1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/vmacache.h> 30 #include <linux/stat.h> 31 #include <linux/fcntl.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/coredump.h> 37 #include <linux/sched/signal.h> 38 #include <linux/sched/numa_balancing.h> 39 #include <linux/sched/task.h> 40 #include <linux/pagemap.h> 41 #include <linux/perf_event.h> 42 #include <linux/highmem.h> 43 #include <linux/spinlock.h> 44 #include <linux/key.h> 45 #include <linux/personality.h> 46 #include <linux/binfmts.h> 47 #include <linux/utsname.h> 48 #include <linux/pid_namespace.h> 49 #include <linux/module.h> 50 #include <linux/namei.h> 51 #include <linux/mount.h> 52 #include <linux/security.h> 53 #include <linux/syscalls.h> 54 #include <linux/tsacct_kern.h> 55 #include <linux/cn_proc.h> 56 #include <linux/audit.h> 57 #include <linux/tracehook.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/pipe_fs_i.h> 62 #include <linux/oom.h> 63 #include <linux/compat.h> 64 #include <linux/vmalloc.h> 65 #include <linux/freezer.h> 66 67 #include <linux/uaccess.h> 68 #include <asm/mmu_context.h> 69 #include <asm/tlb.h> 70 71 #include <trace/events/task.h> 72 #include "internal.h" 73 74 #include <trace/events/sched.h> 75 76 int suid_dumpable = 0; 77 78 static LIST_HEAD(formats); 79 static DEFINE_RWLOCK(binfmt_lock); 80 81 void __register_binfmt(struct linux_binfmt * fmt, int insert) 82 { 83 BUG_ON(!fmt); 84 if (WARN_ON(!fmt->load_binary)) 85 return; 86 write_lock(&binfmt_lock); 87 insert ? list_add(&fmt->lh, &formats) : 88 list_add_tail(&fmt->lh, &formats); 89 write_unlock(&binfmt_lock); 90 } 91 92 EXPORT_SYMBOL(__register_binfmt); 93 94 void unregister_binfmt(struct linux_binfmt * fmt) 95 { 96 write_lock(&binfmt_lock); 97 list_del(&fmt->lh); 98 write_unlock(&binfmt_lock); 99 } 100 101 EXPORT_SYMBOL(unregister_binfmt); 102 103 static inline void put_binfmt(struct linux_binfmt * fmt) 104 { 105 module_put(fmt->module); 106 } 107 108 bool path_noexec(const struct path *path) 109 { 110 return (path->mnt->mnt_flags & MNT_NOEXEC) || 111 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 112 } 113 114 #ifdef CONFIG_USELIB 115 /* 116 * Note that a shared library must be both readable and executable due to 117 * security reasons. 118 * 119 * Also note that we take the address to load from from the file itself. 120 */ 121 SYSCALL_DEFINE1(uselib, const char __user *, library) 122 { 123 struct linux_binfmt *fmt; 124 struct file *file; 125 struct filename *tmp = getname(library); 126 int error = PTR_ERR(tmp); 127 static const struct open_flags uselib_flags = { 128 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 129 .acc_mode = MAY_READ | MAY_EXEC, 130 .intent = LOOKUP_OPEN, 131 .lookup_flags = LOOKUP_FOLLOW, 132 }; 133 134 if (IS_ERR(tmp)) 135 goto out; 136 137 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 138 putname(tmp); 139 error = PTR_ERR(file); 140 if (IS_ERR(file)) 141 goto out; 142 143 error = -EINVAL; 144 if (!S_ISREG(file_inode(file)->i_mode)) 145 goto exit; 146 147 error = -EACCES; 148 if (path_noexec(&file->f_path)) 149 goto exit; 150 151 fsnotify_open(file); 152 153 error = -ENOEXEC; 154 155 read_lock(&binfmt_lock); 156 list_for_each_entry(fmt, &formats, lh) { 157 if (!fmt->load_shlib) 158 continue; 159 if (!try_module_get(fmt->module)) 160 continue; 161 read_unlock(&binfmt_lock); 162 error = fmt->load_shlib(file); 163 read_lock(&binfmt_lock); 164 put_binfmt(fmt); 165 if (error != -ENOEXEC) 166 break; 167 } 168 read_unlock(&binfmt_lock); 169 exit: 170 fput(file); 171 out: 172 return error; 173 } 174 #endif /* #ifdef CONFIG_USELIB */ 175 176 #ifdef CONFIG_MMU 177 /* 178 * The nascent bprm->mm is not visible until exec_mmap() but it can 179 * use a lot of memory, account these pages in current->mm temporary 180 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 181 * change the counter back via acct_arg_size(0). 182 */ 183 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 184 { 185 struct mm_struct *mm = current->mm; 186 long diff = (long)(pages - bprm->vma_pages); 187 188 if (!mm || !diff) 189 return; 190 191 bprm->vma_pages = pages; 192 add_mm_counter(mm, MM_ANONPAGES, diff); 193 } 194 195 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 196 int write) 197 { 198 struct page *page; 199 int ret; 200 unsigned int gup_flags = FOLL_FORCE; 201 202 #ifdef CONFIG_STACK_GROWSUP 203 if (write) { 204 ret = expand_downwards(bprm->vma, pos); 205 if (ret < 0) 206 return NULL; 207 } 208 #endif 209 210 if (write) 211 gup_flags |= FOLL_WRITE; 212 213 /* 214 * We are doing an exec(). 'current' is the process 215 * doing the exec and bprm->mm is the new process's mm. 216 */ 217 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags, 218 &page, NULL, NULL); 219 if (ret <= 0) 220 return NULL; 221 222 if (write) { 223 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 224 unsigned long ptr_size, limit; 225 226 /* 227 * Since the stack will hold pointers to the strings, we 228 * must account for them as well. 229 * 230 * The size calculation is the entire vma while each arg page is 231 * built, so each time we get here it's calculating how far it 232 * is currently (rather than each call being just the newly 233 * added size from the arg page). As a result, we need to 234 * always add the entire size of the pointers, so that on the 235 * last call to get_arg_page() we'll actually have the entire 236 * correct size. 237 */ 238 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); 239 if (ptr_size > ULONG_MAX - size) 240 goto fail; 241 size += ptr_size; 242 243 acct_arg_size(bprm, size / PAGE_SIZE); 244 245 /* 246 * We've historically supported up to 32 pages (ARG_MAX) 247 * of argument strings even with small stacks 248 */ 249 if (size <= ARG_MAX) 250 return page; 251 252 /* 253 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 254 * (whichever is smaller) for the argv+env strings. 255 * This ensures that: 256 * - the remaining binfmt code will not run out of stack space, 257 * - the program will have a reasonable amount of stack left 258 * to work from. 259 */ 260 limit = _STK_LIM / 4 * 3; 261 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 262 if (size > limit) 263 goto fail; 264 } 265 266 return page; 267 268 fail: 269 put_page(page); 270 return NULL; 271 } 272 273 static void put_arg_page(struct page *page) 274 { 275 put_page(page); 276 } 277 278 static void free_arg_pages(struct linux_binprm *bprm) 279 { 280 } 281 282 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 283 struct page *page) 284 { 285 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 286 } 287 288 static int __bprm_mm_init(struct linux_binprm *bprm) 289 { 290 int err; 291 struct vm_area_struct *vma = NULL; 292 struct mm_struct *mm = bprm->mm; 293 294 bprm->vma = vma = vm_area_alloc(mm); 295 if (!vma) 296 return -ENOMEM; 297 vma_set_anonymous(vma); 298 299 if (down_write_killable(&mm->mmap_sem)) { 300 err = -EINTR; 301 goto err_free; 302 } 303 304 /* 305 * Place the stack at the largest stack address the architecture 306 * supports. Later, we'll move this to an appropriate place. We don't 307 * use STACK_TOP because that can depend on attributes which aren't 308 * configured yet. 309 */ 310 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 311 vma->vm_end = STACK_TOP_MAX; 312 vma->vm_start = vma->vm_end - PAGE_SIZE; 313 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 314 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 315 316 err = insert_vm_struct(mm, vma); 317 if (err) 318 goto err; 319 320 mm->stack_vm = mm->total_vm = 1; 321 arch_bprm_mm_init(mm, vma); 322 up_write(&mm->mmap_sem); 323 bprm->p = vma->vm_end - sizeof(void *); 324 return 0; 325 err: 326 up_write(&mm->mmap_sem); 327 err_free: 328 bprm->vma = NULL; 329 vm_area_free(vma); 330 return err; 331 } 332 333 static bool valid_arg_len(struct linux_binprm *bprm, long len) 334 { 335 return len <= MAX_ARG_STRLEN; 336 } 337 338 #else 339 340 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 341 { 342 } 343 344 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 345 int write) 346 { 347 struct page *page; 348 349 page = bprm->page[pos / PAGE_SIZE]; 350 if (!page && write) { 351 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 352 if (!page) 353 return NULL; 354 bprm->page[pos / PAGE_SIZE] = page; 355 } 356 357 return page; 358 } 359 360 static void put_arg_page(struct page *page) 361 { 362 } 363 364 static void free_arg_page(struct linux_binprm *bprm, int i) 365 { 366 if (bprm->page[i]) { 367 __free_page(bprm->page[i]); 368 bprm->page[i] = NULL; 369 } 370 } 371 372 static void free_arg_pages(struct linux_binprm *bprm) 373 { 374 int i; 375 376 for (i = 0; i < MAX_ARG_PAGES; i++) 377 free_arg_page(bprm, i); 378 } 379 380 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 381 struct page *page) 382 { 383 } 384 385 static int __bprm_mm_init(struct linux_binprm *bprm) 386 { 387 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 388 return 0; 389 } 390 391 static bool valid_arg_len(struct linux_binprm *bprm, long len) 392 { 393 return len <= bprm->p; 394 } 395 396 #endif /* CONFIG_MMU */ 397 398 /* 399 * Create a new mm_struct and populate it with a temporary stack 400 * vm_area_struct. We don't have enough context at this point to set the stack 401 * flags, permissions, and offset, so we use temporary values. We'll update 402 * them later in setup_arg_pages(). 403 */ 404 static int bprm_mm_init(struct linux_binprm *bprm) 405 { 406 int err; 407 struct mm_struct *mm = NULL; 408 409 bprm->mm = mm = mm_alloc(); 410 err = -ENOMEM; 411 if (!mm) 412 goto err; 413 414 /* Save current stack limit for all calculations made during exec. */ 415 task_lock(current->group_leader); 416 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 417 task_unlock(current->group_leader); 418 419 err = __bprm_mm_init(bprm); 420 if (err) 421 goto err; 422 423 return 0; 424 425 err: 426 if (mm) { 427 bprm->mm = NULL; 428 mmdrop(mm); 429 } 430 431 return err; 432 } 433 434 struct user_arg_ptr { 435 #ifdef CONFIG_COMPAT 436 bool is_compat; 437 #endif 438 union { 439 const char __user *const __user *native; 440 #ifdef CONFIG_COMPAT 441 const compat_uptr_t __user *compat; 442 #endif 443 } ptr; 444 }; 445 446 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 447 { 448 const char __user *native; 449 450 #ifdef CONFIG_COMPAT 451 if (unlikely(argv.is_compat)) { 452 compat_uptr_t compat; 453 454 if (get_user(compat, argv.ptr.compat + nr)) 455 return ERR_PTR(-EFAULT); 456 457 return compat_ptr(compat); 458 } 459 #endif 460 461 if (get_user(native, argv.ptr.native + nr)) 462 return ERR_PTR(-EFAULT); 463 464 return native; 465 } 466 467 /* 468 * count() counts the number of strings in array ARGV. 469 */ 470 static int count(struct user_arg_ptr argv, int max) 471 { 472 int i = 0; 473 474 if (argv.ptr.native != NULL) { 475 for (;;) { 476 const char __user *p = get_user_arg_ptr(argv, i); 477 478 if (!p) 479 break; 480 481 if (IS_ERR(p)) 482 return -EFAULT; 483 484 if (i >= max) 485 return -E2BIG; 486 ++i; 487 488 if (fatal_signal_pending(current)) 489 return -ERESTARTNOHAND; 490 cond_resched(); 491 } 492 } 493 return i; 494 } 495 496 /* 497 * 'copy_strings()' copies argument/environment strings from the old 498 * processes's memory to the new process's stack. The call to get_user_pages() 499 * ensures the destination page is created and not swapped out. 500 */ 501 static int copy_strings(int argc, struct user_arg_ptr argv, 502 struct linux_binprm *bprm) 503 { 504 struct page *kmapped_page = NULL; 505 char *kaddr = NULL; 506 unsigned long kpos = 0; 507 int ret; 508 509 while (argc-- > 0) { 510 const char __user *str; 511 int len; 512 unsigned long pos; 513 514 ret = -EFAULT; 515 str = get_user_arg_ptr(argv, argc); 516 if (IS_ERR(str)) 517 goto out; 518 519 len = strnlen_user(str, MAX_ARG_STRLEN); 520 if (!len) 521 goto out; 522 523 ret = -E2BIG; 524 if (!valid_arg_len(bprm, len)) 525 goto out; 526 527 /* We're going to work our way backwords. */ 528 pos = bprm->p; 529 str += len; 530 bprm->p -= len; 531 532 while (len > 0) { 533 int offset, bytes_to_copy; 534 535 if (fatal_signal_pending(current)) { 536 ret = -ERESTARTNOHAND; 537 goto out; 538 } 539 cond_resched(); 540 541 offset = pos % PAGE_SIZE; 542 if (offset == 0) 543 offset = PAGE_SIZE; 544 545 bytes_to_copy = offset; 546 if (bytes_to_copy > len) 547 bytes_to_copy = len; 548 549 offset -= bytes_to_copy; 550 pos -= bytes_to_copy; 551 str -= bytes_to_copy; 552 len -= bytes_to_copy; 553 554 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 555 struct page *page; 556 557 page = get_arg_page(bprm, pos, 1); 558 if (!page) { 559 ret = -E2BIG; 560 goto out; 561 } 562 563 if (kmapped_page) { 564 flush_kernel_dcache_page(kmapped_page); 565 kunmap(kmapped_page); 566 put_arg_page(kmapped_page); 567 } 568 kmapped_page = page; 569 kaddr = kmap(kmapped_page); 570 kpos = pos & PAGE_MASK; 571 flush_arg_page(bprm, kpos, kmapped_page); 572 } 573 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 574 ret = -EFAULT; 575 goto out; 576 } 577 } 578 } 579 ret = 0; 580 out: 581 if (kmapped_page) { 582 flush_kernel_dcache_page(kmapped_page); 583 kunmap(kmapped_page); 584 put_arg_page(kmapped_page); 585 } 586 return ret; 587 } 588 589 /* 590 * Like copy_strings, but get argv and its values from kernel memory. 591 */ 592 int copy_strings_kernel(int argc, const char *const *__argv, 593 struct linux_binprm *bprm) 594 { 595 int r; 596 mm_segment_t oldfs = get_fs(); 597 struct user_arg_ptr argv = { 598 .ptr.native = (const char __user *const __user *)__argv, 599 }; 600 601 set_fs(KERNEL_DS); 602 r = copy_strings(argc, argv, bprm); 603 set_fs(oldfs); 604 605 return r; 606 } 607 EXPORT_SYMBOL(copy_strings_kernel); 608 609 #ifdef CONFIG_MMU 610 611 /* 612 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 613 * the binfmt code determines where the new stack should reside, we shift it to 614 * its final location. The process proceeds as follows: 615 * 616 * 1) Use shift to calculate the new vma endpoints. 617 * 2) Extend vma to cover both the old and new ranges. This ensures the 618 * arguments passed to subsequent functions are consistent. 619 * 3) Move vma's page tables to the new range. 620 * 4) Free up any cleared pgd range. 621 * 5) Shrink the vma to cover only the new range. 622 */ 623 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 624 { 625 struct mm_struct *mm = vma->vm_mm; 626 unsigned long old_start = vma->vm_start; 627 unsigned long old_end = vma->vm_end; 628 unsigned long length = old_end - old_start; 629 unsigned long new_start = old_start - shift; 630 unsigned long new_end = old_end - shift; 631 struct mmu_gather tlb; 632 633 BUG_ON(new_start > new_end); 634 635 /* 636 * ensure there are no vmas between where we want to go 637 * and where we are 638 */ 639 if (vma != find_vma(mm, new_start)) 640 return -EFAULT; 641 642 /* 643 * cover the whole range: [new_start, old_end) 644 */ 645 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 646 return -ENOMEM; 647 648 /* 649 * move the page tables downwards, on failure we rely on 650 * process cleanup to remove whatever mess we made. 651 */ 652 if (length != move_page_tables(vma, old_start, 653 vma, new_start, length, false)) 654 return -ENOMEM; 655 656 lru_add_drain(); 657 tlb_gather_mmu(&tlb, mm, old_start, old_end); 658 if (new_end > old_start) { 659 /* 660 * when the old and new regions overlap clear from new_end. 661 */ 662 free_pgd_range(&tlb, new_end, old_end, new_end, 663 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 664 } else { 665 /* 666 * otherwise, clean from old_start; this is done to not touch 667 * the address space in [new_end, old_start) some architectures 668 * have constraints on va-space that make this illegal (IA64) - 669 * for the others its just a little faster. 670 */ 671 free_pgd_range(&tlb, old_start, old_end, new_end, 672 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 673 } 674 tlb_finish_mmu(&tlb, old_start, old_end); 675 676 /* 677 * Shrink the vma to just the new range. Always succeeds. 678 */ 679 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 680 681 return 0; 682 } 683 684 /* 685 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 686 * the stack is optionally relocated, and some extra space is added. 687 */ 688 int setup_arg_pages(struct linux_binprm *bprm, 689 unsigned long stack_top, 690 int executable_stack) 691 { 692 unsigned long ret; 693 unsigned long stack_shift; 694 struct mm_struct *mm = current->mm; 695 struct vm_area_struct *vma = bprm->vma; 696 struct vm_area_struct *prev = NULL; 697 unsigned long vm_flags; 698 unsigned long stack_base; 699 unsigned long stack_size; 700 unsigned long stack_expand; 701 unsigned long rlim_stack; 702 703 #ifdef CONFIG_STACK_GROWSUP 704 /* Limit stack size */ 705 stack_base = bprm->rlim_stack.rlim_max; 706 if (stack_base > STACK_SIZE_MAX) 707 stack_base = STACK_SIZE_MAX; 708 709 /* Add space for stack randomization. */ 710 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 711 712 /* Make sure we didn't let the argument array grow too large. */ 713 if (vma->vm_end - vma->vm_start > stack_base) 714 return -ENOMEM; 715 716 stack_base = PAGE_ALIGN(stack_top - stack_base); 717 718 stack_shift = vma->vm_start - stack_base; 719 mm->arg_start = bprm->p - stack_shift; 720 bprm->p = vma->vm_end - stack_shift; 721 #else 722 stack_top = arch_align_stack(stack_top); 723 stack_top = PAGE_ALIGN(stack_top); 724 725 if (unlikely(stack_top < mmap_min_addr) || 726 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 727 return -ENOMEM; 728 729 stack_shift = vma->vm_end - stack_top; 730 731 bprm->p -= stack_shift; 732 mm->arg_start = bprm->p; 733 #endif 734 735 if (bprm->loader) 736 bprm->loader -= stack_shift; 737 bprm->exec -= stack_shift; 738 739 if (down_write_killable(&mm->mmap_sem)) 740 return -EINTR; 741 742 vm_flags = VM_STACK_FLAGS; 743 744 /* 745 * Adjust stack execute permissions; explicitly enable for 746 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 747 * (arch default) otherwise. 748 */ 749 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 750 vm_flags |= VM_EXEC; 751 else if (executable_stack == EXSTACK_DISABLE_X) 752 vm_flags &= ~VM_EXEC; 753 vm_flags |= mm->def_flags; 754 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 755 756 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 757 vm_flags); 758 if (ret) 759 goto out_unlock; 760 BUG_ON(prev != vma); 761 762 /* Move stack pages down in memory. */ 763 if (stack_shift) { 764 ret = shift_arg_pages(vma, stack_shift); 765 if (ret) 766 goto out_unlock; 767 } 768 769 /* mprotect_fixup is overkill to remove the temporary stack flags */ 770 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 771 772 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 773 stack_size = vma->vm_end - vma->vm_start; 774 /* 775 * Align this down to a page boundary as expand_stack 776 * will align it up. 777 */ 778 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 779 #ifdef CONFIG_STACK_GROWSUP 780 if (stack_size + stack_expand > rlim_stack) 781 stack_base = vma->vm_start + rlim_stack; 782 else 783 stack_base = vma->vm_end + stack_expand; 784 #else 785 if (stack_size + stack_expand > rlim_stack) 786 stack_base = vma->vm_end - rlim_stack; 787 else 788 stack_base = vma->vm_start - stack_expand; 789 #endif 790 current->mm->start_stack = bprm->p; 791 ret = expand_stack(vma, stack_base); 792 if (ret) 793 ret = -EFAULT; 794 795 out_unlock: 796 up_write(&mm->mmap_sem); 797 return ret; 798 } 799 EXPORT_SYMBOL(setup_arg_pages); 800 801 #else 802 803 /* 804 * Transfer the program arguments and environment from the holding pages 805 * onto the stack. The provided stack pointer is adjusted accordingly. 806 */ 807 int transfer_args_to_stack(struct linux_binprm *bprm, 808 unsigned long *sp_location) 809 { 810 unsigned long index, stop, sp; 811 int ret = 0; 812 813 stop = bprm->p >> PAGE_SHIFT; 814 sp = *sp_location; 815 816 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 817 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 818 char *src = kmap(bprm->page[index]) + offset; 819 sp -= PAGE_SIZE - offset; 820 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 821 ret = -EFAULT; 822 kunmap(bprm->page[index]); 823 if (ret) 824 goto out; 825 } 826 827 *sp_location = sp; 828 829 out: 830 return ret; 831 } 832 EXPORT_SYMBOL(transfer_args_to_stack); 833 834 #endif /* CONFIG_MMU */ 835 836 static struct file *do_open_execat(int fd, struct filename *name, int flags) 837 { 838 struct file *file; 839 int err; 840 struct open_flags open_exec_flags = { 841 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 842 .acc_mode = MAY_EXEC, 843 .intent = LOOKUP_OPEN, 844 .lookup_flags = LOOKUP_FOLLOW, 845 }; 846 847 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 848 return ERR_PTR(-EINVAL); 849 if (flags & AT_SYMLINK_NOFOLLOW) 850 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 851 if (flags & AT_EMPTY_PATH) 852 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 853 854 file = do_filp_open(fd, name, &open_exec_flags); 855 if (IS_ERR(file)) 856 goto out; 857 858 err = -EACCES; 859 if (!S_ISREG(file_inode(file)->i_mode)) 860 goto exit; 861 862 if (path_noexec(&file->f_path)) 863 goto exit; 864 865 err = deny_write_access(file); 866 if (err) 867 goto exit; 868 869 if (name->name[0] != '\0') 870 fsnotify_open(file); 871 872 out: 873 return file; 874 875 exit: 876 fput(file); 877 return ERR_PTR(err); 878 } 879 880 struct file *open_exec(const char *name) 881 { 882 struct filename *filename = getname_kernel(name); 883 struct file *f = ERR_CAST(filename); 884 885 if (!IS_ERR(filename)) { 886 f = do_open_execat(AT_FDCWD, filename, 0); 887 putname(filename); 888 } 889 return f; 890 } 891 EXPORT_SYMBOL(open_exec); 892 893 int kernel_read_file(struct file *file, void **buf, loff_t *size, 894 loff_t max_size, enum kernel_read_file_id id) 895 { 896 loff_t i_size, pos; 897 ssize_t bytes = 0; 898 int ret; 899 900 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) 901 return -EINVAL; 902 903 ret = deny_write_access(file); 904 if (ret) 905 return ret; 906 907 ret = security_kernel_read_file(file, id); 908 if (ret) 909 goto out; 910 911 i_size = i_size_read(file_inode(file)); 912 if (i_size <= 0) { 913 ret = -EINVAL; 914 goto out; 915 } 916 if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) { 917 ret = -EFBIG; 918 goto out; 919 } 920 921 if (id != READING_FIRMWARE_PREALLOC_BUFFER) 922 *buf = vmalloc(i_size); 923 if (!*buf) { 924 ret = -ENOMEM; 925 goto out; 926 } 927 928 pos = 0; 929 while (pos < i_size) { 930 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos); 931 if (bytes < 0) { 932 ret = bytes; 933 goto out; 934 } 935 936 if (bytes == 0) 937 break; 938 } 939 940 if (pos != i_size) { 941 ret = -EIO; 942 goto out_free; 943 } 944 945 ret = security_kernel_post_read_file(file, *buf, i_size, id); 946 if (!ret) 947 *size = pos; 948 949 out_free: 950 if (ret < 0) { 951 if (id != READING_FIRMWARE_PREALLOC_BUFFER) { 952 vfree(*buf); 953 *buf = NULL; 954 } 955 } 956 957 out: 958 allow_write_access(file); 959 return ret; 960 } 961 EXPORT_SYMBOL_GPL(kernel_read_file); 962 963 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size, 964 loff_t max_size, enum kernel_read_file_id id) 965 { 966 struct file *file; 967 int ret; 968 969 if (!path || !*path) 970 return -EINVAL; 971 972 file = filp_open(path, O_RDONLY, 0); 973 if (IS_ERR(file)) 974 return PTR_ERR(file); 975 976 ret = kernel_read_file(file, buf, size, max_size, id); 977 fput(file); 978 return ret; 979 } 980 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); 981 982 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, 983 enum kernel_read_file_id id) 984 { 985 struct fd f = fdget(fd); 986 int ret = -EBADF; 987 988 if (!f.file) 989 goto out; 990 991 ret = kernel_read_file(f.file, buf, size, max_size, id); 992 out: 993 fdput(f); 994 return ret; 995 } 996 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); 997 998 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 999 { 1000 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 1001 if (res > 0) 1002 flush_icache_range(addr, addr + len); 1003 return res; 1004 } 1005 EXPORT_SYMBOL(read_code); 1006 1007 static int exec_mmap(struct mm_struct *mm) 1008 { 1009 struct task_struct *tsk; 1010 struct mm_struct *old_mm, *active_mm; 1011 1012 /* Notify parent that we're no longer interested in the old VM */ 1013 tsk = current; 1014 old_mm = current->mm; 1015 mm_release(tsk, old_mm); 1016 1017 if (old_mm) { 1018 sync_mm_rss(old_mm); 1019 /* 1020 * Make sure that if there is a core dump in progress 1021 * for the old mm, we get out and die instead of going 1022 * through with the exec. We must hold mmap_sem around 1023 * checking core_state and changing tsk->mm. 1024 */ 1025 down_read(&old_mm->mmap_sem); 1026 if (unlikely(old_mm->core_state)) { 1027 up_read(&old_mm->mmap_sem); 1028 return -EINTR; 1029 } 1030 } 1031 task_lock(tsk); 1032 active_mm = tsk->active_mm; 1033 tsk->mm = mm; 1034 tsk->active_mm = mm; 1035 activate_mm(active_mm, mm); 1036 tsk->mm->vmacache_seqnum = 0; 1037 vmacache_flush(tsk); 1038 task_unlock(tsk); 1039 if (old_mm) { 1040 up_read(&old_mm->mmap_sem); 1041 BUG_ON(active_mm != old_mm); 1042 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1043 mm_update_next_owner(old_mm); 1044 mmput(old_mm); 1045 return 0; 1046 } 1047 mmdrop(active_mm); 1048 return 0; 1049 } 1050 1051 /* 1052 * This function makes sure the current process has its own signal table, 1053 * so that flush_signal_handlers can later reset the handlers without 1054 * disturbing other processes. (Other processes might share the signal 1055 * table via the CLONE_SIGHAND option to clone().) 1056 */ 1057 static int de_thread(struct task_struct *tsk) 1058 { 1059 struct signal_struct *sig = tsk->signal; 1060 struct sighand_struct *oldsighand = tsk->sighand; 1061 spinlock_t *lock = &oldsighand->siglock; 1062 1063 if (thread_group_empty(tsk)) 1064 goto no_thread_group; 1065 1066 /* 1067 * Kill all other threads in the thread group. 1068 */ 1069 spin_lock_irq(lock); 1070 if (signal_group_exit(sig)) { 1071 /* 1072 * Another group action in progress, just 1073 * return so that the signal is processed. 1074 */ 1075 spin_unlock_irq(lock); 1076 return -EAGAIN; 1077 } 1078 1079 sig->group_exit_task = tsk; 1080 sig->notify_count = zap_other_threads(tsk); 1081 if (!thread_group_leader(tsk)) 1082 sig->notify_count--; 1083 1084 while (sig->notify_count) { 1085 __set_current_state(TASK_KILLABLE); 1086 spin_unlock_irq(lock); 1087 freezable_schedule(); 1088 if (unlikely(__fatal_signal_pending(tsk))) 1089 goto killed; 1090 spin_lock_irq(lock); 1091 } 1092 spin_unlock_irq(lock); 1093 1094 /* 1095 * At this point all other threads have exited, all we have to 1096 * do is to wait for the thread group leader to become inactive, 1097 * and to assume its PID: 1098 */ 1099 if (!thread_group_leader(tsk)) { 1100 struct task_struct *leader = tsk->group_leader; 1101 1102 for (;;) { 1103 cgroup_threadgroup_change_begin(tsk); 1104 write_lock_irq(&tasklist_lock); 1105 /* 1106 * Do this under tasklist_lock to ensure that 1107 * exit_notify() can't miss ->group_exit_task 1108 */ 1109 sig->notify_count = -1; 1110 if (likely(leader->exit_state)) 1111 break; 1112 __set_current_state(TASK_KILLABLE); 1113 write_unlock_irq(&tasklist_lock); 1114 cgroup_threadgroup_change_end(tsk); 1115 freezable_schedule(); 1116 if (unlikely(__fatal_signal_pending(tsk))) 1117 goto killed; 1118 } 1119 1120 /* 1121 * The only record we have of the real-time age of a 1122 * process, regardless of execs it's done, is start_time. 1123 * All the past CPU time is accumulated in signal_struct 1124 * from sister threads now dead. But in this non-leader 1125 * exec, nothing survives from the original leader thread, 1126 * whose birth marks the true age of this process now. 1127 * When we take on its identity by switching to its PID, we 1128 * also take its birthdate (always earlier than our own). 1129 */ 1130 tsk->start_time = leader->start_time; 1131 tsk->real_start_time = leader->real_start_time; 1132 1133 BUG_ON(!same_thread_group(leader, tsk)); 1134 BUG_ON(has_group_leader_pid(tsk)); 1135 /* 1136 * An exec() starts a new thread group with the 1137 * TGID of the previous thread group. Rehash the 1138 * two threads with a switched PID, and release 1139 * the former thread group leader: 1140 */ 1141 1142 /* Become a process group leader with the old leader's pid. 1143 * The old leader becomes a thread of the this thread group. 1144 * Note: The old leader also uses this pid until release_task 1145 * is called. Odd but simple and correct. 1146 */ 1147 tsk->pid = leader->pid; 1148 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 1149 transfer_pid(leader, tsk, PIDTYPE_TGID); 1150 transfer_pid(leader, tsk, PIDTYPE_PGID); 1151 transfer_pid(leader, tsk, PIDTYPE_SID); 1152 1153 list_replace_rcu(&leader->tasks, &tsk->tasks); 1154 list_replace_init(&leader->sibling, &tsk->sibling); 1155 1156 tsk->group_leader = tsk; 1157 leader->group_leader = tsk; 1158 1159 tsk->exit_signal = SIGCHLD; 1160 leader->exit_signal = -1; 1161 1162 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1163 leader->exit_state = EXIT_DEAD; 1164 1165 /* 1166 * We are going to release_task()->ptrace_unlink() silently, 1167 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1168 * the tracer wont't block again waiting for this thread. 1169 */ 1170 if (unlikely(leader->ptrace)) 1171 __wake_up_parent(leader, leader->parent); 1172 write_unlock_irq(&tasklist_lock); 1173 cgroup_threadgroup_change_end(tsk); 1174 1175 release_task(leader); 1176 } 1177 1178 sig->group_exit_task = NULL; 1179 sig->notify_count = 0; 1180 1181 no_thread_group: 1182 /* we have changed execution domain */ 1183 tsk->exit_signal = SIGCHLD; 1184 1185 #ifdef CONFIG_POSIX_TIMERS 1186 exit_itimers(sig); 1187 flush_itimer_signals(); 1188 #endif 1189 1190 if (atomic_read(&oldsighand->count) != 1) { 1191 struct sighand_struct *newsighand; 1192 /* 1193 * This ->sighand is shared with the CLONE_SIGHAND 1194 * but not CLONE_THREAD task, switch to the new one. 1195 */ 1196 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1197 if (!newsighand) 1198 return -ENOMEM; 1199 1200 atomic_set(&newsighand->count, 1); 1201 memcpy(newsighand->action, oldsighand->action, 1202 sizeof(newsighand->action)); 1203 1204 write_lock_irq(&tasklist_lock); 1205 spin_lock(&oldsighand->siglock); 1206 rcu_assign_pointer(tsk->sighand, newsighand); 1207 spin_unlock(&oldsighand->siglock); 1208 write_unlock_irq(&tasklist_lock); 1209 1210 __cleanup_sighand(oldsighand); 1211 } 1212 1213 BUG_ON(!thread_group_leader(tsk)); 1214 return 0; 1215 1216 killed: 1217 /* protects against exit_notify() and __exit_signal() */ 1218 read_lock(&tasklist_lock); 1219 sig->group_exit_task = NULL; 1220 sig->notify_count = 0; 1221 read_unlock(&tasklist_lock); 1222 return -EAGAIN; 1223 } 1224 1225 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1226 { 1227 task_lock(tsk); 1228 strncpy(buf, tsk->comm, buf_size); 1229 task_unlock(tsk); 1230 return buf; 1231 } 1232 EXPORT_SYMBOL_GPL(__get_task_comm); 1233 1234 /* 1235 * These functions flushes out all traces of the currently running executable 1236 * so that a new one can be started 1237 */ 1238 1239 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1240 { 1241 task_lock(tsk); 1242 trace_task_rename(tsk, buf); 1243 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1244 task_unlock(tsk); 1245 perf_event_comm(tsk, exec); 1246 } 1247 1248 /* 1249 * Calling this is the point of no return. None of the failures will be 1250 * seen by userspace since either the process is already taking a fatal 1251 * signal (via de_thread() or coredump), or will have SEGV raised 1252 * (after exec_mmap()) by search_binary_handlers (see below). 1253 */ 1254 int flush_old_exec(struct linux_binprm * bprm) 1255 { 1256 int retval; 1257 1258 /* 1259 * Make sure we have a private signal table and that 1260 * we are unassociated from the previous thread group. 1261 */ 1262 retval = de_thread(current); 1263 if (retval) 1264 goto out; 1265 1266 /* 1267 * Must be called _before_ exec_mmap() as bprm->mm is 1268 * not visibile until then. This also enables the update 1269 * to be lockless. 1270 */ 1271 set_mm_exe_file(bprm->mm, bprm->file); 1272 1273 /* 1274 * Release all of the old mmap stuff 1275 */ 1276 acct_arg_size(bprm, 0); 1277 retval = exec_mmap(bprm->mm); 1278 if (retval) 1279 goto out; 1280 1281 /* 1282 * After clearing bprm->mm (to mark that current is using the 1283 * prepared mm now), we have nothing left of the original 1284 * process. If anything from here on returns an error, the check 1285 * in search_binary_handler() will SEGV current. 1286 */ 1287 bprm->mm = NULL; 1288 1289 set_fs(USER_DS); 1290 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1291 PF_NOFREEZE | PF_NO_SETAFFINITY); 1292 flush_thread(); 1293 current->personality &= ~bprm->per_clear; 1294 1295 /* 1296 * We have to apply CLOEXEC before we change whether the process is 1297 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1298 * trying to access the should-be-closed file descriptors of a process 1299 * undergoing exec(2). 1300 */ 1301 do_close_on_exec(current->files); 1302 return 0; 1303 1304 out: 1305 return retval; 1306 } 1307 EXPORT_SYMBOL(flush_old_exec); 1308 1309 void would_dump(struct linux_binprm *bprm, struct file *file) 1310 { 1311 struct inode *inode = file_inode(file); 1312 if (inode_permission(inode, MAY_READ) < 0) { 1313 struct user_namespace *old, *user_ns; 1314 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1315 1316 /* Ensure mm->user_ns contains the executable */ 1317 user_ns = old = bprm->mm->user_ns; 1318 while ((user_ns != &init_user_ns) && 1319 !privileged_wrt_inode_uidgid(user_ns, inode)) 1320 user_ns = user_ns->parent; 1321 1322 if (old != user_ns) { 1323 bprm->mm->user_ns = get_user_ns(user_ns); 1324 put_user_ns(old); 1325 } 1326 } 1327 } 1328 EXPORT_SYMBOL(would_dump); 1329 1330 void setup_new_exec(struct linux_binprm * bprm) 1331 { 1332 /* 1333 * Once here, prepare_binrpm() will not be called any more, so 1334 * the final state of setuid/setgid/fscaps can be merged into the 1335 * secureexec flag. 1336 */ 1337 bprm->secureexec |= bprm->cap_elevated; 1338 1339 if (bprm->secureexec) { 1340 /* Make sure parent cannot signal privileged process. */ 1341 current->pdeath_signal = 0; 1342 1343 /* 1344 * For secureexec, reset the stack limit to sane default to 1345 * avoid bad behavior from the prior rlimits. This has to 1346 * happen before arch_pick_mmap_layout(), which examines 1347 * RLIMIT_STACK, but after the point of no return to avoid 1348 * needing to clean up the change on failure. 1349 */ 1350 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1351 bprm->rlim_stack.rlim_cur = _STK_LIM; 1352 } 1353 1354 arch_pick_mmap_layout(current->mm, &bprm->rlim_stack); 1355 1356 current->sas_ss_sp = current->sas_ss_size = 0; 1357 1358 /* 1359 * Figure out dumpability. Note that this checking only of current 1360 * is wrong, but userspace depends on it. This should be testing 1361 * bprm->secureexec instead. 1362 */ 1363 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1364 !(uid_eq(current_euid(), current_uid()) && 1365 gid_eq(current_egid(), current_gid()))) 1366 set_dumpable(current->mm, suid_dumpable); 1367 else 1368 set_dumpable(current->mm, SUID_DUMP_USER); 1369 1370 arch_setup_new_exec(); 1371 perf_event_exec(); 1372 __set_task_comm(current, kbasename(bprm->filename), true); 1373 1374 /* Set the new mm task size. We have to do that late because it may 1375 * depend on TIF_32BIT which is only updated in flush_thread() on 1376 * some architectures like powerpc 1377 */ 1378 current->mm->task_size = TASK_SIZE; 1379 1380 /* An exec changes our domain. We are no longer part of the thread 1381 group */ 1382 current->self_exec_id++; 1383 flush_signal_handlers(current, 0); 1384 } 1385 EXPORT_SYMBOL(setup_new_exec); 1386 1387 /* Runs immediately before start_thread() takes over. */ 1388 void finalize_exec(struct linux_binprm *bprm) 1389 { 1390 /* Store any stack rlimit changes before starting thread. */ 1391 task_lock(current->group_leader); 1392 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1393 task_unlock(current->group_leader); 1394 } 1395 EXPORT_SYMBOL(finalize_exec); 1396 1397 /* 1398 * Prepare credentials and lock ->cred_guard_mutex. 1399 * install_exec_creds() commits the new creds and drops the lock. 1400 * Or, if exec fails before, free_bprm() should release ->cred and 1401 * and unlock. 1402 */ 1403 int prepare_bprm_creds(struct linux_binprm *bprm) 1404 { 1405 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1406 return -ERESTARTNOINTR; 1407 1408 bprm->cred = prepare_exec_creds(); 1409 if (likely(bprm->cred)) 1410 return 0; 1411 1412 mutex_unlock(¤t->signal->cred_guard_mutex); 1413 return -ENOMEM; 1414 } 1415 1416 static void free_bprm(struct linux_binprm *bprm) 1417 { 1418 free_arg_pages(bprm); 1419 if (bprm->cred) { 1420 mutex_unlock(¤t->signal->cred_guard_mutex); 1421 abort_creds(bprm->cred); 1422 } 1423 if (bprm->file) { 1424 allow_write_access(bprm->file); 1425 fput(bprm->file); 1426 } 1427 /* If a binfmt changed the interp, free it. */ 1428 if (bprm->interp != bprm->filename) 1429 kfree(bprm->interp); 1430 kfree(bprm); 1431 } 1432 1433 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1434 { 1435 /* If a binfmt changed the interp, free it first. */ 1436 if (bprm->interp != bprm->filename) 1437 kfree(bprm->interp); 1438 bprm->interp = kstrdup(interp, GFP_KERNEL); 1439 if (!bprm->interp) 1440 return -ENOMEM; 1441 return 0; 1442 } 1443 EXPORT_SYMBOL(bprm_change_interp); 1444 1445 /* 1446 * install the new credentials for this executable 1447 */ 1448 void install_exec_creds(struct linux_binprm *bprm) 1449 { 1450 security_bprm_committing_creds(bprm); 1451 1452 commit_creds(bprm->cred); 1453 bprm->cred = NULL; 1454 1455 /* 1456 * Disable monitoring for regular users 1457 * when executing setuid binaries. Must 1458 * wait until new credentials are committed 1459 * by commit_creds() above 1460 */ 1461 if (get_dumpable(current->mm) != SUID_DUMP_USER) 1462 perf_event_exit_task(current); 1463 /* 1464 * cred_guard_mutex must be held at least to this point to prevent 1465 * ptrace_attach() from altering our determination of the task's 1466 * credentials; any time after this it may be unlocked. 1467 */ 1468 security_bprm_committed_creds(bprm); 1469 mutex_unlock(¤t->signal->cred_guard_mutex); 1470 } 1471 EXPORT_SYMBOL(install_exec_creds); 1472 1473 /* 1474 * determine how safe it is to execute the proposed program 1475 * - the caller must hold ->cred_guard_mutex to protect against 1476 * PTRACE_ATTACH or seccomp thread-sync 1477 */ 1478 static void check_unsafe_exec(struct linux_binprm *bprm) 1479 { 1480 struct task_struct *p = current, *t; 1481 unsigned n_fs; 1482 1483 if (p->ptrace) 1484 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1485 1486 /* 1487 * This isn't strictly necessary, but it makes it harder for LSMs to 1488 * mess up. 1489 */ 1490 if (task_no_new_privs(current)) 1491 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1492 1493 t = p; 1494 n_fs = 1; 1495 spin_lock(&p->fs->lock); 1496 rcu_read_lock(); 1497 while_each_thread(p, t) { 1498 if (t->fs == p->fs) 1499 n_fs++; 1500 } 1501 rcu_read_unlock(); 1502 1503 if (p->fs->users > n_fs) 1504 bprm->unsafe |= LSM_UNSAFE_SHARE; 1505 else 1506 p->fs->in_exec = 1; 1507 spin_unlock(&p->fs->lock); 1508 } 1509 1510 static void bprm_fill_uid(struct linux_binprm *bprm) 1511 { 1512 struct inode *inode; 1513 unsigned int mode; 1514 kuid_t uid; 1515 kgid_t gid; 1516 1517 /* 1518 * Since this can be called multiple times (via prepare_binprm), 1519 * we must clear any previous work done when setting set[ug]id 1520 * bits from any earlier bprm->file uses (for example when run 1521 * first for a setuid script then again for its interpreter). 1522 */ 1523 bprm->cred->euid = current_euid(); 1524 bprm->cred->egid = current_egid(); 1525 1526 if (!mnt_may_suid(bprm->file->f_path.mnt)) 1527 return; 1528 1529 if (task_no_new_privs(current)) 1530 return; 1531 1532 inode = bprm->file->f_path.dentry->d_inode; 1533 mode = READ_ONCE(inode->i_mode); 1534 if (!(mode & (S_ISUID|S_ISGID))) 1535 return; 1536 1537 /* Be careful if suid/sgid is set */ 1538 inode_lock(inode); 1539 1540 /* reload atomically mode/uid/gid now that lock held */ 1541 mode = inode->i_mode; 1542 uid = inode->i_uid; 1543 gid = inode->i_gid; 1544 inode_unlock(inode); 1545 1546 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1547 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1548 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1549 return; 1550 1551 if (mode & S_ISUID) { 1552 bprm->per_clear |= PER_CLEAR_ON_SETID; 1553 bprm->cred->euid = uid; 1554 } 1555 1556 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1557 bprm->per_clear |= PER_CLEAR_ON_SETID; 1558 bprm->cred->egid = gid; 1559 } 1560 } 1561 1562 /* 1563 * Fill the binprm structure from the inode. 1564 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1565 * 1566 * This may be called multiple times for binary chains (scripts for example). 1567 */ 1568 int prepare_binprm(struct linux_binprm *bprm) 1569 { 1570 int retval; 1571 loff_t pos = 0; 1572 1573 bprm_fill_uid(bprm); 1574 1575 /* fill in binprm security blob */ 1576 retval = security_bprm_set_creds(bprm); 1577 if (retval) 1578 return retval; 1579 bprm->called_set_creds = 1; 1580 1581 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1582 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1583 } 1584 1585 EXPORT_SYMBOL(prepare_binprm); 1586 1587 /* 1588 * Arguments are '\0' separated strings found at the location bprm->p 1589 * points to; chop off the first by relocating brpm->p to right after 1590 * the first '\0' encountered. 1591 */ 1592 int remove_arg_zero(struct linux_binprm *bprm) 1593 { 1594 int ret = 0; 1595 unsigned long offset; 1596 char *kaddr; 1597 struct page *page; 1598 1599 if (!bprm->argc) 1600 return 0; 1601 1602 do { 1603 offset = bprm->p & ~PAGE_MASK; 1604 page = get_arg_page(bprm, bprm->p, 0); 1605 if (!page) { 1606 ret = -EFAULT; 1607 goto out; 1608 } 1609 kaddr = kmap_atomic(page); 1610 1611 for (; offset < PAGE_SIZE && kaddr[offset]; 1612 offset++, bprm->p++) 1613 ; 1614 1615 kunmap_atomic(kaddr); 1616 put_arg_page(page); 1617 } while (offset == PAGE_SIZE); 1618 1619 bprm->p++; 1620 bprm->argc--; 1621 ret = 0; 1622 1623 out: 1624 return ret; 1625 } 1626 EXPORT_SYMBOL(remove_arg_zero); 1627 1628 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1629 /* 1630 * cycle the list of binary formats handler, until one recognizes the image 1631 */ 1632 int search_binary_handler(struct linux_binprm *bprm) 1633 { 1634 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1635 struct linux_binfmt *fmt; 1636 int retval; 1637 1638 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1639 if (bprm->recursion_depth > 5) 1640 return -ELOOP; 1641 1642 retval = security_bprm_check(bprm); 1643 if (retval) 1644 return retval; 1645 1646 retval = -ENOENT; 1647 retry: 1648 read_lock(&binfmt_lock); 1649 list_for_each_entry(fmt, &formats, lh) { 1650 if (!try_module_get(fmt->module)) 1651 continue; 1652 read_unlock(&binfmt_lock); 1653 bprm->recursion_depth++; 1654 retval = fmt->load_binary(bprm); 1655 read_lock(&binfmt_lock); 1656 put_binfmt(fmt); 1657 bprm->recursion_depth--; 1658 if (retval < 0 && !bprm->mm) { 1659 /* we got to flush_old_exec() and failed after it */ 1660 read_unlock(&binfmt_lock); 1661 force_sigsegv(SIGSEGV, current); 1662 return retval; 1663 } 1664 if (retval != -ENOEXEC || !bprm->file) { 1665 read_unlock(&binfmt_lock); 1666 return retval; 1667 } 1668 } 1669 read_unlock(&binfmt_lock); 1670 1671 if (need_retry) { 1672 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1673 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1674 return retval; 1675 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1676 return retval; 1677 need_retry = false; 1678 goto retry; 1679 } 1680 1681 return retval; 1682 } 1683 EXPORT_SYMBOL(search_binary_handler); 1684 1685 static int exec_binprm(struct linux_binprm *bprm) 1686 { 1687 pid_t old_pid, old_vpid; 1688 int ret; 1689 1690 /* Need to fetch pid before load_binary changes it */ 1691 old_pid = current->pid; 1692 rcu_read_lock(); 1693 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1694 rcu_read_unlock(); 1695 1696 ret = search_binary_handler(bprm); 1697 if (ret >= 0) { 1698 audit_bprm(bprm); 1699 trace_sched_process_exec(current, old_pid, bprm); 1700 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1701 proc_exec_connector(current); 1702 } 1703 1704 return ret; 1705 } 1706 1707 /* 1708 * sys_execve() executes a new program. 1709 */ 1710 static int __do_execve_file(int fd, struct filename *filename, 1711 struct user_arg_ptr argv, 1712 struct user_arg_ptr envp, 1713 int flags, struct file *file) 1714 { 1715 char *pathbuf = NULL; 1716 struct linux_binprm *bprm; 1717 struct files_struct *displaced; 1718 int retval; 1719 1720 if (IS_ERR(filename)) 1721 return PTR_ERR(filename); 1722 1723 /* 1724 * We move the actual failure in case of RLIMIT_NPROC excess from 1725 * set*uid() to execve() because too many poorly written programs 1726 * don't check setuid() return code. Here we additionally recheck 1727 * whether NPROC limit is still exceeded. 1728 */ 1729 if ((current->flags & PF_NPROC_EXCEEDED) && 1730 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1731 retval = -EAGAIN; 1732 goto out_ret; 1733 } 1734 1735 /* We're below the limit (still or again), so we don't want to make 1736 * further execve() calls fail. */ 1737 current->flags &= ~PF_NPROC_EXCEEDED; 1738 1739 retval = unshare_files(&displaced); 1740 if (retval) 1741 goto out_ret; 1742 1743 retval = -ENOMEM; 1744 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1745 if (!bprm) 1746 goto out_files; 1747 1748 retval = prepare_bprm_creds(bprm); 1749 if (retval) 1750 goto out_free; 1751 1752 check_unsafe_exec(bprm); 1753 current->in_execve = 1; 1754 1755 if (!file) 1756 file = do_open_execat(fd, filename, flags); 1757 retval = PTR_ERR(file); 1758 if (IS_ERR(file)) 1759 goto out_unmark; 1760 1761 sched_exec(); 1762 1763 bprm->file = file; 1764 if (!filename) { 1765 bprm->filename = "none"; 1766 } else if (fd == AT_FDCWD || filename->name[0] == '/') { 1767 bprm->filename = filename->name; 1768 } else { 1769 if (filename->name[0] == '\0') 1770 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1771 else 1772 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1773 fd, filename->name); 1774 if (!pathbuf) { 1775 retval = -ENOMEM; 1776 goto out_unmark; 1777 } 1778 /* 1779 * Record that a name derived from an O_CLOEXEC fd will be 1780 * inaccessible after exec. Relies on having exclusive access to 1781 * current->files (due to unshare_files above). 1782 */ 1783 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1784 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1785 bprm->filename = pathbuf; 1786 } 1787 bprm->interp = bprm->filename; 1788 1789 retval = bprm_mm_init(bprm); 1790 if (retval) 1791 goto out_unmark; 1792 1793 bprm->argc = count(argv, MAX_ARG_STRINGS); 1794 if ((retval = bprm->argc) < 0) 1795 goto out; 1796 1797 bprm->envc = count(envp, MAX_ARG_STRINGS); 1798 if ((retval = bprm->envc) < 0) 1799 goto out; 1800 1801 retval = prepare_binprm(bprm); 1802 if (retval < 0) 1803 goto out; 1804 1805 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1806 if (retval < 0) 1807 goto out; 1808 1809 bprm->exec = bprm->p; 1810 retval = copy_strings(bprm->envc, envp, bprm); 1811 if (retval < 0) 1812 goto out; 1813 1814 retval = copy_strings(bprm->argc, argv, bprm); 1815 if (retval < 0) 1816 goto out; 1817 1818 would_dump(bprm, bprm->file); 1819 1820 retval = exec_binprm(bprm); 1821 if (retval < 0) 1822 goto out; 1823 1824 /* execve succeeded */ 1825 current->fs->in_exec = 0; 1826 current->in_execve = 0; 1827 membarrier_execve(current); 1828 rseq_execve(current); 1829 acct_update_integrals(current); 1830 task_numa_free(current); 1831 free_bprm(bprm); 1832 kfree(pathbuf); 1833 if (filename) 1834 putname(filename); 1835 if (displaced) 1836 put_files_struct(displaced); 1837 return retval; 1838 1839 out: 1840 if (bprm->mm) { 1841 acct_arg_size(bprm, 0); 1842 mmput(bprm->mm); 1843 } 1844 1845 out_unmark: 1846 current->fs->in_exec = 0; 1847 current->in_execve = 0; 1848 1849 out_free: 1850 free_bprm(bprm); 1851 kfree(pathbuf); 1852 1853 out_files: 1854 if (displaced) 1855 reset_files_struct(displaced); 1856 out_ret: 1857 if (filename) 1858 putname(filename); 1859 return retval; 1860 } 1861 1862 static int do_execveat_common(int fd, struct filename *filename, 1863 struct user_arg_ptr argv, 1864 struct user_arg_ptr envp, 1865 int flags) 1866 { 1867 return __do_execve_file(fd, filename, argv, envp, flags, NULL); 1868 } 1869 1870 int do_execve_file(struct file *file, void *__argv, void *__envp) 1871 { 1872 struct user_arg_ptr argv = { .ptr.native = __argv }; 1873 struct user_arg_ptr envp = { .ptr.native = __envp }; 1874 1875 return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file); 1876 } 1877 1878 int do_execve(struct filename *filename, 1879 const char __user *const __user *__argv, 1880 const char __user *const __user *__envp) 1881 { 1882 struct user_arg_ptr argv = { .ptr.native = __argv }; 1883 struct user_arg_ptr envp = { .ptr.native = __envp }; 1884 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1885 } 1886 1887 int do_execveat(int fd, struct filename *filename, 1888 const char __user *const __user *__argv, 1889 const char __user *const __user *__envp, 1890 int flags) 1891 { 1892 struct user_arg_ptr argv = { .ptr.native = __argv }; 1893 struct user_arg_ptr envp = { .ptr.native = __envp }; 1894 1895 return do_execveat_common(fd, filename, argv, envp, flags); 1896 } 1897 1898 #ifdef CONFIG_COMPAT 1899 static int compat_do_execve(struct filename *filename, 1900 const compat_uptr_t __user *__argv, 1901 const compat_uptr_t __user *__envp) 1902 { 1903 struct user_arg_ptr argv = { 1904 .is_compat = true, 1905 .ptr.compat = __argv, 1906 }; 1907 struct user_arg_ptr envp = { 1908 .is_compat = true, 1909 .ptr.compat = __envp, 1910 }; 1911 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1912 } 1913 1914 static int compat_do_execveat(int fd, struct filename *filename, 1915 const compat_uptr_t __user *__argv, 1916 const compat_uptr_t __user *__envp, 1917 int flags) 1918 { 1919 struct user_arg_ptr argv = { 1920 .is_compat = true, 1921 .ptr.compat = __argv, 1922 }; 1923 struct user_arg_ptr envp = { 1924 .is_compat = true, 1925 .ptr.compat = __envp, 1926 }; 1927 return do_execveat_common(fd, filename, argv, envp, flags); 1928 } 1929 #endif 1930 1931 void set_binfmt(struct linux_binfmt *new) 1932 { 1933 struct mm_struct *mm = current->mm; 1934 1935 if (mm->binfmt) 1936 module_put(mm->binfmt->module); 1937 1938 mm->binfmt = new; 1939 if (new) 1940 __module_get(new->module); 1941 } 1942 EXPORT_SYMBOL(set_binfmt); 1943 1944 /* 1945 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 1946 */ 1947 void set_dumpable(struct mm_struct *mm, int value) 1948 { 1949 unsigned long old, new; 1950 1951 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 1952 return; 1953 1954 do { 1955 old = READ_ONCE(mm->flags); 1956 new = (old & ~MMF_DUMPABLE_MASK) | value; 1957 } while (cmpxchg(&mm->flags, old, new) != old); 1958 } 1959 1960 SYSCALL_DEFINE3(execve, 1961 const char __user *, filename, 1962 const char __user *const __user *, argv, 1963 const char __user *const __user *, envp) 1964 { 1965 return do_execve(getname(filename), argv, envp); 1966 } 1967 1968 SYSCALL_DEFINE5(execveat, 1969 int, fd, const char __user *, filename, 1970 const char __user *const __user *, argv, 1971 const char __user *const __user *, envp, 1972 int, flags) 1973 { 1974 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1975 1976 return do_execveat(fd, 1977 getname_flags(filename, lookup_flags, NULL), 1978 argv, envp, flags); 1979 } 1980 1981 #ifdef CONFIG_COMPAT 1982 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 1983 const compat_uptr_t __user *, argv, 1984 const compat_uptr_t __user *, envp) 1985 { 1986 return compat_do_execve(getname(filename), argv, envp); 1987 } 1988 1989 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 1990 const char __user *, filename, 1991 const compat_uptr_t __user *, argv, 1992 const compat_uptr_t __user *, envp, 1993 int, flags) 1994 { 1995 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1996 1997 return compat_do_execveat(fd, 1998 getname_flags(filename, lookup_flags, NULL), 1999 argv, envp, flags); 2000 } 2001 #endif 2002