1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/mman.h> 28 #include <linux/a.out.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/init.h> 33 #include <linux/pagemap.h> 34 #include <linux/highmem.h> 35 #include <linux/spinlock.h> 36 #include <linux/key.h> 37 #include <linux/personality.h> 38 #include <linux/binfmts.h> 39 #include <linux/swap.h> 40 #include <linux/utsname.h> 41 #include <linux/module.h> 42 #include <linux/namei.h> 43 #include <linux/proc_fs.h> 44 #include <linux/ptrace.h> 45 #include <linux/mount.h> 46 #include <linux/security.h> 47 #include <linux/syscalls.h> 48 #include <linux/rmap.h> 49 #include <linux/acct.h> 50 #include <linux/cn_proc.h> 51 #include <linux/audit.h> 52 53 #include <asm/uaccess.h> 54 #include <asm/mmu_context.h> 55 56 #ifdef CONFIG_KMOD 57 #include <linux/kmod.h> 58 #endif 59 60 int core_uses_pid; 61 char core_pattern[65] = "core"; 62 int suid_dumpable = 0; 63 64 EXPORT_SYMBOL(suid_dumpable); 65 /* The maximal length of core_pattern is also specified in sysctl.c */ 66 67 static struct linux_binfmt *formats; 68 static DEFINE_RWLOCK(binfmt_lock); 69 70 int register_binfmt(struct linux_binfmt * fmt) 71 { 72 struct linux_binfmt ** tmp = &formats; 73 74 if (!fmt) 75 return -EINVAL; 76 if (fmt->next) 77 return -EBUSY; 78 write_lock(&binfmt_lock); 79 while (*tmp) { 80 if (fmt == *tmp) { 81 write_unlock(&binfmt_lock); 82 return -EBUSY; 83 } 84 tmp = &(*tmp)->next; 85 } 86 fmt->next = formats; 87 formats = fmt; 88 write_unlock(&binfmt_lock); 89 return 0; 90 } 91 92 EXPORT_SYMBOL(register_binfmt); 93 94 int unregister_binfmt(struct linux_binfmt * fmt) 95 { 96 struct linux_binfmt ** tmp = &formats; 97 98 write_lock(&binfmt_lock); 99 while (*tmp) { 100 if (fmt == *tmp) { 101 *tmp = fmt->next; 102 write_unlock(&binfmt_lock); 103 return 0; 104 } 105 tmp = &(*tmp)->next; 106 } 107 write_unlock(&binfmt_lock); 108 return -EINVAL; 109 } 110 111 EXPORT_SYMBOL(unregister_binfmt); 112 113 static inline void put_binfmt(struct linux_binfmt * fmt) 114 { 115 module_put(fmt->module); 116 } 117 118 /* 119 * Note that a shared library must be both readable and executable due to 120 * security reasons. 121 * 122 * Also note that we take the address to load from from the file itself. 123 */ 124 asmlinkage long sys_uselib(const char __user * library) 125 { 126 struct file * file; 127 struct nameidata nd; 128 int error; 129 130 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 131 if (error) 132 goto out; 133 134 error = -EINVAL; 135 if (!S_ISREG(nd.dentry->d_inode->i_mode)) 136 goto exit; 137 138 error = vfs_permission(&nd, MAY_READ | MAY_EXEC); 139 if (error) 140 goto exit; 141 142 file = nameidata_to_filp(&nd, O_RDONLY); 143 error = PTR_ERR(file); 144 if (IS_ERR(file)) 145 goto out; 146 147 error = -ENOEXEC; 148 if(file->f_op) { 149 struct linux_binfmt * fmt; 150 151 read_lock(&binfmt_lock); 152 for (fmt = formats ; fmt ; fmt = fmt->next) { 153 if (!fmt->load_shlib) 154 continue; 155 if (!try_module_get(fmt->module)) 156 continue; 157 read_unlock(&binfmt_lock); 158 error = fmt->load_shlib(file); 159 read_lock(&binfmt_lock); 160 put_binfmt(fmt); 161 if (error != -ENOEXEC) 162 break; 163 } 164 read_unlock(&binfmt_lock); 165 } 166 fput(file); 167 out: 168 return error; 169 exit: 170 release_open_intent(&nd); 171 path_release(&nd); 172 goto out; 173 } 174 175 /* 176 * count() counts the number of strings in array ARGV. 177 */ 178 static int count(char __user * __user * argv, int max) 179 { 180 int i = 0; 181 182 if (argv != NULL) { 183 for (;;) { 184 char __user * p; 185 186 if (get_user(p, argv)) 187 return -EFAULT; 188 if (!p) 189 break; 190 argv++; 191 if(++i > max) 192 return -E2BIG; 193 cond_resched(); 194 } 195 } 196 return i; 197 } 198 199 /* 200 * 'copy_strings()' copies argument/environment strings from user 201 * memory to free pages in kernel mem. These are in a format ready 202 * to be put directly into the top of new user memory. 203 */ 204 static int copy_strings(int argc, char __user * __user * argv, 205 struct linux_binprm *bprm) 206 { 207 struct page *kmapped_page = NULL; 208 char *kaddr = NULL; 209 int ret; 210 211 while (argc-- > 0) { 212 char __user *str; 213 int len; 214 unsigned long pos; 215 216 if (get_user(str, argv+argc) || 217 !(len = strnlen_user(str, bprm->p))) { 218 ret = -EFAULT; 219 goto out; 220 } 221 222 if (bprm->p < len) { 223 ret = -E2BIG; 224 goto out; 225 } 226 227 bprm->p -= len; 228 /* XXX: add architecture specific overflow check here. */ 229 pos = bprm->p; 230 231 while (len > 0) { 232 int i, new, err; 233 int offset, bytes_to_copy; 234 struct page *page; 235 236 offset = pos % PAGE_SIZE; 237 i = pos/PAGE_SIZE; 238 page = bprm->page[i]; 239 new = 0; 240 if (!page) { 241 page = alloc_page(GFP_HIGHUSER); 242 bprm->page[i] = page; 243 if (!page) { 244 ret = -ENOMEM; 245 goto out; 246 } 247 new = 1; 248 } 249 250 if (page != kmapped_page) { 251 if (kmapped_page) 252 kunmap(kmapped_page); 253 kmapped_page = page; 254 kaddr = kmap(kmapped_page); 255 } 256 if (new && offset) 257 memset(kaddr, 0, offset); 258 bytes_to_copy = PAGE_SIZE - offset; 259 if (bytes_to_copy > len) { 260 bytes_to_copy = len; 261 if (new) 262 memset(kaddr+offset+len, 0, 263 PAGE_SIZE-offset-len); 264 } 265 err = copy_from_user(kaddr+offset, str, bytes_to_copy); 266 if (err) { 267 ret = -EFAULT; 268 goto out; 269 } 270 271 pos += bytes_to_copy; 272 str += bytes_to_copy; 273 len -= bytes_to_copy; 274 } 275 } 276 ret = 0; 277 out: 278 if (kmapped_page) 279 kunmap(kmapped_page); 280 return ret; 281 } 282 283 /* 284 * Like copy_strings, but get argv and its values from kernel memory. 285 */ 286 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 287 { 288 int r; 289 mm_segment_t oldfs = get_fs(); 290 set_fs(KERNEL_DS); 291 r = copy_strings(argc, (char __user * __user *)argv, bprm); 292 set_fs(oldfs); 293 return r; 294 } 295 296 EXPORT_SYMBOL(copy_strings_kernel); 297 298 #ifdef CONFIG_MMU 299 /* 300 * This routine is used to map in a page into an address space: needed by 301 * execve() for the initial stack and environment pages. 302 * 303 * vma->vm_mm->mmap_sem is held for writing. 304 */ 305 void install_arg_page(struct vm_area_struct *vma, 306 struct page *page, unsigned long address) 307 { 308 struct mm_struct *mm = vma->vm_mm; 309 pte_t * pte; 310 spinlock_t *ptl; 311 312 if (unlikely(anon_vma_prepare(vma))) 313 goto out; 314 315 flush_dcache_page(page); 316 pte = get_locked_pte(mm, address, &ptl); 317 if (!pte) 318 goto out; 319 if (!pte_none(*pte)) { 320 pte_unmap_unlock(pte, ptl); 321 goto out; 322 } 323 inc_mm_counter(mm, anon_rss); 324 lru_cache_add_active(page); 325 set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte( 326 page, vma->vm_page_prot)))); 327 page_add_new_anon_rmap(page, vma, address); 328 pte_unmap_unlock(pte, ptl); 329 330 /* no need for flush_tlb */ 331 return; 332 out: 333 __free_page(page); 334 force_sig(SIGKILL, current); 335 } 336 337 #define EXTRA_STACK_VM_PAGES 20 /* random */ 338 339 int setup_arg_pages(struct linux_binprm *bprm, 340 unsigned long stack_top, 341 int executable_stack) 342 { 343 unsigned long stack_base; 344 struct vm_area_struct *mpnt; 345 struct mm_struct *mm = current->mm; 346 int i, ret; 347 long arg_size; 348 349 #ifdef CONFIG_STACK_GROWSUP 350 /* Move the argument and environment strings to the bottom of the 351 * stack space. 352 */ 353 int offset, j; 354 char *to, *from; 355 356 /* Start by shifting all the pages down */ 357 i = 0; 358 for (j = 0; j < MAX_ARG_PAGES; j++) { 359 struct page *page = bprm->page[j]; 360 if (!page) 361 continue; 362 bprm->page[i++] = page; 363 } 364 365 /* Now move them within their pages */ 366 offset = bprm->p % PAGE_SIZE; 367 to = kmap(bprm->page[0]); 368 for (j = 1; j < i; j++) { 369 memmove(to, to + offset, PAGE_SIZE - offset); 370 from = kmap(bprm->page[j]); 371 memcpy(to + PAGE_SIZE - offset, from, offset); 372 kunmap(bprm->page[j - 1]); 373 to = from; 374 } 375 memmove(to, to + offset, PAGE_SIZE - offset); 376 kunmap(bprm->page[j - 1]); 377 378 /* Limit stack size to 1GB */ 379 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 380 if (stack_base > (1 << 30)) 381 stack_base = 1 << 30; 382 stack_base = PAGE_ALIGN(stack_top - stack_base); 383 384 /* Adjust bprm->p to point to the end of the strings. */ 385 bprm->p = stack_base + PAGE_SIZE * i - offset; 386 387 mm->arg_start = stack_base; 388 arg_size = i << PAGE_SHIFT; 389 390 /* zero pages that were copied above */ 391 while (i < MAX_ARG_PAGES) 392 bprm->page[i++] = NULL; 393 #else 394 stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE); 395 stack_base = PAGE_ALIGN(stack_base); 396 bprm->p += stack_base; 397 mm->arg_start = bprm->p; 398 arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start); 399 #endif 400 401 arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE; 402 403 if (bprm->loader) 404 bprm->loader += stack_base; 405 bprm->exec += stack_base; 406 407 mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); 408 if (!mpnt) 409 return -ENOMEM; 410 411 memset(mpnt, 0, sizeof(*mpnt)); 412 413 down_write(&mm->mmap_sem); 414 { 415 mpnt->vm_mm = mm; 416 #ifdef CONFIG_STACK_GROWSUP 417 mpnt->vm_start = stack_base; 418 mpnt->vm_end = stack_base + arg_size; 419 #else 420 mpnt->vm_end = stack_top; 421 mpnt->vm_start = mpnt->vm_end - arg_size; 422 #endif 423 /* Adjust stack execute permissions; explicitly enable 424 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X 425 * and leave alone (arch default) otherwise. */ 426 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 427 mpnt->vm_flags = VM_STACK_FLAGS | VM_EXEC; 428 else if (executable_stack == EXSTACK_DISABLE_X) 429 mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC; 430 else 431 mpnt->vm_flags = VM_STACK_FLAGS; 432 mpnt->vm_flags |= mm->def_flags; 433 mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7]; 434 if ((ret = insert_vm_struct(mm, mpnt))) { 435 up_write(&mm->mmap_sem); 436 kmem_cache_free(vm_area_cachep, mpnt); 437 return ret; 438 } 439 mm->stack_vm = mm->total_vm = vma_pages(mpnt); 440 } 441 442 for (i = 0 ; i < MAX_ARG_PAGES ; i++) { 443 struct page *page = bprm->page[i]; 444 if (page) { 445 bprm->page[i] = NULL; 446 install_arg_page(mpnt, page, stack_base); 447 } 448 stack_base += PAGE_SIZE; 449 } 450 up_write(&mm->mmap_sem); 451 452 return 0; 453 } 454 455 EXPORT_SYMBOL(setup_arg_pages); 456 457 #define free_arg_pages(bprm) do { } while (0) 458 459 #else 460 461 static inline void free_arg_pages(struct linux_binprm *bprm) 462 { 463 int i; 464 465 for (i = 0; i < MAX_ARG_PAGES; i++) { 466 if (bprm->page[i]) 467 __free_page(bprm->page[i]); 468 bprm->page[i] = NULL; 469 } 470 } 471 472 #endif /* CONFIG_MMU */ 473 474 struct file *open_exec(const char *name) 475 { 476 struct nameidata nd; 477 int err; 478 struct file *file; 479 480 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 481 file = ERR_PTR(err); 482 483 if (!err) { 484 struct inode *inode = nd.dentry->d_inode; 485 file = ERR_PTR(-EACCES); 486 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) && 487 S_ISREG(inode->i_mode)) { 488 int err = vfs_permission(&nd, MAY_EXEC); 489 if (!err && !(inode->i_mode & 0111)) 490 err = -EACCES; 491 file = ERR_PTR(err); 492 if (!err) { 493 file = nameidata_to_filp(&nd, O_RDONLY); 494 if (!IS_ERR(file)) { 495 err = deny_write_access(file); 496 if (err) { 497 fput(file); 498 file = ERR_PTR(err); 499 } 500 } 501 out: 502 return file; 503 } 504 } 505 release_open_intent(&nd); 506 path_release(&nd); 507 } 508 goto out; 509 } 510 511 EXPORT_SYMBOL(open_exec); 512 513 int kernel_read(struct file *file, unsigned long offset, 514 char *addr, unsigned long count) 515 { 516 mm_segment_t old_fs; 517 loff_t pos = offset; 518 int result; 519 520 old_fs = get_fs(); 521 set_fs(get_ds()); 522 /* The cast to a user pointer is valid due to the set_fs() */ 523 result = vfs_read(file, (void __user *)addr, count, &pos); 524 set_fs(old_fs); 525 return result; 526 } 527 528 EXPORT_SYMBOL(kernel_read); 529 530 static int exec_mmap(struct mm_struct *mm) 531 { 532 struct task_struct *tsk; 533 struct mm_struct * old_mm, *active_mm; 534 535 /* Notify parent that we're no longer interested in the old VM */ 536 tsk = current; 537 old_mm = current->mm; 538 mm_release(tsk, old_mm); 539 540 if (old_mm) { 541 /* 542 * Make sure that if there is a core dump in progress 543 * for the old mm, we get out and die instead of going 544 * through with the exec. We must hold mmap_sem around 545 * checking core_waiters and changing tsk->mm. The 546 * core-inducing thread will increment core_waiters for 547 * each thread whose ->mm == old_mm. 548 */ 549 down_read(&old_mm->mmap_sem); 550 if (unlikely(old_mm->core_waiters)) { 551 up_read(&old_mm->mmap_sem); 552 return -EINTR; 553 } 554 } 555 task_lock(tsk); 556 active_mm = tsk->active_mm; 557 tsk->mm = mm; 558 tsk->active_mm = mm; 559 activate_mm(active_mm, mm); 560 task_unlock(tsk); 561 arch_pick_mmap_layout(mm); 562 if (old_mm) { 563 up_read(&old_mm->mmap_sem); 564 BUG_ON(active_mm != old_mm); 565 mmput(old_mm); 566 return 0; 567 } 568 mmdrop(active_mm); 569 return 0; 570 } 571 572 /* 573 * This function makes sure the current process has its own signal table, 574 * so that flush_signal_handlers can later reset the handlers without 575 * disturbing other processes. (Other processes might share the signal 576 * table via the CLONE_SIGHAND option to clone().) 577 */ 578 static int de_thread(struct task_struct *tsk) 579 { 580 struct signal_struct *sig = tsk->signal; 581 struct sighand_struct *newsighand, *oldsighand = tsk->sighand; 582 spinlock_t *lock = &oldsighand->siglock; 583 struct task_struct *leader = NULL; 584 int count; 585 586 /* 587 * If we don't share sighandlers, then we aren't sharing anything 588 * and we can just re-use it all. 589 */ 590 if (atomic_read(&oldsighand->count) <= 1) { 591 BUG_ON(atomic_read(&sig->count) != 1); 592 exit_itimers(sig); 593 return 0; 594 } 595 596 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 597 if (!newsighand) 598 return -ENOMEM; 599 600 if (thread_group_empty(current)) 601 goto no_thread_group; 602 603 /* 604 * Kill all other threads in the thread group. 605 * We must hold tasklist_lock to call zap_other_threads. 606 */ 607 read_lock(&tasklist_lock); 608 spin_lock_irq(lock); 609 if (sig->flags & SIGNAL_GROUP_EXIT) { 610 /* 611 * Another group action in progress, just 612 * return so that the signal is processed. 613 */ 614 spin_unlock_irq(lock); 615 read_unlock(&tasklist_lock); 616 kmem_cache_free(sighand_cachep, newsighand); 617 return -EAGAIN; 618 } 619 620 /* 621 * child_reaper ignores SIGKILL, change it now. 622 * Reparenting needs write_lock on tasklist_lock, 623 * so it is safe to do it under read_lock. 624 */ 625 if (unlikely(current->group_leader == child_reaper)) 626 child_reaper = current; 627 628 zap_other_threads(current); 629 read_unlock(&tasklist_lock); 630 631 /* 632 * Account for the thread group leader hanging around: 633 */ 634 count = 1; 635 if (!thread_group_leader(current)) { 636 count = 2; 637 /* 638 * The SIGALRM timer survives the exec, but needs to point 639 * at us as the new group leader now. We have a race with 640 * a timer firing now getting the old leader, so we need to 641 * synchronize with any firing (by calling del_timer_sync) 642 * before we can safely let the old group leader die. 643 */ 644 sig->tsk = current; 645 spin_unlock_irq(lock); 646 if (hrtimer_cancel(&sig->real_timer)) 647 hrtimer_restart(&sig->real_timer); 648 spin_lock_irq(lock); 649 } 650 while (atomic_read(&sig->count) > count) { 651 sig->group_exit_task = current; 652 sig->notify_count = count; 653 __set_current_state(TASK_UNINTERRUPTIBLE); 654 spin_unlock_irq(lock); 655 schedule(); 656 spin_lock_irq(lock); 657 } 658 sig->group_exit_task = NULL; 659 sig->notify_count = 0; 660 spin_unlock_irq(lock); 661 662 /* 663 * At this point all other threads have exited, all we have to 664 * do is to wait for the thread group leader to become inactive, 665 * and to assume its PID: 666 */ 667 if (!thread_group_leader(current)) { 668 /* 669 * Wait for the thread group leader to be a zombie. 670 * It should already be zombie at this point, most 671 * of the time. 672 */ 673 leader = current->group_leader; 674 while (leader->exit_state != EXIT_ZOMBIE) 675 yield(); 676 677 /* 678 * The only record we have of the real-time age of a 679 * process, regardless of execs it's done, is start_time. 680 * All the past CPU time is accumulated in signal_struct 681 * from sister threads now dead. But in this non-leader 682 * exec, nothing survives from the original leader thread, 683 * whose birth marks the true age of this process now. 684 * When we take on its identity by switching to its PID, we 685 * also take its birthdate (always earlier than our own). 686 */ 687 current->start_time = leader->start_time; 688 689 write_lock_irq(&tasklist_lock); 690 691 BUG_ON(leader->tgid != current->tgid); 692 BUG_ON(current->pid == current->tgid); 693 /* 694 * An exec() starts a new thread group with the 695 * TGID of the previous thread group. Rehash the 696 * two threads with a switched PID, and release 697 * the former thread group leader: 698 */ 699 700 /* Become a process group leader with the old leader's pid. 701 * Note: The old leader also uses thispid until release_task 702 * is called. Odd but simple and correct. 703 */ 704 detach_pid(current, PIDTYPE_PID); 705 current->pid = leader->pid; 706 attach_pid(current, PIDTYPE_PID, current->pid); 707 attach_pid(current, PIDTYPE_PGID, current->signal->pgrp); 708 attach_pid(current, PIDTYPE_SID, current->signal->session); 709 list_replace_rcu(&leader->tasks, ¤t->tasks); 710 711 current->group_leader = current; 712 leader->group_leader = current; 713 714 /* Reduce leader to a thread */ 715 detach_pid(leader, PIDTYPE_PGID); 716 detach_pid(leader, PIDTYPE_SID); 717 718 current->exit_signal = SIGCHLD; 719 720 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 721 leader->exit_state = EXIT_DEAD; 722 723 write_unlock_irq(&tasklist_lock); 724 } 725 726 /* 727 * There may be one thread left which is just exiting, 728 * but it's safe to stop telling the group to kill themselves. 729 */ 730 sig->flags = 0; 731 732 no_thread_group: 733 exit_itimers(sig); 734 if (leader) 735 release_task(leader); 736 737 BUG_ON(atomic_read(&sig->count) != 1); 738 739 if (atomic_read(&oldsighand->count) == 1) { 740 /* 741 * Now that we nuked the rest of the thread group, 742 * it turns out we are not sharing sighand any more either. 743 * So we can just keep it. 744 */ 745 kmem_cache_free(sighand_cachep, newsighand); 746 } else { 747 /* 748 * Move our state over to newsighand and switch it in. 749 */ 750 atomic_set(&newsighand->count, 1); 751 memcpy(newsighand->action, oldsighand->action, 752 sizeof(newsighand->action)); 753 754 write_lock_irq(&tasklist_lock); 755 spin_lock(&oldsighand->siglock); 756 spin_lock(&newsighand->siglock); 757 758 rcu_assign_pointer(current->sighand, newsighand); 759 recalc_sigpending(); 760 761 spin_unlock(&newsighand->siglock); 762 spin_unlock(&oldsighand->siglock); 763 write_unlock_irq(&tasklist_lock); 764 765 if (atomic_dec_and_test(&oldsighand->count)) 766 kmem_cache_free(sighand_cachep, oldsighand); 767 } 768 769 BUG_ON(!thread_group_leader(current)); 770 return 0; 771 } 772 773 /* 774 * These functions flushes out all traces of the currently running executable 775 * so that a new one can be started 776 */ 777 778 static void flush_old_files(struct files_struct * files) 779 { 780 long j = -1; 781 struct fdtable *fdt; 782 783 spin_lock(&files->file_lock); 784 for (;;) { 785 unsigned long set, i; 786 787 j++; 788 i = j * __NFDBITS; 789 fdt = files_fdtable(files); 790 if (i >= fdt->max_fds || i >= fdt->max_fdset) 791 break; 792 set = fdt->close_on_exec->fds_bits[j]; 793 if (!set) 794 continue; 795 fdt->close_on_exec->fds_bits[j] = 0; 796 spin_unlock(&files->file_lock); 797 for ( ; set ; i++,set >>= 1) { 798 if (set & 1) { 799 sys_close(i); 800 } 801 } 802 spin_lock(&files->file_lock); 803 804 } 805 spin_unlock(&files->file_lock); 806 } 807 808 void get_task_comm(char *buf, struct task_struct *tsk) 809 { 810 /* buf must be at least sizeof(tsk->comm) in size */ 811 task_lock(tsk); 812 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 813 task_unlock(tsk); 814 } 815 816 void set_task_comm(struct task_struct *tsk, char *buf) 817 { 818 task_lock(tsk); 819 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 820 task_unlock(tsk); 821 } 822 823 int flush_old_exec(struct linux_binprm * bprm) 824 { 825 char * name; 826 int i, ch, retval; 827 struct files_struct *files; 828 char tcomm[sizeof(current->comm)]; 829 830 /* 831 * Make sure we have a private signal table and that 832 * we are unassociated from the previous thread group. 833 */ 834 retval = de_thread(current); 835 if (retval) 836 goto out; 837 838 /* 839 * Make sure we have private file handles. Ask the 840 * fork helper to do the work for us and the exit 841 * helper to do the cleanup of the old one. 842 */ 843 files = current->files; /* refcounted so safe to hold */ 844 retval = unshare_files(); 845 if (retval) 846 goto out; 847 /* 848 * Release all of the old mmap stuff 849 */ 850 retval = exec_mmap(bprm->mm); 851 if (retval) 852 goto mmap_failed; 853 854 bprm->mm = NULL; /* We're using it now */ 855 856 /* This is the point of no return */ 857 put_files_struct(files); 858 859 current->sas_ss_sp = current->sas_ss_size = 0; 860 861 if (current->euid == current->uid && current->egid == current->gid) 862 current->mm->dumpable = 1; 863 else 864 current->mm->dumpable = suid_dumpable; 865 866 name = bprm->filename; 867 868 /* Copies the binary name from after last slash */ 869 for (i=0; (ch = *(name++)) != '\0';) { 870 if (ch == '/') 871 i = 0; /* overwrite what we wrote */ 872 else 873 if (i < (sizeof(tcomm) - 1)) 874 tcomm[i++] = ch; 875 } 876 tcomm[i] = '\0'; 877 set_task_comm(current, tcomm); 878 879 current->flags &= ~PF_RANDOMIZE; 880 flush_thread(); 881 882 /* Set the new mm task size. We have to do that late because it may 883 * depend on TIF_32BIT which is only updated in flush_thread() on 884 * some architectures like powerpc 885 */ 886 current->mm->task_size = TASK_SIZE; 887 888 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid || 889 file_permission(bprm->file, MAY_READ) || 890 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 891 suid_keys(current); 892 current->mm->dumpable = suid_dumpable; 893 } 894 895 /* An exec changes our domain. We are no longer part of the thread 896 group */ 897 898 current->self_exec_id++; 899 900 flush_signal_handlers(current, 0); 901 flush_old_files(current->files); 902 903 return 0; 904 905 mmap_failed: 906 put_files_struct(current->files); 907 current->files = files; 908 out: 909 return retval; 910 } 911 912 EXPORT_SYMBOL(flush_old_exec); 913 914 /* 915 * Fill the binprm structure from the inode. 916 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 917 */ 918 int prepare_binprm(struct linux_binprm *bprm) 919 { 920 int mode; 921 struct inode * inode = bprm->file->f_dentry->d_inode; 922 int retval; 923 924 mode = inode->i_mode; 925 /* 926 * Check execute perms again - if the caller has CAP_DAC_OVERRIDE, 927 * generic_permission lets a non-executable through 928 */ 929 if (!(mode & 0111)) /* with at least _one_ execute bit set */ 930 return -EACCES; 931 if (bprm->file->f_op == NULL) 932 return -EACCES; 933 934 bprm->e_uid = current->euid; 935 bprm->e_gid = current->egid; 936 937 if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) { 938 /* Set-uid? */ 939 if (mode & S_ISUID) { 940 current->personality &= ~PER_CLEAR_ON_SETID; 941 bprm->e_uid = inode->i_uid; 942 } 943 944 /* Set-gid? */ 945 /* 946 * If setgid is set but no group execute bit then this 947 * is a candidate for mandatory locking, not a setgid 948 * executable. 949 */ 950 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 951 current->personality &= ~PER_CLEAR_ON_SETID; 952 bprm->e_gid = inode->i_gid; 953 } 954 } 955 956 /* fill in binprm security blob */ 957 retval = security_bprm_set(bprm); 958 if (retval) 959 return retval; 960 961 memset(bprm->buf,0,BINPRM_BUF_SIZE); 962 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 963 } 964 965 EXPORT_SYMBOL(prepare_binprm); 966 967 static int unsafe_exec(struct task_struct *p) 968 { 969 int unsafe = 0; 970 if (p->ptrace & PT_PTRACED) { 971 if (p->ptrace & PT_PTRACE_CAP) 972 unsafe |= LSM_UNSAFE_PTRACE_CAP; 973 else 974 unsafe |= LSM_UNSAFE_PTRACE; 975 } 976 if (atomic_read(&p->fs->count) > 1 || 977 atomic_read(&p->files->count) > 1 || 978 atomic_read(&p->sighand->count) > 1) 979 unsafe |= LSM_UNSAFE_SHARE; 980 981 return unsafe; 982 } 983 984 void compute_creds(struct linux_binprm *bprm) 985 { 986 int unsafe; 987 988 if (bprm->e_uid != current->uid) 989 suid_keys(current); 990 exec_keys(current); 991 992 task_lock(current); 993 unsafe = unsafe_exec(current); 994 security_bprm_apply_creds(bprm, unsafe); 995 task_unlock(current); 996 security_bprm_post_apply_creds(bprm); 997 } 998 999 EXPORT_SYMBOL(compute_creds); 1000 1001 void remove_arg_zero(struct linux_binprm *bprm) 1002 { 1003 if (bprm->argc) { 1004 unsigned long offset; 1005 char * kaddr; 1006 struct page *page; 1007 1008 offset = bprm->p % PAGE_SIZE; 1009 goto inside; 1010 1011 while (bprm->p++, *(kaddr+offset++)) { 1012 if (offset != PAGE_SIZE) 1013 continue; 1014 offset = 0; 1015 kunmap_atomic(kaddr, KM_USER0); 1016 inside: 1017 page = bprm->page[bprm->p/PAGE_SIZE]; 1018 kaddr = kmap_atomic(page, KM_USER0); 1019 } 1020 kunmap_atomic(kaddr, KM_USER0); 1021 bprm->argc--; 1022 } 1023 } 1024 1025 EXPORT_SYMBOL(remove_arg_zero); 1026 1027 /* 1028 * cycle the list of binary formats handler, until one recognizes the image 1029 */ 1030 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1031 { 1032 int try,retval; 1033 struct linux_binfmt *fmt; 1034 #ifdef __alpha__ 1035 /* handle /sbin/loader.. */ 1036 { 1037 struct exec * eh = (struct exec *) bprm->buf; 1038 1039 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1040 (eh->fh.f_flags & 0x3000) == 0x3000) 1041 { 1042 struct file * file; 1043 unsigned long loader; 1044 1045 allow_write_access(bprm->file); 1046 fput(bprm->file); 1047 bprm->file = NULL; 1048 1049 loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *); 1050 1051 file = open_exec("/sbin/loader"); 1052 retval = PTR_ERR(file); 1053 if (IS_ERR(file)) 1054 return retval; 1055 1056 /* Remember if the application is TASO. */ 1057 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1058 1059 bprm->file = file; 1060 bprm->loader = loader; 1061 retval = prepare_binprm(bprm); 1062 if (retval<0) 1063 return retval; 1064 /* should call search_binary_handler recursively here, 1065 but it does not matter */ 1066 } 1067 } 1068 #endif 1069 retval = security_bprm_check(bprm); 1070 if (retval) 1071 return retval; 1072 1073 /* kernel module loader fixup */ 1074 /* so we don't try to load run modprobe in kernel space. */ 1075 set_fs(USER_DS); 1076 1077 retval = audit_bprm(bprm); 1078 if (retval) 1079 return retval; 1080 1081 retval = -ENOENT; 1082 for (try=0; try<2; try++) { 1083 read_lock(&binfmt_lock); 1084 for (fmt = formats ; fmt ; fmt = fmt->next) { 1085 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1086 if (!fn) 1087 continue; 1088 if (!try_module_get(fmt->module)) 1089 continue; 1090 read_unlock(&binfmt_lock); 1091 retval = fn(bprm, regs); 1092 if (retval >= 0) { 1093 put_binfmt(fmt); 1094 allow_write_access(bprm->file); 1095 if (bprm->file) 1096 fput(bprm->file); 1097 bprm->file = NULL; 1098 current->did_exec = 1; 1099 proc_exec_connector(current); 1100 return retval; 1101 } 1102 read_lock(&binfmt_lock); 1103 put_binfmt(fmt); 1104 if (retval != -ENOEXEC || bprm->mm == NULL) 1105 break; 1106 if (!bprm->file) { 1107 read_unlock(&binfmt_lock); 1108 return retval; 1109 } 1110 } 1111 read_unlock(&binfmt_lock); 1112 if (retval != -ENOEXEC || bprm->mm == NULL) { 1113 break; 1114 #ifdef CONFIG_KMOD 1115 }else{ 1116 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1117 if (printable(bprm->buf[0]) && 1118 printable(bprm->buf[1]) && 1119 printable(bprm->buf[2]) && 1120 printable(bprm->buf[3])) 1121 break; /* -ENOEXEC */ 1122 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1123 #endif 1124 } 1125 } 1126 return retval; 1127 } 1128 1129 EXPORT_SYMBOL(search_binary_handler); 1130 1131 /* 1132 * sys_execve() executes a new program. 1133 */ 1134 int do_execve(char * filename, 1135 char __user *__user *argv, 1136 char __user *__user *envp, 1137 struct pt_regs * regs) 1138 { 1139 struct linux_binprm *bprm; 1140 struct file *file; 1141 int retval; 1142 int i; 1143 1144 retval = -ENOMEM; 1145 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1146 if (!bprm) 1147 goto out_ret; 1148 1149 file = open_exec(filename); 1150 retval = PTR_ERR(file); 1151 if (IS_ERR(file)) 1152 goto out_kfree; 1153 1154 sched_exec(); 1155 1156 bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *); 1157 1158 bprm->file = file; 1159 bprm->filename = filename; 1160 bprm->interp = filename; 1161 bprm->mm = mm_alloc(); 1162 retval = -ENOMEM; 1163 if (!bprm->mm) 1164 goto out_file; 1165 1166 retval = init_new_context(current, bprm->mm); 1167 if (retval < 0) 1168 goto out_mm; 1169 1170 bprm->argc = count(argv, bprm->p / sizeof(void *)); 1171 if ((retval = bprm->argc) < 0) 1172 goto out_mm; 1173 1174 bprm->envc = count(envp, bprm->p / sizeof(void *)); 1175 if ((retval = bprm->envc) < 0) 1176 goto out_mm; 1177 1178 retval = security_bprm_alloc(bprm); 1179 if (retval) 1180 goto out; 1181 1182 retval = prepare_binprm(bprm); 1183 if (retval < 0) 1184 goto out; 1185 1186 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1187 if (retval < 0) 1188 goto out; 1189 1190 bprm->exec = bprm->p; 1191 retval = copy_strings(bprm->envc, envp, bprm); 1192 if (retval < 0) 1193 goto out; 1194 1195 retval = copy_strings(bprm->argc, argv, bprm); 1196 if (retval < 0) 1197 goto out; 1198 1199 retval = search_binary_handler(bprm,regs); 1200 if (retval >= 0) { 1201 free_arg_pages(bprm); 1202 1203 /* execve success */ 1204 security_bprm_free(bprm); 1205 acct_update_integrals(current); 1206 kfree(bprm); 1207 return retval; 1208 } 1209 1210 out: 1211 /* Something went wrong, return the inode and free the argument pages*/ 1212 for (i = 0 ; i < MAX_ARG_PAGES ; i++) { 1213 struct page * page = bprm->page[i]; 1214 if (page) 1215 __free_page(page); 1216 } 1217 1218 if (bprm->security) 1219 security_bprm_free(bprm); 1220 1221 out_mm: 1222 if (bprm->mm) 1223 mmdrop(bprm->mm); 1224 1225 out_file: 1226 if (bprm->file) { 1227 allow_write_access(bprm->file); 1228 fput(bprm->file); 1229 } 1230 1231 out_kfree: 1232 kfree(bprm); 1233 1234 out_ret: 1235 return retval; 1236 } 1237 1238 int set_binfmt(struct linux_binfmt *new) 1239 { 1240 struct linux_binfmt *old = current->binfmt; 1241 1242 if (new) { 1243 if (!try_module_get(new->module)) 1244 return -1; 1245 } 1246 current->binfmt = new; 1247 if (old) 1248 module_put(old->module); 1249 return 0; 1250 } 1251 1252 EXPORT_SYMBOL(set_binfmt); 1253 1254 #define CORENAME_MAX_SIZE 64 1255 1256 /* format_corename will inspect the pattern parameter, and output a 1257 * name into corename, which must have space for at least 1258 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1259 */ 1260 static void format_corename(char *corename, const char *pattern, long signr) 1261 { 1262 const char *pat_ptr = pattern; 1263 char *out_ptr = corename; 1264 char *const out_end = corename + CORENAME_MAX_SIZE; 1265 int rc; 1266 int pid_in_pattern = 0; 1267 1268 /* Repeat as long as we have more pattern to process and more output 1269 space */ 1270 while (*pat_ptr) { 1271 if (*pat_ptr != '%') { 1272 if (out_ptr == out_end) 1273 goto out; 1274 *out_ptr++ = *pat_ptr++; 1275 } else { 1276 switch (*++pat_ptr) { 1277 case 0: 1278 goto out; 1279 /* Double percent, output one percent */ 1280 case '%': 1281 if (out_ptr == out_end) 1282 goto out; 1283 *out_ptr++ = '%'; 1284 break; 1285 /* pid */ 1286 case 'p': 1287 pid_in_pattern = 1; 1288 rc = snprintf(out_ptr, out_end - out_ptr, 1289 "%d", current->tgid); 1290 if (rc > out_end - out_ptr) 1291 goto out; 1292 out_ptr += rc; 1293 break; 1294 /* uid */ 1295 case 'u': 1296 rc = snprintf(out_ptr, out_end - out_ptr, 1297 "%d", current->uid); 1298 if (rc > out_end - out_ptr) 1299 goto out; 1300 out_ptr += rc; 1301 break; 1302 /* gid */ 1303 case 'g': 1304 rc = snprintf(out_ptr, out_end - out_ptr, 1305 "%d", current->gid); 1306 if (rc > out_end - out_ptr) 1307 goto out; 1308 out_ptr += rc; 1309 break; 1310 /* signal that caused the coredump */ 1311 case 's': 1312 rc = snprintf(out_ptr, out_end - out_ptr, 1313 "%ld", signr); 1314 if (rc > out_end - out_ptr) 1315 goto out; 1316 out_ptr += rc; 1317 break; 1318 /* UNIX time of coredump */ 1319 case 't': { 1320 struct timeval tv; 1321 do_gettimeofday(&tv); 1322 rc = snprintf(out_ptr, out_end - out_ptr, 1323 "%lu", tv.tv_sec); 1324 if (rc > out_end - out_ptr) 1325 goto out; 1326 out_ptr += rc; 1327 break; 1328 } 1329 /* hostname */ 1330 case 'h': 1331 down_read(&uts_sem); 1332 rc = snprintf(out_ptr, out_end - out_ptr, 1333 "%s", system_utsname.nodename); 1334 up_read(&uts_sem); 1335 if (rc > out_end - out_ptr) 1336 goto out; 1337 out_ptr += rc; 1338 break; 1339 /* executable */ 1340 case 'e': 1341 rc = snprintf(out_ptr, out_end - out_ptr, 1342 "%s", current->comm); 1343 if (rc > out_end - out_ptr) 1344 goto out; 1345 out_ptr += rc; 1346 break; 1347 default: 1348 break; 1349 } 1350 ++pat_ptr; 1351 } 1352 } 1353 /* Backward compatibility with core_uses_pid: 1354 * 1355 * If core_pattern does not include a %p (as is the default) 1356 * and core_uses_pid is set, then .%pid will be appended to 1357 * the filename */ 1358 if (!pid_in_pattern 1359 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) { 1360 rc = snprintf(out_ptr, out_end - out_ptr, 1361 ".%d", current->tgid); 1362 if (rc > out_end - out_ptr) 1363 goto out; 1364 out_ptr += rc; 1365 } 1366 out: 1367 *out_ptr = 0; 1368 } 1369 1370 static void zap_process(struct task_struct *start) 1371 { 1372 struct task_struct *t; 1373 1374 start->signal->flags = SIGNAL_GROUP_EXIT; 1375 start->signal->group_stop_count = 0; 1376 1377 t = start; 1378 do { 1379 if (t != current && t->mm) { 1380 t->mm->core_waiters++; 1381 sigaddset(&t->pending.signal, SIGKILL); 1382 signal_wake_up(t, 1); 1383 } 1384 } while ((t = next_thread(t)) != start); 1385 } 1386 1387 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1388 int exit_code) 1389 { 1390 struct task_struct *g, *p; 1391 unsigned long flags; 1392 int err = -EAGAIN; 1393 1394 spin_lock_irq(&tsk->sighand->siglock); 1395 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) { 1396 tsk->signal->group_exit_code = exit_code; 1397 zap_process(tsk); 1398 err = 0; 1399 } 1400 spin_unlock_irq(&tsk->sighand->siglock); 1401 if (err) 1402 return err; 1403 1404 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1) 1405 goto done; 1406 1407 rcu_read_lock(); 1408 for_each_process(g) { 1409 if (g == tsk->group_leader) 1410 continue; 1411 1412 p = g; 1413 do { 1414 if (p->mm) { 1415 if (p->mm == mm) { 1416 /* 1417 * p->sighand can't disappear, but 1418 * may be changed by de_thread() 1419 */ 1420 lock_task_sighand(p, &flags); 1421 zap_process(p); 1422 unlock_task_sighand(p, &flags); 1423 } 1424 break; 1425 } 1426 } while ((p = next_thread(p)) != g); 1427 } 1428 rcu_read_unlock(); 1429 done: 1430 return mm->core_waiters; 1431 } 1432 1433 static int coredump_wait(int exit_code) 1434 { 1435 struct task_struct *tsk = current; 1436 struct mm_struct *mm = tsk->mm; 1437 struct completion startup_done; 1438 struct completion *vfork_done; 1439 int core_waiters; 1440 1441 init_completion(&mm->core_done); 1442 init_completion(&startup_done); 1443 mm->core_startup_done = &startup_done; 1444 1445 core_waiters = zap_threads(tsk, mm, exit_code); 1446 up_write(&mm->mmap_sem); 1447 1448 if (unlikely(core_waiters < 0)) 1449 goto fail; 1450 1451 /* 1452 * Make sure nobody is waiting for us to release the VM, 1453 * otherwise we can deadlock when we wait on each other 1454 */ 1455 vfork_done = tsk->vfork_done; 1456 if (vfork_done) { 1457 tsk->vfork_done = NULL; 1458 complete(vfork_done); 1459 } 1460 1461 if (core_waiters) 1462 wait_for_completion(&startup_done); 1463 fail: 1464 BUG_ON(mm->core_waiters); 1465 return core_waiters; 1466 } 1467 1468 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1469 { 1470 char corename[CORENAME_MAX_SIZE + 1]; 1471 struct mm_struct *mm = current->mm; 1472 struct linux_binfmt * binfmt; 1473 struct inode * inode; 1474 struct file * file; 1475 int retval = 0; 1476 int fsuid = current->fsuid; 1477 int flag = 0; 1478 1479 binfmt = current->binfmt; 1480 if (!binfmt || !binfmt->core_dump) 1481 goto fail; 1482 down_write(&mm->mmap_sem); 1483 if (!mm->dumpable) { 1484 up_write(&mm->mmap_sem); 1485 goto fail; 1486 } 1487 1488 /* 1489 * We cannot trust fsuid as being the "true" uid of the 1490 * process nor do we know its entire history. We only know it 1491 * was tainted so we dump it as root in mode 2. 1492 */ 1493 if (mm->dumpable == 2) { /* Setuid core dump mode */ 1494 flag = O_EXCL; /* Stop rewrite attacks */ 1495 current->fsuid = 0; /* Dump root private */ 1496 } 1497 mm->dumpable = 0; 1498 1499 retval = coredump_wait(exit_code); 1500 if (retval < 0) 1501 goto fail; 1502 1503 /* 1504 * Clear any false indication of pending signals that might 1505 * be seen by the filesystem code called to write the core file. 1506 */ 1507 clear_thread_flag(TIF_SIGPENDING); 1508 1509 if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump) 1510 goto fail_unlock; 1511 1512 /* 1513 * lock_kernel() because format_corename() is controlled by sysctl, which 1514 * uses lock_kernel() 1515 */ 1516 lock_kernel(); 1517 format_corename(corename, core_pattern, signr); 1518 unlock_kernel(); 1519 file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 0600); 1520 if (IS_ERR(file)) 1521 goto fail_unlock; 1522 inode = file->f_dentry->d_inode; 1523 if (inode->i_nlink > 1) 1524 goto close_fail; /* multiple links - don't dump */ 1525 if (d_unhashed(file->f_dentry)) 1526 goto close_fail; 1527 1528 if (!S_ISREG(inode->i_mode)) 1529 goto close_fail; 1530 if (!file->f_op) 1531 goto close_fail; 1532 if (!file->f_op->write) 1533 goto close_fail; 1534 if (do_truncate(file->f_dentry, 0, 0, file) != 0) 1535 goto close_fail; 1536 1537 retval = binfmt->core_dump(signr, regs, file); 1538 1539 if (retval) 1540 current->signal->group_exit_code |= 0x80; 1541 close_fail: 1542 filp_close(file, NULL); 1543 fail_unlock: 1544 current->fsuid = fsuid; 1545 complete_all(&mm->core_done); 1546 fail: 1547 return retval; 1548 } 1549