() because copy_process() adds the new
1869 	 *	process to the tail of init_task.tasks list, and lock/unlock
1870 	 *	of ->siglock provides a memory barrier.
1871 	 *
1872 	 * do_exit:
1873 	 *	The caller holds mm->mmap_sem. This means that the task which
1874 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1875 	 *	its ->mm.
1876 	 *
1877 	 * de_thread:
1878 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1879 	 *	we must see either old or new leader, this does not matter.
1880 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1881 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1882 	 *	it can't fail.
1883 	 *
1884 	 *	Note also that "g" can be the old leader with ->mm == NULL
1885 	 *	and already unhashed and thus removed from ->thread_group.
1886 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1887 	 *	clear the ->next pointer, we will find the new leader via
1888 	 *	next_thread().
1889 	 */
1890 	rcu_read_lock();
1891 	for_each_process(g) {
1892 		if (g == tsk->group_leader)
1893 			continue;
1894 		if (g->flags & PF_KTHREAD)
1895 			continue;
1896 		p = g;
1897 		do {
1898 			if (p->mm) {
1899 				if (unlikely(p->mm == mm)) {
1900 					lock_task_sighand(p, &flags);
1901 					nr += zap_process(p, exit_code);
1902 					unlock_task_sighand(p, &flags);
1903 				}
1904 				break;
1905 			}
1906 		} while_each_thread(g, p);
1907 	}
1908 	rcu_read_unlock();
1909 done:
1910 	atomic_set(&core_state->nr_threads, nr);
1911 	return nr;
1912 }
1913 
1914 static int coredump_wait(int exit_code, struct core_state *core_state)
1915 {
1916 	struct task_struct *tsk = current;
1917 	struct mm_struct *mm = tsk->mm;
1918 	struct completion *vfork_done;
1919 	int core_waiters = -EBUSY;
1920 
1921 	init_completion(&core_state->startup);
1922 	core_state->dumper.task = tsk;
1923 	core_state->dumper.next = NULL;
1924 
1925 	down_write(&mm->mmap_sem);
1926 	if (!mm->core_state)
1927 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1928 	up_write(&mm->mmap_sem);
1929 
1930 	if (unlikely(core_waiters < 0))
1931 		goto fail;
1932 
1933 	/*
1934 	 * Make sure nobody is waiting for us to release the VM,
1935 	 * otherwise we can deadlock when we wait on each other
1936 	 */
1937 	vfork_done = tsk->vfork_done;
1938 	if (vfork_done) {
1939 		tsk->vfork_done = NULL;
1940 		complete(vfork_done);
1941 	}
1942 
1943 	if (core_waiters)
1944 		wait_for_completion(&core_state->startup);
1945 fail:
1946 	return core_waiters;
1947 }
1948 
1949 static void coredump_finish(struct mm_struct *mm)
1950 {
1951 	struct core_thread *curr, *next;
1952 	struct task_struct *task;
1953 
1954 	next = mm->core_state->dumper.next;
1955 	while ((curr = next) != NULL) {
1956 		next = curr->next;
1957 		task = curr->task;
1958 		/*
1959 		 * see exit_mm(), curr->task must not see
1960 		 * ->task == NULL before we read ->next.
1961 		 */
1962 		smp_mb();
1963 		curr->task = NULL;
1964 		wake_up_process(task);
1965 	}
1966 
1967 	mm->core_state = NULL;
1968 }
1969 
1970 /*
1971  * set_dumpable converts traditional three-value dumpable to two flags and
1972  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1973  * these bits are not changed atomically.  So get_dumpable can observe the
1974  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1975  * return either old dumpable or new one by paying attention to the order of
1976  * modifying the bits.
1977  *
1978  * dumpable |   mm->flags (binary)
1979  * old  new | initial interim  final
1980  * ---------+-----------------------
1981  *  0    1  |   00      01      01
1982  *  0    2  |   00      10(*)   11
1983  *  1    0  |   01      00      00
1984  *  1    2  |   01      11      11
1985  *  2    0  |   11      10(*)   00
1986  *  2    1  |   11      11      01
1987  *
1988  * (*) get_dumpable regards interim value of 10 as 11.
1989  */
1990 void set_dumpable(struct mm_struct *mm, int value)
1991 {
1992 	switch (value) {
1993 	case 0:
1994 		clear_bit(MMF_DUMPABLE, &mm->flags);
1995 		smp_wmb();
1996 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1997 		break;
1998 	case 1:
1999 		set_bit(MMF_DUMPABLE, &mm->flags);
2000 		smp_wmb();
2001 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
2002 		break;
2003 	case 2:
2004 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
2005 		smp_wmb();
2006 		set_bit(MMF_DUMPABLE, &mm->flags);
2007 		break;
2008 	}
2009 }
2010 
2011 static int __get_dumpable(unsigned long mm_flags)
2012 {
2013 	int ret;
2014 
2015 	ret = mm_flags & MMF_DUMPABLE_MASK;
2016 	return (ret >= 2) ? 2 : ret;
2017 }
2018 
2019 int get_dumpable(struct mm_struct *mm)
2020 {
2021 	return __get_dumpable(mm->flags);
2022 }
2023 
2024 static void wait_for_dump_helpers(struct file *file)
2025 {
2026 	struct pipe_inode_info *pipe;
2027 
2028 	pipe = file->f_path.dentry->d_inode->i_pipe;
2029 
2030 	pipe_lock(pipe);
2031 	pipe->readers++;
2032 	pipe->writers--;
2033 
2034 	while ((pipe->readers > 1) && (!signal_pending(current))) {
2035 		wake_up_interruptible_sync(&pipe->wait);
2036 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
2037 		pipe_wait(pipe);
2038 	}
2039 
2040 	pipe->readers--;
2041 	pipe->writers++;
2042 	pipe_unlock(pipe);
2043 
2044 }
2045 
2046 
2047 /*
2048  * umh_pipe_setup
2049  * helper function to customize the process used
2050  * to collect the core in userspace.  Specifically
2051  * it sets up a pipe and installs it as fd 0 (stdin)
2052  * for the process.  Returns 0 on success, or
2053  * PTR_ERR on failure.
2054  * Note that it also sets the core limit to 1.  This
2055  * is a special value that we use to trap recursive
2056  * core dumps
2057  */
2058 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
2059 {
2060 	struct file *rp, *wp;
2061 	struct fdtable *fdt;
2062 	struct coredump_params *cp = (struct coredump_params *)info->data;
2063 	struct files_struct *cf = current->files;
2064 
2065 	wp = create_write_pipe(0);
2066 	if (IS_ERR(wp))
2067 		return PTR_ERR(wp);
2068 
2069 	rp = create_read_pipe(wp, 0);
2070 	if (IS_ERR(rp)) {
2071 		free_write_pipe(wp);
2072 		return PTR_ERR(rp);
2073 	}
2074 
2075 	cp->file = wp;
2076 
2077 	sys_close(0);
2078 	fd_install(0, rp);
2079 	spin_lock(&cf->file_lock);
2080 	fdt = files_fdtable(cf);
2081 	FD_SET(0, fdt->open_fds);
2082 	FD_CLR(0, fdt->close_on_exec);
2083 	spin_unlock(&cf->file_lock);
2084 
2085 	/* and disallow core files too */
2086 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2087 
2088 	return 0;
2089 }
2090 
2091 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
2092 {
2093 	struct core_state core_state;
2094 	struct core_name cn;
2095 	struct mm_struct *mm = current->mm;
2096 	struct linux_binfmt * binfmt;
2097 	const struct cred *old_cred;
2098 	struct cred *cred;
2099 	int retval = 0;
2100 	int flag = 0;
2101 	int ispipe;
2102 	static atomic_t core_dump_count = ATOMIC_INIT(0);
2103 	struct coredump_params cprm = {
2104 		.signr = signr,
2105 		.regs = regs,
2106 		.limit = rlimit(RLIMIT_CORE),
2107 		/*
2108 		 * We must use the same mm->flags while dumping core to avoid
2109 		 * inconsistency of bit flags, since this flag is not protected
2110 		 * by any locks.
2111 		 */
2112 		.mm_flags = mm->flags,
2113 	};
2114 
2115 	audit_core_dumps(signr);
2116 
2117 	binfmt = mm->binfmt;
2118 	if (!binfmt || !binfmt->core_dump)
2119 		goto fail;
2120 	if (!__get_dumpable(cprm.mm_flags))
2121 		goto fail;
2122 
2123 	cred = prepare_creds();
2124 	if (!cred)
2125 		goto fail;
2126 	/*
2127 	 *	We cannot trust fsuid as being the "true" uid of the
2128 	 *	process nor do we know its entire history. We only know it
2129 	 *	was tainted so we dump it as root in mode 2.
2130 	 */
2131 	if (__get_dumpable(cprm.mm_flags) == 2) {
2132 		/* Setuid core dump mode */
2133 		flag = O_EXCL;		/* Stop rewrite attacks */
2134 		cred->fsuid = 0;	/* Dump root private */
2135 	}
2136 
2137 	retval = coredump_wait(exit_code, &core_state);
2138 	if (retval < 0)
2139 		goto fail_creds;
2140 
2141 	old_cred = override_creds(cred);
2142 
2143 	/*
2144 	 * Clear any false indication of pending signals that might
2145 	 * be seen by the filesystem code called to write the core file.
2146 	 */
2147 	clear_thread_flag(TIF_SIGPENDING);
2148 
2149 	ispipe = format_corename(&cn, signr);
2150 
2151  	if (ispipe) {
2152 		int dump_count;
2153 		char **helper_argv;
2154 
2155 		if (ispipe < 0) {
2156 			printk(KERN_WARNING "format_corename failed\n");
2157 			printk(KERN_WARNING "Aborting core\n");
2158 			goto fail_corename;
2159 		}
2160 
2161 		if (cprm.limit == 1) {
2162 			/*
2163 			 * Normally core limits are irrelevant to pipes, since
2164 			 * we're not writing to the file system, but we use
2165 			 * cprm.limit of 1 here as a speacial value. Any
2166 			 * non-1 limit gets set to RLIM_INFINITY below, but
2167 			 * a limit of 0 skips the dump.  This is a consistent
2168 			 * way to catch recursive crashes.  We can still crash
2169 			 * if the core_pattern binary sets RLIM_CORE =  !1
2170 			 * but it runs as root, and can do lots of stupid things
2171 			 * Note that we use task_tgid_vnr here to grab the pid
2172 			 * of the process group leader.  That way we get the
2173 			 * right pid if a thread in a multi-threaded
2174 			 * core_pattern process dies.
2175 			 */
2176 			printk(KERN_WARNING
2177 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
2178 				task_tgid_vnr(current), current->comm);
2179 			printk(KERN_WARNING "Aborting core\n");
2180 			goto fail_unlock;
2181 		}
2182 		cprm.limit = RLIM_INFINITY;
2183 
2184 		dump_count = atomic_inc_return(&core_dump_count);
2185 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2186 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2187 			       task_tgid_vnr(current), current->comm);
2188 			printk(KERN_WARNING "Skipping core dump\n");
2189 			goto fail_dropcount;
2190 		}
2191 
2192 		helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2193 		if (!helper_argv) {
2194 			printk(KERN_WARNING "%s failed to allocate memory\n",
2195 			       __func__);
2196 			goto fail_dropcount;
2197 		}
2198 
2199 		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2200 					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2201 					NULL, &cprm);
2202 		argv_free(helper_argv);
2203 		if (retval) {
2204  			printk(KERN_INFO "Core dump to %s pipe failed\n",
2205 			       cn.corename);
2206 			goto close_fail;
2207  		}
2208 	} else {
2209 		struct inode *inode;
2210 
2211 		if (cprm.limit < binfmt->min_coredump)
2212 			goto fail_unlock;
2213 
2214 		cprm.file = filp_open(cn.corename,
2215 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2216 				 0600);
2217 		if (IS_ERR(cprm.file))
2218 			goto fail_unlock;
2219 
2220 		inode = cprm.file->f_path.dentry->d_inode;
2221 		if (inode->i_nlink > 1)
2222 			goto close_fail;
2223 		if (d_unhashed(cprm.file->f_path.dentry))
2224 			goto close_fail;
2225 		/*
2226 		 * AK: actually i see no reason to not allow this for named
2227 		 * pipes etc, but keep the previous behaviour for now.
2228 		 */
2229 		if (!S_ISREG(inode->i_mode))
2230 			goto close_fail;
2231 		/*
2232 		 * Dont allow local users get cute and trick others to coredump
2233 		 * into their pre-created files.
2234 		 */
2235 		if (inode->i_uid != current_fsuid())
2236 			goto close_fail;
2237 		if (!cprm.file->f_op || !cprm.file->f_op->write)
2238 			goto close_fail;
2239 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2240 			goto close_fail;
2241 	}
2242 
2243 	retval = binfmt->core_dump(&cprm);
2244 	if (retval)
2245 		current->signal->group_exit_code |= 0x80;
2246 
2247 	if (ispipe && core_pipe_limit)
2248 		wait_for_dump_helpers(cprm.file);
2249 close_fail:
2250 	if (cprm.file)
2251 		filp_close(cprm.file, NULL);
2252 fail_dropcount:
2253 	if (ispipe)
2254 		atomic_dec(&core_dump_count);
2255 fail_unlock:
2256 	kfree(cn.corename);
2257 fail_corename:
2258 	coredump_finish(mm);
2259 	revert_creds(old_cred);
2260 fail_creds:
2261 	put_cred(cred);
2262 fail:
2263 	return;
2264 }
2265 
2266 /*
2267  * Core dumping helper functions.  These are the only things you should
2268  * do on a core-file: use only these functions to write out all the
2269  * necessary info.
2270  */
2271 int dump_write(struct file *file, const void *addr, int nr)
2272 {
2273 	return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2274 }
2275 EXPORT_SYMBOL(dump_write);
2276 
2277 int dump_seek(struct file *file, loff_t off)
2278 {
2279 	int ret = 1;
2280 
2281 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2282 		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2283 			return 0;
2284 	} else {
2285 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2286 
2287 		if (!buf)
2288 			return 0;
2289 		while (off > 0) {
2290 			unsigned long n = off;
2291 
2292 			if (n > PAGE_SIZE)
2293 				n = PAGE_SIZE;
2294 			if (!dump_write(file, buf, n)) {
2295 				ret = 0;
2296 				break;
2297 			}
2298 			off -= n;
2299 		}
2300 		free_page((unsigned long)buf);
2301 	}
2302 	return ret;
2303 }
2304 EXPORT_SYMBOL(dump_seek);
2305