xref: /openbmc/linux/fs/exec.c (revision 6fa24b41)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69 
70 #include <linux/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/tlb.h>
73 
74 #include <trace/events/task.h>
75 #include "internal.h"
76 
77 #include <trace/events/sched.h>
78 
79 static int bprm_creds_from_file(struct linux_binprm *bprm);
80 
81 int suid_dumpable = 0;
82 
83 static LIST_HEAD(formats);
84 static DEFINE_RWLOCK(binfmt_lock);
85 
86 void __register_binfmt(struct linux_binfmt * fmt, int insert)
87 {
88 	write_lock(&binfmt_lock);
89 	insert ? list_add(&fmt->lh, &formats) :
90 		 list_add_tail(&fmt->lh, &formats);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(__register_binfmt);
95 
96 void unregister_binfmt(struct linux_binfmt * fmt)
97 {
98 	write_lock(&binfmt_lock);
99 	list_del(&fmt->lh);
100 	write_unlock(&binfmt_lock);
101 }
102 
103 EXPORT_SYMBOL(unregister_binfmt);
104 
105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107 	module_put(fmt->module);
108 }
109 
110 bool path_noexec(const struct path *path)
111 {
112 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
113 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
114 }
115 
116 #ifdef CONFIG_USELIB
117 /*
118  * Note that a shared library must be both readable and executable due to
119  * security reasons.
120  *
121  * Also note that we take the address to load from the file itself.
122  */
123 SYSCALL_DEFINE1(uselib, const char __user *, library)
124 {
125 	struct linux_binfmt *fmt;
126 	struct file *file;
127 	struct filename *tmp = getname(library);
128 	int error = PTR_ERR(tmp);
129 	static const struct open_flags uselib_flags = {
130 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
131 		.acc_mode = MAY_READ | MAY_EXEC,
132 		.intent = LOOKUP_OPEN,
133 		.lookup_flags = LOOKUP_FOLLOW,
134 	};
135 
136 	if (IS_ERR(tmp))
137 		goto out;
138 
139 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
140 	putname(tmp);
141 	error = PTR_ERR(file);
142 	if (IS_ERR(file))
143 		goto out;
144 
145 	/*
146 	 * may_open() has already checked for this, so it should be
147 	 * impossible to trip now. But we need to be extra cautious
148 	 * and check again at the very end too.
149 	 */
150 	error = -EACCES;
151 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
152 			 path_noexec(&file->f_path)))
153 		goto exit;
154 
155 	error = -ENOEXEC;
156 
157 	read_lock(&binfmt_lock);
158 	list_for_each_entry(fmt, &formats, lh) {
159 		if (!fmt->load_shlib)
160 			continue;
161 		if (!try_module_get(fmt->module))
162 			continue;
163 		read_unlock(&binfmt_lock);
164 		error = fmt->load_shlib(file);
165 		read_lock(&binfmt_lock);
166 		put_binfmt(fmt);
167 		if (error != -ENOEXEC)
168 			break;
169 	}
170 	read_unlock(&binfmt_lock);
171 exit:
172 	fput(file);
173 out:
174 	return error;
175 }
176 #endif /* #ifdef CONFIG_USELIB */
177 
178 #ifdef CONFIG_MMU
179 /*
180  * The nascent bprm->mm is not visible until exec_mmap() but it can
181  * use a lot of memory, account these pages in current->mm temporary
182  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
183  * change the counter back via acct_arg_size(0).
184  */
185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
186 {
187 	struct mm_struct *mm = current->mm;
188 	long diff = (long)(pages - bprm->vma_pages);
189 
190 	if (!mm || !diff)
191 		return;
192 
193 	bprm->vma_pages = pages;
194 	add_mm_counter(mm, MM_ANONPAGES, diff);
195 }
196 
197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
198 		int write)
199 {
200 	struct page *page;
201 	struct vm_area_struct *vma = bprm->vma;
202 	struct mm_struct *mm = bprm->mm;
203 	int ret;
204 
205 	/*
206 	 * Avoid relying on expanding the stack down in GUP (which
207 	 * does not work for STACK_GROWSUP anyway), and just do it
208 	 * by hand ahead of time.
209 	 */
210 	if (write && pos < vma->vm_start) {
211 		mmap_write_lock(mm);
212 		ret = expand_downwards(vma, pos);
213 		if (unlikely(ret < 0)) {
214 			mmap_write_unlock(mm);
215 			return NULL;
216 		}
217 		mmap_write_downgrade(mm);
218 	} else
219 		mmap_read_lock(mm);
220 
221 	/*
222 	 * We are doing an exec().  'current' is the process
223 	 * doing the exec and 'mm' is the new process's mm.
224 	 */
225 	ret = get_user_pages_remote(mm, pos, 1,
226 			write ? FOLL_WRITE : 0,
227 			&page, NULL);
228 	mmap_read_unlock(mm);
229 	if (ret <= 0)
230 		return NULL;
231 
232 	if (write)
233 		acct_arg_size(bprm, vma_pages(vma));
234 
235 	return page;
236 }
237 
238 static void put_arg_page(struct page *page)
239 {
240 	put_page(page);
241 }
242 
243 static void free_arg_pages(struct linux_binprm *bprm)
244 {
245 }
246 
247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
248 		struct page *page)
249 {
250 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
251 }
252 
253 static int __bprm_mm_init(struct linux_binprm *bprm)
254 {
255 	int err;
256 	struct vm_area_struct *vma = NULL;
257 	struct mm_struct *mm = bprm->mm;
258 
259 	bprm->vma = vma = vm_area_alloc(mm);
260 	if (!vma)
261 		return -ENOMEM;
262 	vma_set_anonymous(vma);
263 
264 	if (mmap_write_lock_killable(mm)) {
265 		err = -EINTR;
266 		goto err_free;
267 	}
268 
269 	/*
270 	 * Place the stack at the largest stack address the architecture
271 	 * supports. Later, we'll move this to an appropriate place. We don't
272 	 * use STACK_TOP because that can depend on attributes which aren't
273 	 * configured yet.
274 	 */
275 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276 	vma->vm_end = STACK_TOP_MAX;
277 	vma->vm_start = vma->vm_end - PAGE_SIZE;
278 	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
279 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
280 
281 	err = insert_vm_struct(mm, vma);
282 	if (err)
283 		goto err;
284 
285 	mm->stack_vm = mm->total_vm = 1;
286 	mmap_write_unlock(mm);
287 	bprm->p = vma->vm_end - sizeof(void *);
288 	return 0;
289 err:
290 	mmap_write_unlock(mm);
291 err_free:
292 	bprm->vma = NULL;
293 	vm_area_free(vma);
294 	return err;
295 }
296 
297 static bool valid_arg_len(struct linux_binprm *bprm, long len)
298 {
299 	return len <= MAX_ARG_STRLEN;
300 }
301 
302 #else
303 
304 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
305 {
306 }
307 
308 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 		int write)
310 {
311 	struct page *page;
312 
313 	page = bprm->page[pos / PAGE_SIZE];
314 	if (!page && write) {
315 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
316 		if (!page)
317 			return NULL;
318 		bprm->page[pos / PAGE_SIZE] = page;
319 	}
320 
321 	return page;
322 }
323 
324 static void put_arg_page(struct page *page)
325 {
326 }
327 
328 static void free_arg_page(struct linux_binprm *bprm, int i)
329 {
330 	if (bprm->page[i]) {
331 		__free_page(bprm->page[i]);
332 		bprm->page[i] = NULL;
333 	}
334 }
335 
336 static void free_arg_pages(struct linux_binprm *bprm)
337 {
338 	int i;
339 
340 	for (i = 0; i < MAX_ARG_PAGES; i++)
341 		free_arg_page(bprm, i);
342 }
343 
344 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
345 		struct page *page)
346 {
347 }
348 
349 static int __bprm_mm_init(struct linux_binprm *bprm)
350 {
351 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
352 	return 0;
353 }
354 
355 static bool valid_arg_len(struct linux_binprm *bprm, long len)
356 {
357 	return len <= bprm->p;
358 }
359 
360 #endif /* CONFIG_MMU */
361 
362 /*
363  * Create a new mm_struct and populate it with a temporary stack
364  * vm_area_struct.  We don't have enough context at this point to set the stack
365  * flags, permissions, and offset, so we use temporary values.  We'll update
366  * them later in setup_arg_pages().
367  */
368 static int bprm_mm_init(struct linux_binprm *bprm)
369 {
370 	int err;
371 	struct mm_struct *mm = NULL;
372 
373 	bprm->mm = mm = mm_alloc();
374 	err = -ENOMEM;
375 	if (!mm)
376 		goto err;
377 
378 	/* Save current stack limit for all calculations made during exec. */
379 	task_lock(current->group_leader);
380 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
381 	task_unlock(current->group_leader);
382 
383 	err = __bprm_mm_init(bprm);
384 	if (err)
385 		goto err;
386 
387 	return 0;
388 
389 err:
390 	if (mm) {
391 		bprm->mm = NULL;
392 		mmdrop(mm);
393 	}
394 
395 	return err;
396 }
397 
398 struct user_arg_ptr {
399 #ifdef CONFIG_COMPAT
400 	bool is_compat;
401 #endif
402 	union {
403 		const char __user *const __user *native;
404 #ifdef CONFIG_COMPAT
405 		const compat_uptr_t __user *compat;
406 #endif
407 	} ptr;
408 };
409 
410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
411 {
412 	const char __user *native;
413 
414 #ifdef CONFIG_COMPAT
415 	if (unlikely(argv.is_compat)) {
416 		compat_uptr_t compat;
417 
418 		if (get_user(compat, argv.ptr.compat + nr))
419 			return ERR_PTR(-EFAULT);
420 
421 		return compat_ptr(compat);
422 	}
423 #endif
424 
425 	if (get_user(native, argv.ptr.native + nr))
426 		return ERR_PTR(-EFAULT);
427 
428 	return native;
429 }
430 
431 /*
432  * count() counts the number of strings in array ARGV.
433  */
434 static int count(struct user_arg_ptr argv, int max)
435 {
436 	int i = 0;
437 
438 	if (argv.ptr.native != NULL) {
439 		for (;;) {
440 			const char __user *p = get_user_arg_ptr(argv, i);
441 
442 			if (!p)
443 				break;
444 
445 			if (IS_ERR(p))
446 				return -EFAULT;
447 
448 			if (i >= max)
449 				return -E2BIG;
450 			++i;
451 
452 			if (fatal_signal_pending(current))
453 				return -ERESTARTNOHAND;
454 			cond_resched();
455 		}
456 	}
457 	return i;
458 }
459 
460 static int count_strings_kernel(const char *const *argv)
461 {
462 	int i;
463 
464 	if (!argv)
465 		return 0;
466 
467 	for (i = 0; argv[i]; ++i) {
468 		if (i >= MAX_ARG_STRINGS)
469 			return -E2BIG;
470 		if (fatal_signal_pending(current))
471 			return -ERESTARTNOHAND;
472 		cond_resched();
473 	}
474 	return i;
475 }
476 
477 static int bprm_stack_limits(struct linux_binprm *bprm)
478 {
479 	unsigned long limit, ptr_size;
480 
481 	/*
482 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
483 	 * (whichever is smaller) for the argv+env strings.
484 	 * This ensures that:
485 	 *  - the remaining binfmt code will not run out of stack space,
486 	 *  - the program will have a reasonable amount of stack left
487 	 *    to work from.
488 	 */
489 	limit = _STK_LIM / 4 * 3;
490 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
491 	/*
492 	 * We've historically supported up to 32 pages (ARG_MAX)
493 	 * of argument strings even with small stacks
494 	 */
495 	limit = max_t(unsigned long, limit, ARG_MAX);
496 	/*
497 	 * We must account for the size of all the argv and envp pointers to
498 	 * the argv and envp strings, since they will also take up space in
499 	 * the stack. They aren't stored until much later when we can't
500 	 * signal to the parent that the child has run out of stack space.
501 	 * Instead, calculate it here so it's possible to fail gracefully.
502 	 *
503 	 * In the case of argc = 0, make sure there is space for adding a
504 	 * empty string (which will bump argc to 1), to ensure confused
505 	 * userspace programs don't start processing from argv[1], thinking
506 	 * argc can never be 0, to keep them from walking envp by accident.
507 	 * See do_execveat_common().
508 	 */
509 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
510 	if (limit <= ptr_size)
511 		return -E2BIG;
512 	limit -= ptr_size;
513 
514 	bprm->argmin = bprm->p - limit;
515 	return 0;
516 }
517 
518 /*
519  * 'copy_strings()' copies argument/environment strings from the old
520  * processes's memory to the new process's stack.  The call to get_user_pages()
521  * ensures the destination page is created and not swapped out.
522  */
523 static int copy_strings(int argc, struct user_arg_ptr argv,
524 			struct linux_binprm *bprm)
525 {
526 	struct page *kmapped_page = NULL;
527 	char *kaddr = NULL;
528 	unsigned long kpos = 0;
529 	int ret;
530 
531 	while (argc-- > 0) {
532 		const char __user *str;
533 		int len;
534 		unsigned long pos;
535 
536 		ret = -EFAULT;
537 		str = get_user_arg_ptr(argv, argc);
538 		if (IS_ERR(str))
539 			goto out;
540 
541 		len = strnlen_user(str, MAX_ARG_STRLEN);
542 		if (!len)
543 			goto out;
544 
545 		ret = -E2BIG;
546 		if (!valid_arg_len(bprm, len))
547 			goto out;
548 
549 		/* We're going to work our way backwards. */
550 		pos = bprm->p;
551 		str += len;
552 		bprm->p -= len;
553 #ifdef CONFIG_MMU
554 		if (bprm->p < bprm->argmin)
555 			goto out;
556 #endif
557 
558 		while (len > 0) {
559 			int offset, bytes_to_copy;
560 
561 			if (fatal_signal_pending(current)) {
562 				ret = -ERESTARTNOHAND;
563 				goto out;
564 			}
565 			cond_resched();
566 
567 			offset = pos % PAGE_SIZE;
568 			if (offset == 0)
569 				offset = PAGE_SIZE;
570 
571 			bytes_to_copy = offset;
572 			if (bytes_to_copy > len)
573 				bytes_to_copy = len;
574 
575 			offset -= bytes_to_copy;
576 			pos -= bytes_to_copy;
577 			str -= bytes_to_copy;
578 			len -= bytes_to_copy;
579 
580 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
581 				struct page *page;
582 
583 				page = get_arg_page(bprm, pos, 1);
584 				if (!page) {
585 					ret = -E2BIG;
586 					goto out;
587 				}
588 
589 				if (kmapped_page) {
590 					flush_dcache_page(kmapped_page);
591 					kunmap_local(kaddr);
592 					put_arg_page(kmapped_page);
593 				}
594 				kmapped_page = page;
595 				kaddr = kmap_local_page(kmapped_page);
596 				kpos = pos & PAGE_MASK;
597 				flush_arg_page(bprm, kpos, kmapped_page);
598 			}
599 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
600 				ret = -EFAULT;
601 				goto out;
602 			}
603 		}
604 	}
605 	ret = 0;
606 out:
607 	if (kmapped_page) {
608 		flush_dcache_page(kmapped_page);
609 		kunmap_local(kaddr);
610 		put_arg_page(kmapped_page);
611 	}
612 	return ret;
613 }
614 
615 /*
616  * Copy and argument/environment string from the kernel to the processes stack.
617  */
618 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
619 {
620 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
621 	unsigned long pos = bprm->p;
622 
623 	if (len == 0)
624 		return -EFAULT;
625 	if (!valid_arg_len(bprm, len))
626 		return -E2BIG;
627 
628 	/* We're going to work our way backwards. */
629 	arg += len;
630 	bprm->p -= len;
631 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
632 		return -E2BIG;
633 
634 	while (len > 0) {
635 		unsigned int bytes_to_copy = min_t(unsigned int, len,
636 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
637 		struct page *page;
638 
639 		pos -= bytes_to_copy;
640 		arg -= bytes_to_copy;
641 		len -= bytes_to_copy;
642 
643 		page = get_arg_page(bprm, pos, 1);
644 		if (!page)
645 			return -E2BIG;
646 		flush_arg_page(bprm, pos & PAGE_MASK, page);
647 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
648 		put_arg_page(page);
649 	}
650 
651 	return 0;
652 }
653 EXPORT_SYMBOL(copy_string_kernel);
654 
655 static int copy_strings_kernel(int argc, const char *const *argv,
656 			       struct linux_binprm *bprm)
657 {
658 	while (argc-- > 0) {
659 		int ret = copy_string_kernel(argv[argc], bprm);
660 		if (ret < 0)
661 			return ret;
662 		if (fatal_signal_pending(current))
663 			return -ERESTARTNOHAND;
664 		cond_resched();
665 	}
666 	return 0;
667 }
668 
669 #ifdef CONFIG_MMU
670 
671 /*
672  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
673  * the binfmt code determines where the new stack should reside, we shift it to
674  * its final location.  The process proceeds as follows:
675  *
676  * 1) Use shift to calculate the new vma endpoints.
677  * 2) Extend vma to cover both the old and new ranges.  This ensures the
678  *    arguments passed to subsequent functions are consistent.
679  * 3) Move vma's page tables to the new range.
680  * 4) Free up any cleared pgd range.
681  * 5) Shrink the vma to cover only the new range.
682  */
683 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
684 {
685 	struct mm_struct *mm = vma->vm_mm;
686 	unsigned long old_start = vma->vm_start;
687 	unsigned long old_end = vma->vm_end;
688 	unsigned long length = old_end - old_start;
689 	unsigned long new_start = old_start - shift;
690 	unsigned long new_end = old_end - shift;
691 	VMA_ITERATOR(vmi, mm, new_start);
692 	struct vm_area_struct *next;
693 	struct mmu_gather tlb;
694 
695 	BUG_ON(new_start > new_end);
696 
697 	/*
698 	 * ensure there are no vmas between where we want to go
699 	 * and where we are
700 	 */
701 	if (vma != vma_next(&vmi))
702 		return -EFAULT;
703 
704 	vma_iter_prev_range(&vmi);
705 	/*
706 	 * cover the whole range: [new_start, old_end)
707 	 */
708 	if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
709 		return -ENOMEM;
710 
711 	/*
712 	 * move the page tables downwards, on failure we rely on
713 	 * process cleanup to remove whatever mess we made.
714 	 */
715 	if (length != move_page_tables(vma, old_start,
716 				       vma, new_start, length, false))
717 		return -ENOMEM;
718 
719 	lru_add_drain();
720 	tlb_gather_mmu(&tlb, mm);
721 	next = vma_next(&vmi);
722 	if (new_end > old_start) {
723 		/*
724 		 * when the old and new regions overlap clear from new_end.
725 		 */
726 		free_pgd_range(&tlb, new_end, old_end, new_end,
727 			next ? next->vm_start : USER_PGTABLES_CEILING);
728 	} else {
729 		/*
730 		 * otherwise, clean from old_start; this is done to not touch
731 		 * the address space in [new_end, old_start) some architectures
732 		 * have constraints on va-space that make this illegal (IA64) -
733 		 * for the others its just a little faster.
734 		 */
735 		free_pgd_range(&tlb, old_start, old_end, new_end,
736 			next ? next->vm_start : USER_PGTABLES_CEILING);
737 	}
738 	tlb_finish_mmu(&tlb);
739 
740 	vma_prev(&vmi);
741 	/* Shrink the vma to just the new range */
742 	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
743 }
744 
745 /*
746  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
747  * the stack is optionally relocated, and some extra space is added.
748  */
749 int setup_arg_pages(struct linux_binprm *bprm,
750 		    unsigned long stack_top,
751 		    int executable_stack)
752 {
753 	unsigned long ret;
754 	unsigned long stack_shift;
755 	struct mm_struct *mm = current->mm;
756 	struct vm_area_struct *vma = bprm->vma;
757 	struct vm_area_struct *prev = NULL;
758 	unsigned long vm_flags;
759 	unsigned long stack_base;
760 	unsigned long stack_size;
761 	unsigned long stack_expand;
762 	unsigned long rlim_stack;
763 	struct mmu_gather tlb;
764 	struct vma_iterator vmi;
765 
766 #ifdef CONFIG_STACK_GROWSUP
767 	/* Limit stack size */
768 	stack_base = bprm->rlim_stack.rlim_max;
769 
770 	stack_base = calc_max_stack_size(stack_base);
771 
772 	/* Add space for stack randomization. */
773 	if (current->flags & PF_RANDOMIZE)
774 		stack_base += (STACK_RND_MASK << PAGE_SHIFT);
775 
776 	/* Make sure we didn't let the argument array grow too large. */
777 	if (vma->vm_end - vma->vm_start > stack_base)
778 		return -ENOMEM;
779 
780 	stack_base = PAGE_ALIGN(stack_top - stack_base);
781 
782 	stack_shift = vma->vm_start - stack_base;
783 	mm->arg_start = bprm->p - stack_shift;
784 	bprm->p = vma->vm_end - stack_shift;
785 #else
786 	stack_top = arch_align_stack(stack_top);
787 	stack_top = PAGE_ALIGN(stack_top);
788 
789 	if (unlikely(stack_top < mmap_min_addr) ||
790 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
791 		return -ENOMEM;
792 
793 	stack_shift = vma->vm_end - stack_top;
794 
795 	bprm->p -= stack_shift;
796 	mm->arg_start = bprm->p;
797 #endif
798 
799 	if (bprm->loader)
800 		bprm->loader -= stack_shift;
801 	bprm->exec -= stack_shift;
802 
803 	if (mmap_write_lock_killable(mm))
804 		return -EINTR;
805 
806 	vm_flags = VM_STACK_FLAGS;
807 
808 	/*
809 	 * Adjust stack execute permissions; explicitly enable for
810 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
811 	 * (arch default) otherwise.
812 	 */
813 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
814 		vm_flags |= VM_EXEC;
815 	else if (executable_stack == EXSTACK_DISABLE_X)
816 		vm_flags &= ~VM_EXEC;
817 	vm_flags |= mm->def_flags;
818 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
819 
820 	vma_iter_init(&vmi, mm, vma->vm_start);
821 
822 	tlb_gather_mmu(&tlb, mm);
823 	ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
824 			vm_flags);
825 	tlb_finish_mmu(&tlb);
826 
827 	if (ret)
828 		goto out_unlock;
829 	BUG_ON(prev != vma);
830 
831 	if (unlikely(vm_flags & VM_EXEC)) {
832 		pr_warn_once("process '%pD4' started with executable stack\n",
833 			     bprm->file);
834 	}
835 
836 	/* Move stack pages down in memory. */
837 	if (stack_shift) {
838 		ret = shift_arg_pages(vma, stack_shift);
839 		if (ret)
840 			goto out_unlock;
841 	}
842 
843 	/* mprotect_fixup is overkill to remove the temporary stack flags */
844 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
845 
846 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
847 	stack_size = vma->vm_end - vma->vm_start;
848 	/*
849 	 * Align this down to a page boundary as expand_stack
850 	 * will align it up.
851 	 */
852 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
853 
854 	stack_expand = min(rlim_stack, stack_size + stack_expand);
855 
856 #ifdef CONFIG_STACK_GROWSUP
857 	stack_base = vma->vm_start + stack_expand;
858 #else
859 	stack_base = vma->vm_end - stack_expand;
860 #endif
861 	current->mm->start_stack = bprm->p;
862 	ret = expand_stack_locked(vma, stack_base);
863 	if (ret)
864 		ret = -EFAULT;
865 
866 out_unlock:
867 	mmap_write_unlock(mm);
868 	return ret;
869 }
870 EXPORT_SYMBOL(setup_arg_pages);
871 
872 #else
873 
874 /*
875  * Transfer the program arguments and environment from the holding pages
876  * onto the stack. The provided stack pointer is adjusted accordingly.
877  */
878 int transfer_args_to_stack(struct linux_binprm *bprm,
879 			   unsigned long *sp_location)
880 {
881 	unsigned long index, stop, sp;
882 	int ret = 0;
883 
884 	stop = bprm->p >> PAGE_SHIFT;
885 	sp = *sp_location;
886 
887 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
888 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
889 		char *src = kmap_local_page(bprm->page[index]) + offset;
890 		sp -= PAGE_SIZE - offset;
891 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
892 			ret = -EFAULT;
893 		kunmap_local(src);
894 		if (ret)
895 			goto out;
896 	}
897 
898 	bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
899 	*sp_location = sp;
900 
901 out:
902 	return ret;
903 }
904 EXPORT_SYMBOL(transfer_args_to_stack);
905 
906 #endif /* CONFIG_MMU */
907 
908 static struct file *do_open_execat(int fd, struct filename *name, int flags)
909 {
910 	struct file *file;
911 	int err;
912 	struct open_flags open_exec_flags = {
913 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
914 		.acc_mode = MAY_EXEC,
915 		.intent = LOOKUP_OPEN,
916 		.lookup_flags = LOOKUP_FOLLOW,
917 	};
918 
919 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
920 		return ERR_PTR(-EINVAL);
921 	if (flags & AT_SYMLINK_NOFOLLOW)
922 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
923 	if (flags & AT_EMPTY_PATH)
924 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
925 
926 	file = do_filp_open(fd, name, &open_exec_flags);
927 	if (IS_ERR(file))
928 		goto out;
929 
930 	/*
931 	 * may_open() has already checked for this, so it should be
932 	 * impossible to trip now. But we need to be extra cautious
933 	 * and check again at the very end too.
934 	 */
935 	err = -EACCES;
936 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
937 			 path_noexec(&file->f_path)))
938 		goto exit;
939 
940 	err = deny_write_access(file);
941 	if (err)
942 		goto exit;
943 
944 out:
945 	return file;
946 
947 exit:
948 	fput(file);
949 	return ERR_PTR(err);
950 }
951 
952 struct file *open_exec(const char *name)
953 {
954 	struct filename *filename = getname_kernel(name);
955 	struct file *f = ERR_CAST(filename);
956 
957 	if (!IS_ERR(filename)) {
958 		f = do_open_execat(AT_FDCWD, filename, 0);
959 		putname(filename);
960 	}
961 	return f;
962 }
963 EXPORT_SYMBOL(open_exec);
964 
965 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
966 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
967 {
968 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
969 	if (res > 0)
970 		flush_icache_user_range(addr, addr + len);
971 	return res;
972 }
973 EXPORT_SYMBOL(read_code);
974 #endif
975 
976 /*
977  * Maps the mm_struct mm into the current task struct.
978  * On success, this function returns with exec_update_lock
979  * held for writing.
980  */
981 static int exec_mmap(struct mm_struct *mm)
982 {
983 	struct task_struct *tsk;
984 	struct mm_struct *old_mm, *active_mm;
985 	int ret;
986 
987 	/* Notify parent that we're no longer interested in the old VM */
988 	tsk = current;
989 	old_mm = current->mm;
990 	exec_mm_release(tsk, old_mm);
991 	if (old_mm)
992 		sync_mm_rss(old_mm);
993 
994 	ret = down_write_killable(&tsk->signal->exec_update_lock);
995 	if (ret)
996 		return ret;
997 
998 	if (old_mm) {
999 		/*
1000 		 * If there is a pending fatal signal perhaps a signal
1001 		 * whose default action is to create a coredump get
1002 		 * out and die instead of going through with the exec.
1003 		 */
1004 		ret = mmap_read_lock_killable(old_mm);
1005 		if (ret) {
1006 			up_write(&tsk->signal->exec_update_lock);
1007 			return ret;
1008 		}
1009 	}
1010 
1011 	task_lock(tsk);
1012 	membarrier_exec_mmap(mm);
1013 
1014 	local_irq_disable();
1015 	active_mm = tsk->active_mm;
1016 	tsk->active_mm = mm;
1017 	tsk->mm = mm;
1018 	mm_init_cid(mm);
1019 	/*
1020 	 * This prevents preemption while active_mm is being loaded and
1021 	 * it and mm are being updated, which could cause problems for
1022 	 * lazy tlb mm refcounting when these are updated by context
1023 	 * switches. Not all architectures can handle irqs off over
1024 	 * activate_mm yet.
1025 	 */
1026 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1027 		local_irq_enable();
1028 	activate_mm(active_mm, mm);
1029 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1030 		local_irq_enable();
1031 	lru_gen_add_mm(mm);
1032 	task_unlock(tsk);
1033 	lru_gen_use_mm(mm);
1034 	if (old_mm) {
1035 		mmap_read_unlock(old_mm);
1036 		BUG_ON(active_mm != old_mm);
1037 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1038 		mm_update_next_owner(old_mm);
1039 		mmput(old_mm);
1040 		return 0;
1041 	}
1042 	mmdrop_lazy_tlb(active_mm);
1043 	return 0;
1044 }
1045 
1046 static int de_thread(struct task_struct *tsk)
1047 {
1048 	struct signal_struct *sig = tsk->signal;
1049 	struct sighand_struct *oldsighand = tsk->sighand;
1050 	spinlock_t *lock = &oldsighand->siglock;
1051 
1052 	if (thread_group_empty(tsk))
1053 		goto no_thread_group;
1054 
1055 	/*
1056 	 * Kill all other threads in the thread group.
1057 	 */
1058 	spin_lock_irq(lock);
1059 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1060 		/*
1061 		 * Another group action in progress, just
1062 		 * return so that the signal is processed.
1063 		 */
1064 		spin_unlock_irq(lock);
1065 		return -EAGAIN;
1066 	}
1067 
1068 	sig->group_exec_task = tsk;
1069 	sig->notify_count = zap_other_threads(tsk);
1070 	if (!thread_group_leader(tsk))
1071 		sig->notify_count--;
1072 
1073 	while (sig->notify_count) {
1074 		__set_current_state(TASK_KILLABLE);
1075 		spin_unlock_irq(lock);
1076 		schedule();
1077 		if (__fatal_signal_pending(tsk))
1078 			goto killed;
1079 		spin_lock_irq(lock);
1080 	}
1081 	spin_unlock_irq(lock);
1082 
1083 	/*
1084 	 * At this point all other threads have exited, all we have to
1085 	 * do is to wait for the thread group leader to become inactive,
1086 	 * and to assume its PID:
1087 	 */
1088 	if (!thread_group_leader(tsk)) {
1089 		struct task_struct *leader = tsk->group_leader;
1090 
1091 		for (;;) {
1092 			cgroup_threadgroup_change_begin(tsk);
1093 			write_lock_irq(&tasklist_lock);
1094 			/*
1095 			 * Do this under tasklist_lock to ensure that
1096 			 * exit_notify() can't miss ->group_exec_task
1097 			 */
1098 			sig->notify_count = -1;
1099 			if (likely(leader->exit_state))
1100 				break;
1101 			__set_current_state(TASK_KILLABLE);
1102 			write_unlock_irq(&tasklist_lock);
1103 			cgroup_threadgroup_change_end(tsk);
1104 			schedule();
1105 			if (__fatal_signal_pending(tsk))
1106 				goto killed;
1107 		}
1108 
1109 		/*
1110 		 * The only record we have of the real-time age of a
1111 		 * process, regardless of execs it's done, is start_time.
1112 		 * All the past CPU time is accumulated in signal_struct
1113 		 * from sister threads now dead.  But in this non-leader
1114 		 * exec, nothing survives from the original leader thread,
1115 		 * whose birth marks the true age of this process now.
1116 		 * When we take on its identity by switching to its PID, we
1117 		 * also take its birthdate (always earlier than our own).
1118 		 */
1119 		tsk->start_time = leader->start_time;
1120 		tsk->start_boottime = leader->start_boottime;
1121 
1122 		BUG_ON(!same_thread_group(leader, tsk));
1123 		/*
1124 		 * An exec() starts a new thread group with the
1125 		 * TGID of the previous thread group. Rehash the
1126 		 * two threads with a switched PID, and release
1127 		 * the former thread group leader:
1128 		 */
1129 
1130 		/* Become a process group leader with the old leader's pid.
1131 		 * The old leader becomes a thread of the this thread group.
1132 		 */
1133 		exchange_tids(tsk, leader);
1134 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1135 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1136 		transfer_pid(leader, tsk, PIDTYPE_SID);
1137 
1138 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1139 		list_replace_init(&leader->sibling, &tsk->sibling);
1140 
1141 		tsk->group_leader = tsk;
1142 		leader->group_leader = tsk;
1143 
1144 		tsk->exit_signal = SIGCHLD;
1145 		leader->exit_signal = -1;
1146 
1147 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1148 		leader->exit_state = EXIT_DEAD;
1149 
1150 		/*
1151 		 * We are going to release_task()->ptrace_unlink() silently,
1152 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1153 		 * the tracer won't block again waiting for this thread.
1154 		 */
1155 		if (unlikely(leader->ptrace))
1156 			__wake_up_parent(leader, leader->parent);
1157 		write_unlock_irq(&tasklist_lock);
1158 		cgroup_threadgroup_change_end(tsk);
1159 
1160 		release_task(leader);
1161 	}
1162 
1163 	sig->group_exec_task = NULL;
1164 	sig->notify_count = 0;
1165 
1166 no_thread_group:
1167 	/* we have changed execution domain */
1168 	tsk->exit_signal = SIGCHLD;
1169 
1170 	BUG_ON(!thread_group_leader(tsk));
1171 	return 0;
1172 
1173 killed:
1174 	/* protects against exit_notify() and __exit_signal() */
1175 	read_lock(&tasklist_lock);
1176 	sig->group_exec_task = NULL;
1177 	sig->notify_count = 0;
1178 	read_unlock(&tasklist_lock);
1179 	return -EAGAIN;
1180 }
1181 
1182 
1183 /*
1184  * This function makes sure the current process has its own signal table,
1185  * so that flush_signal_handlers can later reset the handlers without
1186  * disturbing other processes.  (Other processes might share the signal
1187  * table via the CLONE_SIGHAND option to clone().)
1188  */
1189 static int unshare_sighand(struct task_struct *me)
1190 {
1191 	struct sighand_struct *oldsighand = me->sighand;
1192 
1193 	if (refcount_read(&oldsighand->count) != 1) {
1194 		struct sighand_struct *newsighand;
1195 		/*
1196 		 * This ->sighand is shared with the CLONE_SIGHAND
1197 		 * but not CLONE_THREAD task, switch to the new one.
1198 		 */
1199 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1200 		if (!newsighand)
1201 			return -ENOMEM;
1202 
1203 		refcount_set(&newsighand->count, 1);
1204 
1205 		write_lock_irq(&tasklist_lock);
1206 		spin_lock(&oldsighand->siglock);
1207 		memcpy(newsighand->action, oldsighand->action,
1208 		       sizeof(newsighand->action));
1209 		rcu_assign_pointer(me->sighand, newsighand);
1210 		spin_unlock(&oldsighand->siglock);
1211 		write_unlock_irq(&tasklist_lock);
1212 
1213 		__cleanup_sighand(oldsighand);
1214 	}
1215 	return 0;
1216 }
1217 
1218 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1219 {
1220 	task_lock(tsk);
1221 	/* Always NUL terminated and zero-padded */
1222 	strscpy_pad(buf, tsk->comm, buf_size);
1223 	task_unlock(tsk);
1224 	return buf;
1225 }
1226 EXPORT_SYMBOL_GPL(__get_task_comm);
1227 
1228 /*
1229  * These functions flushes out all traces of the currently running executable
1230  * so that a new one can be started
1231  */
1232 
1233 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1234 {
1235 	task_lock(tsk);
1236 	trace_task_rename(tsk, buf);
1237 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1238 	task_unlock(tsk);
1239 	perf_event_comm(tsk, exec);
1240 }
1241 
1242 /*
1243  * Calling this is the point of no return. None of the failures will be
1244  * seen by userspace since either the process is already taking a fatal
1245  * signal (via de_thread() or coredump), or will have SEGV raised
1246  * (after exec_mmap()) by search_binary_handler (see below).
1247  */
1248 int begin_new_exec(struct linux_binprm * bprm)
1249 {
1250 	struct task_struct *me = current;
1251 	int retval;
1252 
1253 	/* Once we are committed compute the creds */
1254 	retval = bprm_creds_from_file(bprm);
1255 	if (retval)
1256 		return retval;
1257 
1258 	/*
1259 	 * Ensure all future errors are fatal.
1260 	 */
1261 	bprm->point_of_no_return = true;
1262 
1263 	/*
1264 	 * Make this the only thread in the thread group.
1265 	 */
1266 	retval = de_thread(me);
1267 	if (retval)
1268 		goto out;
1269 
1270 	/*
1271 	 * Cancel any io_uring activity across execve
1272 	 */
1273 	io_uring_task_cancel();
1274 
1275 	/* Ensure the files table is not shared. */
1276 	retval = unshare_files();
1277 	if (retval)
1278 		goto out;
1279 
1280 	/*
1281 	 * Must be called _before_ exec_mmap() as bprm->mm is
1282 	 * not visible until then. Doing it here also ensures
1283 	 * we don't race against replace_mm_exe_file().
1284 	 */
1285 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1286 	if (retval)
1287 		goto out;
1288 
1289 	/* If the binary is not readable then enforce mm->dumpable=0 */
1290 	would_dump(bprm, bprm->file);
1291 	if (bprm->have_execfd)
1292 		would_dump(bprm, bprm->executable);
1293 
1294 	/*
1295 	 * Release all of the old mmap stuff
1296 	 */
1297 	acct_arg_size(bprm, 0);
1298 	retval = exec_mmap(bprm->mm);
1299 	if (retval)
1300 		goto out;
1301 
1302 	bprm->mm = NULL;
1303 
1304 	retval = exec_task_namespaces();
1305 	if (retval)
1306 		goto out_unlock;
1307 
1308 #ifdef CONFIG_POSIX_TIMERS
1309 	spin_lock_irq(&me->sighand->siglock);
1310 	posix_cpu_timers_exit(me);
1311 	spin_unlock_irq(&me->sighand->siglock);
1312 	exit_itimers(me);
1313 	flush_itimer_signals();
1314 #endif
1315 
1316 	/*
1317 	 * Make the signal table private.
1318 	 */
1319 	retval = unshare_sighand(me);
1320 	if (retval)
1321 		goto out_unlock;
1322 
1323 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1324 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1325 	flush_thread();
1326 	me->personality &= ~bprm->per_clear;
1327 
1328 	clear_syscall_work_syscall_user_dispatch(me);
1329 
1330 	/*
1331 	 * We have to apply CLOEXEC before we change whether the process is
1332 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1333 	 * trying to access the should-be-closed file descriptors of a process
1334 	 * undergoing exec(2).
1335 	 */
1336 	do_close_on_exec(me->files);
1337 
1338 	if (bprm->secureexec) {
1339 		/* Make sure parent cannot signal privileged process. */
1340 		me->pdeath_signal = 0;
1341 
1342 		/*
1343 		 * For secureexec, reset the stack limit to sane default to
1344 		 * avoid bad behavior from the prior rlimits. This has to
1345 		 * happen before arch_pick_mmap_layout(), which examines
1346 		 * RLIMIT_STACK, but after the point of no return to avoid
1347 		 * needing to clean up the change on failure.
1348 		 */
1349 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1350 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1351 	}
1352 
1353 	me->sas_ss_sp = me->sas_ss_size = 0;
1354 
1355 	/*
1356 	 * Figure out dumpability. Note that this checking only of current
1357 	 * is wrong, but userspace depends on it. This should be testing
1358 	 * bprm->secureexec instead.
1359 	 */
1360 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1361 	    !(uid_eq(current_euid(), current_uid()) &&
1362 	      gid_eq(current_egid(), current_gid())))
1363 		set_dumpable(current->mm, suid_dumpable);
1364 	else
1365 		set_dumpable(current->mm, SUID_DUMP_USER);
1366 
1367 	perf_event_exec();
1368 	__set_task_comm(me, kbasename(bprm->filename), true);
1369 
1370 	/* An exec changes our domain. We are no longer part of the thread
1371 	   group */
1372 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1373 	flush_signal_handlers(me, 0);
1374 
1375 	retval = set_cred_ucounts(bprm->cred);
1376 	if (retval < 0)
1377 		goto out_unlock;
1378 
1379 	/*
1380 	 * install the new credentials for this executable
1381 	 */
1382 	security_bprm_committing_creds(bprm);
1383 
1384 	commit_creds(bprm->cred);
1385 	bprm->cred = NULL;
1386 
1387 	/*
1388 	 * Disable monitoring for regular users
1389 	 * when executing setuid binaries. Must
1390 	 * wait until new credentials are committed
1391 	 * by commit_creds() above
1392 	 */
1393 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1394 		perf_event_exit_task(me);
1395 	/*
1396 	 * cred_guard_mutex must be held at least to this point to prevent
1397 	 * ptrace_attach() from altering our determination of the task's
1398 	 * credentials; any time after this it may be unlocked.
1399 	 */
1400 	security_bprm_committed_creds(bprm);
1401 
1402 	/* Pass the opened binary to the interpreter. */
1403 	if (bprm->have_execfd) {
1404 		retval = get_unused_fd_flags(0);
1405 		if (retval < 0)
1406 			goto out_unlock;
1407 		fd_install(retval, bprm->executable);
1408 		bprm->executable = NULL;
1409 		bprm->execfd = retval;
1410 	}
1411 	return 0;
1412 
1413 out_unlock:
1414 	up_write(&me->signal->exec_update_lock);
1415 	if (!bprm->cred)
1416 		mutex_unlock(&me->signal->cred_guard_mutex);
1417 
1418 out:
1419 	return retval;
1420 }
1421 EXPORT_SYMBOL(begin_new_exec);
1422 
1423 void would_dump(struct linux_binprm *bprm, struct file *file)
1424 {
1425 	struct inode *inode = file_inode(file);
1426 	struct mnt_idmap *idmap = file_mnt_idmap(file);
1427 	if (inode_permission(idmap, inode, MAY_READ) < 0) {
1428 		struct user_namespace *old, *user_ns;
1429 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1430 
1431 		/* Ensure mm->user_ns contains the executable */
1432 		user_ns = old = bprm->mm->user_ns;
1433 		while ((user_ns != &init_user_ns) &&
1434 		       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1435 			user_ns = user_ns->parent;
1436 
1437 		if (old != user_ns) {
1438 			bprm->mm->user_ns = get_user_ns(user_ns);
1439 			put_user_ns(old);
1440 		}
1441 	}
1442 }
1443 EXPORT_SYMBOL(would_dump);
1444 
1445 void setup_new_exec(struct linux_binprm * bprm)
1446 {
1447 	/* Setup things that can depend upon the personality */
1448 	struct task_struct *me = current;
1449 
1450 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1451 
1452 	arch_setup_new_exec();
1453 
1454 	/* Set the new mm task size. We have to do that late because it may
1455 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1456 	 * some architectures like powerpc
1457 	 */
1458 	me->mm->task_size = TASK_SIZE;
1459 	up_write(&me->signal->exec_update_lock);
1460 	mutex_unlock(&me->signal->cred_guard_mutex);
1461 }
1462 EXPORT_SYMBOL(setup_new_exec);
1463 
1464 /* Runs immediately before start_thread() takes over. */
1465 void finalize_exec(struct linux_binprm *bprm)
1466 {
1467 	/* Store any stack rlimit changes before starting thread. */
1468 	task_lock(current->group_leader);
1469 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1470 	task_unlock(current->group_leader);
1471 }
1472 EXPORT_SYMBOL(finalize_exec);
1473 
1474 /*
1475  * Prepare credentials and lock ->cred_guard_mutex.
1476  * setup_new_exec() commits the new creds and drops the lock.
1477  * Or, if exec fails before, free_bprm() should release ->cred
1478  * and unlock.
1479  */
1480 static int prepare_bprm_creds(struct linux_binprm *bprm)
1481 {
1482 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1483 		return -ERESTARTNOINTR;
1484 
1485 	bprm->cred = prepare_exec_creds();
1486 	if (likely(bprm->cred))
1487 		return 0;
1488 
1489 	mutex_unlock(&current->signal->cred_guard_mutex);
1490 	return -ENOMEM;
1491 }
1492 
1493 static void free_bprm(struct linux_binprm *bprm)
1494 {
1495 	if (bprm->mm) {
1496 		acct_arg_size(bprm, 0);
1497 		mmput(bprm->mm);
1498 	}
1499 	free_arg_pages(bprm);
1500 	if (bprm->cred) {
1501 		mutex_unlock(&current->signal->cred_guard_mutex);
1502 		abort_creds(bprm->cred);
1503 	}
1504 	if (bprm->file) {
1505 		allow_write_access(bprm->file);
1506 		fput(bprm->file);
1507 	}
1508 	if (bprm->executable)
1509 		fput(bprm->executable);
1510 	/* If a binfmt changed the interp, free it. */
1511 	if (bprm->interp != bprm->filename)
1512 		kfree(bprm->interp);
1513 	kfree(bprm->fdpath);
1514 	kfree(bprm);
1515 }
1516 
1517 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1518 {
1519 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1520 	int retval = -ENOMEM;
1521 	if (!bprm)
1522 		goto out;
1523 
1524 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1525 		bprm->filename = filename->name;
1526 	} else {
1527 		if (filename->name[0] == '\0')
1528 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1529 		else
1530 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1531 						  fd, filename->name);
1532 		if (!bprm->fdpath)
1533 			goto out_free;
1534 
1535 		bprm->filename = bprm->fdpath;
1536 	}
1537 	bprm->interp = bprm->filename;
1538 
1539 	retval = bprm_mm_init(bprm);
1540 	if (retval)
1541 		goto out_free;
1542 	return bprm;
1543 
1544 out_free:
1545 	free_bprm(bprm);
1546 out:
1547 	return ERR_PTR(retval);
1548 }
1549 
1550 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1551 {
1552 	/* If a binfmt changed the interp, free it first. */
1553 	if (bprm->interp != bprm->filename)
1554 		kfree(bprm->interp);
1555 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1556 	if (!bprm->interp)
1557 		return -ENOMEM;
1558 	return 0;
1559 }
1560 EXPORT_SYMBOL(bprm_change_interp);
1561 
1562 /*
1563  * determine how safe it is to execute the proposed program
1564  * - the caller must hold ->cred_guard_mutex to protect against
1565  *   PTRACE_ATTACH or seccomp thread-sync
1566  */
1567 static void check_unsafe_exec(struct linux_binprm *bprm)
1568 {
1569 	struct task_struct *p = current, *t;
1570 	unsigned n_fs;
1571 
1572 	if (p->ptrace)
1573 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1574 
1575 	/*
1576 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1577 	 * mess up.
1578 	 */
1579 	if (task_no_new_privs(current))
1580 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1581 
1582 	/*
1583 	 * If another task is sharing our fs, we cannot safely
1584 	 * suid exec because the differently privileged task
1585 	 * will be able to manipulate the current directory, etc.
1586 	 * It would be nice to force an unshare instead...
1587 	 */
1588 	t = p;
1589 	n_fs = 1;
1590 	spin_lock(&p->fs->lock);
1591 	rcu_read_lock();
1592 	while_each_thread(p, t) {
1593 		if (t->fs == p->fs)
1594 			n_fs++;
1595 	}
1596 	rcu_read_unlock();
1597 
1598 	if (p->fs->users > n_fs)
1599 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1600 	else
1601 		p->fs->in_exec = 1;
1602 	spin_unlock(&p->fs->lock);
1603 }
1604 
1605 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1606 {
1607 	/* Handle suid and sgid on files */
1608 	struct mnt_idmap *idmap;
1609 	struct inode *inode = file_inode(file);
1610 	unsigned int mode;
1611 	vfsuid_t vfsuid;
1612 	vfsgid_t vfsgid;
1613 	int err;
1614 
1615 	if (!mnt_may_suid(file->f_path.mnt))
1616 		return;
1617 
1618 	if (task_no_new_privs(current))
1619 		return;
1620 
1621 	mode = READ_ONCE(inode->i_mode);
1622 	if (!(mode & (S_ISUID|S_ISGID)))
1623 		return;
1624 
1625 	idmap = file_mnt_idmap(file);
1626 
1627 	/* Be careful if suid/sgid is set */
1628 	inode_lock(inode);
1629 
1630 	/* Atomically reload and check mode/uid/gid now that lock held. */
1631 	mode = inode->i_mode;
1632 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1633 	vfsgid = i_gid_into_vfsgid(idmap, inode);
1634 	err = inode_permission(idmap, inode, MAY_EXEC);
1635 	inode_unlock(inode);
1636 
1637 	/* Did the exec bit vanish out from under us? Give up. */
1638 	if (err)
1639 		return;
1640 
1641 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1642 	if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1643 	    !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1644 		return;
1645 
1646 	if (mode & S_ISUID) {
1647 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1648 		bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1649 	}
1650 
1651 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1652 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1653 		bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1654 	}
1655 }
1656 
1657 /*
1658  * Compute brpm->cred based upon the final binary.
1659  */
1660 static int bprm_creds_from_file(struct linux_binprm *bprm)
1661 {
1662 	/* Compute creds based on which file? */
1663 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1664 
1665 	bprm_fill_uid(bprm, file);
1666 	return security_bprm_creds_from_file(bprm, file);
1667 }
1668 
1669 /*
1670  * Fill the binprm structure from the inode.
1671  * Read the first BINPRM_BUF_SIZE bytes
1672  *
1673  * This may be called multiple times for binary chains (scripts for example).
1674  */
1675 static int prepare_binprm(struct linux_binprm *bprm)
1676 {
1677 	loff_t pos = 0;
1678 
1679 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1680 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1681 }
1682 
1683 /*
1684  * Arguments are '\0' separated strings found at the location bprm->p
1685  * points to; chop off the first by relocating brpm->p to right after
1686  * the first '\0' encountered.
1687  */
1688 int remove_arg_zero(struct linux_binprm *bprm)
1689 {
1690 	int ret = 0;
1691 	unsigned long offset;
1692 	char *kaddr;
1693 	struct page *page;
1694 
1695 	if (!bprm->argc)
1696 		return 0;
1697 
1698 	do {
1699 		offset = bprm->p & ~PAGE_MASK;
1700 		page = get_arg_page(bprm, bprm->p, 0);
1701 		if (!page) {
1702 			ret = -EFAULT;
1703 			goto out;
1704 		}
1705 		kaddr = kmap_local_page(page);
1706 
1707 		for (; offset < PAGE_SIZE && kaddr[offset];
1708 				offset++, bprm->p++)
1709 			;
1710 
1711 		kunmap_local(kaddr);
1712 		put_arg_page(page);
1713 	} while (offset == PAGE_SIZE);
1714 
1715 	bprm->p++;
1716 	bprm->argc--;
1717 	ret = 0;
1718 
1719 out:
1720 	return ret;
1721 }
1722 EXPORT_SYMBOL(remove_arg_zero);
1723 
1724 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1725 /*
1726  * cycle the list of binary formats handler, until one recognizes the image
1727  */
1728 static int search_binary_handler(struct linux_binprm *bprm)
1729 {
1730 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1731 	struct linux_binfmt *fmt;
1732 	int retval;
1733 
1734 	retval = prepare_binprm(bprm);
1735 	if (retval < 0)
1736 		return retval;
1737 
1738 	retval = security_bprm_check(bprm);
1739 	if (retval)
1740 		return retval;
1741 
1742 	retval = -ENOENT;
1743  retry:
1744 	read_lock(&binfmt_lock);
1745 	list_for_each_entry(fmt, &formats, lh) {
1746 		if (!try_module_get(fmt->module))
1747 			continue;
1748 		read_unlock(&binfmt_lock);
1749 
1750 		retval = fmt->load_binary(bprm);
1751 
1752 		read_lock(&binfmt_lock);
1753 		put_binfmt(fmt);
1754 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1755 			read_unlock(&binfmt_lock);
1756 			return retval;
1757 		}
1758 	}
1759 	read_unlock(&binfmt_lock);
1760 
1761 	if (need_retry) {
1762 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1763 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1764 			return retval;
1765 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1766 			return retval;
1767 		need_retry = false;
1768 		goto retry;
1769 	}
1770 
1771 	return retval;
1772 }
1773 
1774 /* binfmt handlers will call back into begin_new_exec() on success. */
1775 static int exec_binprm(struct linux_binprm *bprm)
1776 {
1777 	pid_t old_pid, old_vpid;
1778 	int ret, depth;
1779 
1780 	/* Need to fetch pid before load_binary changes it */
1781 	old_pid = current->pid;
1782 	rcu_read_lock();
1783 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1784 	rcu_read_unlock();
1785 
1786 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1787 	for (depth = 0;; depth++) {
1788 		struct file *exec;
1789 		if (depth > 5)
1790 			return -ELOOP;
1791 
1792 		ret = search_binary_handler(bprm);
1793 		if (ret < 0)
1794 			return ret;
1795 		if (!bprm->interpreter)
1796 			break;
1797 
1798 		exec = bprm->file;
1799 		bprm->file = bprm->interpreter;
1800 		bprm->interpreter = NULL;
1801 
1802 		allow_write_access(exec);
1803 		if (unlikely(bprm->have_execfd)) {
1804 			if (bprm->executable) {
1805 				fput(exec);
1806 				return -ENOEXEC;
1807 			}
1808 			bprm->executable = exec;
1809 		} else
1810 			fput(exec);
1811 	}
1812 
1813 	audit_bprm(bprm);
1814 	trace_sched_process_exec(current, old_pid, bprm);
1815 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1816 	proc_exec_connector(current);
1817 	return 0;
1818 }
1819 
1820 /*
1821  * sys_execve() executes a new program.
1822  */
1823 static int bprm_execve(struct linux_binprm *bprm,
1824 		       int fd, struct filename *filename, int flags)
1825 {
1826 	struct file *file;
1827 	int retval;
1828 
1829 	retval = prepare_bprm_creds(bprm);
1830 	if (retval)
1831 		return retval;
1832 
1833 	/*
1834 	 * Check for unsafe execution states before exec_binprm(), which
1835 	 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1836 	 * where setuid-ness is evaluated.
1837 	 */
1838 	check_unsafe_exec(bprm);
1839 	current->in_execve = 1;
1840 	sched_mm_cid_before_execve(current);
1841 
1842 	file = do_open_execat(fd, filename, flags);
1843 	retval = PTR_ERR(file);
1844 	if (IS_ERR(file))
1845 		goto out_unmark;
1846 
1847 	sched_exec();
1848 
1849 	bprm->file = file;
1850 	/*
1851 	 * Record that a name derived from an O_CLOEXEC fd will be
1852 	 * inaccessible after exec.  This allows the code in exec to
1853 	 * choose to fail when the executable is not mmaped into the
1854 	 * interpreter and an open file descriptor is not passed to
1855 	 * the interpreter.  This makes for a better user experience
1856 	 * than having the interpreter start and then immediately fail
1857 	 * when it finds the executable is inaccessible.
1858 	 */
1859 	if (bprm->fdpath && get_close_on_exec(fd))
1860 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1861 
1862 	/* Set the unchanging part of bprm->cred */
1863 	retval = security_bprm_creds_for_exec(bprm);
1864 	if (retval)
1865 		goto out;
1866 
1867 	retval = exec_binprm(bprm);
1868 	if (retval < 0)
1869 		goto out;
1870 
1871 	sched_mm_cid_after_execve(current);
1872 	/* execve succeeded */
1873 	current->fs->in_exec = 0;
1874 	current->in_execve = 0;
1875 	rseq_execve(current);
1876 	user_events_execve(current);
1877 	acct_update_integrals(current);
1878 	task_numa_free(current, false);
1879 	return retval;
1880 
1881 out:
1882 	/*
1883 	 * If past the point of no return ensure the code never
1884 	 * returns to the userspace process.  Use an existing fatal
1885 	 * signal if present otherwise terminate the process with
1886 	 * SIGSEGV.
1887 	 */
1888 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1889 		force_fatal_sig(SIGSEGV);
1890 
1891 out_unmark:
1892 	sched_mm_cid_after_execve(current);
1893 	current->fs->in_exec = 0;
1894 	current->in_execve = 0;
1895 
1896 	return retval;
1897 }
1898 
1899 static int do_execveat_common(int fd, struct filename *filename,
1900 			      struct user_arg_ptr argv,
1901 			      struct user_arg_ptr envp,
1902 			      int flags)
1903 {
1904 	struct linux_binprm *bprm;
1905 	int retval;
1906 
1907 	if (IS_ERR(filename))
1908 		return PTR_ERR(filename);
1909 
1910 	/*
1911 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1912 	 * set*uid() to execve() because too many poorly written programs
1913 	 * don't check setuid() return code.  Here we additionally recheck
1914 	 * whether NPROC limit is still exceeded.
1915 	 */
1916 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1917 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1918 		retval = -EAGAIN;
1919 		goto out_ret;
1920 	}
1921 
1922 	/* We're below the limit (still or again), so we don't want to make
1923 	 * further execve() calls fail. */
1924 	current->flags &= ~PF_NPROC_EXCEEDED;
1925 
1926 	bprm = alloc_bprm(fd, filename);
1927 	if (IS_ERR(bprm)) {
1928 		retval = PTR_ERR(bprm);
1929 		goto out_ret;
1930 	}
1931 
1932 	retval = count(argv, MAX_ARG_STRINGS);
1933 	if (retval == 0)
1934 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1935 			     current->comm, bprm->filename);
1936 	if (retval < 0)
1937 		goto out_free;
1938 	bprm->argc = retval;
1939 
1940 	retval = count(envp, MAX_ARG_STRINGS);
1941 	if (retval < 0)
1942 		goto out_free;
1943 	bprm->envc = retval;
1944 
1945 	retval = bprm_stack_limits(bprm);
1946 	if (retval < 0)
1947 		goto out_free;
1948 
1949 	retval = copy_string_kernel(bprm->filename, bprm);
1950 	if (retval < 0)
1951 		goto out_free;
1952 	bprm->exec = bprm->p;
1953 
1954 	retval = copy_strings(bprm->envc, envp, bprm);
1955 	if (retval < 0)
1956 		goto out_free;
1957 
1958 	retval = copy_strings(bprm->argc, argv, bprm);
1959 	if (retval < 0)
1960 		goto out_free;
1961 
1962 	/*
1963 	 * When argv is empty, add an empty string ("") as argv[0] to
1964 	 * ensure confused userspace programs that start processing
1965 	 * from argv[1] won't end up walking envp. See also
1966 	 * bprm_stack_limits().
1967 	 */
1968 	if (bprm->argc == 0) {
1969 		retval = copy_string_kernel("", bprm);
1970 		if (retval < 0)
1971 			goto out_free;
1972 		bprm->argc = 1;
1973 	}
1974 
1975 	retval = bprm_execve(bprm, fd, filename, flags);
1976 out_free:
1977 	free_bprm(bprm);
1978 
1979 out_ret:
1980 	putname(filename);
1981 	return retval;
1982 }
1983 
1984 int kernel_execve(const char *kernel_filename,
1985 		  const char *const *argv, const char *const *envp)
1986 {
1987 	struct filename *filename;
1988 	struct linux_binprm *bprm;
1989 	int fd = AT_FDCWD;
1990 	int retval;
1991 
1992 	/* It is non-sense for kernel threads to call execve */
1993 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1994 		return -EINVAL;
1995 
1996 	filename = getname_kernel(kernel_filename);
1997 	if (IS_ERR(filename))
1998 		return PTR_ERR(filename);
1999 
2000 	bprm = alloc_bprm(fd, filename);
2001 	if (IS_ERR(bprm)) {
2002 		retval = PTR_ERR(bprm);
2003 		goto out_ret;
2004 	}
2005 
2006 	retval = count_strings_kernel(argv);
2007 	if (WARN_ON_ONCE(retval == 0))
2008 		retval = -EINVAL;
2009 	if (retval < 0)
2010 		goto out_free;
2011 	bprm->argc = retval;
2012 
2013 	retval = count_strings_kernel(envp);
2014 	if (retval < 0)
2015 		goto out_free;
2016 	bprm->envc = retval;
2017 
2018 	retval = bprm_stack_limits(bprm);
2019 	if (retval < 0)
2020 		goto out_free;
2021 
2022 	retval = copy_string_kernel(bprm->filename, bprm);
2023 	if (retval < 0)
2024 		goto out_free;
2025 	bprm->exec = bprm->p;
2026 
2027 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2028 	if (retval < 0)
2029 		goto out_free;
2030 
2031 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2032 	if (retval < 0)
2033 		goto out_free;
2034 
2035 	retval = bprm_execve(bprm, fd, filename, 0);
2036 out_free:
2037 	free_bprm(bprm);
2038 out_ret:
2039 	putname(filename);
2040 	return retval;
2041 }
2042 
2043 static int do_execve(struct filename *filename,
2044 	const char __user *const __user *__argv,
2045 	const char __user *const __user *__envp)
2046 {
2047 	struct user_arg_ptr argv = { .ptr.native = __argv };
2048 	struct user_arg_ptr envp = { .ptr.native = __envp };
2049 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2050 }
2051 
2052 static int do_execveat(int fd, struct filename *filename,
2053 		const char __user *const __user *__argv,
2054 		const char __user *const __user *__envp,
2055 		int flags)
2056 {
2057 	struct user_arg_ptr argv = { .ptr.native = __argv };
2058 	struct user_arg_ptr envp = { .ptr.native = __envp };
2059 
2060 	return do_execveat_common(fd, filename, argv, envp, flags);
2061 }
2062 
2063 #ifdef CONFIG_COMPAT
2064 static int compat_do_execve(struct filename *filename,
2065 	const compat_uptr_t __user *__argv,
2066 	const compat_uptr_t __user *__envp)
2067 {
2068 	struct user_arg_ptr argv = {
2069 		.is_compat = true,
2070 		.ptr.compat = __argv,
2071 	};
2072 	struct user_arg_ptr envp = {
2073 		.is_compat = true,
2074 		.ptr.compat = __envp,
2075 	};
2076 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2077 }
2078 
2079 static int compat_do_execveat(int fd, struct filename *filename,
2080 			      const compat_uptr_t __user *__argv,
2081 			      const compat_uptr_t __user *__envp,
2082 			      int flags)
2083 {
2084 	struct user_arg_ptr argv = {
2085 		.is_compat = true,
2086 		.ptr.compat = __argv,
2087 	};
2088 	struct user_arg_ptr envp = {
2089 		.is_compat = true,
2090 		.ptr.compat = __envp,
2091 	};
2092 	return do_execveat_common(fd, filename, argv, envp, flags);
2093 }
2094 #endif
2095 
2096 void set_binfmt(struct linux_binfmt *new)
2097 {
2098 	struct mm_struct *mm = current->mm;
2099 
2100 	if (mm->binfmt)
2101 		module_put(mm->binfmt->module);
2102 
2103 	mm->binfmt = new;
2104 	if (new)
2105 		__module_get(new->module);
2106 }
2107 EXPORT_SYMBOL(set_binfmt);
2108 
2109 /*
2110  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2111  */
2112 void set_dumpable(struct mm_struct *mm, int value)
2113 {
2114 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2115 		return;
2116 
2117 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2118 }
2119 
2120 SYSCALL_DEFINE3(execve,
2121 		const char __user *, filename,
2122 		const char __user *const __user *, argv,
2123 		const char __user *const __user *, envp)
2124 {
2125 	return do_execve(getname(filename), argv, envp);
2126 }
2127 
2128 SYSCALL_DEFINE5(execveat,
2129 		int, fd, const char __user *, filename,
2130 		const char __user *const __user *, argv,
2131 		const char __user *const __user *, envp,
2132 		int, flags)
2133 {
2134 	return do_execveat(fd,
2135 			   getname_uflags(filename, flags),
2136 			   argv, envp, flags);
2137 }
2138 
2139 #ifdef CONFIG_COMPAT
2140 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2141 	const compat_uptr_t __user *, argv,
2142 	const compat_uptr_t __user *, envp)
2143 {
2144 	return compat_do_execve(getname(filename), argv, envp);
2145 }
2146 
2147 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2148 		       const char __user *, filename,
2149 		       const compat_uptr_t __user *, argv,
2150 		       const compat_uptr_t __user *, envp,
2151 		       int,  flags)
2152 {
2153 	return compat_do_execveat(fd,
2154 				  getname_uflags(filename, flags),
2155 				  argv, envp, flags);
2156 }
2157 #endif
2158 
2159 #ifdef CONFIG_SYSCTL
2160 
2161 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2162 		void *buffer, size_t *lenp, loff_t *ppos)
2163 {
2164 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2165 
2166 	if (!error)
2167 		validate_coredump_safety();
2168 	return error;
2169 }
2170 
2171 static struct ctl_table fs_exec_sysctls[] = {
2172 	{
2173 		.procname	= "suid_dumpable",
2174 		.data		= &suid_dumpable,
2175 		.maxlen		= sizeof(int),
2176 		.mode		= 0644,
2177 		.proc_handler	= proc_dointvec_minmax_coredump,
2178 		.extra1		= SYSCTL_ZERO,
2179 		.extra2		= SYSCTL_TWO,
2180 	},
2181 	{ }
2182 };
2183 
2184 static int __init init_fs_exec_sysctls(void)
2185 {
2186 	register_sysctl_init("fs", fs_exec_sysctls);
2187 	return 0;
2188 }
2189 
2190 fs_initcall(init_fs_exec_sysctls);
2191 #endif /* CONFIG_SYSCTL */
2192