xref: /openbmc/linux/fs/exec.c (revision 732a675a)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/swap.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/ptrace.h>
48 #include <linux/mount.h>
49 #include <linux/security.h>
50 #include <linux/syscalls.h>
51 #include <linux/rmap.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/cn_proc.h>
54 #include <linux/audit.h>
55 
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
58 #include <asm/tlb.h>
59 
60 #ifdef CONFIG_KMOD
61 #include <linux/kmod.h>
62 #endif
63 
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 int suid_dumpable = 0;
67 
68 /* The maximal length of core_pattern is also specified in sysctl.c */
69 
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72 
73 int register_binfmt(struct linux_binfmt * fmt)
74 {
75 	if (!fmt)
76 		return -EINVAL;
77 	write_lock(&binfmt_lock);
78 	list_add(&fmt->lh, &formats);
79 	write_unlock(&binfmt_lock);
80 	return 0;
81 }
82 
83 EXPORT_SYMBOL(register_binfmt);
84 
85 void unregister_binfmt(struct linux_binfmt * fmt)
86 {
87 	write_lock(&binfmt_lock);
88 	list_del(&fmt->lh);
89 	write_unlock(&binfmt_lock);
90 }
91 
92 EXPORT_SYMBOL(unregister_binfmt);
93 
94 static inline void put_binfmt(struct linux_binfmt * fmt)
95 {
96 	module_put(fmt->module);
97 }
98 
99 /*
100  * Note that a shared library must be both readable and executable due to
101  * security reasons.
102  *
103  * Also note that we take the address to load from from the file itself.
104  */
105 asmlinkage long sys_uselib(const char __user * library)
106 {
107 	struct file * file;
108 	struct nameidata nd;
109 	int error;
110 
111 	error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
112 	if (error)
113 		goto out;
114 
115 	error = -EINVAL;
116 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
117 		goto exit;
118 
119 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
120 	if (error)
121 		goto exit;
122 
123 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
124 	error = PTR_ERR(file);
125 	if (IS_ERR(file))
126 		goto out;
127 
128 	error = -ENOEXEC;
129 	if(file->f_op) {
130 		struct linux_binfmt * fmt;
131 
132 		read_lock(&binfmt_lock);
133 		list_for_each_entry(fmt, &formats, lh) {
134 			if (!fmt->load_shlib)
135 				continue;
136 			if (!try_module_get(fmt->module))
137 				continue;
138 			read_unlock(&binfmt_lock);
139 			error = fmt->load_shlib(file);
140 			read_lock(&binfmt_lock);
141 			put_binfmt(fmt);
142 			if (error != -ENOEXEC)
143 				break;
144 		}
145 		read_unlock(&binfmt_lock);
146 	}
147 	fput(file);
148 out:
149   	return error;
150 exit:
151 	release_open_intent(&nd);
152 	path_put(&nd.path);
153 	goto out;
154 }
155 
156 #ifdef CONFIG_MMU
157 
158 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
159 		int write)
160 {
161 	struct page *page;
162 	int ret;
163 
164 #ifdef CONFIG_STACK_GROWSUP
165 	if (write) {
166 		ret = expand_stack_downwards(bprm->vma, pos);
167 		if (ret < 0)
168 			return NULL;
169 	}
170 #endif
171 	ret = get_user_pages(current, bprm->mm, pos,
172 			1, write, 1, &page, NULL);
173 	if (ret <= 0)
174 		return NULL;
175 
176 	if (write) {
177 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
178 		struct rlimit *rlim;
179 
180 		/*
181 		 * We've historically supported up to 32 pages (ARG_MAX)
182 		 * of argument strings even with small stacks
183 		 */
184 		if (size <= ARG_MAX)
185 			return page;
186 
187 		/*
188 		 * Limit to 1/4-th the stack size for the argv+env strings.
189 		 * This ensures that:
190 		 *  - the remaining binfmt code will not run out of stack space,
191 		 *  - the program will have a reasonable amount of stack left
192 		 *    to work from.
193 		 */
194 		rlim = current->signal->rlim;
195 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
196 			put_page(page);
197 			return NULL;
198 		}
199 	}
200 
201 	return page;
202 }
203 
204 static void put_arg_page(struct page *page)
205 {
206 	put_page(page);
207 }
208 
209 static void free_arg_page(struct linux_binprm *bprm, int i)
210 {
211 }
212 
213 static void free_arg_pages(struct linux_binprm *bprm)
214 {
215 }
216 
217 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
218 		struct page *page)
219 {
220 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
221 }
222 
223 static int __bprm_mm_init(struct linux_binprm *bprm)
224 {
225 	int err = -ENOMEM;
226 	struct vm_area_struct *vma = NULL;
227 	struct mm_struct *mm = bprm->mm;
228 
229 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
230 	if (!vma)
231 		goto err;
232 
233 	down_write(&mm->mmap_sem);
234 	vma->vm_mm = mm;
235 
236 	/*
237 	 * Place the stack at the largest stack address the architecture
238 	 * supports. Later, we'll move this to an appropriate place. We don't
239 	 * use STACK_TOP because that can depend on attributes which aren't
240 	 * configured yet.
241 	 */
242 	vma->vm_end = STACK_TOP_MAX;
243 	vma->vm_start = vma->vm_end - PAGE_SIZE;
244 
245 	vma->vm_flags = VM_STACK_FLAGS;
246 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
247 	err = insert_vm_struct(mm, vma);
248 	if (err) {
249 		up_write(&mm->mmap_sem);
250 		goto err;
251 	}
252 
253 	mm->stack_vm = mm->total_vm = 1;
254 	up_write(&mm->mmap_sem);
255 
256 	bprm->p = vma->vm_end - sizeof(void *);
257 
258 	return 0;
259 
260 err:
261 	if (vma) {
262 		bprm->vma = NULL;
263 		kmem_cache_free(vm_area_cachep, vma);
264 	}
265 
266 	return err;
267 }
268 
269 static bool valid_arg_len(struct linux_binprm *bprm, long len)
270 {
271 	return len <= MAX_ARG_STRLEN;
272 }
273 
274 #else
275 
276 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
277 		int write)
278 {
279 	struct page *page;
280 
281 	page = bprm->page[pos / PAGE_SIZE];
282 	if (!page && write) {
283 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
284 		if (!page)
285 			return NULL;
286 		bprm->page[pos / PAGE_SIZE] = page;
287 	}
288 
289 	return page;
290 }
291 
292 static void put_arg_page(struct page *page)
293 {
294 }
295 
296 static void free_arg_page(struct linux_binprm *bprm, int i)
297 {
298 	if (bprm->page[i]) {
299 		__free_page(bprm->page[i]);
300 		bprm->page[i] = NULL;
301 	}
302 }
303 
304 static void free_arg_pages(struct linux_binprm *bprm)
305 {
306 	int i;
307 
308 	for (i = 0; i < MAX_ARG_PAGES; i++)
309 		free_arg_page(bprm, i);
310 }
311 
312 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
313 		struct page *page)
314 {
315 }
316 
317 static int __bprm_mm_init(struct linux_binprm *bprm)
318 {
319 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
320 	return 0;
321 }
322 
323 static bool valid_arg_len(struct linux_binprm *bprm, long len)
324 {
325 	return len <= bprm->p;
326 }
327 
328 #endif /* CONFIG_MMU */
329 
330 /*
331  * Create a new mm_struct and populate it with a temporary stack
332  * vm_area_struct.  We don't have enough context at this point to set the stack
333  * flags, permissions, and offset, so we use temporary values.  We'll update
334  * them later in setup_arg_pages().
335  */
336 int bprm_mm_init(struct linux_binprm *bprm)
337 {
338 	int err;
339 	struct mm_struct *mm = NULL;
340 
341 	bprm->mm = mm = mm_alloc();
342 	err = -ENOMEM;
343 	if (!mm)
344 		goto err;
345 
346 	err = init_new_context(current, mm);
347 	if (err)
348 		goto err;
349 
350 	err = __bprm_mm_init(bprm);
351 	if (err)
352 		goto err;
353 
354 	return 0;
355 
356 err:
357 	if (mm) {
358 		bprm->mm = NULL;
359 		mmdrop(mm);
360 	}
361 
362 	return err;
363 }
364 
365 /*
366  * count() counts the number of strings in array ARGV.
367  */
368 static int count(char __user * __user * argv, int max)
369 {
370 	int i = 0;
371 
372 	if (argv != NULL) {
373 		for (;;) {
374 			char __user * p;
375 
376 			if (get_user(p, argv))
377 				return -EFAULT;
378 			if (!p)
379 				break;
380 			argv++;
381 			if(++i > max)
382 				return -E2BIG;
383 			cond_resched();
384 		}
385 	}
386 	return i;
387 }
388 
389 /*
390  * 'copy_strings()' copies argument/environment strings from the old
391  * processes's memory to the new process's stack.  The call to get_user_pages()
392  * ensures the destination page is created and not swapped out.
393  */
394 static int copy_strings(int argc, char __user * __user * argv,
395 			struct linux_binprm *bprm)
396 {
397 	struct page *kmapped_page = NULL;
398 	char *kaddr = NULL;
399 	unsigned long kpos = 0;
400 	int ret;
401 
402 	while (argc-- > 0) {
403 		char __user *str;
404 		int len;
405 		unsigned long pos;
406 
407 		if (get_user(str, argv+argc) ||
408 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
409 			ret = -EFAULT;
410 			goto out;
411 		}
412 
413 		if (!valid_arg_len(bprm, len)) {
414 			ret = -E2BIG;
415 			goto out;
416 		}
417 
418 		/* We're going to work our way backwords. */
419 		pos = bprm->p;
420 		str += len;
421 		bprm->p -= len;
422 
423 		while (len > 0) {
424 			int offset, bytes_to_copy;
425 
426 			offset = pos % PAGE_SIZE;
427 			if (offset == 0)
428 				offset = PAGE_SIZE;
429 
430 			bytes_to_copy = offset;
431 			if (bytes_to_copy > len)
432 				bytes_to_copy = len;
433 
434 			offset -= bytes_to_copy;
435 			pos -= bytes_to_copy;
436 			str -= bytes_to_copy;
437 			len -= bytes_to_copy;
438 
439 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
440 				struct page *page;
441 
442 				page = get_arg_page(bprm, pos, 1);
443 				if (!page) {
444 					ret = -E2BIG;
445 					goto out;
446 				}
447 
448 				if (kmapped_page) {
449 					flush_kernel_dcache_page(kmapped_page);
450 					kunmap(kmapped_page);
451 					put_arg_page(kmapped_page);
452 				}
453 				kmapped_page = page;
454 				kaddr = kmap(kmapped_page);
455 				kpos = pos & PAGE_MASK;
456 				flush_arg_page(bprm, kpos, kmapped_page);
457 			}
458 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
459 				ret = -EFAULT;
460 				goto out;
461 			}
462 		}
463 	}
464 	ret = 0;
465 out:
466 	if (kmapped_page) {
467 		flush_kernel_dcache_page(kmapped_page);
468 		kunmap(kmapped_page);
469 		put_arg_page(kmapped_page);
470 	}
471 	return ret;
472 }
473 
474 /*
475  * Like copy_strings, but get argv and its values from kernel memory.
476  */
477 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
478 {
479 	int r;
480 	mm_segment_t oldfs = get_fs();
481 	set_fs(KERNEL_DS);
482 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
483 	set_fs(oldfs);
484 	return r;
485 }
486 EXPORT_SYMBOL(copy_strings_kernel);
487 
488 #ifdef CONFIG_MMU
489 
490 /*
491  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
492  * the binfmt code determines where the new stack should reside, we shift it to
493  * its final location.  The process proceeds as follows:
494  *
495  * 1) Use shift to calculate the new vma endpoints.
496  * 2) Extend vma to cover both the old and new ranges.  This ensures the
497  *    arguments passed to subsequent functions are consistent.
498  * 3) Move vma's page tables to the new range.
499  * 4) Free up any cleared pgd range.
500  * 5) Shrink the vma to cover only the new range.
501  */
502 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
503 {
504 	struct mm_struct *mm = vma->vm_mm;
505 	unsigned long old_start = vma->vm_start;
506 	unsigned long old_end = vma->vm_end;
507 	unsigned long length = old_end - old_start;
508 	unsigned long new_start = old_start - shift;
509 	unsigned long new_end = old_end - shift;
510 	struct mmu_gather *tlb;
511 
512 	BUG_ON(new_start > new_end);
513 
514 	/*
515 	 * ensure there are no vmas between where we want to go
516 	 * and where we are
517 	 */
518 	if (vma != find_vma(mm, new_start))
519 		return -EFAULT;
520 
521 	/*
522 	 * cover the whole range: [new_start, old_end)
523 	 */
524 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
525 
526 	/*
527 	 * move the page tables downwards, on failure we rely on
528 	 * process cleanup to remove whatever mess we made.
529 	 */
530 	if (length != move_page_tables(vma, old_start,
531 				       vma, new_start, length))
532 		return -ENOMEM;
533 
534 	lru_add_drain();
535 	tlb = tlb_gather_mmu(mm, 0);
536 	if (new_end > old_start) {
537 		/*
538 		 * when the old and new regions overlap clear from new_end.
539 		 */
540 		free_pgd_range(&tlb, new_end, old_end, new_end,
541 			vma->vm_next ? vma->vm_next->vm_start : 0);
542 	} else {
543 		/*
544 		 * otherwise, clean from old_start; this is done to not touch
545 		 * the address space in [new_end, old_start) some architectures
546 		 * have constraints on va-space that make this illegal (IA64) -
547 		 * for the others its just a little faster.
548 		 */
549 		free_pgd_range(&tlb, old_start, old_end, new_end,
550 			vma->vm_next ? vma->vm_next->vm_start : 0);
551 	}
552 	tlb_finish_mmu(tlb, new_end, old_end);
553 
554 	/*
555 	 * shrink the vma to just the new range.
556 	 */
557 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
558 
559 	return 0;
560 }
561 
562 #define EXTRA_STACK_VM_PAGES	20	/* random */
563 
564 /*
565  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
566  * the stack is optionally relocated, and some extra space is added.
567  */
568 int setup_arg_pages(struct linux_binprm *bprm,
569 		    unsigned long stack_top,
570 		    int executable_stack)
571 {
572 	unsigned long ret;
573 	unsigned long stack_shift;
574 	struct mm_struct *mm = current->mm;
575 	struct vm_area_struct *vma = bprm->vma;
576 	struct vm_area_struct *prev = NULL;
577 	unsigned long vm_flags;
578 	unsigned long stack_base;
579 
580 #ifdef CONFIG_STACK_GROWSUP
581 	/* Limit stack size to 1GB */
582 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
583 	if (stack_base > (1 << 30))
584 		stack_base = 1 << 30;
585 
586 	/* Make sure we didn't let the argument array grow too large. */
587 	if (vma->vm_end - vma->vm_start > stack_base)
588 		return -ENOMEM;
589 
590 	stack_base = PAGE_ALIGN(stack_top - stack_base);
591 
592 	stack_shift = vma->vm_start - stack_base;
593 	mm->arg_start = bprm->p - stack_shift;
594 	bprm->p = vma->vm_end - stack_shift;
595 #else
596 	stack_top = arch_align_stack(stack_top);
597 	stack_top = PAGE_ALIGN(stack_top);
598 	stack_shift = vma->vm_end - stack_top;
599 
600 	bprm->p -= stack_shift;
601 	mm->arg_start = bprm->p;
602 #endif
603 
604 	if (bprm->loader)
605 		bprm->loader -= stack_shift;
606 	bprm->exec -= stack_shift;
607 
608 	down_write(&mm->mmap_sem);
609 	vm_flags = vma->vm_flags;
610 
611 	/*
612 	 * Adjust stack execute permissions; explicitly enable for
613 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
614 	 * (arch default) otherwise.
615 	 */
616 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
617 		vm_flags |= VM_EXEC;
618 	else if (executable_stack == EXSTACK_DISABLE_X)
619 		vm_flags &= ~VM_EXEC;
620 	vm_flags |= mm->def_flags;
621 
622 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
623 			vm_flags);
624 	if (ret)
625 		goto out_unlock;
626 	BUG_ON(prev != vma);
627 
628 	/* Move stack pages down in memory. */
629 	if (stack_shift) {
630 		ret = shift_arg_pages(vma, stack_shift);
631 		if (ret) {
632 			up_write(&mm->mmap_sem);
633 			return ret;
634 		}
635 	}
636 
637 #ifdef CONFIG_STACK_GROWSUP
638 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
639 #else
640 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
641 #endif
642 	ret = expand_stack(vma, stack_base);
643 	if (ret)
644 		ret = -EFAULT;
645 
646 out_unlock:
647 	up_write(&mm->mmap_sem);
648 	return 0;
649 }
650 EXPORT_SYMBOL(setup_arg_pages);
651 
652 #endif /* CONFIG_MMU */
653 
654 struct file *open_exec(const char *name)
655 {
656 	struct nameidata nd;
657 	int err;
658 	struct file *file;
659 
660 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
661 	file = ERR_PTR(err);
662 
663 	if (!err) {
664 		struct inode *inode = nd.path.dentry->d_inode;
665 		file = ERR_PTR(-EACCES);
666 		if (S_ISREG(inode->i_mode)) {
667 			int err = vfs_permission(&nd, MAY_EXEC);
668 			file = ERR_PTR(err);
669 			if (!err) {
670 				file = nameidata_to_filp(&nd,
671 							O_RDONLY|O_LARGEFILE);
672 				if (!IS_ERR(file)) {
673 					err = deny_write_access(file);
674 					if (err) {
675 						fput(file);
676 						file = ERR_PTR(err);
677 					}
678 				}
679 out:
680 				return file;
681 			}
682 		}
683 		release_open_intent(&nd);
684 		path_put(&nd.path);
685 	}
686 	goto out;
687 }
688 
689 EXPORT_SYMBOL(open_exec);
690 
691 int kernel_read(struct file *file, unsigned long offset,
692 	char *addr, unsigned long count)
693 {
694 	mm_segment_t old_fs;
695 	loff_t pos = offset;
696 	int result;
697 
698 	old_fs = get_fs();
699 	set_fs(get_ds());
700 	/* The cast to a user pointer is valid due to the set_fs() */
701 	result = vfs_read(file, (void __user *)addr, count, &pos);
702 	set_fs(old_fs);
703 	return result;
704 }
705 
706 EXPORT_SYMBOL(kernel_read);
707 
708 static int exec_mmap(struct mm_struct *mm)
709 {
710 	struct task_struct *tsk;
711 	struct mm_struct * old_mm, *active_mm;
712 
713 	/* Notify parent that we're no longer interested in the old VM */
714 	tsk = current;
715 	old_mm = current->mm;
716 	mm_release(tsk, old_mm);
717 
718 	if (old_mm) {
719 		/*
720 		 * Make sure that if there is a core dump in progress
721 		 * for the old mm, we get out and die instead of going
722 		 * through with the exec.  We must hold mmap_sem around
723 		 * checking core_waiters and changing tsk->mm.  The
724 		 * core-inducing thread will increment core_waiters for
725 		 * each thread whose ->mm == old_mm.
726 		 */
727 		down_read(&old_mm->mmap_sem);
728 		if (unlikely(old_mm->core_waiters)) {
729 			up_read(&old_mm->mmap_sem);
730 			return -EINTR;
731 		}
732 	}
733 	task_lock(tsk);
734 	active_mm = tsk->active_mm;
735 	tsk->mm = mm;
736 	tsk->active_mm = mm;
737 	activate_mm(active_mm, mm);
738 	task_unlock(tsk);
739 	mm_update_next_owner(old_mm);
740 	arch_pick_mmap_layout(mm);
741 	if (old_mm) {
742 		up_read(&old_mm->mmap_sem);
743 		BUG_ON(active_mm != old_mm);
744 		mmput(old_mm);
745 		return 0;
746 	}
747 	mmdrop(active_mm);
748 	return 0;
749 }
750 
751 /*
752  * This function makes sure the current process has its own signal table,
753  * so that flush_signal_handlers can later reset the handlers without
754  * disturbing other processes.  (Other processes might share the signal
755  * table via the CLONE_SIGHAND option to clone().)
756  */
757 static int de_thread(struct task_struct *tsk)
758 {
759 	struct signal_struct *sig = tsk->signal;
760 	struct sighand_struct *oldsighand = tsk->sighand;
761 	spinlock_t *lock = &oldsighand->siglock;
762 	struct task_struct *leader = NULL;
763 	int count;
764 
765 	if (thread_group_empty(tsk))
766 		goto no_thread_group;
767 
768 	/*
769 	 * Kill all other threads in the thread group.
770 	 */
771 	spin_lock_irq(lock);
772 	if (signal_group_exit(sig)) {
773 		/*
774 		 * Another group action in progress, just
775 		 * return so that the signal is processed.
776 		 */
777 		spin_unlock_irq(lock);
778 		return -EAGAIN;
779 	}
780 	sig->group_exit_task = tsk;
781 	zap_other_threads(tsk);
782 
783 	/* Account for the thread group leader hanging around: */
784 	count = thread_group_leader(tsk) ? 1 : 2;
785 	sig->notify_count = count;
786 	while (atomic_read(&sig->count) > count) {
787 		__set_current_state(TASK_UNINTERRUPTIBLE);
788 		spin_unlock_irq(lock);
789 		schedule();
790 		spin_lock_irq(lock);
791 	}
792 	spin_unlock_irq(lock);
793 
794 	/*
795 	 * At this point all other threads have exited, all we have to
796 	 * do is to wait for the thread group leader to become inactive,
797 	 * and to assume its PID:
798 	 */
799 	if (!thread_group_leader(tsk)) {
800 		leader = tsk->group_leader;
801 
802 		sig->notify_count = -1;	/* for exit_notify() */
803 		for (;;) {
804 			write_lock_irq(&tasklist_lock);
805 			if (likely(leader->exit_state))
806 				break;
807 			__set_current_state(TASK_UNINTERRUPTIBLE);
808 			write_unlock_irq(&tasklist_lock);
809 			schedule();
810 		}
811 
812 		if (unlikely(task_child_reaper(tsk) == leader))
813 			task_active_pid_ns(tsk)->child_reaper = tsk;
814 		/*
815 		 * The only record we have of the real-time age of a
816 		 * process, regardless of execs it's done, is start_time.
817 		 * All the past CPU time is accumulated in signal_struct
818 		 * from sister threads now dead.  But in this non-leader
819 		 * exec, nothing survives from the original leader thread,
820 		 * whose birth marks the true age of this process now.
821 		 * When we take on its identity by switching to its PID, we
822 		 * also take its birthdate (always earlier than our own).
823 		 */
824 		tsk->start_time = leader->start_time;
825 
826 		BUG_ON(!same_thread_group(leader, tsk));
827 		BUG_ON(has_group_leader_pid(tsk));
828 		/*
829 		 * An exec() starts a new thread group with the
830 		 * TGID of the previous thread group. Rehash the
831 		 * two threads with a switched PID, and release
832 		 * the former thread group leader:
833 		 */
834 
835 		/* Become a process group leader with the old leader's pid.
836 		 * The old leader becomes a thread of the this thread group.
837 		 * Note: The old leader also uses this pid until release_task
838 		 *       is called.  Odd but simple and correct.
839 		 */
840 		detach_pid(tsk, PIDTYPE_PID);
841 		tsk->pid = leader->pid;
842 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
843 		transfer_pid(leader, tsk, PIDTYPE_PGID);
844 		transfer_pid(leader, tsk, PIDTYPE_SID);
845 		list_replace_rcu(&leader->tasks, &tsk->tasks);
846 
847 		tsk->group_leader = tsk;
848 		leader->group_leader = tsk;
849 
850 		tsk->exit_signal = SIGCHLD;
851 
852 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
853 		leader->exit_state = EXIT_DEAD;
854 
855 		write_unlock_irq(&tasklist_lock);
856 	}
857 
858 	sig->group_exit_task = NULL;
859 	sig->notify_count = 0;
860 
861 no_thread_group:
862 	exit_itimers(sig);
863 	flush_itimer_signals();
864 	if (leader)
865 		release_task(leader);
866 
867 	if (atomic_read(&oldsighand->count) != 1) {
868 		struct sighand_struct *newsighand;
869 		/*
870 		 * This ->sighand is shared with the CLONE_SIGHAND
871 		 * but not CLONE_THREAD task, switch to the new one.
872 		 */
873 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
874 		if (!newsighand)
875 			return -ENOMEM;
876 
877 		atomic_set(&newsighand->count, 1);
878 		memcpy(newsighand->action, oldsighand->action,
879 		       sizeof(newsighand->action));
880 
881 		write_lock_irq(&tasklist_lock);
882 		spin_lock(&oldsighand->siglock);
883 		rcu_assign_pointer(tsk->sighand, newsighand);
884 		spin_unlock(&oldsighand->siglock);
885 		write_unlock_irq(&tasklist_lock);
886 
887 		__cleanup_sighand(oldsighand);
888 	}
889 
890 	BUG_ON(!thread_group_leader(tsk));
891 	return 0;
892 }
893 
894 /*
895  * These functions flushes out all traces of the currently running executable
896  * so that a new one can be started
897  */
898 static void flush_old_files(struct files_struct * files)
899 {
900 	long j = -1;
901 	struct fdtable *fdt;
902 
903 	spin_lock(&files->file_lock);
904 	for (;;) {
905 		unsigned long set, i;
906 
907 		j++;
908 		i = j * __NFDBITS;
909 		fdt = files_fdtable(files);
910 		if (i >= fdt->max_fds)
911 			break;
912 		set = fdt->close_on_exec->fds_bits[j];
913 		if (!set)
914 			continue;
915 		fdt->close_on_exec->fds_bits[j] = 0;
916 		spin_unlock(&files->file_lock);
917 		for ( ; set ; i++,set >>= 1) {
918 			if (set & 1) {
919 				sys_close(i);
920 			}
921 		}
922 		spin_lock(&files->file_lock);
923 
924 	}
925 	spin_unlock(&files->file_lock);
926 }
927 
928 char *get_task_comm(char *buf, struct task_struct *tsk)
929 {
930 	/* buf must be at least sizeof(tsk->comm) in size */
931 	task_lock(tsk);
932 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
933 	task_unlock(tsk);
934 	return buf;
935 }
936 
937 void set_task_comm(struct task_struct *tsk, char *buf)
938 {
939 	task_lock(tsk);
940 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
941 	task_unlock(tsk);
942 }
943 
944 int flush_old_exec(struct linux_binprm * bprm)
945 {
946 	char * name;
947 	int i, ch, retval;
948 	char tcomm[sizeof(current->comm)];
949 
950 	/*
951 	 * Make sure we have a private signal table and that
952 	 * we are unassociated from the previous thread group.
953 	 */
954 	retval = de_thread(current);
955 	if (retval)
956 		goto out;
957 
958 	set_mm_exe_file(bprm->mm, bprm->file);
959 
960 	/*
961 	 * Release all of the old mmap stuff
962 	 */
963 	retval = exec_mmap(bprm->mm);
964 	if (retval)
965 		goto out;
966 
967 	bprm->mm = NULL;		/* We're using it now */
968 
969 	/* This is the point of no return */
970 	current->sas_ss_sp = current->sas_ss_size = 0;
971 
972 	if (current->euid == current->uid && current->egid == current->gid)
973 		set_dumpable(current->mm, 1);
974 	else
975 		set_dumpable(current->mm, suid_dumpable);
976 
977 	name = bprm->filename;
978 
979 	/* Copies the binary name from after last slash */
980 	for (i=0; (ch = *(name++)) != '\0';) {
981 		if (ch == '/')
982 			i = 0; /* overwrite what we wrote */
983 		else
984 			if (i < (sizeof(tcomm) - 1))
985 				tcomm[i++] = ch;
986 	}
987 	tcomm[i] = '\0';
988 	set_task_comm(current, tcomm);
989 
990 	current->flags &= ~PF_RANDOMIZE;
991 	flush_thread();
992 
993 	/* Set the new mm task size. We have to do that late because it may
994 	 * depend on TIF_32BIT which is only updated in flush_thread() on
995 	 * some architectures like powerpc
996 	 */
997 	current->mm->task_size = TASK_SIZE;
998 
999 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1000 		suid_keys(current);
1001 		set_dumpable(current->mm, suid_dumpable);
1002 		current->pdeath_signal = 0;
1003 	} else if (file_permission(bprm->file, MAY_READ) ||
1004 			(bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1005 		suid_keys(current);
1006 		set_dumpable(current->mm, suid_dumpable);
1007 	}
1008 
1009 	/* An exec changes our domain. We are no longer part of the thread
1010 	   group */
1011 
1012 	current->self_exec_id++;
1013 
1014 	flush_signal_handlers(current, 0);
1015 	flush_old_files(current->files);
1016 
1017 	return 0;
1018 
1019 out:
1020 	return retval;
1021 }
1022 
1023 EXPORT_SYMBOL(flush_old_exec);
1024 
1025 /*
1026  * Fill the binprm structure from the inode.
1027  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1028  */
1029 int prepare_binprm(struct linux_binprm *bprm)
1030 {
1031 	int mode;
1032 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1033 	int retval;
1034 
1035 	mode = inode->i_mode;
1036 	if (bprm->file->f_op == NULL)
1037 		return -EACCES;
1038 
1039 	bprm->e_uid = current->euid;
1040 	bprm->e_gid = current->egid;
1041 
1042 	if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1043 		/* Set-uid? */
1044 		if (mode & S_ISUID) {
1045 			current->personality &= ~PER_CLEAR_ON_SETID;
1046 			bprm->e_uid = inode->i_uid;
1047 		}
1048 
1049 		/* Set-gid? */
1050 		/*
1051 		 * If setgid is set but no group execute bit then this
1052 		 * is a candidate for mandatory locking, not a setgid
1053 		 * executable.
1054 		 */
1055 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1056 			current->personality &= ~PER_CLEAR_ON_SETID;
1057 			bprm->e_gid = inode->i_gid;
1058 		}
1059 	}
1060 
1061 	/* fill in binprm security blob */
1062 	retval = security_bprm_set(bprm);
1063 	if (retval)
1064 		return retval;
1065 
1066 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
1067 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1068 }
1069 
1070 EXPORT_SYMBOL(prepare_binprm);
1071 
1072 static int unsafe_exec(struct task_struct *p)
1073 {
1074 	int unsafe = 0;
1075 	if (p->ptrace & PT_PTRACED) {
1076 		if (p->ptrace & PT_PTRACE_CAP)
1077 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
1078 		else
1079 			unsafe |= LSM_UNSAFE_PTRACE;
1080 	}
1081 	if (atomic_read(&p->fs->count) > 1 ||
1082 	    atomic_read(&p->files->count) > 1 ||
1083 	    atomic_read(&p->sighand->count) > 1)
1084 		unsafe |= LSM_UNSAFE_SHARE;
1085 
1086 	return unsafe;
1087 }
1088 
1089 void compute_creds(struct linux_binprm *bprm)
1090 {
1091 	int unsafe;
1092 
1093 	if (bprm->e_uid != current->uid) {
1094 		suid_keys(current);
1095 		current->pdeath_signal = 0;
1096 	}
1097 	exec_keys(current);
1098 
1099 	task_lock(current);
1100 	unsafe = unsafe_exec(current);
1101 	security_bprm_apply_creds(bprm, unsafe);
1102 	task_unlock(current);
1103 	security_bprm_post_apply_creds(bprm);
1104 }
1105 EXPORT_SYMBOL(compute_creds);
1106 
1107 /*
1108  * Arguments are '\0' separated strings found at the location bprm->p
1109  * points to; chop off the first by relocating brpm->p to right after
1110  * the first '\0' encountered.
1111  */
1112 int remove_arg_zero(struct linux_binprm *bprm)
1113 {
1114 	int ret = 0;
1115 	unsigned long offset;
1116 	char *kaddr;
1117 	struct page *page;
1118 
1119 	if (!bprm->argc)
1120 		return 0;
1121 
1122 	do {
1123 		offset = bprm->p & ~PAGE_MASK;
1124 		page = get_arg_page(bprm, bprm->p, 0);
1125 		if (!page) {
1126 			ret = -EFAULT;
1127 			goto out;
1128 		}
1129 		kaddr = kmap_atomic(page, KM_USER0);
1130 
1131 		for (; offset < PAGE_SIZE && kaddr[offset];
1132 				offset++, bprm->p++)
1133 			;
1134 
1135 		kunmap_atomic(kaddr, KM_USER0);
1136 		put_arg_page(page);
1137 
1138 		if (offset == PAGE_SIZE)
1139 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1140 	} while (offset == PAGE_SIZE);
1141 
1142 	bprm->p++;
1143 	bprm->argc--;
1144 	ret = 0;
1145 
1146 out:
1147 	return ret;
1148 }
1149 EXPORT_SYMBOL(remove_arg_zero);
1150 
1151 /*
1152  * cycle the list of binary formats handler, until one recognizes the image
1153  */
1154 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1155 {
1156 	int try,retval;
1157 	struct linux_binfmt *fmt;
1158 #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT)
1159 	/* handle /sbin/loader.. */
1160 	{
1161 	    struct exec * eh = (struct exec *) bprm->buf;
1162 
1163 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1164 		(eh->fh.f_flags & 0x3000) == 0x3000)
1165 	    {
1166 		struct file * file;
1167 		unsigned long loader;
1168 
1169 		allow_write_access(bprm->file);
1170 		fput(bprm->file);
1171 		bprm->file = NULL;
1172 
1173 		loader = bprm->vma->vm_end - sizeof(void *);
1174 
1175 		file = open_exec("/sbin/loader");
1176 		retval = PTR_ERR(file);
1177 		if (IS_ERR(file))
1178 			return retval;
1179 
1180 		/* Remember if the application is TASO.  */
1181 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1182 
1183 		bprm->file = file;
1184 		bprm->loader = loader;
1185 		retval = prepare_binprm(bprm);
1186 		if (retval<0)
1187 			return retval;
1188 		/* should call search_binary_handler recursively here,
1189 		   but it does not matter */
1190 	    }
1191 	}
1192 #endif
1193 	retval = security_bprm_check(bprm);
1194 	if (retval)
1195 		return retval;
1196 
1197 	/* kernel module loader fixup */
1198 	/* so we don't try to load run modprobe in kernel space. */
1199 	set_fs(USER_DS);
1200 
1201 	retval = audit_bprm(bprm);
1202 	if (retval)
1203 		return retval;
1204 
1205 	retval = -ENOENT;
1206 	for (try=0; try<2; try++) {
1207 		read_lock(&binfmt_lock);
1208 		list_for_each_entry(fmt, &formats, lh) {
1209 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1210 			if (!fn)
1211 				continue;
1212 			if (!try_module_get(fmt->module))
1213 				continue;
1214 			read_unlock(&binfmt_lock);
1215 			retval = fn(bprm, regs);
1216 			if (retval >= 0) {
1217 				put_binfmt(fmt);
1218 				allow_write_access(bprm->file);
1219 				if (bprm->file)
1220 					fput(bprm->file);
1221 				bprm->file = NULL;
1222 				current->did_exec = 1;
1223 				proc_exec_connector(current);
1224 				return retval;
1225 			}
1226 			read_lock(&binfmt_lock);
1227 			put_binfmt(fmt);
1228 			if (retval != -ENOEXEC || bprm->mm == NULL)
1229 				break;
1230 			if (!bprm->file) {
1231 				read_unlock(&binfmt_lock);
1232 				return retval;
1233 			}
1234 		}
1235 		read_unlock(&binfmt_lock);
1236 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1237 			break;
1238 #ifdef CONFIG_KMOD
1239 		}else{
1240 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1241 			if (printable(bprm->buf[0]) &&
1242 			    printable(bprm->buf[1]) &&
1243 			    printable(bprm->buf[2]) &&
1244 			    printable(bprm->buf[3]))
1245 				break; /* -ENOEXEC */
1246 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1247 #endif
1248 		}
1249 	}
1250 	return retval;
1251 }
1252 
1253 EXPORT_SYMBOL(search_binary_handler);
1254 
1255 void free_bprm(struct linux_binprm *bprm)
1256 {
1257 	free_arg_pages(bprm);
1258 	kfree(bprm);
1259 }
1260 
1261 /*
1262  * sys_execve() executes a new program.
1263  */
1264 int do_execve(char * filename,
1265 	char __user *__user *argv,
1266 	char __user *__user *envp,
1267 	struct pt_regs * regs)
1268 {
1269 	struct linux_binprm *bprm;
1270 	struct file *file;
1271 	struct files_struct *displaced;
1272 	int retval;
1273 
1274 	retval = unshare_files(&displaced);
1275 	if (retval)
1276 		goto out_ret;
1277 
1278 	retval = -ENOMEM;
1279 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1280 	if (!bprm)
1281 		goto out_files;
1282 
1283 	file = open_exec(filename);
1284 	retval = PTR_ERR(file);
1285 	if (IS_ERR(file))
1286 		goto out_kfree;
1287 
1288 	sched_exec();
1289 
1290 	bprm->file = file;
1291 	bprm->filename = filename;
1292 	bprm->interp = filename;
1293 
1294 	retval = bprm_mm_init(bprm);
1295 	if (retval)
1296 		goto out_file;
1297 
1298 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1299 	if ((retval = bprm->argc) < 0)
1300 		goto out_mm;
1301 
1302 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1303 	if ((retval = bprm->envc) < 0)
1304 		goto out_mm;
1305 
1306 	retval = security_bprm_alloc(bprm);
1307 	if (retval)
1308 		goto out;
1309 
1310 	retval = prepare_binprm(bprm);
1311 	if (retval < 0)
1312 		goto out;
1313 
1314 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1315 	if (retval < 0)
1316 		goto out;
1317 
1318 	bprm->exec = bprm->p;
1319 	retval = copy_strings(bprm->envc, envp, bprm);
1320 	if (retval < 0)
1321 		goto out;
1322 
1323 	retval = copy_strings(bprm->argc, argv, bprm);
1324 	if (retval < 0)
1325 		goto out;
1326 
1327 	retval = search_binary_handler(bprm,regs);
1328 	if (retval >= 0) {
1329 		/* execve success */
1330 		security_bprm_free(bprm);
1331 		acct_update_integrals(current);
1332 		free_bprm(bprm);
1333 		if (displaced)
1334 			put_files_struct(displaced);
1335 		return retval;
1336 	}
1337 
1338 out:
1339 	if (bprm->security)
1340 		security_bprm_free(bprm);
1341 
1342 out_mm:
1343 	if (bprm->mm)
1344 		mmput (bprm->mm);
1345 
1346 out_file:
1347 	if (bprm->file) {
1348 		allow_write_access(bprm->file);
1349 		fput(bprm->file);
1350 	}
1351 out_kfree:
1352 	free_bprm(bprm);
1353 
1354 out_files:
1355 	if (displaced)
1356 		reset_files_struct(displaced);
1357 out_ret:
1358 	return retval;
1359 }
1360 
1361 int set_binfmt(struct linux_binfmt *new)
1362 {
1363 	struct linux_binfmt *old = current->binfmt;
1364 
1365 	if (new) {
1366 		if (!try_module_get(new->module))
1367 			return -1;
1368 	}
1369 	current->binfmt = new;
1370 	if (old)
1371 		module_put(old->module);
1372 	return 0;
1373 }
1374 
1375 EXPORT_SYMBOL(set_binfmt);
1376 
1377 /* format_corename will inspect the pattern parameter, and output a
1378  * name into corename, which must have space for at least
1379  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1380  */
1381 static int format_corename(char *corename, const char *pattern, long signr)
1382 {
1383 	const char *pat_ptr = pattern;
1384 	char *out_ptr = corename;
1385 	char *const out_end = corename + CORENAME_MAX_SIZE;
1386 	int rc;
1387 	int pid_in_pattern = 0;
1388 	int ispipe = 0;
1389 
1390 	if (*pattern == '|')
1391 		ispipe = 1;
1392 
1393 	/* Repeat as long as we have more pattern to process and more output
1394 	   space */
1395 	while (*pat_ptr) {
1396 		if (*pat_ptr != '%') {
1397 			if (out_ptr == out_end)
1398 				goto out;
1399 			*out_ptr++ = *pat_ptr++;
1400 		} else {
1401 			switch (*++pat_ptr) {
1402 			case 0:
1403 				goto out;
1404 			/* Double percent, output one percent */
1405 			case '%':
1406 				if (out_ptr == out_end)
1407 					goto out;
1408 				*out_ptr++ = '%';
1409 				break;
1410 			/* pid */
1411 			case 'p':
1412 				pid_in_pattern = 1;
1413 				rc = snprintf(out_ptr, out_end - out_ptr,
1414 					      "%d", task_tgid_vnr(current));
1415 				if (rc > out_end - out_ptr)
1416 					goto out;
1417 				out_ptr += rc;
1418 				break;
1419 			/* uid */
1420 			case 'u':
1421 				rc = snprintf(out_ptr, out_end - out_ptr,
1422 					      "%d", current->uid);
1423 				if (rc > out_end - out_ptr)
1424 					goto out;
1425 				out_ptr += rc;
1426 				break;
1427 			/* gid */
1428 			case 'g':
1429 				rc = snprintf(out_ptr, out_end - out_ptr,
1430 					      "%d", current->gid);
1431 				if (rc > out_end - out_ptr)
1432 					goto out;
1433 				out_ptr += rc;
1434 				break;
1435 			/* signal that caused the coredump */
1436 			case 's':
1437 				rc = snprintf(out_ptr, out_end - out_ptr,
1438 					      "%ld", signr);
1439 				if (rc > out_end - out_ptr)
1440 					goto out;
1441 				out_ptr += rc;
1442 				break;
1443 			/* UNIX time of coredump */
1444 			case 't': {
1445 				struct timeval tv;
1446 				do_gettimeofday(&tv);
1447 				rc = snprintf(out_ptr, out_end - out_ptr,
1448 					      "%lu", tv.tv_sec);
1449 				if (rc > out_end - out_ptr)
1450 					goto out;
1451 				out_ptr += rc;
1452 				break;
1453 			}
1454 			/* hostname */
1455 			case 'h':
1456 				down_read(&uts_sem);
1457 				rc = snprintf(out_ptr, out_end - out_ptr,
1458 					      "%s", utsname()->nodename);
1459 				up_read(&uts_sem);
1460 				if (rc > out_end - out_ptr)
1461 					goto out;
1462 				out_ptr += rc;
1463 				break;
1464 			/* executable */
1465 			case 'e':
1466 				rc = snprintf(out_ptr, out_end - out_ptr,
1467 					      "%s", current->comm);
1468 				if (rc > out_end - out_ptr)
1469 					goto out;
1470 				out_ptr += rc;
1471 				break;
1472 			/* core limit size */
1473 			case 'c':
1474 				rc = snprintf(out_ptr, out_end - out_ptr,
1475 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1476 				if (rc > out_end - out_ptr)
1477 					goto out;
1478 				out_ptr += rc;
1479 				break;
1480 			default:
1481 				break;
1482 			}
1483 			++pat_ptr;
1484 		}
1485 	}
1486 	/* Backward compatibility with core_uses_pid:
1487 	 *
1488 	 * If core_pattern does not include a %p (as is the default)
1489 	 * and core_uses_pid is set, then .%pid will be appended to
1490 	 * the filename. Do not do this for piped commands. */
1491 	if (!ispipe && !pid_in_pattern
1492             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1493 		rc = snprintf(out_ptr, out_end - out_ptr,
1494 			      ".%d", task_tgid_vnr(current));
1495 		if (rc > out_end - out_ptr)
1496 			goto out;
1497 		out_ptr += rc;
1498 	}
1499 out:
1500 	*out_ptr = 0;
1501 	return ispipe;
1502 }
1503 
1504 static void zap_process(struct task_struct *start)
1505 {
1506 	struct task_struct *t;
1507 
1508 	start->signal->flags = SIGNAL_GROUP_EXIT;
1509 	start->signal->group_stop_count = 0;
1510 
1511 	t = start;
1512 	do {
1513 		if (t != current && t->mm) {
1514 			t->mm->core_waiters++;
1515 			sigaddset(&t->pending.signal, SIGKILL);
1516 			signal_wake_up(t, 1);
1517 		}
1518 	} while ((t = next_thread(t)) != start);
1519 }
1520 
1521 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1522 				int exit_code)
1523 {
1524 	struct task_struct *g, *p;
1525 	unsigned long flags;
1526 	int err = -EAGAIN;
1527 
1528 	spin_lock_irq(&tsk->sighand->siglock);
1529 	if (!signal_group_exit(tsk->signal)) {
1530 		tsk->signal->group_exit_code = exit_code;
1531 		zap_process(tsk);
1532 		err = 0;
1533 	}
1534 	spin_unlock_irq(&tsk->sighand->siglock);
1535 	if (err)
1536 		return err;
1537 
1538 	if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1539 		goto done;
1540 
1541 	rcu_read_lock();
1542 	for_each_process(g) {
1543 		if (g == tsk->group_leader)
1544 			continue;
1545 
1546 		p = g;
1547 		do {
1548 			if (p->mm) {
1549 				if (p->mm == mm) {
1550 					/*
1551 					 * p->sighand can't disappear, but
1552 					 * may be changed by de_thread()
1553 					 */
1554 					lock_task_sighand(p, &flags);
1555 					zap_process(p);
1556 					unlock_task_sighand(p, &flags);
1557 				}
1558 				break;
1559 			}
1560 		} while ((p = next_thread(p)) != g);
1561 	}
1562 	rcu_read_unlock();
1563 done:
1564 	return mm->core_waiters;
1565 }
1566 
1567 static int coredump_wait(int exit_code)
1568 {
1569 	struct task_struct *tsk = current;
1570 	struct mm_struct *mm = tsk->mm;
1571 	struct completion startup_done;
1572 	struct completion *vfork_done;
1573 	int core_waiters;
1574 
1575 	init_completion(&mm->core_done);
1576 	init_completion(&startup_done);
1577 	mm->core_startup_done = &startup_done;
1578 
1579 	core_waiters = zap_threads(tsk, mm, exit_code);
1580 	up_write(&mm->mmap_sem);
1581 
1582 	if (unlikely(core_waiters < 0))
1583 		goto fail;
1584 
1585 	/*
1586 	 * Make sure nobody is waiting for us to release the VM,
1587 	 * otherwise we can deadlock when we wait on each other
1588 	 */
1589 	vfork_done = tsk->vfork_done;
1590 	if (vfork_done) {
1591 		tsk->vfork_done = NULL;
1592 		complete(vfork_done);
1593 	}
1594 
1595 	if (core_waiters)
1596 		wait_for_completion(&startup_done);
1597 fail:
1598 	BUG_ON(mm->core_waiters);
1599 	return core_waiters;
1600 }
1601 
1602 /*
1603  * set_dumpable converts traditional three-value dumpable to two flags and
1604  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1605  * these bits are not changed atomically.  So get_dumpable can observe the
1606  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1607  * return either old dumpable or new one by paying attention to the order of
1608  * modifying the bits.
1609  *
1610  * dumpable |   mm->flags (binary)
1611  * old  new | initial interim  final
1612  * ---------+-----------------------
1613  *  0    1  |   00      01      01
1614  *  0    2  |   00      10(*)   11
1615  *  1    0  |   01      00      00
1616  *  1    2  |   01      11      11
1617  *  2    0  |   11      10(*)   00
1618  *  2    1  |   11      11      01
1619  *
1620  * (*) get_dumpable regards interim value of 10 as 11.
1621  */
1622 void set_dumpable(struct mm_struct *mm, int value)
1623 {
1624 	switch (value) {
1625 	case 0:
1626 		clear_bit(MMF_DUMPABLE, &mm->flags);
1627 		smp_wmb();
1628 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1629 		break;
1630 	case 1:
1631 		set_bit(MMF_DUMPABLE, &mm->flags);
1632 		smp_wmb();
1633 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1634 		break;
1635 	case 2:
1636 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1637 		smp_wmb();
1638 		set_bit(MMF_DUMPABLE, &mm->flags);
1639 		break;
1640 	}
1641 }
1642 
1643 int get_dumpable(struct mm_struct *mm)
1644 {
1645 	int ret;
1646 
1647 	ret = mm->flags & 0x3;
1648 	return (ret >= 2) ? 2 : ret;
1649 }
1650 
1651 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1652 {
1653 	char corename[CORENAME_MAX_SIZE + 1];
1654 	struct mm_struct *mm = current->mm;
1655 	struct linux_binfmt * binfmt;
1656 	struct inode * inode;
1657 	struct file * file;
1658 	int retval = 0;
1659 	int fsuid = current->fsuid;
1660 	int flag = 0;
1661 	int ispipe = 0;
1662 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1663 	char **helper_argv = NULL;
1664 	int helper_argc = 0;
1665 	char *delimit;
1666 
1667 	audit_core_dumps(signr);
1668 
1669 	binfmt = current->binfmt;
1670 	if (!binfmt || !binfmt->core_dump)
1671 		goto fail;
1672 	down_write(&mm->mmap_sem);
1673 	/*
1674 	 * If another thread got here first, or we are not dumpable, bail out.
1675 	 */
1676 	if (mm->core_waiters || !get_dumpable(mm)) {
1677 		up_write(&mm->mmap_sem);
1678 		goto fail;
1679 	}
1680 
1681 	/*
1682 	 *	We cannot trust fsuid as being the "true" uid of the
1683 	 *	process nor do we know its entire history. We only know it
1684 	 *	was tainted so we dump it as root in mode 2.
1685 	 */
1686 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1687 		flag = O_EXCL;		/* Stop rewrite attacks */
1688 		current->fsuid = 0;	/* Dump root private */
1689 	}
1690 
1691 	retval = coredump_wait(exit_code);
1692 	if (retval < 0)
1693 		goto fail;
1694 
1695 	/*
1696 	 * Clear any false indication of pending signals that might
1697 	 * be seen by the filesystem code called to write the core file.
1698 	 */
1699 	clear_thread_flag(TIF_SIGPENDING);
1700 
1701 	/*
1702 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1703 	 * uses lock_kernel()
1704 	 */
1705  	lock_kernel();
1706 	ispipe = format_corename(corename, core_pattern, signr);
1707 	unlock_kernel();
1708 	/*
1709 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1710 	 * to a pipe.  Since we're not writing directly to the filesystem
1711 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1712 	 * created unless the pipe reader choses to write out the core file
1713 	 * at which point file size limits and permissions will be imposed
1714 	 * as it does with any other process
1715 	 */
1716 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1717 		goto fail_unlock;
1718 
1719  	if (ispipe) {
1720 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1721 		/* Terminate the string before the first option */
1722 		delimit = strchr(corename, ' ');
1723 		if (delimit)
1724 			*delimit = '\0';
1725 		delimit = strrchr(helper_argv[0], '/');
1726 		if (delimit)
1727 			delimit++;
1728 		else
1729 			delimit = helper_argv[0];
1730 		if (!strcmp(delimit, current->comm)) {
1731 			printk(KERN_NOTICE "Recursive core dump detected, "
1732 					"aborting\n");
1733 			goto fail_unlock;
1734 		}
1735 
1736 		core_limit = RLIM_INFINITY;
1737 
1738 		/* SIGPIPE can happen, but it's just never processed */
1739  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1740 				&file)) {
1741  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1742 			       corename);
1743  			goto fail_unlock;
1744  		}
1745  	} else
1746  		file = filp_open(corename,
1747 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1748 				 0600);
1749 	if (IS_ERR(file))
1750 		goto fail_unlock;
1751 	inode = file->f_path.dentry->d_inode;
1752 	if (inode->i_nlink > 1)
1753 		goto close_fail;	/* multiple links - don't dump */
1754 	if (!ispipe && d_unhashed(file->f_path.dentry))
1755 		goto close_fail;
1756 
1757 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1758 	   but keep the previous behaviour for now. */
1759 	if (!ispipe && !S_ISREG(inode->i_mode))
1760 		goto close_fail;
1761 	/*
1762 	 * Dont allow local users get cute and trick others to coredump
1763 	 * into their pre-created files:
1764 	 */
1765 	if (inode->i_uid != current->fsuid)
1766 		goto close_fail;
1767 	if (!file->f_op)
1768 		goto close_fail;
1769 	if (!file->f_op->write)
1770 		goto close_fail;
1771 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1772 		goto close_fail;
1773 
1774 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1775 
1776 	if (retval)
1777 		current->signal->group_exit_code |= 0x80;
1778 close_fail:
1779 	filp_close(file, NULL);
1780 fail_unlock:
1781 	if (helper_argv)
1782 		argv_free(helper_argv);
1783 
1784 	current->fsuid = fsuid;
1785 	complete_all(&mm->core_done);
1786 fail:
1787 	return retval;
1788 }
1789