xref: /openbmc/linux/fs/exec.c (revision 6ab3d562)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/pagemap.h>
34 #include <linux/highmem.h>
35 #include <linux/spinlock.h>
36 #include <linux/key.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/module.h>
42 #include <linux/namei.h>
43 #include <linux/proc_fs.h>
44 #include <linux/ptrace.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/rmap.h>
49 #include <linux/acct.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 
53 #include <asm/uaccess.h>
54 #include <asm/mmu_context.h>
55 
56 #ifdef CONFIG_KMOD
57 #include <linux/kmod.h>
58 #endif
59 
60 int core_uses_pid;
61 char core_pattern[65] = "core";
62 int suid_dumpable = 0;
63 
64 EXPORT_SYMBOL(suid_dumpable);
65 /* The maximal length of core_pattern is also specified in sysctl.c */
66 
67 static struct linux_binfmt *formats;
68 static DEFINE_RWLOCK(binfmt_lock);
69 
70 int register_binfmt(struct linux_binfmt * fmt)
71 {
72 	struct linux_binfmt ** tmp = &formats;
73 
74 	if (!fmt)
75 		return -EINVAL;
76 	if (fmt->next)
77 		return -EBUSY;
78 	write_lock(&binfmt_lock);
79 	while (*tmp) {
80 		if (fmt == *tmp) {
81 			write_unlock(&binfmt_lock);
82 			return -EBUSY;
83 		}
84 		tmp = &(*tmp)->next;
85 	}
86 	fmt->next = formats;
87 	formats = fmt;
88 	write_unlock(&binfmt_lock);
89 	return 0;
90 }
91 
92 EXPORT_SYMBOL(register_binfmt);
93 
94 int unregister_binfmt(struct linux_binfmt * fmt)
95 {
96 	struct linux_binfmt ** tmp = &formats;
97 
98 	write_lock(&binfmt_lock);
99 	while (*tmp) {
100 		if (fmt == *tmp) {
101 			*tmp = fmt->next;
102 			write_unlock(&binfmt_lock);
103 			return 0;
104 		}
105 		tmp = &(*tmp)->next;
106 	}
107 	write_unlock(&binfmt_lock);
108 	return -EINVAL;
109 }
110 
111 EXPORT_SYMBOL(unregister_binfmt);
112 
113 static inline void put_binfmt(struct linux_binfmt * fmt)
114 {
115 	module_put(fmt->module);
116 }
117 
118 /*
119  * Note that a shared library must be both readable and executable due to
120  * security reasons.
121  *
122  * Also note that we take the address to load from from the file itself.
123  */
124 asmlinkage long sys_uselib(const char __user * library)
125 {
126 	struct file * file;
127 	struct nameidata nd;
128 	int error;
129 
130 	error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
131 	if (error)
132 		goto out;
133 
134 	error = -EINVAL;
135 	if (!S_ISREG(nd.dentry->d_inode->i_mode))
136 		goto exit;
137 
138 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
139 	if (error)
140 		goto exit;
141 
142 	file = nameidata_to_filp(&nd, O_RDONLY);
143 	error = PTR_ERR(file);
144 	if (IS_ERR(file))
145 		goto out;
146 
147 	error = -ENOEXEC;
148 	if(file->f_op) {
149 		struct linux_binfmt * fmt;
150 
151 		read_lock(&binfmt_lock);
152 		for (fmt = formats ; fmt ; fmt = fmt->next) {
153 			if (!fmt->load_shlib)
154 				continue;
155 			if (!try_module_get(fmt->module))
156 				continue;
157 			read_unlock(&binfmt_lock);
158 			error = fmt->load_shlib(file);
159 			read_lock(&binfmt_lock);
160 			put_binfmt(fmt);
161 			if (error != -ENOEXEC)
162 				break;
163 		}
164 		read_unlock(&binfmt_lock);
165 	}
166 	fput(file);
167 out:
168   	return error;
169 exit:
170 	release_open_intent(&nd);
171 	path_release(&nd);
172 	goto out;
173 }
174 
175 /*
176  * count() counts the number of strings in array ARGV.
177  */
178 static int count(char __user * __user * argv, int max)
179 {
180 	int i = 0;
181 
182 	if (argv != NULL) {
183 		for (;;) {
184 			char __user * p;
185 
186 			if (get_user(p, argv))
187 				return -EFAULT;
188 			if (!p)
189 				break;
190 			argv++;
191 			if(++i > max)
192 				return -E2BIG;
193 			cond_resched();
194 		}
195 	}
196 	return i;
197 }
198 
199 /*
200  * 'copy_strings()' copies argument/environment strings from user
201  * memory to free pages in kernel mem. These are in a format ready
202  * to be put directly into the top of new user memory.
203  */
204 static int copy_strings(int argc, char __user * __user * argv,
205 			struct linux_binprm *bprm)
206 {
207 	struct page *kmapped_page = NULL;
208 	char *kaddr = NULL;
209 	int ret;
210 
211 	while (argc-- > 0) {
212 		char __user *str;
213 		int len;
214 		unsigned long pos;
215 
216 		if (get_user(str, argv+argc) ||
217 				!(len = strnlen_user(str, bprm->p))) {
218 			ret = -EFAULT;
219 			goto out;
220 		}
221 
222 		if (bprm->p < len)  {
223 			ret = -E2BIG;
224 			goto out;
225 		}
226 
227 		bprm->p -= len;
228 		/* XXX: add architecture specific overflow check here. */
229 		pos = bprm->p;
230 
231 		while (len > 0) {
232 			int i, new, err;
233 			int offset, bytes_to_copy;
234 			struct page *page;
235 
236 			offset = pos % PAGE_SIZE;
237 			i = pos/PAGE_SIZE;
238 			page = bprm->page[i];
239 			new = 0;
240 			if (!page) {
241 				page = alloc_page(GFP_HIGHUSER);
242 				bprm->page[i] = page;
243 				if (!page) {
244 					ret = -ENOMEM;
245 					goto out;
246 				}
247 				new = 1;
248 			}
249 
250 			if (page != kmapped_page) {
251 				if (kmapped_page)
252 					kunmap(kmapped_page);
253 				kmapped_page = page;
254 				kaddr = kmap(kmapped_page);
255 			}
256 			if (new && offset)
257 				memset(kaddr, 0, offset);
258 			bytes_to_copy = PAGE_SIZE - offset;
259 			if (bytes_to_copy > len) {
260 				bytes_to_copy = len;
261 				if (new)
262 					memset(kaddr+offset+len, 0,
263 						PAGE_SIZE-offset-len);
264 			}
265 			err = copy_from_user(kaddr+offset, str, bytes_to_copy);
266 			if (err) {
267 				ret = -EFAULT;
268 				goto out;
269 			}
270 
271 			pos += bytes_to_copy;
272 			str += bytes_to_copy;
273 			len -= bytes_to_copy;
274 		}
275 	}
276 	ret = 0;
277 out:
278 	if (kmapped_page)
279 		kunmap(kmapped_page);
280 	return ret;
281 }
282 
283 /*
284  * Like copy_strings, but get argv and its values from kernel memory.
285  */
286 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
287 {
288 	int r;
289 	mm_segment_t oldfs = get_fs();
290 	set_fs(KERNEL_DS);
291 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
292 	set_fs(oldfs);
293 	return r;
294 }
295 
296 EXPORT_SYMBOL(copy_strings_kernel);
297 
298 #ifdef CONFIG_MMU
299 /*
300  * This routine is used to map in a page into an address space: needed by
301  * execve() for the initial stack and environment pages.
302  *
303  * vma->vm_mm->mmap_sem is held for writing.
304  */
305 void install_arg_page(struct vm_area_struct *vma,
306 			struct page *page, unsigned long address)
307 {
308 	struct mm_struct *mm = vma->vm_mm;
309 	pte_t * pte;
310 	spinlock_t *ptl;
311 
312 	if (unlikely(anon_vma_prepare(vma)))
313 		goto out;
314 
315 	flush_dcache_page(page);
316 	pte = get_locked_pte(mm, address, &ptl);
317 	if (!pte)
318 		goto out;
319 	if (!pte_none(*pte)) {
320 		pte_unmap_unlock(pte, ptl);
321 		goto out;
322 	}
323 	inc_mm_counter(mm, anon_rss);
324 	lru_cache_add_active(page);
325 	set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
326 					page, vma->vm_page_prot))));
327 	page_add_new_anon_rmap(page, vma, address);
328 	pte_unmap_unlock(pte, ptl);
329 
330 	/* no need for flush_tlb */
331 	return;
332 out:
333 	__free_page(page);
334 	force_sig(SIGKILL, current);
335 }
336 
337 #define EXTRA_STACK_VM_PAGES	20	/* random */
338 
339 int setup_arg_pages(struct linux_binprm *bprm,
340 		    unsigned long stack_top,
341 		    int executable_stack)
342 {
343 	unsigned long stack_base;
344 	struct vm_area_struct *mpnt;
345 	struct mm_struct *mm = current->mm;
346 	int i, ret;
347 	long arg_size;
348 
349 #ifdef CONFIG_STACK_GROWSUP
350 	/* Move the argument and environment strings to the bottom of the
351 	 * stack space.
352 	 */
353 	int offset, j;
354 	char *to, *from;
355 
356 	/* Start by shifting all the pages down */
357 	i = 0;
358 	for (j = 0; j < MAX_ARG_PAGES; j++) {
359 		struct page *page = bprm->page[j];
360 		if (!page)
361 			continue;
362 		bprm->page[i++] = page;
363 	}
364 
365 	/* Now move them within their pages */
366 	offset = bprm->p % PAGE_SIZE;
367 	to = kmap(bprm->page[0]);
368 	for (j = 1; j < i; j++) {
369 		memmove(to, to + offset, PAGE_SIZE - offset);
370 		from = kmap(bprm->page[j]);
371 		memcpy(to + PAGE_SIZE - offset, from, offset);
372 		kunmap(bprm->page[j - 1]);
373 		to = from;
374 	}
375 	memmove(to, to + offset, PAGE_SIZE - offset);
376 	kunmap(bprm->page[j - 1]);
377 
378 	/* Limit stack size to 1GB */
379 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
380 	if (stack_base > (1 << 30))
381 		stack_base = 1 << 30;
382 	stack_base = PAGE_ALIGN(stack_top - stack_base);
383 
384 	/* Adjust bprm->p to point to the end of the strings. */
385 	bprm->p = stack_base + PAGE_SIZE * i - offset;
386 
387 	mm->arg_start = stack_base;
388 	arg_size = i << PAGE_SHIFT;
389 
390 	/* zero pages that were copied above */
391 	while (i < MAX_ARG_PAGES)
392 		bprm->page[i++] = NULL;
393 #else
394 	stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
395 	stack_base = PAGE_ALIGN(stack_base);
396 	bprm->p += stack_base;
397 	mm->arg_start = bprm->p;
398 	arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
399 #endif
400 
401 	arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
402 
403 	if (bprm->loader)
404 		bprm->loader += stack_base;
405 	bprm->exec += stack_base;
406 
407 	mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
408 	if (!mpnt)
409 		return -ENOMEM;
410 
411 	memset(mpnt, 0, sizeof(*mpnt));
412 
413 	down_write(&mm->mmap_sem);
414 	{
415 		mpnt->vm_mm = mm;
416 #ifdef CONFIG_STACK_GROWSUP
417 		mpnt->vm_start = stack_base;
418 		mpnt->vm_end = stack_base + arg_size;
419 #else
420 		mpnt->vm_end = stack_top;
421 		mpnt->vm_start = mpnt->vm_end - arg_size;
422 #endif
423 		/* Adjust stack execute permissions; explicitly enable
424 		 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
425 		 * and leave alone (arch default) otherwise. */
426 		if (unlikely(executable_stack == EXSTACK_ENABLE_X))
427 			mpnt->vm_flags = VM_STACK_FLAGS |  VM_EXEC;
428 		else if (executable_stack == EXSTACK_DISABLE_X)
429 			mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
430 		else
431 			mpnt->vm_flags = VM_STACK_FLAGS;
432 		mpnt->vm_flags |= mm->def_flags;
433 		mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
434 		if ((ret = insert_vm_struct(mm, mpnt))) {
435 			up_write(&mm->mmap_sem);
436 			kmem_cache_free(vm_area_cachep, mpnt);
437 			return ret;
438 		}
439 		mm->stack_vm = mm->total_vm = vma_pages(mpnt);
440 	}
441 
442 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
443 		struct page *page = bprm->page[i];
444 		if (page) {
445 			bprm->page[i] = NULL;
446 			install_arg_page(mpnt, page, stack_base);
447 		}
448 		stack_base += PAGE_SIZE;
449 	}
450 	up_write(&mm->mmap_sem);
451 
452 	return 0;
453 }
454 
455 EXPORT_SYMBOL(setup_arg_pages);
456 
457 #define free_arg_pages(bprm) do { } while (0)
458 
459 #else
460 
461 static inline void free_arg_pages(struct linux_binprm *bprm)
462 {
463 	int i;
464 
465 	for (i = 0; i < MAX_ARG_PAGES; i++) {
466 		if (bprm->page[i])
467 			__free_page(bprm->page[i]);
468 		bprm->page[i] = NULL;
469 	}
470 }
471 
472 #endif /* CONFIG_MMU */
473 
474 struct file *open_exec(const char *name)
475 {
476 	struct nameidata nd;
477 	int err;
478 	struct file *file;
479 
480 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
481 	file = ERR_PTR(err);
482 
483 	if (!err) {
484 		struct inode *inode = nd.dentry->d_inode;
485 		file = ERR_PTR(-EACCES);
486 		if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
487 		    S_ISREG(inode->i_mode)) {
488 			int err = vfs_permission(&nd, MAY_EXEC);
489 			if (!err && !(inode->i_mode & 0111))
490 				err = -EACCES;
491 			file = ERR_PTR(err);
492 			if (!err) {
493 				file = nameidata_to_filp(&nd, O_RDONLY);
494 				if (!IS_ERR(file)) {
495 					err = deny_write_access(file);
496 					if (err) {
497 						fput(file);
498 						file = ERR_PTR(err);
499 					}
500 				}
501 out:
502 				return file;
503 			}
504 		}
505 		release_open_intent(&nd);
506 		path_release(&nd);
507 	}
508 	goto out;
509 }
510 
511 EXPORT_SYMBOL(open_exec);
512 
513 int kernel_read(struct file *file, unsigned long offset,
514 	char *addr, unsigned long count)
515 {
516 	mm_segment_t old_fs;
517 	loff_t pos = offset;
518 	int result;
519 
520 	old_fs = get_fs();
521 	set_fs(get_ds());
522 	/* The cast to a user pointer is valid due to the set_fs() */
523 	result = vfs_read(file, (void __user *)addr, count, &pos);
524 	set_fs(old_fs);
525 	return result;
526 }
527 
528 EXPORT_SYMBOL(kernel_read);
529 
530 static int exec_mmap(struct mm_struct *mm)
531 {
532 	struct task_struct *tsk;
533 	struct mm_struct * old_mm, *active_mm;
534 
535 	/* Notify parent that we're no longer interested in the old VM */
536 	tsk = current;
537 	old_mm = current->mm;
538 	mm_release(tsk, old_mm);
539 
540 	if (old_mm) {
541 		/*
542 		 * Make sure that if there is a core dump in progress
543 		 * for the old mm, we get out and die instead of going
544 		 * through with the exec.  We must hold mmap_sem around
545 		 * checking core_waiters and changing tsk->mm.  The
546 		 * core-inducing thread will increment core_waiters for
547 		 * each thread whose ->mm == old_mm.
548 		 */
549 		down_read(&old_mm->mmap_sem);
550 		if (unlikely(old_mm->core_waiters)) {
551 			up_read(&old_mm->mmap_sem);
552 			return -EINTR;
553 		}
554 	}
555 	task_lock(tsk);
556 	active_mm = tsk->active_mm;
557 	tsk->mm = mm;
558 	tsk->active_mm = mm;
559 	activate_mm(active_mm, mm);
560 	task_unlock(tsk);
561 	arch_pick_mmap_layout(mm);
562 	if (old_mm) {
563 		up_read(&old_mm->mmap_sem);
564 		BUG_ON(active_mm != old_mm);
565 		mmput(old_mm);
566 		return 0;
567 	}
568 	mmdrop(active_mm);
569 	return 0;
570 }
571 
572 /*
573  * This function makes sure the current process has its own signal table,
574  * so that flush_signal_handlers can later reset the handlers without
575  * disturbing other processes.  (Other processes might share the signal
576  * table via the CLONE_SIGHAND option to clone().)
577  */
578 static int de_thread(struct task_struct *tsk)
579 {
580 	struct signal_struct *sig = tsk->signal;
581 	struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
582 	spinlock_t *lock = &oldsighand->siglock;
583 	struct task_struct *leader = NULL;
584 	int count;
585 
586 	/*
587 	 * If we don't share sighandlers, then we aren't sharing anything
588 	 * and we can just re-use it all.
589 	 */
590 	if (atomic_read(&oldsighand->count) <= 1) {
591 		BUG_ON(atomic_read(&sig->count) != 1);
592 		exit_itimers(sig);
593 		return 0;
594 	}
595 
596 	newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
597 	if (!newsighand)
598 		return -ENOMEM;
599 
600 	if (thread_group_empty(current))
601 		goto no_thread_group;
602 
603 	/*
604 	 * Kill all other threads in the thread group.
605 	 * We must hold tasklist_lock to call zap_other_threads.
606 	 */
607 	read_lock(&tasklist_lock);
608 	spin_lock_irq(lock);
609 	if (sig->flags & SIGNAL_GROUP_EXIT) {
610 		/*
611 		 * Another group action in progress, just
612 		 * return so that the signal is processed.
613 		 */
614 		spin_unlock_irq(lock);
615 		read_unlock(&tasklist_lock);
616 		kmem_cache_free(sighand_cachep, newsighand);
617 		return -EAGAIN;
618 	}
619 
620 	/*
621 	 * child_reaper ignores SIGKILL, change it now.
622 	 * Reparenting needs write_lock on tasklist_lock,
623 	 * so it is safe to do it under read_lock.
624 	 */
625 	if (unlikely(current->group_leader == child_reaper))
626 		child_reaper = current;
627 
628 	zap_other_threads(current);
629 	read_unlock(&tasklist_lock);
630 
631 	/*
632 	 * Account for the thread group leader hanging around:
633 	 */
634 	count = 1;
635 	if (!thread_group_leader(current)) {
636 		count = 2;
637 		/*
638 		 * The SIGALRM timer survives the exec, but needs to point
639 		 * at us as the new group leader now.  We have a race with
640 		 * a timer firing now getting the old leader, so we need to
641 		 * synchronize with any firing (by calling del_timer_sync)
642 		 * before we can safely let the old group leader die.
643 		 */
644 		sig->tsk = current;
645 		spin_unlock_irq(lock);
646 		if (hrtimer_cancel(&sig->real_timer))
647 			hrtimer_restart(&sig->real_timer);
648 		spin_lock_irq(lock);
649 	}
650 	while (atomic_read(&sig->count) > count) {
651 		sig->group_exit_task = current;
652 		sig->notify_count = count;
653 		__set_current_state(TASK_UNINTERRUPTIBLE);
654 		spin_unlock_irq(lock);
655 		schedule();
656 		spin_lock_irq(lock);
657 	}
658 	sig->group_exit_task = NULL;
659 	sig->notify_count = 0;
660 	spin_unlock_irq(lock);
661 
662 	/*
663 	 * At this point all other threads have exited, all we have to
664 	 * do is to wait for the thread group leader to become inactive,
665 	 * and to assume its PID:
666 	 */
667 	if (!thread_group_leader(current)) {
668 		/*
669 		 * Wait for the thread group leader to be a zombie.
670 		 * It should already be zombie at this point, most
671 		 * of the time.
672 		 */
673 		leader = current->group_leader;
674 		while (leader->exit_state != EXIT_ZOMBIE)
675 			yield();
676 
677 		/*
678 		 * The only record we have of the real-time age of a
679 		 * process, regardless of execs it's done, is start_time.
680 		 * All the past CPU time is accumulated in signal_struct
681 		 * from sister threads now dead.  But in this non-leader
682 		 * exec, nothing survives from the original leader thread,
683 		 * whose birth marks the true age of this process now.
684 		 * When we take on its identity by switching to its PID, we
685 		 * also take its birthdate (always earlier than our own).
686 		 */
687 		current->start_time = leader->start_time;
688 
689 		write_lock_irq(&tasklist_lock);
690 
691 		BUG_ON(leader->tgid != current->tgid);
692 		BUG_ON(current->pid == current->tgid);
693 		/*
694 		 * An exec() starts a new thread group with the
695 		 * TGID of the previous thread group. Rehash the
696 		 * two threads with a switched PID, and release
697 		 * the former thread group leader:
698 		 */
699 
700 		/* Become a process group leader with the old leader's pid.
701 		 * Note: The old leader also uses thispid until release_task
702 		 *       is called.  Odd but simple and correct.
703 		 */
704 		detach_pid(current, PIDTYPE_PID);
705 		current->pid = leader->pid;
706 		attach_pid(current, PIDTYPE_PID,  current->pid);
707 		attach_pid(current, PIDTYPE_PGID, current->signal->pgrp);
708 		attach_pid(current, PIDTYPE_SID,  current->signal->session);
709 		list_replace_rcu(&leader->tasks, &current->tasks);
710 
711 		current->group_leader = current;
712 		leader->group_leader = current;
713 
714 		/* Reduce leader to a thread */
715 		detach_pid(leader, PIDTYPE_PGID);
716 		detach_pid(leader, PIDTYPE_SID);
717 
718 		current->exit_signal = SIGCHLD;
719 
720 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
721 		leader->exit_state = EXIT_DEAD;
722 
723 		write_unlock_irq(&tasklist_lock);
724         }
725 
726 	/*
727 	 * There may be one thread left which is just exiting,
728 	 * but it's safe to stop telling the group to kill themselves.
729 	 */
730 	sig->flags = 0;
731 
732 no_thread_group:
733 	exit_itimers(sig);
734 	if (leader)
735 		release_task(leader);
736 
737 	BUG_ON(atomic_read(&sig->count) != 1);
738 
739 	if (atomic_read(&oldsighand->count) == 1) {
740 		/*
741 		 * Now that we nuked the rest of the thread group,
742 		 * it turns out we are not sharing sighand any more either.
743 		 * So we can just keep it.
744 		 */
745 		kmem_cache_free(sighand_cachep, newsighand);
746 	} else {
747 		/*
748 		 * Move our state over to newsighand and switch it in.
749 		 */
750 		atomic_set(&newsighand->count, 1);
751 		memcpy(newsighand->action, oldsighand->action,
752 		       sizeof(newsighand->action));
753 
754 		write_lock_irq(&tasklist_lock);
755 		spin_lock(&oldsighand->siglock);
756 		spin_lock(&newsighand->siglock);
757 
758 		rcu_assign_pointer(current->sighand, newsighand);
759 		recalc_sigpending();
760 
761 		spin_unlock(&newsighand->siglock);
762 		spin_unlock(&oldsighand->siglock);
763 		write_unlock_irq(&tasklist_lock);
764 
765 		if (atomic_dec_and_test(&oldsighand->count))
766 			kmem_cache_free(sighand_cachep, oldsighand);
767 	}
768 
769 	BUG_ON(!thread_group_leader(current));
770 	return 0;
771 }
772 
773 /*
774  * These functions flushes out all traces of the currently running executable
775  * so that a new one can be started
776  */
777 
778 static void flush_old_files(struct files_struct * files)
779 {
780 	long j = -1;
781 	struct fdtable *fdt;
782 
783 	spin_lock(&files->file_lock);
784 	for (;;) {
785 		unsigned long set, i;
786 
787 		j++;
788 		i = j * __NFDBITS;
789 		fdt = files_fdtable(files);
790 		if (i >= fdt->max_fds || i >= fdt->max_fdset)
791 			break;
792 		set = fdt->close_on_exec->fds_bits[j];
793 		if (!set)
794 			continue;
795 		fdt->close_on_exec->fds_bits[j] = 0;
796 		spin_unlock(&files->file_lock);
797 		for ( ; set ; i++,set >>= 1) {
798 			if (set & 1) {
799 				sys_close(i);
800 			}
801 		}
802 		spin_lock(&files->file_lock);
803 
804 	}
805 	spin_unlock(&files->file_lock);
806 }
807 
808 void get_task_comm(char *buf, struct task_struct *tsk)
809 {
810 	/* buf must be at least sizeof(tsk->comm) in size */
811 	task_lock(tsk);
812 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
813 	task_unlock(tsk);
814 }
815 
816 void set_task_comm(struct task_struct *tsk, char *buf)
817 {
818 	task_lock(tsk);
819 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
820 	task_unlock(tsk);
821 }
822 
823 int flush_old_exec(struct linux_binprm * bprm)
824 {
825 	char * name;
826 	int i, ch, retval;
827 	struct files_struct *files;
828 	char tcomm[sizeof(current->comm)];
829 
830 	/*
831 	 * Make sure we have a private signal table and that
832 	 * we are unassociated from the previous thread group.
833 	 */
834 	retval = de_thread(current);
835 	if (retval)
836 		goto out;
837 
838 	/*
839 	 * Make sure we have private file handles. Ask the
840 	 * fork helper to do the work for us and the exit
841 	 * helper to do the cleanup of the old one.
842 	 */
843 	files = current->files;		/* refcounted so safe to hold */
844 	retval = unshare_files();
845 	if (retval)
846 		goto out;
847 	/*
848 	 * Release all of the old mmap stuff
849 	 */
850 	retval = exec_mmap(bprm->mm);
851 	if (retval)
852 		goto mmap_failed;
853 
854 	bprm->mm = NULL;		/* We're using it now */
855 
856 	/* This is the point of no return */
857 	put_files_struct(files);
858 
859 	current->sas_ss_sp = current->sas_ss_size = 0;
860 
861 	if (current->euid == current->uid && current->egid == current->gid)
862 		current->mm->dumpable = 1;
863 	else
864 		current->mm->dumpable = suid_dumpable;
865 
866 	name = bprm->filename;
867 
868 	/* Copies the binary name from after last slash */
869 	for (i=0; (ch = *(name++)) != '\0';) {
870 		if (ch == '/')
871 			i = 0; /* overwrite what we wrote */
872 		else
873 			if (i < (sizeof(tcomm) - 1))
874 				tcomm[i++] = ch;
875 	}
876 	tcomm[i] = '\0';
877 	set_task_comm(current, tcomm);
878 
879 	current->flags &= ~PF_RANDOMIZE;
880 	flush_thread();
881 
882 	/* Set the new mm task size. We have to do that late because it may
883 	 * depend on TIF_32BIT which is only updated in flush_thread() on
884 	 * some architectures like powerpc
885 	 */
886 	current->mm->task_size = TASK_SIZE;
887 
888 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
889 	    file_permission(bprm->file, MAY_READ) ||
890 	    (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
891 		suid_keys(current);
892 		current->mm->dumpable = suid_dumpable;
893 	}
894 
895 	/* An exec changes our domain. We are no longer part of the thread
896 	   group */
897 
898 	current->self_exec_id++;
899 
900 	flush_signal_handlers(current, 0);
901 	flush_old_files(current->files);
902 
903 	return 0;
904 
905 mmap_failed:
906 	put_files_struct(current->files);
907 	current->files = files;
908 out:
909 	return retval;
910 }
911 
912 EXPORT_SYMBOL(flush_old_exec);
913 
914 /*
915  * Fill the binprm structure from the inode.
916  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
917  */
918 int prepare_binprm(struct linux_binprm *bprm)
919 {
920 	int mode;
921 	struct inode * inode = bprm->file->f_dentry->d_inode;
922 	int retval;
923 
924 	mode = inode->i_mode;
925 	/*
926 	 * Check execute perms again - if the caller has CAP_DAC_OVERRIDE,
927 	 * generic_permission lets a non-executable through
928 	 */
929 	if (!(mode & 0111))	/* with at least _one_ execute bit set */
930 		return -EACCES;
931 	if (bprm->file->f_op == NULL)
932 		return -EACCES;
933 
934 	bprm->e_uid = current->euid;
935 	bprm->e_gid = current->egid;
936 
937 	if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) {
938 		/* Set-uid? */
939 		if (mode & S_ISUID) {
940 			current->personality &= ~PER_CLEAR_ON_SETID;
941 			bprm->e_uid = inode->i_uid;
942 		}
943 
944 		/* Set-gid? */
945 		/*
946 		 * If setgid is set but no group execute bit then this
947 		 * is a candidate for mandatory locking, not a setgid
948 		 * executable.
949 		 */
950 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
951 			current->personality &= ~PER_CLEAR_ON_SETID;
952 			bprm->e_gid = inode->i_gid;
953 		}
954 	}
955 
956 	/* fill in binprm security blob */
957 	retval = security_bprm_set(bprm);
958 	if (retval)
959 		return retval;
960 
961 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
962 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
963 }
964 
965 EXPORT_SYMBOL(prepare_binprm);
966 
967 static int unsafe_exec(struct task_struct *p)
968 {
969 	int unsafe = 0;
970 	if (p->ptrace & PT_PTRACED) {
971 		if (p->ptrace & PT_PTRACE_CAP)
972 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
973 		else
974 			unsafe |= LSM_UNSAFE_PTRACE;
975 	}
976 	if (atomic_read(&p->fs->count) > 1 ||
977 	    atomic_read(&p->files->count) > 1 ||
978 	    atomic_read(&p->sighand->count) > 1)
979 		unsafe |= LSM_UNSAFE_SHARE;
980 
981 	return unsafe;
982 }
983 
984 void compute_creds(struct linux_binprm *bprm)
985 {
986 	int unsafe;
987 
988 	if (bprm->e_uid != current->uid)
989 		suid_keys(current);
990 	exec_keys(current);
991 
992 	task_lock(current);
993 	unsafe = unsafe_exec(current);
994 	security_bprm_apply_creds(bprm, unsafe);
995 	task_unlock(current);
996 	security_bprm_post_apply_creds(bprm);
997 }
998 
999 EXPORT_SYMBOL(compute_creds);
1000 
1001 void remove_arg_zero(struct linux_binprm *bprm)
1002 {
1003 	if (bprm->argc) {
1004 		unsigned long offset;
1005 		char * kaddr;
1006 		struct page *page;
1007 
1008 		offset = bprm->p % PAGE_SIZE;
1009 		goto inside;
1010 
1011 		while (bprm->p++, *(kaddr+offset++)) {
1012 			if (offset != PAGE_SIZE)
1013 				continue;
1014 			offset = 0;
1015 			kunmap_atomic(kaddr, KM_USER0);
1016 inside:
1017 			page = bprm->page[bprm->p/PAGE_SIZE];
1018 			kaddr = kmap_atomic(page, KM_USER0);
1019 		}
1020 		kunmap_atomic(kaddr, KM_USER0);
1021 		bprm->argc--;
1022 	}
1023 }
1024 
1025 EXPORT_SYMBOL(remove_arg_zero);
1026 
1027 /*
1028  * cycle the list of binary formats handler, until one recognizes the image
1029  */
1030 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1031 {
1032 	int try,retval;
1033 	struct linux_binfmt *fmt;
1034 #ifdef __alpha__
1035 	/* handle /sbin/loader.. */
1036 	{
1037 	    struct exec * eh = (struct exec *) bprm->buf;
1038 
1039 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1040 		(eh->fh.f_flags & 0x3000) == 0x3000)
1041 	    {
1042 		struct file * file;
1043 		unsigned long loader;
1044 
1045 		allow_write_access(bprm->file);
1046 		fput(bprm->file);
1047 		bprm->file = NULL;
1048 
1049 	        loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1050 
1051 		file = open_exec("/sbin/loader");
1052 		retval = PTR_ERR(file);
1053 		if (IS_ERR(file))
1054 			return retval;
1055 
1056 		/* Remember if the application is TASO.  */
1057 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1058 
1059 		bprm->file = file;
1060 		bprm->loader = loader;
1061 		retval = prepare_binprm(bprm);
1062 		if (retval<0)
1063 			return retval;
1064 		/* should call search_binary_handler recursively here,
1065 		   but it does not matter */
1066 	    }
1067 	}
1068 #endif
1069 	retval = security_bprm_check(bprm);
1070 	if (retval)
1071 		return retval;
1072 
1073 	/* kernel module loader fixup */
1074 	/* so we don't try to load run modprobe in kernel space. */
1075 	set_fs(USER_DS);
1076 
1077 	retval = audit_bprm(bprm);
1078 	if (retval)
1079 		return retval;
1080 
1081 	retval = -ENOENT;
1082 	for (try=0; try<2; try++) {
1083 		read_lock(&binfmt_lock);
1084 		for (fmt = formats ; fmt ; fmt = fmt->next) {
1085 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1086 			if (!fn)
1087 				continue;
1088 			if (!try_module_get(fmt->module))
1089 				continue;
1090 			read_unlock(&binfmt_lock);
1091 			retval = fn(bprm, regs);
1092 			if (retval >= 0) {
1093 				put_binfmt(fmt);
1094 				allow_write_access(bprm->file);
1095 				if (bprm->file)
1096 					fput(bprm->file);
1097 				bprm->file = NULL;
1098 				current->did_exec = 1;
1099 				proc_exec_connector(current);
1100 				return retval;
1101 			}
1102 			read_lock(&binfmt_lock);
1103 			put_binfmt(fmt);
1104 			if (retval != -ENOEXEC || bprm->mm == NULL)
1105 				break;
1106 			if (!bprm->file) {
1107 				read_unlock(&binfmt_lock);
1108 				return retval;
1109 			}
1110 		}
1111 		read_unlock(&binfmt_lock);
1112 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1113 			break;
1114 #ifdef CONFIG_KMOD
1115 		}else{
1116 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1117 			if (printable(bprm->buf[0]) &&
1118 			    printable(bprm->buf[1]) &&
1119 			    printable(bprm->buf[2]) &&
1120 			    printable(bprm->buf[3]))
1121 				break; /* -ENOEXEC */
1122 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1123 #endif
1124 		}
1125 	}
1126 	return retval;
1127 }
1128 
1129 EXPORT_SYMBOL(search_binary_handler);
1130 
1131 /*
1132  * sys_execve() executes a new program.
1133  */
1134 int do_execve(char * filename,
1135 	char __user *__user *argv,
1136 	char __user *__user *envp,
1137 	struct pt_regs * regs)
1138 {
1139 	struct linux_binprm *bprm;
1140 	struct file *file;
1141 	int retval;
1142 	int i;
1143 
1144 	retval = -ENOMEM;
1145 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1146 	if (!bprm)
1147 		goto out_ret;
1148 
1149 	file = open_exec(filename);
1150 	retval = PTR_ERR(file);
1151 	if (IS_ERR(file))
1152 		goto out_kfree;
1153 
1154 	sched_exec();
1155 
1156 	bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1157 
1158 	bprm->file = file;
1159 	bprm->filename = filename;
1160 	bprm->interp = filename;
1161 	bprm->mm = mm_alloc();
1162 	retval = -ENOMEM;
1163 	if (!bprm->mm)
1164 		goto out_file;
1165 
1166 	retval = init_new_context(current, bprm->mm);
1167 	if (retval < 0)
1168 		goto out_mm;
1169 
1170 	bprm->argc = count(argv, bprm->p / sizeof(void *));
1171 	if ((retval = bprm->argc) < 0)
1172 		goto out_mm;
1173 
1174 	bprm->envc = count(envp, bprm->p / sizeof(void *));
1175 	if ((retval = bprm->envc) < 0)
1176 		goto out_mm;
1177 
1178 	retval = security_bprm_alloc(bprm);
1179 	if (retval)
1180 		goto out;
1181 
1182 	retval = prepare_binprm(bprm);
1183 	if (retval < 0)
1184 		goto out;
1185 
1186 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1187 	if (retval < 0)
1188 		goto out;
1189 
1190 	bprm->exec = bprm->p;
1191 	retval = copy_strings(bprm->envc, envp, bprm);
1192 	if (retval < 0)
1193 		goto out;
1194 
1195 	retval = copy_strings(bprm->argc, argv, bprm);
1196 	if (retval < 0)
1197 		goto out;
1198 
1199 	retval = search_binary_handler(bprm,regs);
1200 	if (retval >= 0) {
1201 		free_arg_pages(bprm);
1202 
1203 		/* execve success */
1204 		security_bprm_free(bprm);
1205 		acct_update_integrals(current);
1206 		kfree(bprm);
1207 		return retval;
1208 	}
1209 
1210 out:
1211 	/* Something went wrong, return the inode and free the argument pages*/
1212 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1213 		struct page * page = bprm->page[i];
1214 		if (page)
1215 			__free_page(page);
1216 	}
1217 
1218 	if (bprm->security)
1219 		security_bprm_free(bprm);
1220 
1221 out_mm:
1222 	if (bprm->mm)
1223 		mmdrop(bprm->mm);
1224 
1225 out_file:
1226 	if (bprm->file) {
1227 		allow_write_access(bprm->file);
1228 		fput(bprm->file);
1229 	}
1230 
1231 out_kfree:
1232 	kfree(bprm);
1233 
1234 out_ret:
1235 	return retval;
1236 }
1237 
1238 int set_binfmt(struct linux_binfmt *new)
1239 {
1240 	struct linux_binfmt *old = current->binfmt;
1241 
1242 	if (new) {
1243 		if (!try_module_get(new->module))
1244 			return -1;
1245 	}
1246 	current->binfmt = new;
1247 	if (old)
1248 		module_put(old->module);
1249 	return 0;
1250 }
1251 
1252 EXPORT_SYMBOL(set_binfmt);
1253 
1254 #define CORENAME_MAX_SIZE 64
1255 
1256 /* format_corename will inspect the pattern parameter, and output a
1257  * name into corename, which must have space for at least
1258  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1259  */
1260 static void format_corename(char *corename, const char *pattern, long signr)
1261 {
1262 	const char *pat_ptr = pattern;
1263 	char *out_ptr = corename;
1264 	char *const out_end = corename + CORENAME_MAX_SIZE;
1265 	int rc;
1266 	int pid_in_pattern = 0;
1267 
1268 	/* Repeat as long as we have more pattern to process and more output
1269 	   space */
1270 	while (*pat_ptr) {
1271 		if (*pat_ptr != '%') {
1272 			if (out_ptr == out_end)
1273 				goto out;
1274 			*out_ptr++ = *pat_ptr++;
1275 		} else {
1276 			switch (*++pat_ptr) {
1277 			case 0:
1278 				goto out;
1279 			/* Double percent, output one percent */
1280 			case '%':
1281 				if (out_ptr == out_end)
1282 					goto out;
1283 				*out_ptr++ = '%';
1284 				break;
1285 			/* pid */
1286 			case 'p':
1287 				pid_in_pattern = 1;
1288 				rc = snprintf(out_ptr, out_end - out_ptr,
1289 					      "%d", current->tgid);
1290 				if (rc > out_end - out_ptr)
1291 					goto out;
1292 				out_ptr += rc;
1293 				break;
1294 			/* uid */
1295 			case 'u':
1296 				rc = snprintf(out_ptr, out_end - out_ptr,
1297 					      "%d", current->uid);
1298 				if (rc > out_end - out_ptr)
1299 					goto out;
1300 				out_ptr += rc;
1301 				break;
1302 			/* gid */
1303 			case 'g':
1304 				rc = snprintf(out_ptr, out_end - out_ptr,
1305 					      "%d", current->gid);
1306 				if (rc > out_end - out_ptr)
1307 					goto out;
1308 				out_ptr += rc;
1309 				break;
1310 			/* signal that caused the coredump */
1311 			case 's':
1312 				rc = snprintf(out_ptr, out_end - out_ptr,
1313 					      "%ld", signr);
1314 				if (rc > out_end - out_ptr)
1315 					goto out;
1316 				out_ptr += rc;
1317 				break;
1318 			/* UNIX time of coredump */
1319 			case 't': {
1320 				struct timeval tv;
1321 				do_gettimeofday(&tv);
1322 				rc = snprintf(out_ptr, out_end - out_ptr,
1323 					      "%lu", tv.tv_sec);
1324 				if (rc > out_end - out_ptr)
1325 					goto out;
1326 				out_ptr += rc;
1327 				break;
1328 			}
1329 			/* hostname */
1330 			case 'h':
1331 				down_read(&uts_sem);
1332 				rc = snprintf(out_ptr, out_end - out_ptr,
1333 					      "%s", system_utsname.nodename);
1334 				up_read(&uts_sem);
1335 				if (rc > out_end - out_ptr)
1336 					goto out;
1337 				out_ptr += rc;
1338 				break;
1339 			/* executable */
1340 			case 'e':
1341 				rc = snprintf(out_ptr, out_end - out_ptr,
1342 					      "%s", current->comm);
1343 				if (rc > out_end - out_ptr)
1344 					goto out;
1345 				out_ptr += rc;
1346 				break;
1347 			default:
1348 				break;
1349 			}
1350 			++pat_ptr;
1351 		}
1352 	}
1353 	/* Backward compatibility with core_uses_pid:
1354 	 *
1355 	 * If core_pattern does not include a %p (as is the default)
1356 	 * and core_uses_pid is set, then .%pid will be appended to
1357 	 * the filename */
1358 	if (!pid_in_pattern
1359             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1360 		rc = snprintf(out_ptr, out_end - out_ptr,
1361 			      ".%d", current->tgid);
1362 		if (rc > out_end - out_ptr)
1363 			goto out;
1364 		out_ptr += rc;
1365 	}
1366       out:
1367 	*out_ptr = 0;
1368 }
1369 
1370 static void zap_process(struct task_struct *start)
1371 {
1372 	struct task_struct *t;
1373 
1374 	start->signal->flags = SIGNAL_GROUP_EXIT;
1375 	start->signal->group_stop_count = 0;
1376 
1377 	t = start;
1378 	do {
1379 		if (t != current && t->mm) {
1380 			t->mm->core_waiters++;
1381 			sigaddset(&t->pending.signal, SIGKILL);
1382 			signal_wake_up(t, 1);
1383 		}
1384 	} while ((t = next_thread(t)) != start);
1385 }
1386 
1387 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1388 				int exit_code)
1389 {
1390 	struct task_struct *g, *p;
1391 	unsigned long flags;
1392 	int err = -EAGAIN;
1393 
1394 	spin_lock_irq(&tsk->sighand->siglock);
1395 	if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1396 		tsk->signal->group_exit_code = exit_code;
1397 		zap_process(tsk);
1398 		err = 0;
1399 	}
1400 	spin_unlock_irq(&tsk->sighand->siglock);
1401 	if (err)
1402 		return err;
1403 
1404 	if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1405 		goto done;
1406 
1407 	rcu_read_lock();
1408 	for_each_process(g) {
1409 		if (g == tsk->group_leader)
1410 			continue;
1411 
1412 		p = g;
1413 		do {
1414 			if (p->mm) {
1415 				if (p->mm == mm) {
1416 					/*
1417 					 * p->sighand can't disappear, but
1418 					 * may be changed by de_thread()
1419 					 */
1420 					lock_task_sighand(p, &flags);
1421 					zap_process(p);
1422 					unlock_task_sighand(p, &flags);
1423 				}
1424 				break;
1425 			}
1426 		} while ((p = next_thread(p)) != g);
1427 	}
1428 	rcu_read_unlock();
1429 done:
1430 	return mm->core_waiters;
1431 }
1432 
1433 static int coredump_wait(int exit_code)
1434 {
1435 	struct task_struct *tsk = current;
1436 	struct mm_struct *mm = tsk->mm;
1437 	struct completion startup_done;
1438 	struct completion *vfork_done;
1439 	int core_waiters;
1440 
1441 	init_completion(&mm->core_done);
1442 	init_completion(&startup_done);
1443 	mm->core_startup_done = &startup_done;
1444 
1445 	core_waiters = zap_threads(tsk, mm, exit_code);
1446 	up_write(&mm->mmap_sem);
1447 
1448 	if (unlikely(core_waiters < 0))
1449 		goto fail;
1450 
1451 	/*
1452 	 * Make sure nobody is waiting for us to release the VM,
1453 	 * otherwise we can deadlock when we wait on each other
1454 	 */
1455 	vfork_done = tsk->vfork_done;
1456 	if (vfork_done) {
1457 		tsk->vfork_done = NULL;
1458 		complete(vfork_done);
1459 	}
1460 
1461 	if (core_waiters)
1462 		wait_for_completion(&startup_done);
1463 fail:
1464 	BUG_ON(mm->core_waiters);
1465 	return core_waiters;
1466 }
1467 
1468 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1469 {
1470 	char corename[CORENAME_MAX_SIZE + 1];
1471 	struct mm_struct *mm = current->mm;
1472 	struct linux_binfmt * binfmt;
1473 	struct inode * inode;
1474 	struct file * file;
1475 	int retval = 0;
1476 	int fsuid = current->fsuid;
1477 	int flag = 0;
1478 
1479 	binfmt = current->binfmt;
1480 	if (!binfmt || !binfmt->core_dump)
1481 		goto fail;
1482 	down_write(&mm->mmap_sem);
1483 	if (!mm->dumpable) {
1484 		up_write(&mm->mmap_sem);
1485 		goto fail;
1486 	}
1487 
1488 	/*
1489 	 *	We cannot trust fsuid as being the "true" uid of the
1490 	 *	process nor do we know its entire history. We only know it
1491 	 *	was tainted so we dump it as root in mode 2.
1492 	 */
1493 	if (mm->dumpable == 2) {	/* Setuid core dump mode */
1494 		flag = O_EXCL;		/* Stop rewrite attacks */
1495 		current->fsuid = 0;	/* Dump root private */
1496 	}
1497 	mm->dumpable = 0;
1498 
1499 	retval = coredump_wait(exit_code);
1500 	if (retval < 0)
1501 		goto fail;
1502 
1503 	/*
1504 	 * Clear any false indication of pending signals that might
1505 	 * be seen by the filesystem code called to write the core file.
1506 	 */
1507 	clear_thread_flag(TIF_SIGPENDING);
1508 
1509 	if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1510 		goto fail_unlock;
1511 
1512 	/*
1513 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1514 	 * uses lock_kernel()
1515 	 */
1516  	lock_kernel();
1517 	format_corename(corename, core_pattern, signr);
1518 	unlock_kernel();
1519 	file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 0600);
1520 	if (IS_ERR(file))
1521 		goto fail_unlock;
1522 	inode = file->f_dentry->d_inode;
1523 	if (inode->i_nlink > 1)
1524 		goto close_fail;	/* multiple links - don't dump */
1525 	if (d_unhashed(file->f_dentry))
1526 		goto close_fail;
1527 
1528 	if (!S_ISREG(inode->i_mode))
1529 		goto close_fail;
1530 	if (!file->f_op)
1531 		goto close_fail;
1532 	if (!file->f_op->write)
1533 		goto close_fail;
1534 	if (do_truncate(file->f_dentry, 0, 0, file) != 0)
1535 		goto close_fail;
1536 
1537 	retval = binfmt->core_dump(signr, regs, file);
1538 
1539 	if (retval)
1540 		current->signal->group_exit_code |= 0x80;
1541 close_fail:
1542 	filp_close(file, NULL);
1543 fail_unlock:
1544 	current->fsuid = fsuid;
1545 	complete_all(&mm->core_done);
1546 fail:
1547 	return retval;
1548 }
1549