xref: /openbmc/linux/fs/exec.c (revision 71844fac)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 #include <linux/freezer.h>
66 
67 #include <linux/uaccess.h>
68 #include <asm/mmu_context.h>
69 #include <asm/tlb.h>
70 
71 #include <trace/events/task.h>
72 #include "internal.h"
73 
74 #include <trace/events/sched.h>
75 
76 int suid_dumpable = 0;
77 
78 static LIST_HEAD(formats);
79 static DEFINE_RWLOCK(binfmt_lock);
80 
81 void __register_binfmt(struct linux_binfmt * fmt, int insert)
82 {
83 	BUG_ON(!fmt);
84 	if (WARN_ON(!fmt->load_binary))
85 		return;
86 	write_lock(&binfmt_lock);
87 	insert ? list_add(&fmt->lh, &formats) :
88 		 list_add_tail(&fmt->lh, &formats);
89 	write_unlock(&binfmt_lock);
90 }
91 
92 EXPORT_SYMBOL(__register_binfmt);
93 
94 void unregister_binfmt(struct linux_binfmt * fmt)
95 {
96 	write_lock(&binfmt_lock);
97 	list_del(&fmt->lh);
98 	write_unlock(&binfmt_lock);
99 }
100 
101 EXPORT_SYMBOL(unregister_binfmt);
102 
103 static inline void put_binfmt(struct linux_binfmt * fmt)
104 {
105 	module_put(fmt->module);
106 }
107 
108 bool path_noexec(const struct path *path)
109 {
110 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
111 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
112 }
113 
114 #ifdef CONFIG_USELIB
115 /*
116  * Note that a shared library must be both readable and executable due to
117  * security reasons.
118  *
119  * Also note that we take the address to load from from the file itself.
120  */
121 SYSCALL_DEFINE1(uselib, const char __user *, library)
122 {
123 	struct linux_binfmt *fmt;
124 	struct file *file;
125 	struct filename *tmp = getname(library);
126 	int error = PTR_ERR(tmp);
127 	static const struct open_flags uselib_flags = {
128 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
129 		.acc_mode = MAY_READ | MAY_EXEC,
130 		.intent = LOOKUP_OPEN,
131 		.lookup_flags = LOOKUP_FOLLOW,
132 	};
133 
134 	if (IS_ERR(tmp))
135 		goto out;
136 
137 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
138 	putname(tmp);
139 	error = PTR_ERR(file);
140 	if (IS_ERR(file))
141 		goto out;
142 
143 	error = -EINVAL;
144 	if (!S_ISREG(file_inode(file)->i_mode))
145 		goto exit;
146 
147 	error = -EACCES;
148 	if (path_noexec(&file->f_path))
149 		goto exit;
150 
151 	fsnotify_open(file);
152 
153 	error = -ENOEXEC;
154 
155 	read_lock(&binfmt_lock);
156 	list_for_each_entry(fmt, &formats, lh) {
157 		if (!fmt->load_shlib)
158 			continue;
159 		if (!try_module_get(fmt->module))
160 			continue;
161 		read_unlock(&binfmt_lock);
162 		error = fmt->load_shlib(file);
163 		read_lock(&binfmt_lock);
164 		put_binfmt(fmt);
165 		if (error != -ENOEXEC)
166 			break;
167 	}
168 	read_unlock(&binfmt_lock);
169 exit:
170 	fput(file);
171 out:
172   	return error;
173 }
174 #endif /* #ifdef CONFIG_USELIB */
175 
176 #ifdef CONFIG_MMU
177 /*
178  * The nascent bprm->mm is not visible until exec_mmap() but it can
179  * use a lot of memory, account these pages in current->mm temporary
180  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
181  * change the counter back via acct_arg_size(0).
182  */
183 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
184 {
185 	struct mm_struct *mm = current->mm;
186 	long diff = (long)(pages - bprm->vma_pages);
187 
188 	if (!mm || !diff)
189 		return;
190 
191 	bprm->vma_pages = pages;
192 	add_mm_counter(mm, MM_ANONPAGES, diff);
193 }
194 
195 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
196 		int write)
197 {
198 	struct page *page;
199 	int ret;
200 	unsigned int gup_flags = FOLL_FORCE;
201 
202 #ifdef CONFIG_STACK_GROWSUP
203 	if (write) {
204 		ret = expand_downwards(bprm->vma, pos);
205 		if (ret < 0)
206 			return NULL;
207 	}
208 #endif
209 
210 	if (write)
211 		gup_flags |= FOLL_WRITE;
212 
213 	/*
214 	 * We are doing an exec().  'current' is the process
215 	 * doing the exec and bprm->mm is the new process's mm.
216 	 */
217 	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
218 			&page, NULL, NULL);
219 	if (ret <= 0)
220 		return NULL;
221 
222 	if (write) {
223 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
224 		unsigned long ptr_size, limit;
225 
226 		/*
227 		 * Since the stack will hold pointers to the strings, we
228 		 * must account for them as well.
229 		 *
230 		 * The size calculation is the entire vma while each arg page is
231 		 * built, so each time we get here it's calculating how far it
232 		 * is currently (rather than each call being just the newly
233 		 * added size from the arg page).  As a result, we need to
234 		 * always add the entire size of the pointers, so that on the
235 		 * last call to get_arg_page() we'll actually have the entire
236 		 * correct size.
237 		 */
238 		ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
239 		if (ptr_size > ULONG_MAX - size)
240 			goto fail;
241 		size += ptr_size;
242 
243 		acct_arg_size(bprm, size / PAGE_SIZE);
244 
245 		/*
246 		 * We've historically supported up to 32 pages (ARG_MAX)
247 		 * of argument strings even with small stacks
248 		 */
249 		if (size <= ARG_MAX)
250 			return page;
251 
252 		/*
253 		 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
254 		 * (whichever is smaller) for the argv+env strings.
255 		 * This ensures that:
256 		 *  - the remaining binfmt code will not run out of stack space,
257 		 *  - the program will have a reasonable amount of stack left
258 		 *    to work from.
259 		 */
260 		limit = _STK_LIM / 4 * 3;
261 		limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
262 		if (size > limit)
263 			goto fail;
264 	}
265 
266 	return page;
267 
268 fail:
269 	put_page(page);
270 	return NULL;
271 }
272 
273 static void put_arg_page(struct page *page)
274 {
275 	put_page(page);
276 }
277 
278 static void free_arg_pages(struct linux_binprm *bprm)
279 {
280 }
281 
282 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
283 		struct page *page)
284 {
285 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
286 }
287 
288 static int __bprm_mm_init(struct linux_binprm *bprm)
289 {
290 	int err;
291 	struct vm_area_struct *vma = NULL;
292 	struct mm_struct *mm = bprm->mm;
293 
294 	bprm->vma = vma = vm_area_alloc(mm);
295 	if (!vma)
296 		return -ENOMEM;
297 	vma_set_anonymous(vma);
298 
299 	if (down_write_killable(&mm->mmap_sem)) {
300 		err = -EINTR;
301 		goto err_free;
302 	}
303 
304 	/*
305 	 * Place the stack at the largest stack address the architecture
306 	 * supports. Later, we'll move this to an appropriate place. We don't
307 	 * use STACK_TOP because that can depend on attributes which aren't
308 	 * configured yet.
309 	 */
310 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
311 	vma->vm_end = STACK_TOP_MAX;
312 	vma->vm_start = vma->vm_end - PAGE_SIZE;
313 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
314 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
315 
316 	err = insert_vm_struct(mm, vma);
317 	if (err)
318 		goto err;
319 
320 	mm->stack_vm = mm->total_vm = 1;
321 	arch_bprm_mm_init(mm, vma);
322 	up_write(&mm->mmap_sem);
323 	bprm->p = vma->vm_end - sizeof(void *);
324 	return 0;
325 err:
326 	up_write(&mm->mmap_sem);
327 err_free:
328 	bprm->vma = NULL;
329 	vm_area_free(vma);
330 	return err;
331 }
332 
333 static bool valid_arg_len(struct linux_binprm *bprm, long len)
334 {
335 	return len <= MAX_ARG_STRLEN;
336 }
337 
338 #else
339 
340 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
341 {
342 }
343 
344 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
345 		int write)
346 {
347 	struct page *page;
348 
349 	page = bprm->page[pos / PAGE_SIZE];
350 	if (!page && write) {
351 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
352 		if (!page)
353 			return NULL;
354 		bprm->page[pos / PAGE_SIZE] = page;
355 	}
356 
357 	return page;
358 }
359 
360 static void put_arg_page(struct page *page)
361 {
362 }
363 
364 static void free_arg_page(struct linux_binprm *bprm, int i)
365 {
366 	if (bprm->page[i]) {
367 		__free_page(bprm->page[i]);
368 		bprm->page[i] = NULL;
369 	}
370 }
371 
372 static void free_arg_pages(struct linux_binprm *bprm)
373 {
374 	int i;
375 
376 	for (i = 0; i < MAX_ARG_PAGES; i++)
377 		free_arg_page(bprm, i);
378 }
379 
380 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
381 		struct page *page)
382 {
383 }
384 
385 static int __bprm_mm_init(struct linux_binprm *bprm)
386 {
387 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
388 	return 0;
389 }
390 
391 static bool valid_arg_len(struct linux_binprm *bprm, long len)
392 {
393 	return len <= bprm->p;
394 }
395 
396 #endif /* CONFIG_MMU */
397 
398 /*
399  * Create a new mm_struct and populate it with a temporary stack
400  * vm_area_struct.  We don't have enough context at this point to set the stack
401  * flags, permissions, and offset, so we use temporary values.  We'll update
402  * them later in setup_arg_pages().
403  */
404 static int bprm_mm_init(struct linux_binprm *bprm)
405 {
406 	int err;
407 	struct mm_struct *mm = NULL;
408 
409 	bprm->mm = mm = mm_alloc();
410 	err = -ENOMEM;
411 	if (!mm)
412 		goto err;
413 
414 	/* Save current stack limit for all calculations made during exec. */
415 	task_lock(current->group_leader);
416 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
417 	task_unlock(current->group_leader);
418 
419 	err = __bprm_mm_init(bprm);
420 	if (err)
421 		goto err;
422 
423 	return 0;
424 
425 err:
426 	if (mm) {
427 		bprm->mm = NULL;
428 		mmdrop(mm);
429 	}
430 
431 	return err;
432 }
433 
434 struct user_arg_ptr {
435 #ifdef CONFIG_COMPAT
436 	bool is_compat;
437 #endif
438 	union {
439 		const char __user *const __user *native;
440 #ifdef CONFIG_COMPAT
441 		const compat_uptr_t __user *compat;
442 #endif
443 	} ptr;
444 };
445 
446 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
447 {
448 	const char __user *native;
449 
450 #ifdef CONFIG_COMPAT
451 	if (unlikely(argv.is_compat)) {
452 		compat_uptr_t compat;
453 
454 		if (get_user(compat, argv.ptr.compat + nr))
455 			return ERR_PTR(-EFAULT);
456 
457 		return compat_ptr(compat);
458 	}
459 #endif
460 
461 	if (get_user(native, argv.ptr.native + nr))
462 		return ERR_PTR(-EFAULT);
463 
464 	return native;
465 }
466 
467 /*
468  * count() counts the number of strings in array ARGV.
469  */
470 static int count(struct user_arg_ptr argv, int max)
471 {
472 	int i = 0;
473 
474 	if (argv.ptr.native != NULL) {
475 		for (;;) {
476 			const char __user *p = get_user_arg_ptr(argv, i);
477 
478 			if (!p)
479 				break;
480 
481 			if (IS_ERR(p))
482 				return -EFAULT;
483 
484 			if (i >= max)
485 				return -E2BIG;
486 			++i;
487 
488 			if (fatal_signal_pending(current))
489 				return -ERESTARTNOHAND;
490 			cond_resched();
491 		}
492 	}
493 	return i;
494 }
495 
496 /*
497  * 'copy_strings()' copies argument/environment strings from the old
498  * processes's memory to the new process's stack.  The call to get_user_pages()
499  * ensures the destination page is created and not swapped out.
500  */
501 static int copy_strings(int argc, struct user_arg_ptr argv,
502 			struct linux_binprm *bprm)
503 {
504 	struct page *kmapped_page = NULL;
505 	char *kaddr = NULL;
506 	unsigned long kpos = 0;
507 	int ret;
508 
509 	while (argc-- > 0) {
510 		const char __user *str;
511 		int len;
512 		unsigned long pos;
513 
514 		ret = -EFAULT;
515 		str = get_user_arg_ptr(argv, argc);
516 		if (IS_ERR(str))
517 			goto out;
518 
519 		len = strnlen_user(str, MAX_ARG_STRLEN);
520 		if (!len)
521 			goto out;
522 
523 		ret = -E2BIG;
524 		if (!valid_arg_len(bprm, len))
525 			goto out;
526 
527 		/* We're going to work our way backwords. */
528 		pos = bprm->p;
529 		str += len;
530 		bprm->p -= len;
531 
532 		while (len > 0) {
533 			int offset, bytes_to_copy;
534 
535 			if (fatal_signal_pending(current)) {
536 				ret = -ERESTARTNOHAND;
537 				goto out;
538 			}
539 			cond_resched();
540 
541 			offset = pos % PAGE_SIZE;
542 			if (offset == 0)
543 				offset = PAGE_SIZE;
544 
545 			bytes_to_copy = offset;
546 			if (bytes_to_copy > len)
547 				bytes_to_copy = len;
548 
549 			offset -= bytes_to_copy;
550 			pos -= bytes_to_copy;
551 			str -= bytes_to_copy;
552 			len -= bytes_to_copy;
553 
554 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
555 				struct page *page;
556 
557 				page = get_arg_page(bprm, pos, 1);
558 				if (!page) {
559 					ret = -E2BIG;
560 					goto out;
561 				}
562 
563 				if (kmapped_page) {
564 					flush_kernel_dcache_page(kmapped_page);
565 					kunmap(kmapped_page);
566 					put_arg_page(kmapped_page);
567 				}
568 				kmapped_page = page;
569 				kaddr = kmap(kmapped_page);
570 				kpos = pos & PAGE_MASK;
571 				flush_arg_page(bprm, kpos, kmapped_page);
572 			}
573 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
574 				ret = -EFAULT;
575 				goto out;
576 			}
577 		}
578 	}
579 	ret = 0;
580 out:
581 	if (kmapped_page) {
582 		flush_kernel_dcache_page(kmapped_page);
583 		kunmap(kmapped_page);
584 		put_arg_page(kmapped_page);
585 	}
586 	return ret;
587 }
588 
589 /*
590  * Like copy_strings, but get argv and its values from kernel memory.
591  */
592 int copy_strings_kernel(int argc, const char *const *__argv,
593 			struct linux_binprm *bprm)
594 {
595 	int r;
596 	mm_segment_t oldfs = get_fs();
597 	struct user_arg_ptr argv = {
598 		.ptr.native = (const char __user *const  __user *)__argv,
599 	};
600 
601 	set_fs(KERNEL_DS);
602 	r = copy_strings(argc, argv, bprm);
603 	set_fs(oldfs);
604 
605 	return r;
606 }
607 EXPORT_SYMBOL(copy_strings_kernel);
608 
609 #ifdef CONFIG_MMU
610 
611 /*
612  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
613  * the binfmt code determines where the new stack should reside, we shift it to
614  * its final location.  The process proceeds as follows:
615  *
616  * 1) Use shift to calculate the new vma endpoints.
617  * 2) Extend vma to cover both the old and new ranges.  This ensures the
618  *    arguments passed to subsequent functions are consistent.
619  * 3) Move vma's page tables to the new range.
620  * 4) Free up any cleared pgd range.
621  * 5) Shrink the vma to cover only the new range.
622  */
623 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
624 {
625 	struct mm_struct *mm = vma->vm_mm;
626 	unsigned long old_start = vma->vm_start;
627 	unsigned long old_end = vma->vm_end;
628 	unsigned long length = old_end - old_start;
629 	unsigned long new_start = old_start - shift;
630 	unsigned long new_end = old_end - shift;
631 	struct mmu_gather tlb;
632 
633 	BUG_ON(new_start > new_end);
634 
635 	/*
636 	 * ensure there are no vmas between where we want to go
637 	 * and where we are
638 	 */
639 	if (vma != find_vma(mm, new_start))
640 		return -EFAULT;
641 
642 	/*
643 	 * cover the whole range: [new_start, old_end)
644 	 */
645 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
646 		return -ENOMEM;
647 
648 	/*
649 	 * move the page tables downwards, on failure we rely on
650 	 * process cleanup to remove whatever mess we made.
651 	 */
652 	if (length != move_page_tables(vma, old_start,
653 				       vma, new_start, length, false))
654 		return -ENOMEM;
655 
656 	lru_add_drain();
657 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
658 	if (new_end > old_start) {
659 		/*
660 		 * when the old and new regions overlap clear from new_end.
661 		 */
662 		free_pgd_range(&tlb, new_end, old_end, new_end,
663 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
664 	} else {
665 		/*
666 		 * otherwise, clean from old_start; this is done to not touch
667 		 * the address space in [new_end, old_start) some architectures
668 		 * have constraints on va-space that make this illegal (IA64) -
669 		 * for the others its just a little faster.
670 		 */
671 		free_pgd_range(&tlb, old_start, old_end, new_end,
672 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
673 	}
674 	tlb_finish_mmu(&tlb, old_start, old_end);
675 
676 	/*
677 	 * Shrink the vma to just the new range.  Always succeeds.
678 	 */
679 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
680 
681 	return 0;
682 }
683 
684 /*
685  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
686  * the stack is optionally relocated, and some extra space is added.
687  */
688 int setup_arg_pages(struct linux_binprm *bprm,
689 		    unsigned long stack_top,
690 		    int executable_stack)
691 {
692 	unsigned long ret;
693 	unsigned long stack_shift;
694 	struct mm_struct *mm = current->mm;
695 	struct vm_area_struct *vma = bprm->vma;
696 	struct vm_area_struct *prev = NULL;
697 	unsigned long vm_flags;
698 	unsigned long stack_base;
699 	unsigned long stack_size;
700 	unsigned long stack_expand;
701 	unsigned long rlim_stack;
702 
703 #ifdef CONFIG_STACK_GROWSUP
704 	/* Limit stack size */
705 	stack_base = bprm->rlim_stack.rlim_max;
706 	if (stack_base > STACK_SIZE_MAX)
707 		stack_base = STACK_SIZE_MAX;
708 
709 	/* Add space for stack randomization. */
710 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
711 
712 	/* Make sure we didn't let the argument array grow too large. */
713 	if (vma->vm_end - vma->vm_start > stack_base)
714 		return -ENOMEM;
715 
716 	stack_base = PAGE_ALIGN(stack_top - stack_base);
717 
718 	stack_shift = vma->vm_start - stack_base;
719 	mm->arg_start = bprm->p - stack_shift;
720 	bprm->p = vma->vm_end - stack_shift;
721 #else
722 	stack_top = arch_align_stack(stack_top);
723 	stack_top = PAGE_ALIGN(stack_top);
724 
725 	if (unlikely(stack_top < mmap_min_addr) ||
726 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
727 		return -ENOMEM;
728 
729 	stack_shift = vma->vm_end - stack_top;
730 
731 	bprm->p -= stack_shift;
732 	mm->arg_start = bprm->p;
733 #endif
734 
735 	if (bprm->loader)
736 		bprm->loader -= stack_shift;
737 	bprm->exec -= stack_shift;
738 
739 	if (down_write_killable(&mm->mmap_sem))
740 		return -EINTR;
741 
742 	vm_flags = VM_STACK_FLAGS;
743 
744 	/*
745 	 * Adjust stack execute permissions; explicitly enable for
746 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
747 	 * (arch default) otherwise.
748 	 */
749 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
750 		vm_flags |= VM_EXEC;
751 	else if (executable_stack == EXSTACK_DISABLE_X)
752 		vm_flags &= ~VM_EXEC;
753 	vm_flags |= mm->def_flags;
754 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
755 
756 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
757 			vm_flags);
758 	if (ret)
759 		goto out_unlock;
760 	BUG_ON(prev != vma);
761 
762 	/* Move stack pages down in memory. */
763 	if (stack_shift) {
764 		ret = shift_arg_pages(vma, stack_shift);
765 		if (ret)
766 			goto out_unlock;
767 	}
768 
769 	/* mprotect_fixup is overkill to remove the temporary stack flags */
770 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
771 
772 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
773 	stack_size = vma->vm_end - vma->vm_start;
774 	/*
775 	 * Align this down to a page boundary as expand_stack
776 	 * will align it up.
777 	 */
778 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
779 #ifdef CONFIG_STACK_GROWSUP
780 	if (stack_size + stack_expand > rlim_stack)
781 		stack_base = vma->vm_start + rlim_stack;
782 	else
783 		stack_base = vma->vm_end + stack_expand;
784 #else
785 	if (stack_size + stack_expand > rlim_stack)
786 		stack_base = vma->vm_end - rlim_stack;
787 	else
788 		stack_base = vma->vm_start - stack_expand;
789 #endif
790 	current->mm->start_stack = bprm->p;
791 	ret = expand_stack(vma, stack_base);
792 	if (ret)
793 		ret = -EFAULT;
794 
795 out_unlock:
796 	up_write(&mm->mmap_sem);
797 	return ret;
798 }
799 EXPORT_SYMBOL(setup_arg_pages);
800 
801 #else
802 
803 /*
804  * Transfer the program arguments and environment from the holding pages
805  * onto the stack. The provided stack pointer is adjusted accordingly.
806  */
807 int transfer_args_to_stack(struct linux_binprm *bprm,
808 			   unsigned long *sp_location)
809 {
810 	unsigned long index, stop, sp;
811 	int ret = 0;
812 
813 	stop = bprm->p >> PAGE_SHIFT;
814 	sp = *sp_location;
815 
816 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
817 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
818 		char *src = kmap(bprm->page[index]) + offset;
819 		sp -= PAGE_SIZE - offset;
820 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
821 			ret = -EFAULT;
822 		kunmap(bprm->page[index]);
823 		if (ret)
824 			goto out;
825 	}
826 
827 	*sp_location = sp;
828 
829 out:
830 	return ret;
831 }
832 EXPORT_SYMBOL(transfer_args_to_stack);
833 
834 #endif /* CONFIG_MMU */
835 
836 static struct file *do_open_execat(int fd, struct filename *name, int flags)
837 {
838 	struct file *file;
839 	int err;
840 	struct open_flags open_exec_flags = {
841 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
842 		.acc_mode = MAY_EXEC,
843 		.intent = LOOKUP_OPEN,
844 		.lookup_flags = LOOKUP_FOLLOW,
845 	};
846 
847 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
848 		return ERR_PTR(-EINVAL);
849 	if (flags & AT_SYMLINK_NOFOLLOW)
850 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
851 	if (flags & AT_EMPTY_PATH)
852 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
853 
854 	file = do_filp_open(fd, name, &open_exec_flags);
855 	if (IS_ERR(file))
856 		goto out;
857 
858 	err = -EACCES;
859 	if (!S_ISREG(file_inode(file)->i_mode))
860 		goto exit;
861 
862 	if (path_noexec(&file->f_path))
863 		goto exit;
864 
865 	err = deny_write_access(file);
866 	if (err)
867 		goto exit;
868 
869 	if (name->name[0] != '\0')
870 		fsnotify_open(file);
871 
872 out:
873 	return file;
874 
875 exit:
876 	fput(file);
877 	return ERR_PTR(err);
878 }
879 
880 struct file *open_exec(const char *name)
881 {
882 	struct filename *filename = getname_kernel(name);
883 	struct file *f = ERR_CAST(filename);
884 
885 	if (!IS_ERR(filename)) {
886 		f = do_open_execat(AT_FDCWD, filename, 0);
887 		putname(filename);
888 	}
889 	return f;
890 }
891 EXPORT_SYMBOL(open_exec);
892 
893 int kernel_read_file(struct file *file, void **buf, loff_t *size,
894 		     loff_t max_size, enum kernel_read_file_id id)
895 {
896 	loff_t i_size, pos;
897 	ssize_t bytes = 0;
898 	int ret;
899 
900 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
901 		return -EINVAL;
902 
903 	ret = deny_write_access(file);
904 	if (ret)
905 		return ret;
906 
907 	ret = security_kernel_read_file(file, id);
908 	if (ret)
909 		goto out;
910 
911 	i_size = i_size_read(file_inode(file));
912 	if (i_size <= 0) {
913 		ret = -EINVAL;
914 		goto out;
915 	}
916 	if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
917 		ret = -EFBIG;
918 		goto out;
919 	}
920 
921 	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
922 		*buf = vmalloc(i_size);
923 	if (!*buf) {
924 		ret = -ENOMEM;
925 		goto out;
926 	}
927 
928 	pos = 0;
929 	while (pos < i_size) {
930 		bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
931 		if (bytes < 0) {
932 			ret = bytes;
933 			goto out;
934 		}
935 
936 		if (bytes == 0)
937 			break;
938 	}
939 
940 	if (pos != i_size) {
941 		ret = -EIO;
942 		goto out_free;
943 	}
944 
945 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
946 	if (!ret)
947 		*size = pos;
948 
949 out_free:
950 	if (ret < 0) {
951 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
952 			vfree(*buf);
953 			*buf = NULL;
954 		}
955 	}
956 
957 out:
958 	allow_write_access(file);
959 	return ret;
960 }
961 EXPORT_SYMBOL_GPL(kernel_read_file);
962 
963 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
964 			       loff_t max_size, enum kernel_read_file_id id)
965 {
966 	struct file *file;
967 	int ret;
968 
969 	if (!path || !*path)
970 		return -EINVAL;
971 
972 	file = filp_open(path, O_RDONLY, 0);
973 	if (IS_ERR(file))
974 		return PTR_ERR(file);
975 
976 	ret = kernel_read_file(file, buf, size, max_size, id);
977 	fput(file);
978 	return ret;
979 }
980 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
981 
982 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
983 			     enum kernel_read_file_id id)
984 {
985 	struct fd f = fdget(fd);
986 	int ret = -EBADF;
987 
988 	if (!f.file)
989 		goto out;
990 
991 	ret = kernel_read_file(f.file, buf, size, max_size, id);
992 out:
993 	fdput(f);
994 	return ret;
995 }
996 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
997 
998 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
999 {
1000 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1001 	if (res > 0)
1002 		flush_icache_range(addr, addr + len);
1003 	return res;
1004 }
1005 EXPORT_SYMBOL(read_code);
1006 
1007 static int exec_mmap(struct mm_struct *mm)
1008 {
1009 	struct task_struct *tsk;
1010 	struct mm_struct *old_mm, *active_mm;
1011 
1012 	/* Notify parent that we're no longer interested in the old VM */
1013 	tsk = current;
1014 	old_mm = current->mm;
1015 	mm_release(tsk, old_mm);
1016 
1017 	if (old_mm) {
1018 		sync_mm_rss(old_mm);
1019 		/*
1020 		 * Make sure that if there is a core dump in progress
1021 		 * for the old mm, we get out and die instead of going
1022 		 * through with the exec.  We must hold mmap_sem around
1023 		 * checking core_state and changing tsk->mm.
1024 		 */
1025 		down_read(&old_mm->mmap_sem);
1026 		if (unlikely(old_mm->core_state)) {
1027 			up_read(&old_mm->mmap_sem);
1028 			return -EINTR;
1029 		}
1030 	}
1031 	task_lock(tsk);
1032 	active_mm = tsk->active_mm;
1033 	tsk->mm = mm;
1034 	tsk->active_mm = mm;
1035 	activate_mm(active_mm, mm);
1036 	tsk->mm->vmacache_seqnum = 0;
1037 	vmacache_flush(tsk);
1038 	task_unlock(tsk);
1039 	if (old_mm) {
1040 		up_read(&old_mm->mmap_sem);
1041 		BUG_ON(active_mm != old_mm);
1042 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1043 		mm_update_next_owner(old_mm);
1044 		mmput(old_mm);
1045 		return 0;
1046 	}
1047 	mmdrop(active_mm);
1048 	return 0;
1049 }
1050 
1051 /*
1052  * This function makes sure the current process has its own signal table,
1053  * so that flush_signal_handlers can later reset the handlers without
1054  * disturbing other processes.  (Other processes might share the signal
1055  * table via the CLONE_SIGHAND option to clone().)
1056  */
1057 static int de_thread(struct task_struct *tsk)
1058 {
1059 	struct signal_struct *sig = tsk->signal;
1060 	struct sighand_struct *oldsighand = tsk->sighand;
1061 	spinlock_t *lock = &oldsighand->siglock;
1062 
1063 	if (thread_group_empty(tsk))
1064 		goto no_thread_group;
1065 
1066 	/*
1067 	 * Kill all other threads in the thread group.
1068 	 */
1069 	spin_lock_irq(lock);
1070 	if (signal_group_exit(sig)) {
1071 		/*
1072 		 * Another group action in progress, just
1073 		 * return so that the signal is processed.
1074 		 */
1075 		spin_unlock_irq(lock);
1076 		return -EAGAIN;
1077 	}
1078 
1079 	sig->group_exit_task = tsk;
1080 	sig->notify_count = zap_other_threads(tsk);
1081 	if (!thread_group_leader(tsk))
1082 		sig->notify_count--;
1083 
1084 	while (sig->notify_count) {
1085 		__set_current_state(TASK_KILLABLE);
1086 		spin_unlock_irq(lock);
1087 		freezable_schedule();
1088 		if (unlikely(__fatal_signal_pending(tsk)))
1089 			goto killed;
1090 		spin_lock_irq(lock);
1091 	}
1092 	spin_unlock_irq(lock);
1093 
1094 	/*
1095 	 * At this point all other threads have exited, all we have to
1096 	 * do is to wait for the thread group leader to become inactive,
1097 	 * and to assume its PID:
1098 	 */
1099 	if (!thread_group_leader(tsk)) {
1100 		struct task_struct *leader = tsk->group_leader;
1101 
1102 		for (;;) {
1103 			cgroup_threadgroup_change_begin(tsk);
1104 			write_lock_irq(&tasklist_lock);
1105 			/*
1106 			 * Do this under tasklist_lock to ensure that
1107 			 * exit_notify() can't miss ->group_exit_task
1108 			 */
1109 			sig->notify_count = -1;
1110 			if (likely(leader->exit_state))
1111 				break;
1112 			__set_current_state(TASK_KILLABLE);
1113 			write_unlock_irq(&tasklist_lock);
1114 			cgroup_threadgroup_change_end(tsk);
1115 			freezable_schedule();
1116 			if (unlikely(__fatal_signal_pending(tsk)))
1117 				goto killed;
1118 		}
1119 
1120 		/*
1121 		 * The only record we have of the real-time age of a
1122 		 * process, regardless of execs it's done, is start_time.
1123 		 * All the past CPU time is accumulated in signal_struct
1124 		 * from sister threads now dead.  But in this non-leader
1125 		 * exec, nothing survives from the original leader thread,
1126 		 * whose birth marks the true age of this process now.
1127 		 * When we take on its identity by switching to its PID, we
1128 		 * also take its birthdate (always earlier than our own).
1129 		 */
1130 		tsk->start_time = leader->start_time;
1131 		tsk->real_start_time = leader->real_start_time;
1132 
1133 		BUG_ON(!same_thread_group(leader, tsk));
1134 		BUG_ON(has_group_leader_pid(tsk));
1135 		/*
1136 		 * An exec() starts a new thread group with the
1137 		 * TGID of the previous thread group. Rehash the
1138 		 * two threads with a switched PID, and release
1139 		 * the former thread group leader:
1140 		 */
1141 
1142 		/* Become a process group leader with the old leader's pid.
1143 		 * The old leader becomes a thread of the this thread group.
1144 		 * Note: The old leader also uses this pid until release_task
1145 		 *       is called.  Odd but simple and correct.
1146 		 */
1147 		tsk->pid = leader->pid;
1148 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1149 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1150 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1151 		transfer_pid(leader, tsk, PIDTYPE_SID);
1152 
1153 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1154 		list_replace_init(&leader->sibling, &tsk->sibling);
1155 
1156 		tsk->group_leader = tsk;
1157 		leader->group_leader = tsk;
1158 
1159 		tsk->exit_signal = SIGCHLD;
1160 		leader->exit_signal = -1;
1161 
1162 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1163 		leader->exit_state = EXIT_DEAD;
1164 
1165 		/*
1166 		 * We are going to release_task()->ptrace_unlink() silently,
1167 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1168 		 * the tracer wont't block again waiting for this thread.
1169 		 */
1170 		if (unlikely(leader->ptrace))
1171 			__wake_up_parent(leader, leader->parent);
1172 		write_unlock_irq(&tasklist_lock);
1173 		cgroup_threadgroup_change_end(tsk);
1174 
1175 		release_task(leader);
1176 	}
1177 
1178 	sig->group_exit_task = NULL;
1179 	sig->notify_count = 0;
1180 
1181 no_thread_group:
1182 	/* we have changed execution domain */
1183 	tsk->exit_signal = SIGCHLD;
1184 
1185 #ifdef CONFIG_POSIX_TIMERS
1186 	exit_itimers(sig);
1187 	flush_itimer_signals();
1188 #endif
1189 
1190 	if (atomic_read(&oldsighand->count) != 1) {
1191 		struct sighand_struct *newsighand;
1192 		/*
1193 		 * This ->sighand is shared with the CLONE_SIGHAND
1194 		 * but not CLONE_THREAD task, switch to the new one.
1195 		 */
1196 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1197 		if (!newsighand)
1198 			return -ENOMEM;
1199 
1200 		atomic_set(&newsighand->count, 1);
1201 		memcpy(newsighand->action, oldsighand->action,
1202 		       sizeof(newsighand->action));
1203 
1204 		write_lock_irq(&tasklist_lock);
1205 		spin_lock(&oldsighand->siglock);
1206 		rcu_assign_pointer(tsk->sighand, newsighand);
1207 		spin_unlock(&oldsighand->siglock);
1208 		write_unlock_irq(&tasklist_lock);
1209 
1210 		__cleanup_sighand(oldsighand);
1211 	}
1212 
1213 	BUG_ON(!thread_group_leader(tsk));
1214 	return 0;
1215 
1216 killed:
1217 	/* protects against exit_notify() and __exit_signal() */
1218 	read_lock(&tasklist_lock);
1219 	sig->group_exit_task = NULL;
1220 	sig->notify_count = 0;
1221 	read_unlock(&tasklist_lock);
1222 	return -EAGAIN;
1223 }
1224 
1225 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1226 {
1227 	task_lock(tsk);
1228 	strncpy(buf, tsk->comm, buf_size);
1229 	task_unlock(tsk);
1230 	return buf;
1231 }
1232 EXPORT_SYMBOL_GPL(__get_task_comm);
1233 
1234 /*
1235  * These functions flushes out all traces of the currently running executable
1236  * so that a new one can be started
1237  */
1238 
1239 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1240 {
1241 	task_lock(tsk);
1242 	trace_task_rename(tsk, buf);
1243 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1244 	task_unlock(tsk);
1245 	perf_event_comm(tsk, exec);
1246 }
1247 
1248 /*
1249  * Calling this is the point of no return. None of the failures will be
1250  * seen by userspace since either the process is already taking a fatal
1251  * signal (via de_thread() or coredump), or will have SEGV raised
1252  * (after exec_mmap()) by search_binary_handlers (see below).
1253  */
1254 int flush_old_exec(struct linux_binprm * bprm)
1255 {
1256 	int retval;
1257 
1258 	/*
1259 	 * Make sure we have a private signal table and that
1260 	 * we are unassociated from the previous thread group.
1261 	 */
1262 	retval = de_thread(current);
1263 	if (retval)
1264 		goto out;
1265 
1266 	/*
1267 	 * Must be called _before_ exec_mmap() as bprm->mm is
1268 	 * not visibile until then. This also enables the update
1269 	 * to be lockless.
1270 	 */
1271 	set_mm_exe_file(bprm->mm, bprm->file);
1272 
1273 	/*
1274 	 * Release all of the old mmap stuff
1275 	 */
1276 	acct_arg_size(bprm, 0);
1277 	retval = exec_mmap(bprm->mm);
1278 	if (retval)
1279 		goto out;
1280 
1281 	/*
1282 	 * After clearing bprm->mm (to mark that current is using the
1283 	 * prepared mm now), we have nothing left of the original
1284 	 * process. If anything from here on returns an error, the check
1285 	 * in search_binary_handler() will SEGV current.
1286 	 */
1287 	bprm->mm = NULL;
1288 
1289 	set_fs(USER_DS);
1290 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1291 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1292 	flush_thread();
1293 	current->personality &= ~bprm->per_clear;
1294 
1295 	/*
1296 	 * We have to apply CLOEXEC before we change whether the process is
1297 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1298 	 * trying to access the should-be-closed file descriptors of a process
1299 	 * undergoing exec(2).
1300 	 */
1301 	do_close_on_exec(current->files);
1302 	return 0;
1303 
1304 out:
1305 	return retval;
1306 }
1307 EXPORT_SYMBOL(flush_old_exec);
1308 
1309 void would_dump(struct linux_binprm *bprm, struct file *file)
1310 {
1311 	struct inode *inode = file_inode(file);
1312 	if (inode_permission(inode, MAY_READ) < 0) {
1313 		struct user_namespace *old, *user_ns;
1314 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1315 
1316 		/* Ensure mm->user_ns contains the executable */
1317 		user_ns = old = bprm->mm->user_ns;
1318 		while ((user_ns != &init_user_ns) &&
1319 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1320 			user_ns = user_ns->parent;
1321 
1322 		if (old != user_ns) {
1323 			bprm->mm->user_ns = get_user_ns(user_ns);
1324 			put_user_ns(old);
1325 		}
1326 	}
1327 }
1328 EXPORT_SYMBOL(would_dump);
1329 
1330 void setup_new_exec(struct linux_binprm * bprm)
1331 {
1332 	/*
1333 	 * Once here, prepare_binrpm() will not be called any more, so
1334 	 * the final state of setuid/setgid/fscaps can be merged into the
1335 	 * secureexec flag.
1336 	 */
1337 	bprm->secureexec |= bprm->cap_elevated;
1338 
1339 	if (bprm->secureexec) {
1340 		/* Make sure parent cannot signal privileged process. */
1341 		current->pdeath_signal = 0;
1342 
1343 		/*
1344 		 * For secureexec, reset the stack limit to sane default to
1345 		 * avoid bad behavior from the prior rlimits. This has to
1346 		 * happen before arch_pick_mmap_layout(), which examines
1347 		 * RLIMIT_STACK, but after the point of no return to avoid
1348 		 * needing to clean up the change on failure.
1349 		 */
1350 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1351 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1352 	}
1353 
1354 	arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1355 
1356 	current->sas_ss_sp = current->sas_ss_size = 0;
1357 
1358 	/*
1359 	 * Figure out dumpability. Note that this checking only of current
1360 	 * is wrong, but userspace depends on it. This should be testing
1361 	 * bprm->secureexec instead.
1362 	 */
1363 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1364 	    !(uid_eq(current_euid(), current_uid()) &&
1365 	      gid_eq(current_egid(), current_gid())))
1366 		set_dumpable(current->mm, suid_dumpable);
1367 	else
1368 		set_dumpable(current->mm, SUID_DUMP_USER);
1369 
1370 	arch_setup_new_exec();
1371 	perf_event_exec();
1372 	__set_task_comm(current, kbasename(bprm->filename), true);
1373 
1374 	/* Set the new mm task size. We have to do that late because it may
1375 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1376 	 * some architectures like powerpc
1377 	 */
1378 	current->mm->task_size = TASK_SIZE;
1379 
1380 	/* An exec changes our domain. We are no longer part of the thread
1381 	   group */
1382 	current->self_exec_id++;
1383 	flush_signal_handlers(current, 0);
1384 }
1385 EXPORT_SYMBOL(setup_new_exec);
1386 
1387 /* Runs immediately before start_thread() takes over. */
1388 void finalize_exec(struct linux_binprm *bprm)
1389 {
1390 	/* Store any stack rlimit changes before starting thread. */
1391 	task_lock(current->group_leader);
1392 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1393 	task_unlock(current->group_leader);
1394 }
1395 EXPORT_SYMBOL(finalize_exec);
1396 
1397 /*
1398  * Prepare credentials and lock ->cred_guard_mutex.
1399  * install_exec_creds() commits the new creds and drops the lock.
1400  * Or, if exec fails before, free_bprm() should release ->cred and
1401  * and unlock.
1402  */
1403 int prepare_bprm_creds(struct linux_binprm *bprm)
1404 {
1405 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1406 		return -ERESTARTNOINTR;
1407 
1408 	bprm->cred = prepare_exec_creds();
1409 	if (likely(bprm->cred))
1410 		return 0;
1411 
1412 	mutex_unlock(&current->signal->cred_guard_mutex);
1413 	return -ENOMEM;
1414 }
1415 
1416 static void free_bprm(struct linux_binprm *bprm)
1417 {
1418 	free_arg_pages(bprm);
1419 	if (bprm->cred) {
1420 		mutex_unlock(&current->signal->cred_guard_mutex);
1421 		abort_creds(bprm->cred);
1422 	}
1423 	if (bprm->file) {
1424 		allow_write_access(bprm->file);
1425 		fput(bprm->file);
1426 	}
1427 	/* If a binfmt changed the interp, free it. */
1428 	if (bprm->interp != bprm->filename)
1429 		kfree(bprm->interp);
1430 	kfree(bprm);
1431 }
1432 
1433 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1434 {
1435 	/* If a binfmt changed the interp, free it first. */
1436 	if (bprm->interp != bprm->filename)
1437 		kfree(bprm->interp);
1438 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1439 	if (!bprm->interp)
1440 		return -ENOMEM;
1441 	return 0;
1442 }
1443 EXPORT_SYMBOL(bprm_change_interp);
1444 
1445 /*
1446  * install the new credentials for this executable
1447  */
1448 void install_exec_creds(struct linux_binprm *bprm)
1449 {
1450 	security_bprm_committing_creds(bprm);
1451 
1452 	commit_creds(bprm->cred);
1453 	bprm->cred = NULL;
1454 
1455 	/*
1456 	 * Disable monitoring for regular users
1457 	 * when executing setuid binaries. Must
1458 	 * wait until new credentials are committed
1459 	 * by commit_creds() above
1460 	 */
1461 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1462 		perf_event_exit_task(current);
1463 	/*
1464 	 * cred_guard_mutex must be held at least to this point to prevent
1465 	 * ptrace_attach() from altering our determination of the task's
1466 	 * credentials; any time after this it may be unlocked.
1467 	 */
1468 	security_bprm_committed_creds(bprm);
1469 	mutex_unlock(&current->signal->cred_guard_mutex);
1470 }
1471 EXPORT_SYMBOL(install_exec_creds);
1472 
1473 /*
1474  * determine how safe it is to execute the proposed program
1475  * - the caller must hold ->cred_guard_mutex to protect against
1476  *   PTRACE_ATTACH or seccomp thread-sync
1477  */
1478 static void check_unsafe_exec(struct linux_binprm *bprm)
1479 {
1480 	struct task_struct *p = current, *t;
1481 	unsigned n_fs;
1482 
1483 	if (p->ptrace)
1484 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1485 
1486 	/*
1487 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1488 	 * mess up.
1489 	 */
1490 	if (task_no_new_privs(current))
1491 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1492 
1493 	t = p;
1494 	n_fs = 1;
1495 	spin_lock(&p->fs->lock);
1496 	rcu_read_lock();
1497 	while_each_thread(p, t) {
1498 		if (t->fs == p->fs)
1499 			n_fs++;
1500 	}
1501 	rcu_read_unlock();
1502 
1503 	if (p->fs->users > n_fs)
1504 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1505 	else
1506 		p->fs->in_exec = 1;
1507 	spin_unlock(&p->fs->lock);
1508 }
1509 
1510 static void bprm_fill_uid(struct linux_binprm *bprm)
1511 {
1512 	struct inode *inode;
1513 	unsigned int mode;
1514 	kuid_t uid;
1515 	kgid_t gid;
1516 
1517 	/*
1518 	 * Since this can be called multiple times (via prepare_binprm),
1519 	 * we must clear any previous work done when setting set[ug]id
1520 	 * bits from any earlier bprm->file uses (for example when run
1521 	 * first for a setuid script then again for its interpreter).
1522 	 */
1523 	bprm->cred->euid = current_euid();
1524 	bprm->cred->egid = current_egid();
1525 
1526 	if (!mnt_may_suid(bprm->file->f_path.mnt))
1527 		return;
1528 
1529 	if (task_no_new_privs(current))
1530 		return;
1531 
1532 	inode = bprm->file->f_path.dentry->d_inode;
1533 	mode = READ_ONCE(inode->i_mode);
1534 	if (!(mode & (S_ISUID|S_ISGID)))
1535 		return;
1536 
1537 	/* Be careful if suid/sgid is set */
1538 	inode_lock(inode);
1539 
1540 	/* reload atomically mode/uid/gid now that lock held */
1541 	mode = inode->i_mode;
1542 	uid = inode->i_uid;
1543 	gid = inode->i_gid;
1544 	inode_unlock(inode);
1545 
1546 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1547 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1548 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1549 		return;
1550 
1551 	if (mode & S_ISUID) {
1552 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1553 		bprm->cred->euid = uid;
1554 	}
1555 
1556 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1557 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1558 		bprm->cred->egid = gid;
1559 	}
1560 }
1561 
1562 /*
1563  * Fill the binprm structure from the inode.
1564  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1565  *
1566  * This may be called multiple times for binary chains (scripts for example).
1567  */
1568 int prepare_binprm(struct linux_binprm *bprm)
1569 {
1570 	int retval;
1571 	loff_t pos = 0;
1572 
1573 	bprm_fill_uid(bprm);
1574 
1575 	/* fill in binprm security blob */
1576 	retval = security_bprm_set_creds(bprm);
1577 	if (retval)
1578 		return retval;
1579 	bprm->called_set_creds = 1;
1580 
1581 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1582 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1583 }
1584 
1585 EXPORT_SYMBOL(prepare_binprm);
1586 
1587 /*
1588  * Arguments are '\0' separated strings found at the location bprm->p
1589  * points to; chop off the first by relocating brpm->p to right after
1590  * the first '\0' encountered.
1591  */
1592 int remove_arg_zero(struct linux_binprm *bprm)
1593 {
1594 	int ret = 0;
1595 	unsigned long offset;
1596 	char *kaddr;
1597 	struct page *page;
1598 
1599 	if (!bprm->argc)
1600 		return 0;
1601 
1602 	do {
1603 		offset = bprm->p & ~PAGE_MASK;
1604 		page = get_arg_page(bprm, bprm->p, 0);
1605 		if (!page) {
1606 			ret = -EFAULT;
1607 			goto out;
1608 		}
1609 		kaddr = kmap_atomic(page);
1610 
1611 		for (; offset < PAGE_SIZE && kaddr[offset];
1612 				offset++, bprm->p++)
1613 			;
1614 
1615 		kunmap_atomic(kaddr);
1616 		put_arg_page(page);
1617 	} while (offset == PAGE_SIZE);
1618 
1619 	bprm->p++;
1620 	bprm->argc--;
1621 	ret = 0;
1622 
1623 out:
1624 	return ret;
1625 }
1626 EXPORT_SYMBOL(remove_arg_zero);
1627 
1628 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1629 /*
1630  * cycle the list of binary formats handler, until one recognizes the image
1631  */
1632 int search_binary_handler(struct linux_binprm *bprm)
1633 {
1634 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1635 	struct linux_binfmt *fmt;
1636 	int retval;
1637 
1638 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1639 	if (bprm->recursion_depth > 5)
1640 		return -ELOOP;
1641 
1642 	retval = security_bprm_check(bprm);
1643 	if (retval)
1644 		return retval;
1645 
1646 	retval = -ENOENT;
1647  retry:
1648 	read_lock(&binfmt_lock);
1649 	list_for_each_entry(fmt, &formats, lh) {
1650 		if (!try_module_get(fmt->module))
1651 			continue;
1652 		read_unlock(&binfmt_lock);
1653 		bprm->recursion_depth++;
1654 		retval = fmt->load_binary(bprm);
1655 		read_lock(&binfmt_lock);
1656 		put_binfmt(fmt);
1657 		bprm->recursion_depth--;
1658 		if (retval < 0 && !bprm->mm) {
1659 			/* we got to flush_old_exec() and failed after it */
1660 			read_unlock(&binfmt_lock);
1661 			force_sigsegv(SIGSEGV, current);
1662 			return retval;
1663 		}
1664 		if (retval != -ENOEXEC || !bprm->file) {
1665 			read_unlock(&binfmt_lock);
1666 			return retval;
1667 		}
1668 	}
1669 	read_unlock(&binfmt_lock);
1670 
1671 	if (need_retry) {
1672 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1673 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1674 			return retval;
1675 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1676 			return retval;
1677 		need_retry = false;
1678 		goto retry;
1679 	}
1680 
1681 	return retval;
1682 }
1683 EXPORT_SYMBOL(search_binary_handler);
1684 
1685 static int exec_binprm(struct linux_binprm *bprm)
1686 {
1687 	pid_t old_pid, old_vpid;
1688 	int ret;
1689 
1690 	/* Need to fetch pid before load_binary changes it */
1691 	old_pid = current->pid;
1692 	rcu_read_lock();
1693 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1694 	rcu_read_unlock();
1695 
1696 	ret = search_binary_handler(bprm);
1697 	if (ret >= 0) {
1698 		audit_bprm(bprm);
1699 		trace_sched_process_exec(current, old_pid, bprm);
1700 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1701 		proc_exec_connector(current);
1702 	}
1703 
1704 	return ret;
1705 }
1706 
1707 /*
1708  * sys_execve() executes a new program.
1709  */
1710 static int __do_execve_file(int fd, struct filename *filename,
1711 			    struct user_arg_ptr argv,
1712 			    struct user_arg_ptr envp,
1713 			    int flags, struct file *file)
1714 {
1715 	char *pathbuf = NULL;
1716 	struct linux_binprm *bprm;
1717 	struct files_struct *displaced;
1718 	int retval;
1719 
1720 	if (IS_ERR(filename))
1721 		return PTR_ERR(filename);
1722 
1723 	/*
1724 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1725 	 * set*uid() to execve() because too many poorly written programs
1726 	 * don't check setuid() return code.  Here we additionally recheck
1727 	 * whether NPROC limit is still exceeded.
1728 	 */
1729 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1730 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1731 		retval = -EAGAIN;
1732 		goto out_ret;
1733 	}
1734 
1735 	/* We're below the limit (still or again), so we don't want to make
1736 	 * further execve() calls fail. */
1737 	current->flags &= ~PF_NPROC_EXCEEDED;
1738 
1739 	retval = unshare_files(&displaced);
1740 	if (retval)
1741 		goto out_ret;
1742 
1743 	retval = -ENOMEM;
1744 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1745 	if (!bprm)
1746 		goto out_files;
1747 
1748 	retval = prepare_bprm_creds(bprm);
1749 	if (retval)
1750 		goto out_free;
1751 
1752 	check_unsafe_exec(bprm);
1753 	current->in_execve = 1;
1754 
1755 	if (!file)
1756 		file = do_open_execat(fd, filename, flags);
1757 	retval = PTR_ERR(file);
1758 	if (IS_ERR(file))
1759 		goto out_unmark;
1760 
1761 	sched_exec();
1762 
1763 	bprm->file = file;
1764 	if (!filename) {
1765 		bprm->filename = "none";
1766 	} else if (fd == AT_FDCWD || filename->name[0] == '/') {
1767 		bprm->filename = filename->name;
1768 	} else {
1769 		if (filename->name[0] == '\0')
1770 			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1771 		else
1772 			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1773 					    fd, filename->name);
1774 		if (!pathbuf) {
1775 			retval = -ENOMEM;
1776 			goto out_unmark;
1777 		}
1778 		/*
1779 		 * Record that a name derived from an O_CLOEXEC fd will be
1780 		 * inaccessible after exec. Relies on having exclusive access to
1781 		 * current->files (due to unshare_files above).
1782 		 */
1783 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1784 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1785 		bprm->filename = pathbuf;
1786 	}
1787 	bprm->interp = bprm->filename;
1788 
1789 	retval = bprm_mm_init(bprm);
1790 	if (retval)
1791 		goto out_unmark;
1792 
1793 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1794 	if ((retval = bprm->argc) < 0)
1795 		goto out;
1796 
1797 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1798 	if ((retval = bprm->envc) < 0)
1799 		goto out;
1800 
1801 	retval = prepare_binprm(bprm);
1802 	if (retval < 0)
1803 		goto out;
1804 
1805 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1806 	if (retval < 0)
1807 		goto out;
1808 
1809 	bprm->exec = bprm->p;
1810 	retval = copy_strings(bprm->envc, envp, bprm);
1811 	if (retval < 0)
1812 		goto out;
1813 
1814 	retval = copy_strings(bprm->argc, argv, bprm);
1815 	if (retval < 0)
1816 		goto out;
1817 
1818 	would_dump(bprm, bprm->file);
1819 
1820 	retval = exec_binprm(bprm);
1821 	if (retval < 0)
1822 		goto out;
1823 
1824 	/* execve succeeded */
1825 	current->fs->in_exec = 0;
1826 	current->in_execve = 0;
1827 	membarrier_execve(current);
1828 	rseq_execve(current);
1829 	acct_update_integrals(current);
1830 	task_numa_free(current);
1831 	free_bprm(bprm);
1832 	kfree(pathbuf);
1833 	if (filename)
1834 		putname(filename);
1835 	if (displaced)
1836 		put_files_struct(displaced);
1837 	return retval;
1838 
1839 out:
1840 	if (bprm->mm) {
1841 		acct_arg_size(bprm, 0);
1842 		mmput(bprm->mm);
1843 	}
1844 
1845 out_unmark:
1846 	current->fs->in_exec = 0;
1847 	current->in_execve = 0;
1848 
1849 out_free:
1850 	free_bprm(bprm);
1851 	kfree(pathbuf);
1852 
1853 out_files:
1854 	if (displaced)
1855 		reset_files_struct(displaced);
1856 out_ret:
1857 	if (filename)
1858 		putname(filename);
1859 	return retval;
1860 }
1861 
1862 static int do_execveat_common(int fd, struct filename *filename,
1863 			      struct user_arg_ptr argv,
1864 			      struct user_arg_ptr envp,
1865 			      int flags)
1866 {
1867 	return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1868 }
1869 
1870 int do_execve_file(struct file *file, void *__argv, void *__envp)
1871 {
1872 	struct user_arg_ptr argv = { .ptr.native = __argv };
1873 	struct user_arg_ptr envp = { .ptr.native = __envp };
1874 
1875 	return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1876 }
1877 
1878 int do_execve(struct filename *filename,
1879 	const char __user *const __user *__argv,
1880 	const char __user *const __user *__envp)
1881 {
1882 	struct user_arg_ptr argv = { .ptr.native = __argv };
1883 	struct user_arg_ptr envp = { .ptr.native = __envp };
1884 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1885 }
1886 
1887 int do_execveat(int fd, struct filename *filename,
1888 		const char __user *const __user *__argv,
1889 		const char __user *const __user *__envp,
1890 		int flags)
1891 {
1892 	struct user_arg_ptr argv = { .ptr.native = __argv };
1893 	struct user_arg_ptr envp = { .ptr.native = __envp };
1894 
1895 	return do_execveat_common(fd, filename, argv, envp, flags);
1896 }
1897 
1898 #ifdef CONFIG_COMPAT
1899 static int compat_do_execve(struct filename *filename,
1900 	const compat_uptr_t __user *__argv,
1901 	const compat_uptr_t __user *__envp)
1902 {
1903 	struct user_arg_ptr argv = {
1904 		.is_compat = true,
1905 		.ptr.compat = __argv,
1906 	};
1907 	struct user_arg_ptr envp = {
1908 		.is_compat = true,
1909 		.ptr.compat = __envp,
1910 	};
1911 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1912 }
1913 
1914 static int compat_do_execveat(int fd, struct filename *filename,
1915 			      const compat_uptr_t __user *__argv,
1916 			      const compat_uptr_t __user *__envp,
1917 			      int flags)
1918 {
1919 	struct user_arg_ptr argv = {
1920 		.is_compat = true,
1921 		.ptr.compat = __argv,
1922 	};
1923 	struct user_arg_ptr envp = {
1924 		.is_compat = true,
1925 		.ptr.compat = __envp,
1926 	};
1927 	return do_execveat_common(fd, filename, argv, envp, flags);
1928 }
1929 #endif
1930 
1931 void set_binfmt(struct linux_binfmt *new)
1932 {
1933 	struct mm_struct *mm = current->mm;
1934 
1935 	if (mm->binfmt)
1936 		module_put(mm->binfmt->module);
1937 
1938 	mm->binfmt = new;
1939 	if (new)
1940 		__module_get(new->module);
1941 }
1942 EXPORT_SYMBOL(set_binfmt);
1943 
1944 /*
1945  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1946  */
1947 void set_dumpable(struct mm_struct *mm, int value)
1948 {
1949 	unsigned long old, new;
1950 
1951 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1952 		return;
1953 
1954 	do {
1955 		old = READ_ONCE(mm->flags);
1956 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1957 	} while (cmpxchg(&mm->flags, old, new) != old);
1958 }
1959 
1960 SYSCALL_DEFINE3(execve,
1961 		const char __user *, filename,
1962 		const char __user *const __user *, argv,
1963 		const char __user *const __user *, envp)
1964 {
1965 	return do_execve(getname(filename), argv, envp);
1966 }
1967 
1968 SYSCALL_DEFINE5(execveat,
1969 		int, fd, const char __user *, filename,
1970 		const char __user *const __user *, argv,
1971 		const char __user *const __user *, envp,
1972 		int, flags)
1973 {
1974 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1975 
1976 	return do_execveat(fd,
1977 			   getname_flags(filename, lookup_flags, NULL),
1978 			   argv, envp, flags);
1979 }
1980 
1981 #ifdef CONFIG_COMPAT
1982 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1983 	const compat_uptr_t __user *, argv,
1984 	const compat_uptr_t __user *, envp)
1985 {
1986 	return compat_do_execve(getname(filename), argv, envp);
1987 }
1988 
1989 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1990 		       const char __user *, filename,
1991 		       const compat_uptr_t __user *, argv,
1992 		       const compat_uptr_t __user *, envp,
1993 		       int,  flags)
1994 {
1995 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1996 
1997 	return compat_do_execveat(fd,
1998 				  getname_flags(filename, lookup_flags, NULL),
1999 				  argv, envp, flags);
2000 }
2001 #endif
2002