xref: /openbmc/linux/fs/exec.c (revision 6a6d6681ac1add9655b7ab5dd0b46b54aeb1b44f)
1  /*
2   *  linux/fs/exec.c
3   *
4   *  Copyright (C) 1991, 1992  Linus Torvalds
5   */
6  
7  /*
8   * #!-checking implemented by tytso.
9   */
10  /*
11   * Demand-loading implemented 01.12.91 - no need to read anything but
12   * the header into memory. The inode of the executable is put into
13   * "current->executable", and page faults do the actual loading. Clean.
14   *
15   * Once more I can proudly say that linux stood up to being changed: it
16   * was less than 2 hours work to get demand-loading completely implemented.
17   *
18   * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19   * current->executable is only used by the procfs.  This allows a dispatch
20   * table to check for several different types  of binary formats.  We keep
21   * trying until we recognize the file or we run out of supported binary
22   * formats.
23   */
24  
25  #include <linux/slab.h>
26  #include <linux/file.h>
27  #include <linux/fdtable.h>
28  #include <linux/mm.h>
29  #include <linux/vmacache.h>
30  #include <linux/stat.h>
31  #include <linux/fcntl.h>
32  #include <linux/swap.h>
33  #include <linux/string.h>
34  #include <linux/init.h>
35  #include <linux/sched/mm.h>
36  #include <linux/sched/coredump.h>
37  #include <linux/sched/signal.h>
38  #include <linux/sched/numa_balancing.h>
39  #include <linux/sched/task.h>
40  #include <linux/pagemap.h>
41  #include <linux/perf_event.h>
42  #include <linux/highmem.h>
43  #include <linux/spinlock.h>
44  #include <linux/key.h>
45  #include <linux/personality.h>
46  #include <linux/binfmts.h>
47  #include <linux/utsname.h>
48  #include <linux/pid_namespace.h>
49  #include <linux/module.h>
50  #include <linux/namei.h>
51  #include <linux/mount.h>
52  #include <linux/security.h>
53  #include <linux/syscalls.h>
54  #include <linux/tsacct_kern.h>
55  #include <linux/cn_proc.h>
56  #include <linux/audit.h>
57  #include <linux/tracehook.h>
58  #include <linux/kmod.h>
59  #include <linux/fsnotify.h>
60  #include <linux/fs_struct.h>
61  #include <linux/pipe_fs_i.h>
62  #include <linux/oom.h>
63  #include <linux/compat.h>
64  #include <linux/vmalloc.h>
65  #include <linux/freezer.h>
66  
67  #include <linux/uaccess.h>
68  #include <asm/mmu_context.h>
69  #include <asm/tlb.h>
70  
71  #include <trace/events/task.h>
72  #include "internal.h"
73  
74  #include <trace/events/sched.h>
75  
76  int suid_dumpable = 0;
77  
78  static LIST_HEAD(formats);
79  static DEFINE_RWLOCK(binfmt_lock);
80  
81  void __register_binfmt(struct linux_binfmt * fmt, int insert)
82  {
83  	BUG_ON(!fmt);
84  	if (WARN_ON(!fmt->load_binary))
85  		return;
86  	write_lock(&binfmt_lock);
87  	insert ? list_add(&fmt->lh, &formats) :
88  		 list_add_tail(&fmt->lh, &formats);
89  	write_unlock(&binfmt_lock);
90  }
91  
92  EXPORT_SYMBOL(__register_binfmt);
93  
94  void unregister_binfmt(struct linux_binfmt * fmt)
95  {
96  	write_lock(&binfmt_lock);
97  	list_del(&fmt->lh);
98  	write_unlock(&binfmt_lock);
99  }
100  
101  EXPORT_SYMBOL(unregister_binfmt);
102  
103  static inline void put_binfmt(struct linux_binfmt * fmt)
104  {
105  	module_put(fmt->module);
106  }
107  
108  bool path_noexec(const struct path *path)
109  {
110  	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
111  	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
112  }
113  
114  #ifdef CONFIG_USELIB
115  /*
116   * Note that a shared library must be both readable and executable due to
117   * security reasons.
118   *
119   * Also note that we take the address to load from from the file itself.
120   */
121  SYSCALL_DEFINE1(uselib, const char __user *, library)
122  {
123  	struct linux_binfmt *fmt;
124  	struct file *file;
125  	struct filename *tmp = getname(library);
126  	int error = PTR_ERR(tmp);
127  	static const struct open_flags uselib_flags = {
128  		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
129  		.acc_mode = MAY_READ | MAY_EXEC,
130  		.intent = LOOKUP_OPEN,
131  		.lookup_flags = LOOKUP_FOLLOW,
132  	};
133  
134  	if (IS_ERR(tmp))
135  		goto out;
136  
137  	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
138  	putname(tmp);
139  	error = PTR_ERR(file);
140  	if (IS_ERR(file))
141  		goto out;
142  
143  	error = -EINVAL;
144  	if (!S_ISREG(file_inode(file)->i_mode))
145  		goto exit;
146  
147  	error = -EACCES;
148  	if (path_noexec(&file->f_path))
149  		goto exit;
150  
151  	fsnotify_open(file);
152  
153  	error = -ENOEXEC;
154  
155  	read_lock(&binfmt_lock);
156  	list_for_each_entry(fmt, &formats, lh) {
157  		if (!fmt->load_shlib)
158  			continue;
159  		if (!try_module_get(fmt->module))
160  			continue;
161  		read_unlock(&binfmt_lock);
162  		error = fmt->load_shlib(file);
163  		read_lock(&binfmt_lock);
164  		put_binfmt(fmt);
165  		if (error != -ENOEXEC)
166  			break;
167  	}
168  	read_unlock(&binfmt_lock);
169  exit:
170  	fput(file);
171  out:
172    	return error;
173  }
174  #endif /* #ifdef CONFIG_USELIB */
175  
176  #ifdef CONFIG_MMU
177  /*
178   * The nascent bprm->mm is not visible until exec_mmap() but it can
179   * use a lot of memory, account these pages in current->mm temporary
180   * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
181   * change the counter back via acct_arg_size(0).
182   */
183  static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
184  {
185  	struct mm_struct *mm = current->mm;
186  	long diff = (long)(pages - bprm->vma_pages);
187  
188  	if (!mm || !diff)
189  		return;
190  
191  	bprm->vma_pages = pages;
192  	add_mm_counter(mm, MM_ANONPAGES, diff);
193  }
194  
195  static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
196  		int write)
197  {
198  	struct page *page;
199  	int ret;
200  	unsigned int gup_flags = FOLL_FORCE;
201  
202  #ifdef CONFIG_STACK_GROWSUP
203  	if (write) {
204  		ret = expand_downwards(bprm->vma, pos);
205  		if (ret < 0)
206  			return NULL;
207  	}
208  #endif
209  
210  	if (write)
211  		gup_flags |= FOLL_WRITE;
212  
213  	/*
214  	 * We are doing an exec().  'current' is the process
215  	 * doing the exec and bprm->mm is the new process's mm.
216  	 */
217  	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
218  			&page, NULL, NULL);
219  	if (ret <= 0)
220  		return NULL;
221  
222  	if (write) {
223  		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
224  		unsigned long ptr_size, limit;
225  
226  		/*
227  		 * Since the stack will hold pointers to the strings, we
228  		 * must account for them as well.
229  		 *
230  		 * The size calculation is the entire vma while each arg page is
231  		 * built, so each time we get here it's calculating how far it
232  		 * is currently (rather than each call being just the newly
233  		 * added size from the arg page).  As a result, we need to
234  		 * always add the entire size of the pointers, so that on the
235  		 * last call to get_arg_page() we'll actually have the entire
236  		 * correct size.
237  		 */
238  		ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
239  		if (ptr_size > ULONG_MAX - size)
240  			goto fail;
241  		size += ptr_size;
242  
243  		acct_arg_size(bprm, size / PAGE_SIZE);
244  
245  		/*
246  		 * We've historically supported up to 32 pages (ARG_MAX)
247  		 * of argument strings even with small stacks
248  		 */
249  		if (size <= ARG_MAX)
250  			return page;
251  
252  		/*
253  		 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
254  		 * (whichever is smaller) for the argv+env strings.
255  		 * This ensures that:
256  		 *  - the remaining binfmt code will not run out of stack space,
257  		 *  - the program will have a reasonable amount of stack left
258  		 *    to work from.
259  		 */
260  		limit = _STK_LIM / 4 * 3;
261  		limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
262  		if (size > limit)
263  			goto fail;
264  	}
265  
266  	return page;
267  
268  fail:
269  	put_page(page);
270  	return NULL;
271  }
272  
273  static void put_arg_page(struct page *page)
274  {
275  	put_page(page);
276  }
277  
278  static void free_arg_pages(struct linux_binprm *bprm)
279  {
280  }
281  
282  static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
283  		struct page *page)
284  {
285  	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
286  }
287  
288  static int __bprm_mm_init(struct linux_binprm *bprm)
289  {
290  	int err;
291  	struct vm_area_struct *vma = NULL;
292  	struct mm_struct *mm = bprm->mm;
293  
294  	bprm->vma = vma = vm_area_alloc(mm);
295  	if (!vma)
296  		return -ENOMEM;
297  	vma_set_anonymous(vma);
298  
299  	if (down_write_killable(&mm->mmap_sem)) {
300  		err = -EINTR;
301  		goto err_free;
302  	}
303  
304  	/*
305  	 * Place the stack at the largest stack address the architecture
306  	 * supports. Later, we'll move this to an appropriate place. We don't
307  	 * use STACK_TOP because that can depend on attributes which aren't
308  	 * configured yet.
309  	 */
310  	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
311  	vma->vm_end = STACK_TOP_MAX;
312  	vma->vm_start = vma->vm_end - PAGE_SIZE;
313  	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
314  	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
315  
316  	err = insert_vm_struct(mm, vma);
317  	if (err)
318  		goto err;
319  
320  	mm->stack_vm = mm->total_vm = 1;
321  	arch_bprm_mm_init(mm, vma);
322  	up_write(&mm->mmap_sem);
323  	bprm->p = vma->vm_end - sizeof(void *);
324  	return 0;
325  err:
326  	up_write(&mm->mmap_sem);
327  err_free:
328  	bprm->vma = NULL;
329  	vm_area_free(vma);
330  	return err;
331  }
332  
333  static bool valid_arg_len(struct linux_binprm *bprm, long len)
334  {
335  	return len <= MAX_ARG_STRLEN;
336  }
337  
338  #else
339  
340  static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
341  {
342  }
343  
344  static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
345  		int write)
346  {
347  	struct page *page;
348  
349  	page = bprm->page[pos / PAGE_SIZE];
350  	if (!page && write) {
351  		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
352  		if (!page)
353  			return NULL;
354  		bprm->page[pos / PAGE_SIZE] = page;
355  	}
356  
357  	return page;
358  }
359  
360  static void put_arg_page(struct page *page)
361  {
362  }
363  
364  static void free_arg_page(struct linux_binprm *bprm, int i)
365  {
366  	if (bprm->page[i]) {
367  		__free_page(bprm->page[i]);
368  		bprm->page[i] = NULL;
369  	}
370  }
371  
372  static void free_arg_pages(struct linux_binprm *bprm)
373  {
374  	int i;
375  
376  	for (i = 0; i < MAX_ARG_PAGES; i++)
377  		free_arg_page(bprm, i);
378  }
379  
380  static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
381  		struct page *page)
382  {
383  }
384  
385  static int __bprm_mm_init(struct linux_binprm *bprm)
386  {
387  	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
388  	return 0;
389  }
390  
391  static bool valid_arg_len(struct linux_binprm *bprm, long len)
392  {
393  	return len <= bprm->p;
394  }
395  
396  #endif /* CONFIG_MMU */
397  
398  /*
399   * Create a new mm_struct and populate it with a temporary stack
400   * vm_area_struct.  We don't have enough context at this point to set the stack
401   * flags, permissions, and offset, so we use temporary values.  We'll update
402   * them later in setup_arg_pages().
403   */
404  static int bprm_mm_init(struct linux_binprm *bprm)
405  {
406  	int err;
407  	struct mm_struct *mm = NULL;
408  
409  	bprm->mm = mm = mm_alloc();
410  	err = -ENOMEM;
411  	if (!mm)
412  		goto err;
413  
414  	/* Save current stack limit for all calculations made during exec. */
415  	task_lock(current->group_leader);
416  	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
417  	task_unlock(current->group_leader);
418  
419  	err = __bprm_mm_init(bprm);
420  	if (err)
421  		goto err;
422  
423  	return 0;
424  
425  err:
426  	if (mm) {
427  		bprm->mm = NULL;
428  		mmdrop(mm);
429  	}
430  
431  	return err;
432  }
433  
434  struct user_arg_ptr {
435  #ifdef CONFIG_COMPAT
436  	bool is_compat;
437  #endif
438  	union {
439  		const char __user *const __user *native;
440  #ifdef CONFIG_COMPAT
441  		const compat_uptr_t __user *compat;
442  #endif
443  	} ptr;
444  };
445  
446  static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
447  {
448  	const char __user *native;
449  
450  #ifdef CONFIG_COMPAT
451  	if (unlikely(argv.is_compat)) {
452  		compat_uptr_t compat;
453  
454  		if (get_user(compat, argv.ptr.compat + nr))
455  			return ERR_PTR(-EFAULT);
456  
457  		return compat_ptr(compat);
458  	}
459  #endif
460  
461  	if (get_user(native, argv.ptr.native + nr))
462  		return ERR_PTR(-EFAULT);
463  
464  	return native;
465  }
466  
467  /*
468   * count() counts the number of strings in array ARGV.
469   */
470  static int count(struct user_arg_ptr argv, int max)
471  {
472  	int i = 0;
473  
474  	if (argv.ptr.native != NULL) {
475  		for (;;) {
476  			const char __user *p = get_user_arg_ptr(argv, i);
477  
478  			if (!p)
479  				break;
480  
481  			if (IS_ERR(p))
482  				return -EFAULT;
483  
484  			if (i >= max)
485  				return -E2BIG;
486  			++i;
487  
488  			if (fatal_signal_pending(current))
489  				return -ERESTARTNOHAND;
490  			cond_resched();
491  		}
492  	}
493  	return i;
494  }
495  
496  /*
497   * 'copy_strings()' copies argument/environment strings from the old
498   * processes's memory to the new process's stack.  The call to get_user_pages()
499   * ensures the destination page is created and not swapped out.
500   */
501  static int copy_strings(int argc, struct user_arg_ptr argv,
502  			struct linux_binprm *bprm)
503  {
504  	struct page *kmapped_page = NULL;
505  	char *kaddr = NULL;
506  	unsigned long kpos = 0;
507  	int ret;
508  
509  	while (argc-- > 0) {
510  		const char __user *str;
511  		int len;
512  		unsigned long pos;
513  
514  		ret = -EFAULT;
515  		str = get_user_arg_ptr(argv, argc);
516  		if (IS_ERR(str))
517  			goto out;
518  
519  		len = strnlen_user(str, MAX_ARG_STRLEN);
520  		if (!len)
521  			goto out;
522  
523  		ret = -E2BIG;
524  		if (!valid_arg_len(bprm, len))
525  			goto out;
526  
527  		/* We're going to work our way backwords. */
528  		pos = bprm->p;
529  		str += len;
530  		bprm->p -= len;
531  
532  		while (len > 0) {
533  			int offset, bytes_to_copy;
534  
535  			if (fatal_signal_pending(current)) {
536  				ret = -ERESTARTNOHAND;
537  				goto out;
538  			}
539  			cond_resched();
540  
541  			offset = pos % PAGE_SIZE;
542  			if (offset == 0)
543  				offset = PAGE_SIZE;
544  
545  			bytes_to_copy = offset;
546  			if (bytes_to_copy > len)
547  				bytes_to_copy = len;
548  
549  			offset -= bytes_to_copy;
550  			pos -= bytes_to_copy;
551  			str -= bytes_to_copy;
552  			len -= bytes_to_copy;
553  
554  			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
555  				struct page *page;
556  
557  				page = get_arg_page(bprm, pos, 1);
558  				if (!page) {
559  					ret = -E2BIG;
560  					goto out;
561  				}
562  
563  				if (kmapped_page) {
564  					flush_kernel_dcache_page(kmapped_page);
565  					kunmap(kmapped_page);
566  					put_arg_page(kmapped_page);
567  				}
568  				kmapped_page = page;
569  				kaddr = kmap(kmapped_page);
570  				kpos = pos & PAGE_MASK;
571  				flush_arg_page(bprm, kpos, kmapped_page);
572  			}
573  			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
574  				ret = -EFAULT;
575  				goto out;
576  			}
577  		}
578  	}
579  	ret = 0;
580  out:
581  	if (kmapped_page) {
582  		flush_kernel_dcache_page(kmapped_page);
583  		kunmap(kmapped_page);
584  		put_arg_page(kmapped_page);
585  	}
586  	return ret;
587  }
588  
589  /*
590   * Like copy_strings, but get argv and its values from kernel memory.
591   */
592  int copy_strings_kernel(int argc, const char *const *__argv,
593  			struct linux_binprm *bprm)
594  {
595  	int r;
596  	mm_segment_t oldfs = get_fs();
597  	struct user_arg_ptr argv = {
598  		.ptr.native = (const char __user *const  __user *)__argv,
599  	};
600  
601  	set_fs(KERNEL_DS);
602  	r = copy_strings(argc, argv, bprm);
603  	set_fs(oldfs);
604  
605  	return r;
606  }
607  EXPORT_SYMBOL(copy_strings_kernel);
608  
609  #ifdef CONFIG_MMU
610  
611  /*
612   * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
613   * the binfmt code determines where the new stack should reside, we shift it to
614   * its final location.  The process proceeds as follows:
615   *
616   * 1) Use shift to calculate the new vma endpoints.
617   * 2) Extend vma to cover both the old and new ranges.  This ensures the
618   *    arguments passed to subsequent functions are consistent.
619   * 3) Move vma's page tables to the new range.
620   * 4) Free up any cleared pgd range.
621   * 5) Shrink the vma to cover only the new range.
622   */
623  static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
624  {
625  	struct mm_struct *mm = vma->vm_mm;
626  	unsigned long old_start = vma->vm_start;
627  	unsigned long old_end = vma->vm_end;
628  	unsigned long length = old_end - old_start;
629  	unsigned long new_start = old_start - shift;
630  	unsigned long new_end = old_end - shift;
631  	struct mmu_gather tlb;
632  
633  	BUG_ON(new_start > new_end);
634  
635  	/*
636  	 * ensure there are no vmas between where we want to go
637  	 * and where we are
638  	 */
639  	if (vma != find_vma(mm, new_start))
640  		return -EFAULT;
641  
642  	/*
643  	 * cover the whole range: [new_start, old_end)
644  	 */
645  	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
646  		return -ENOMEM;
647  
648  	/*
649  	 * move the page tables downwards, on failure we rely on
650  	 * process cleanup to remove whatever mess we made.
651  	 */
652  	if (length != move_page_tables(vma, old_start,
653  				       vma, new_start, length, false))
654  		return -ENOMEM;
655  
656  	lru_add_drain();
657  	tlb_gather_mmu(&tlb, mm, old_start, old_end);
658  	if (new_end > old_start) {
659  		/*
660  		 * when the old and new regions overlap clear from new_end.
661  		 */
662  		free_pgd_range(&tlb, new_end, old_end, new_end,
663  			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
664  	} else {
665  		/*
666  		 * otherwise, clean from old_start; this is done to not touch
667  		 * the address space in [new_end, old_start) some architectures
668  		 * have constraints on va-space that make this illegal (IA64) -
669  		 * for the others its just a little faster.
670  		 */
671  		free_pgd_range(&tlb, old_start, old_end, new_end,
672  			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
673  	}
674  	tlb_finish_mmu(&tlb, old_start, old_end);
675  
676  	/*
677  	 * Shrink the vma to just the new range.  Always succeeds.
678  	 */
679  	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
680  
681  	return 0;
682  }
683  
684  /*
685   * Finalizes the stack vm_area_struct. The flags and permissions are updated,
686   * the stack is optionally relocated, and some extra space is added.
687   */
688  int setup_arg_pages(struct linux_binprm *bprm,
689  		    unsigned long stack_top,
690  		    int executable_stack)
691  {
692  	unsigned long ret;
693  	unsigned long stack_shift;
694  	struct mm_struct *mm = current->mm;
695  	struct vm_area_struct *vma = bprm->vma;
696  	struct vm_area_struct *prev = NULL;
697  	unsigned long vm_flags;
698  	unsigned long stack_base;
699  	unsigned long stack_size;
700  	unsigned long stack_expand;
701  	unsigned long rlim_stack;
702  
703  #ifdef CONFIG_STACK_GROWSUP
704  	/* Limit stack size */
705  	stack_base = bprm->rlim_stack.rlim_max;
706  	if (stack_base > STACK_SIZE_MAX)
707  		stack_base = STACK_SIZE_MAX;
708  
709  	/* Add space for stack randomization. */
710  	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
711  
712  	/* Make sure we didn't let the argument array grow too large. */
713  	if (vma->vm_end - vma->vm_start > stack_base)
714  		return -ENOMEM;
715  
716  	stack_base = PAGE_ALIGN(stack_top - stack_base);
717  
718  	stack_shift = vma->vm_start - stack_base;
719  	mm->arg_start = bprm->p - stack_shift;
720  	bprm->p = vma->vm_end - stack_shift;
721  #else
722  	stack_top = arch_align_stack(stack_top);
723  	stack_top = PAGE_ALIGN(stack_top);
724  
725  	if (unlikely(stack_top < mmap_min_addr) ||
726  	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
727  		return -ENOMEM;
728  
729  	stack_shift = vma->vm_end - stack_top;
730  
731  	bprm->p -= stack_shift;
732  	mm->arg_start = bprm->p;
733  #endif
734  
735  	if (bprm->loader)
736  		bprm->loader -= stack_shift;
737  	bprm->exec -= stack_shift;
738  
739  	if (down_write_killable(&mm->mmap_sem))
740  		return -EINTR;
741  
742  	vm_flags = VM_STACK_FLAGS;
743  
744  	/*
745  	 * Adjust stack execute permissions; explicitly enable for
746  	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
747  	 * (arch default) otherwise.
748  	 */
749  	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
750  		vm_flags |= VM_EXEC;
751  	else if (executable_stack == EXSTACK_DISABLE_X)
752  		vm_flags &= ~VM_EXEC;
753  	vm_flags |= mm->def_flags;
754  	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
755  
756  	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
757  			vm_flags);
758  	if (ret)
759  		goto out_unlock;
760  	BUG_ON(prev != vma);
761  
762  	/* Move stack pages down in memory. */
763  	if (stack_shift) {
764  		ret = shift_arg_pages(vma, stack_shift);
765  		if (ret)
766  			goto out_unlock;
767  	}
768  
769  	/* mprotect_fixup is overkill to remove the temporary stack flags */
770  	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
771  
772  	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
773  	stack_size = vma->vm_end - vma->vm_start;
774  	/*
775  	 * Align this down to a page boundary as expand_stack
776  	 * will align it up.
777  	 */
778  	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
779  #ifdef CONFIG_STACK_GROWSUP
780  	if (stack_size + stack_expand > rlim_stack)
781  		stack_base = vma->vm_start + rlim_stack;
782  	else
783  		stack_base = vma->vm_end + stack_expand;
784  #else
785  	if (stack_size + stack_expand > rlim_stack)
786  		stack_base = vma->vm_end - rlim_stack;
787  	else
788  		stack_base = vma->vm_start - stack_expand;
789  #endif
790  	current->mm->start_stack = bprm->p;
791  	ret = expand_stack(vma, stack_base);
792  	if (ret)
793  		ret = -EFAULT;
794  
795  out_unlock:
796  	up_write(&mm->mmap_sem);
797  	return ret;
798  }
799  EXPORT_SYMBOL(setup_arg_pages);
800  
801  #else
802  
803  /*
804   * Transfer the program arguments and environment from the holding pages
805   * onto the stack. The provided stack pointer is adjusted accordingly.
806   */
807  int transfer_args_to_stack(struct linux_binprm *bprm,
808  			   unsigned long *sp_location)
809  {
810  	unsigned long index, stop, sp;
811  	int ret = 0;
812  
813  	stop = bprm->p >> PAGE_SHIFT;
814  	sp = *sp_location;
815  
816  	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
817  		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
818  		char *src = kmap(bprm->page[index]) + offset;
819  		sp -= PAGE_SIZE - offset;
820  		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
821  			ret = -EFAULT;
822  		kunmap(bprm->page[index]);
823  		if (ret)
824  			goto out;
825  	}
826  
827  	*sp_location = sp;
828  
829  out:
830  	return ret;
831  }
832  EXPORT_SYMBOL(transfer_args_to_stack);
833  
834  #endif /* CONFIG_MMU */
835  
836  static struct file *do_open_execat(int fd, struct filename *name, int flags)
837  {
838  	struct file *file;
839  	int err;
840  	struct open_flags open_exec_flags = {
841  		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
842  		.acc_mode = MAY_EXEC,
843  		.intent = LOOKUP_OPEN,
844  		.lookup_flags = LOOKUP_FOLLOW,
845  	};
846  
847  	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
848  		return ERR_PTR(-EINVAL);
849  	if (flags & AT_SYMLINK_NOFOLLOW)
850  		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
851  	if (flags & AT_EMPTY_PATH)
852  		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
853  
854  	file = do_filp_open(fd, name, &open_exec_flags);
855  	if (IS_ERR(file))
856  		goto out;
857  
858  	err = -EACCES;
859  	if (!S_ISREG(file_inode(file)->i_mode))
860  		goto exit;
861  
862  	if (path_noexec(&file->f_path))
863  		goto exit;
864  
865  	err = deny_write_access(file);
866  	if (err)
867  		goto exit;
868  
869  	if (name->name[0] != '\0')
870  		fsnotify_open(file);
871  
872  out:
873  	return file;
874  
875  exit:
876  	fput(file);
877  	return ERR_PTR(err);
878  }
879  
880  struct file *open_exec(const char *name)
881  {
882  	struct filename *filename = getname_kernel(name);
883  	struct file *f = ERR_CAST(filename);
884  
885  	if (!IS_ERR(filename)) {
886  		f = do_open_execat(AT_FDCWD, filename, 0);
887  		putname(filename);
888  	}
889  	return f;
890  }
891  EXPORT_SYMBOL(open_exec);
892  
893  int kernel_read_file(struct file *file, void **buf, loff_t *size,
894  		     loff_t max_size, enum kernel_read_file_id id)
895  {
896  	loff_t i_size, pos;
897  	ssize_t bytes = 0;
898  	int ret;
899  
900  	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
901  		return -EINVAL;
902  
903  	ret = deny_write_access(file);
904  	if (ret)
905  		return ret;
906  
907  	ret = security_kernel_read_file(file, id);
908  	if (ret)
909  		goto out;
910  
911  	i_size = i_size_read(file_inode(file));
912  	if (i_size <= 0) {
913  		ret = -EINVAL;
914  		goto out;
915  	}
916  	if (i_size > SIZE_MAX || (max_size > 0 && i_size > max_size)) {
917  		ret = -EFBIG;
918  		goto out;
919  	}
920  
921  	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
922  		*buf = vmalloc(i_size);
923  	if (!*buf) {
924  		ret = -ENOMEM;
925  		goto out;
926  	}
927  
928  	pos = 0;
929  	while (pos < i_size) {
930  		bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
931  		if (bytes < 0) {
932  			ret = bytes;
933  			goto out;
934  		}
935  
936  		if (bytes == 0)
937  			break;
938  	}
939  
940  	if (pos != i_size) {
941  		ret = -EIO;
942  		goto out_free;
943  	}
944  
945  	ret = security_kernel_post_read_file(file, *buf, i_size, id);
946  	if (!ret)
947  		*size = pos;
948  
949  out_free:
950  	if (ret < 0) {
951  		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
952  			vfree(*buf);
953  			*buf = NULL;
954  		}
955  	}
956  
957  out:
958  	allow_write_access(file);
959  	return ret;
960  }
961  EXPORT_SYMBOL_GPL(kernel_read_file);
962  
963  int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
964  			       loff_t max_size, enum kernel_read_file_id id)
965  {
966  	struct file *file;
967  	int ret;
968  
969  	if (!path || !*path)
970  		return -EINVAL;
971  
972  	file = filp_open(path, O_RDONLY, 0);
973  	if (IS_ERR(file))
974  		return PTR_ERR(file);
975  
976  	ret = kernel_read_file(file, buf, size, max_size, id);
977  	fput(file);
978  	return ret;
979  }
980  EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
981  
982  int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
983  			     enum kernel_read_file_id id)
984  {
985  	struct fd f = fdget(fd);
986  	int ret = -EBADF;
987  
988  	if (!f.file)
989  		goto out;
990  
991  	ret = kernel_read_file(f.file, buf, size, max_size, id);
992  out:
993  	fdput(f);
994  	return ret;
995  }
996  EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
997  
998  ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
999  {
1000  	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1001  	if (res > 0)
1002  		flush_icache_range(addr, addr + len);
1003  	return res;
1004  }
1005  EXPORT_SYMBOL(read_code);
1006  
1007  static int exec_mmap(struct mm_struct *mm)
1008  {
1009  	struct task_struct *tsk;
1010  	struct mm_struct *old_mm, *active_mm;
1011  
1012  	/* Notify parent that we're no longer interested in the old VM */
1013  	tsk = current;
1014  	old_mm = current->mm;
1015  	mm_release(tsk, old_mm);
1016  
1017  	if (old_mm) {
1018  		sync_mm_rss(old_mm);
1019  		/*
1020  		 * Make sure that if there is a core dump in progress
1021  		 * for the old mm, we get out and die instead of going
1022  		 * through with the exec.  We must hold mmap_sem around
1023  		 * checking core_state and changing tsk->mm.
1024  		 */
1025  		down_read(&old_mm->mmap_sem);
1026  		if (unlikely(old_mm->core_state)) {
1027  			up_read(&old_mm->mmap_sem);
1028  			return -EINTR;
1029  		}
1030  	}
1031  	task_lock(tsk);
1032  	active_mm = tsk->active_mm;
1033  	tsk->mm = mm;
1034  	tsk->active_mm = mm;
1035  	activate_mm(active_mm, mm);
1036  	tsk->mm->vmacache_seqnum = 0;
1037  	vmacache_flush(tsk);
1038  	task_unlock(tsk);
1039  	if (old_mm) {
1040  		up_read(&old_mm->mmap_sem);
1041  		BUG_ON(active_mm != old_mm);
1042  		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1043  		mm_update_next_owner(old_mm);
1044  		mmput(old_mm);
1045  		return 0;
1046  	}
1047  	mmdrop(active_mm);
1048  	return 0;
1049  }
1050  
1051  /*
1052   * This function makes sure the current process has its own signal table,
1053   * so that flush_signal_handlers can later reset the handlers without
1054   * disturbing other processes.  (Other processes might share the signal
1055   * table via the CLONE_SIGHAND option to clone().)
1056   */
1057  static int de_thread(struct task_struct *tsk)
1058  {
1059  	struct signal_struct *sig = tsk->signal;
1060  	struct sighand_struct *oldsighand = tsk->sighand;
1061  	spinlock_t *lock = &oldsighand->siglock;
1062  
1063  	if (thread_group_empty(tsk))
1064  		goto no_thread_group;
1065  
1066  	/*
1067  	 * Kill all other threads in the thread group.
1068  	 */
1069  	spin_lock_irq(lock);
1070  	if (signal_group_exit(sig)) {
1071  		/*
1072  		 * Another group action in progress, just
1073  		 * return so that the signal is processed.
1074  		 */
1075  		spin_unlock_irq(lock);
1076  		return -EAGAIN;
1077  	}
1078  
1079  	sig->group_exit_task = tsk;
1080  	sig->notify_count = zap_other_threads(tsk);
1081  	if (!thread_group_leader(tsk))
1082  		sig->notify_count--;
1083  
1084  	while (sig->notify_count) {
1085  		__set_current_state(TASK_KILLABLE);
1086  		spin_unlock_irq(lock);
1087  		freezable_schedule();
1088  		if (unlikely(__fatal_signal_pending(tsk)))
1089  			goto killed;
1090  		spin_lock_irq(lock);
1091  	}
1092  	spin_unlock_irq(lock);
1093  
1094  	/*
1095  	 * At this point all other threads have exited, all we have to
1096  	 * do is to wait for the thread group leader to become inactive,
1097  	 * and to assume its PID:
1098  	 */
1099  	if (!thread_group_leader(tsk)) {
1100  		struct task_struct *leader = tsk->group_leader;
1101  
1102  		for (;;) {
1103  			cgroup_threadgroup_change_begin(tsk);
1104  			write_lock_irq(&tasklist_lock);
1105  			/*
1106  			 * Do this under tasklist_lock to ensure that
1107  			 * exit_notify() can't miss ->group_exit_task
1108  			 */
1109  			sig->notify_count = -1;
1110  			if (likely(leader->exit_state))
1111  				break;
1112  			__set_current_state(TASK_KILLABLE);
1113  			write_unlock_irq(&tasklist_lock);
1114  			cgroup_threadgroup_change_end(tsk);
1115  			freezable_schedule();
1116  			if (unlikely(__fatal_signal_pending(tsk)))
1117  				goto killed;
1118  		}
1119  
1120  		/*
1121  		 * The only record we have of the real-time age of a
1122  		 * process, regardless of execs it's done, is start_time.
1123  		 * All the past CPU time is accumulated in signal_struct
1124  		 * from sister threads now dead.  But in this non-leader
1125  		 * exec, nothing survives from the original leader thread,
1126  		 * whose birth marks the true age of this process now.
1127  		 * When we take on its identity by switching to its PID, we
1128  		 * also take its birthdate (always earlier than our own).
1129  		 */
1130  		tsk->start_time = leader->start_time;
1131  		tsk->real_start_time = leader->real_start_time;
1132  
1133  		BUG_ON(!same_thread_group(leader, tsk));
1134  		BUG_ON(has_group_leader_pid(tsk));
1135  		/*
1136  		 * An exec() starts a new thread group with the
1137  		 * TGID of the previous thread group. Rehash the
1138  		 * two threads with a switched PID, and release
1139  		 * the former thread group leader:
1140  		 */
1141  
1142  		/* Become a process group leader with the old leader's pid.
1143  		 * The old leader becomes a thread of the this thread group.
1144  		 * Note: The old leader also uses this pid until release_task
1145  		 *       is called.  Odd but simple and correct.
1146  		 */
1147  		tsk->pid = leader->pid;
1148  		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1149  		transfer_pid(leader, tsk, PIDTYPE_TGID);
1150  		transfer_pid(leader, tsk, PIDTYPE_PGID);
1151  		transfer_pid(leader, tsk, PIDTYPE_SID);
1152  
1153  		list_replace_rcu(&leader->tasks, &tsk->tasks);
1154  		list_replace_init(&leader->sibling, &tsk->sibling);
1155  
1156  		tsk->group_leader = tsk;
1157  		leader->group_leader = tsk;
1158  
1159  		tsk->exit_signal = SIGCHLD;
1160  		leader->exit_signal = -1;
1161  
1162  		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1163  		leader->exit_state = EXIT_DEAD;
1164  
1165  		/*
1166  		 * We are going to release_task()->ptrace_unlink() silently,
1167  		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1168  		 * the tracer wont't block again waiting for this thread.
1169  		 */
1170  		if (unlikely(leader->ptrace))
1171  			__wake_up_parent(leader, leader->parent);
1172  		write_unlock_irq(&tasklist_lock);
1173  		cgroup_threadgroup_change_end(tsk);
1174  
1175  		release_task(leader);
1176  	}
1177  
1178  	sig->group_exit_task = NULL;
1179  	sig->notify_count = 0;
1180  
1181  no_thread_group:
1182  	/* we have changed execution domain */
1183  	tsk->exit_signal = SIGCHLD;
1184  
1185  #ifdef CONFIG_POSIX_TIMERS
1186  	exit_itimers(sig);
1187  	flush_itimer_signals();
1188  #endif
1189  
1190  	if (atomic_read(&oldsighand->count) != 1) {
1191  		struct sighand_struct *newsighand;
1192  		/*
1193  		 * This ->sighand is shared with the CLONE_SIGHAND
1194  		 * but not CLONE_THREAD task, switch to the new one.
1195  		 */
1196  		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1197  		if (!newsighand)
1198  			return -ENOMEM;
1199  
1200  		atomic_set(&newsighand->count, 1);
1201  		memcpy(newsighand->action, oldsighand->action,
1202  		       sizeof(newsighand->action));
1203  
1204  		write_lock_irq(&tasklist_lock);
1205  		spin_lock(&oldsighand->siglock);
1206  		rcu_assign_pointer(tsk->sighand, newsighand);
1207  		spin_unlock(&oldsighand->siglock);
1208  		write_unlock_irq(&tasklist_lock);
1209  
1210  		__cleanup_sighand(oldsighand);
1211  	}
1212  
1213  	BUG_ON(!thread_group_leader(tsk));
1214  	return 0;
1215  
1216  killed:
1217  	/* protects against exit_notify() and __exit_signal() */
1218  	read_lock(&tasklist_lock);
1219  	sig->group_exit_task = NULL;
1220  	sig->notify_count = 0;
1221  	read_unlock(&tasklist_lock);
1222  	return -EAGAIN;
1223  }
1224  
1225  char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1226  {
1227  	task_lock(tsk);
1228  	strncpy(buf, tsk->comm, buf_size);
1229  	task_unlock(tsk);
1230  	return buf;
1231  }
1232  EXPORT_SYMBOL_GPL(__get_task_comm);
1233  
1234  /*
1235   * These functions flushes out all traces of the currently running executable
1236   * so that a new one can be started
1237   */
1238  
1239  void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1240  {
1241  	task_lock(tsk);
1242  	trace_task_rename(tsk, buf);
1243  	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1244  	task_unlock(tsk);
1245  	perf_event_comm(tsk, exec);
1246  }
1247  
1248  /*
1249   * Calling this is the point of no return. None of the failures will be
1250   * seen by userspace since either the process is already taking a fatal
1251   * signal (via de_thread() or coredump), or will have SEGV raised
1252   * (after exec_mmap()) by search_binary_handlers (see below).
1253   */
1254  int flush_old_exec(struct linux_binprm * bprm)
1255  {
1256  	int retval;
1257  
1258  	/*
1259  	 * Make sure we have a private signal table and that
1260  	 * we are unassociated from the previous thread group.
1261  	 */
1262  	retval = de_thread(current);
1263  	if (retval)
1264  		goto out;
1265  
1266  	/*
1267  	 * Must be called _before_ exec_mmap() as bprm->mm is
1268  	 * not visibile until then. This also enables the update
1269  	 * to be lockless.
1270  	 */
1271  	set_mm_exe_file(bprm->mm, bprm->file);
1272  
1273  	/*
1274  	 * Release all of the old mmap stuff
1275  	 */
1276  	acct_arg_size(bprm, 0);
1277  	retval = exec_mmap(bprm->mm);
1278  	if (retval)
1279  		goto out;
1280  
1281  	/*
1282  	 * After clearing bprm->mm (to mark that current is using the
1283  	 * prepared mm now), we have nothing left of the original
1284  	 * process. If anything from here on returns an error, the check
1285  	 * in search_binary_handler() will SEGV current.
1286  	 */
1287  	bprm->mm = NULL;
1288  
1289  	set_fs(USER_DS);
1290  	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1291  					PF_NOFREEZE | PF_NO_SETAFFINITY);
1292  	flush_thread();
1293  	current->personality &= ~bprm->per_clear;
1294  
1295  	/*
1296  	 * We have to apply CLOEXEC before we change whether the process is
1297  	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1298  	 * trying to access the should-be-closed file descriptors of a process
1299  	 * undergoing exec(2).
1300  	 */
1301  	do_close_on_exec(current->files);
1302  	return 0;
1303  
1304  out:
1305  	return retval;
1306  }
1307  EXPORT_SYMBOL(flush_old_exec);
1308  
1309  void would_dump(struct linux_binprm *bprm, struct file *file)
1310  {
1311  	struct inode *inode = file_inode(file);
1312  	if (inode_permission(inode, MAY_READ) < 0) {
1313  		struct user_namespace *old, *user_ns;
1314  		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1315  
1316  		/* Ensure mm->user_ns contains the executable */
1317  		user_ns = old = bprm->mm->user_ns;
1318  		while ((user_ns != &init_user_ns) &&
1319  		       !privileged_wrt_inode_uidgid(user_ns, inode))
1320  			user_ns = user_ns->parent;
1321  
1322  		if (old != user_ns) {
1323  			bprm->mm->user_ns = get_user_ns(user_ns);
1324  			put_user_ns(old);
1325  		}
1326  	}
1327  }
1328  EXPORT_SYMBOL(would_dump);
1329  
1330  void setup_new_exec(struct linux_binprm * bprm)
1331  {
1332  	/*
1333  	 * Once here, prepare_binrpm() will not be called any more, so
1334  	 * the final state of setuid/setgid/fscaps can be merged into the
1335  	 * secureexec flag.
1336  	 */
1337  	bprm->secureexec |= bprm->cap_elevated;
1338  
1339  	if (bprm->secureexec) {
1340  		/* Make sure parent cannot signal privileged process. */
1341  		current->pdeath_signal = 0;
1342  
1343  		/*
1344  		 * For secureexec, reset the stack limit to sane default to
1345  		 * avoid bad behavior from the prior rlimits. This has to
1346  		 * happen before arch_pick_mmap_layout(), which examines
1347  		 * RLIMIT_STACK, but after the point of no return to avoid
1348  		 * needing to clean up the change on failure.
1349  		 */
1350  		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1351  			bprm->rlim_stack.rlim_cur = _STK_LIM;
1352  	}
1353  
1354  	arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1355  
1356  	current->sas_ss_sp = current->sas_ss_size = 0;
1357  
1358  	/*
1359  	 * Figure out dumpability. Note that this checking only of current
1360  	 * is wrong, but userspace depends on it. This should be testing
1361  	 * bprm->secureexec instead.
1362  	 */
1363  	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1364  	    !(uid_eq(current_euid(), current_uid()) &&
1365  	      gid_eq(current_egid(), current_gid())))
1366  		set_dumpable(current->mm, suid_dumpable);
1367  	else
1368  		set_dumpable(current->mm, SUID_DUMP_USER);
1369  
1370  	arch_setup_new_exec();
1371  	perf_event_exec();
1372  	__set_task_comm(current, kbasename(bprm->filename), true);
1373  
1374  	/* Set the new mm task size. We have to do that late because it may
1375  	 * depend on TIF_32BIT which is only updated in flush_thread() on
1376  	 * some architectures like powerpc
1377  	 */
1378  	current->mm->task_size = TASK_SIZE;
1379  
1380  	/* An exec changes our domain. We are no longer part of the thread
1381  	   group */
1382  	current->self_exec_id++;
1383  	flush_signal_handlers(current, 0);
1384  }
1385  EXPORT_SYMBOL(setup_new_exec);
1386  
1387  /* Runs immediately before start_thread() takes over. */
1388  void finalize_exec(struct linux_binprm *bprm)
1389  {
1390  	/* Store any stack rlimit changes before starting thread. */
1391  	task_lock(current->group_leader);
1392  	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1393  	task_unlock(current->group_leader);
1394  }
1395  EXPORT_SYMBOL(finalize_exec);
1396  
1397  /*
1398   * Prepare credentials and lock ->cred_guard_mutex.
1399   * install_exec_creds() commits the new creds and drops the lock.
1400   * Or, if exec fails before, free_bprm() should release ->cred and
1401   * and unlock.
1402   */
1403  int prepare_bprm_creds(struct linux_binprm *bprm)
1404  {
1405  	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1406  		return -ERESTARTNOINTR;
1407  
1408  	bprm->cred = prepare_exec_creds();
1409  	if (likely(bprm->cred))
1410  		return 0;
1411  
1412  	mutex_unlock(&current->signal->cred_guard_mutex);
1413  	return -ENOMEM;
1414  }
1415  
1416  static void free_bprm(struct linux_binprm *bprm)
1417  {
1418  	free_arg_pages(bprm);
1419  	if (bprm->cred) {
1420  		mutex_unlock(&current->signal->cred_guard_mutex);
1421  		abort_creds(bprm->cred);
1422  	}
1423  	if (bprm->file) {
1424  		allow_write_access(bprm->file);
1425  		fput(bprm->file);
1426  	}
1427  	/* If a binfmt changed the interp, free it. */
1428  	if (bprm->interp != bprm->filename)
1429  		kfree(bprm->interp);
1430  	kfree(bprm);
1431  }
1432  
1433  int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1434  {
1435  	/* If a binfmt changed the interp, free it first. */
1436  	if (bprm->interp != bprm->filename)
1437  		kfree(bprm->interp);
1438  	bprm->interp = kstrdup(interp, GFP_KERNEL);
1439  	if (!bprm->interp)
1440  		return -ENOMEM;
1441  	return 0;
1442  }
1443  EXPORT_SYMBOL(bprm_change_interp);
1444  
1445  /*
1446   * install the new credentials for this executable
1447   */
1448  void install_exec_creds(struct linux_binprm *bprm)
1449  {
1450  	security_bprm_committing_creds(bprm);
1451  
1452  	commit_creds(bprm->cred);
1453  	bprm->cred = NULL;
1454  
1455  	/*
1456  	 * Disable monitoring for regular users
1457  	 * when executing setuid binaries. Must
1458  	 * wait until new credentials are committed
1459  	 * by commit_creds() above
1460  	 */
1461  	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1462  		perf_event_exit_task(current);
1463  	/*
1464  	 * cred_guard_mutex must be held at least to this point to prevent
1465  	 * ptrace_attach() from altering our determination of the task's
1466  	 * credentials; any time after this it may be unlocked.
1467  	 */
1468  	security_bprm_committed_creds(bprm);
1469  	mutex_unlock(&current->signal->cred_guard_mutex);
1470  }
1471  EXPORT_SYMBOL(install_exec_creds);
1472  
1473  /*
1474   * determine how safe it is to execute the proposed program
1475   * - the caller must hold ->cred_guard_mutex to protect against
1476   *   PTRACE_ATTACH or seccomp thread-sync
1477   */
1478  static void check_unsafe_exec(struct linux_binprm *bprm)
1479  {
1480  	struct task_struct *p = current, *t;
1481  	unsigned n_fs;
1482  
1483  	if (p->ptrace)
1484  		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1485  
1486  	/*
1487  	 * This isn't strictly necessary, but it makes it harder for LSMs to
1488  	 * mess up.
1489  	 */
1490  	if (task_no_new_privs(current))
1491  		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1492  
1493  	t = p;
1494  	n_fs = 1;
1495  	spin_lock(&p->fs->lock);
1496  	rcu_read_lock();
1497  	while_each_thread(p, t) {
1498  		if (t->fs == p->fs)
1499  			n_fs++;
1500  	}
1501  	rcu_read_unlock();
1502  
1503  	if (p->fs->users > n_fs)
1504  		bprm->unsafe |= LSM_UNSAFE_SHARE;
1505  	else
1506  		p->fs->in_exec = 1;
1507  	spin_unlock(&p->fs->lock);
1508  }
1509  
1510  static void bprm_fill_uid(struct linux_binprm *bprm)
1511  {
1512  	struct inode *inode;
1513  	unsigned int mode;
1514  	kuid_t uid;
1515  	kgid_t gid;
1516  
1517  	/*
1518  	 * Since this can be called multiple times (via prepare_binprm),
1519  	 * we must clear any previous work done when setting set[ug]id
1520  	 * bits from any earlier bprm->file uses (for example when run
1521  	 * first for a setuid script then again for its interpreter).
1522  	 */
1523  	bprm->cred->euid = current_euid();
1524  	bprm->cred->egid = current_egid();
1525  
1526  	if (!mnt_may_suid(bprm->file->f_path.mnt))
1527  		return;
1528  
1529  	if (task_no_new_privs(current))
1530  		return;
1531  
1532  	inode = bprm->file->f_path.dentry->d_inode;
1533  	mode = READ_ONCE(inode->i_mode);
1534  	if (!(mode & (S_ISUID|S_ISGID)))
1535  		return;
1536  
1537  	/* Be careful if suid/sgid is set */
1538  	inode_lock(inode);
1539  
1540  	/* reload atomically mode/uid/gid now that lock held */
1541  	mode = inode->i_mode;
1542  	uid = inode->i_uid;
1543  	gid = inode->i_gid;
1544  	inode_unlock(inode);
1545  
1546  	/* We ignore suid/sgid if there are no mappings for them in the ns */
1547  	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1548  		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1549  		return;
1550  
1551  	if (mode & S_ISUID) {
1552  		bprm->per_clear |= PER_CLEAR_ON_SETID;
1553  		bprm->cred->euid = uid;
1554  	}
1555  
1556  	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1557  		bprm->per_clear |= PER_CLEAR_ON_SETID;
1558  		bprm->cred->egid = gid;
1559  	}
1560  }
1561  
1562  /*
1563   * Fill the binprm structure from the inode.
1564   * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1565   *
1566   * This may be called multiple times for binary chains (scripts for example).
1567   */
1568  int prepare_binprm(struct linux_binprm *bprm)
1569  {
1570  	int retval;
1571  	loff_t pos = 0;
1572  
1573  	bprm_fill_uid(bprm);
1574  
1575  	/* fill in binprm security blob */
1576  	retval = security_bprm_set_creds(bprm);
1577  	if (retval)
1578  		return retval;
1579  	bprm->called_set_creds = 1;
1580  
1581  	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1582  	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1583  }
1584  
1585  EXPORT_SYMBOL(prepare_binprm);
1586  
1587  /*
1588   * Arguments are '\0' separated strings found at the location bprm->p
1589   * points to; chop off the first by relocating brpm->p to right after
1590   * the first '\0' encountered.
1591   */
1592  int remove_arg_zero(struct linux_binprm *bprm)
1593  {
1594  	int ret = 0;
1595  	unsigned long offset;
1596  	char *kaddr;
1597  	struct page *page;
1598  
1599  	if (!bprm->argc)
1600  		return 0;
1601  
1602  	do {
1603  		offset = bprm->p & ~PAGE_MASK;
1604  		page = get_arg_page(bprm, bprm->p, 0);
1605  		if (!page) {
1606  			ret = -EFAULT;
1607  			goto out;
1608  		}
1609  		kaddr = kmap_atomic(page);
1610  
1611  		for (; offset < PAGE_SIZE && kaddr[offset];
1612  				offset++, bprm->p++)
1613  			;
1614  
1615  		kunmap_atomic(kaddr);
1616  		put_arg_page(page);
1617  	} while (offset == PAGE_SIZE);
1618  
1619  	bprm->p++;
1620  	bprm->argc--;
1621  	ret = 0;
1622  
1623  out:
1624  	return ret;
1625  }
1626  EXPORT_SYMBOL(remove_arg_zero);
1627  
1628  #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1629  /*
1630   * cycle the list of binary formats handler, until one recognizes the image
1631   */
1632  int search_binary_handler(struct linux_binprm *bprm)
1633  {
1634  	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1635  	struct linux_binfmt *fmt;
1636  	int retval;
1637  
1638  	/* This allows 4 levels of binfmt rewrites before failing hard. */
1639  	if (bprm->recursion_depth > 5)
1640  		return -ELOOP;
1641  
1642  	retval = security_bprm_check(bprm);
1643  	if (retval)
1644  		return retval;
1645  
1646  	retval = -ENOENT;
1647   retry:
1648  	read_lock(&binfmt_lock);
1649  	list_for_each_entry(fmt, &formats, lh) {
1650  		if (!try_module_get(fmt->module))
1651  			continue;
1652  		read_unlock(&binfmt_lock);
1653  		bprm->recursion_depth++;
1654  		retval = fmt->load_binary(bprm);
1655  		read_lock(&binfmt_lock);
1656  		put_binfmt(fmt);
1657  		bprm->recursion_depth--;
1658  		if (retval < 0 && !bprm->mm) {
1659  			/* we got to flush_old_exec() and failed after it */
1660  			read_unlock(&binfmt_lock);
1661  			force_sigsegv(SIGSEGV, current);
1662  			return retval;
1663  		}
1664  		if (retval != -ENOEXEC || !bprm->file) {
1665  			read_unlock(&binfmt_lock);
1666  			return retval;
1667  		}
1668  	}
1669  	read_unlock(&binfmt_lock);
1670  
1671  	if (need_retry) {
1672  		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1673  		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1674  			return retval;
1675  		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1676  			return retval;
1677  		need_retry = false;
1678  		goto retry;
1679  	}
1680  
1681  	return retval;
1682  }
1683  EXPORT_SYMBOL(search_binary_handler);
1684  
1685  static int exec_binprm(struct linux_binprm *bprm)
1686  {
1687  	pid_t old_pid, old_vpid;
1688  	int ret;
1689  
1690  	/* Need to fetch pid before load_binary changes it */
1691  	old_pid = current->pid;
1692  	rcu_read_lock();
1693  	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1694  	rcu_read_unlock();
1695  
1696  	ret = search_binary_handler(bprm);
1697  	if (ret >= 0) {
1698  		audit_bprm(bprm);
1699  		trace_sched_process_exec(current, old_pid, bprm);
1700  		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1701  		proc_exec_connector(current);
1702  	}
1703  
1704  	return ret;
1705  }
1706  
1707  /*
1708   * sys_execve() executes a new program.
1709   */
1710  static int __do_execve_file(int fd, struct filename *filename,
1711  			    struct user_arg_ptr argv,
1712  			    struct user_arg_ptr envp,
1713  			    int flags, struct file *file)
1714  {
1715  	char *pathbuf = NULL;
1716  	struct linux_binprm *bprm;
1717  	struct files_struct *displaced;
1718  	int retval;
1719  
1720  	if (IS_ERR(filename))
1721  		return PTR_ERR(filename);
1722  
1723  	/*
1724  	 * We move the actual failure in case of RLIMIT_NPROC excess from
1725  	 * set*uid() to execve() because too many poorly written programs
1726  	 * don't check setuid() return code.  Here we additionally recheck
1727  	 * whether NPROC limit is still exceeded.
1728  	 */
1729  	if ((current->flags & PF_NPROC_EXCEEDED) &&
1730  	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1731  		retval = -EAGAIN;
1732  		goto out_ret;
1733  	}
1734  
1735  	/* We're below the limit (still or again), so we don't want to make
1736  	 * further execve() calls fail. */
1737  	current->flags &= ~PF_NPROC_EXCEEDED;
1738  
1739  	retval = unshare_files(&displaced);
1740  	if (retval)
1741  		goto out_ret;
1742  
1743  	retval = -ENOMEM;
1744  	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1745  	if (!bprm)
1746  		goto out_files;
1747  
1748  	retval = prepare_bprm_creds(bprm);
1749  	if (retval)
1750  		goto out_free;
1751  
1752  	check_unsafe_exec(bprm);
1753  	current->in_execve = 1;
1754  
1755  	if (!file)
1756  		file = do_open_execat(fd, filename, flags);
1757  	retval = PTR_ERR(file);
1758  	if (IS_ERR(file))
1759  		goto out_unmark;
1760  
1761  	sched_exec();
1762  
1763  	bprm->file = file;
1764  	if (!filename) {
1765  		bprm->filename = "none";
1766  	} else if (fd == AT_FDCWD || filename->name[0] == '/') {
1767  		bprm->filename = filename->name;
1768  	} else {
1769  		if (filename->name[0] == '\0')
1770  			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1771  		else
1772  			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1773  					    fd, filename->name);
1774  		if (!pathbuf) {
1775  			retval = -ENOMEM;
1776  			goto out_unmark;
1777  		}
1778  		/*
1779  		 * Record that a name derived from an O_CLOEXEC fd will be
1780  		 * inaccessible after exec. Relies on having exclusive access to
1781  		 * current->files (due to unshare_files above).
1782  		 */
1783  		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1784  			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1785  		bprm->filename = pathbuf;
1786  	}
1787  	bprm->interp = bprm->filename;
1788  
1789  	retval = bprm_mm_init(bprm);
1790  	if (retval)
1791  		goto out_unmark;
1792  
1793  	bprm->argc = count(argv, MAX_ARG_STRINGS);
1794  	if ((retval = bprm->argc) < 0)
1795  		goto out;
1796  
1797  	bprm->envc = count(envp, MAX_ARG_STRINGS);
1798  	if ((retval = bprm->envc) < 0)
1799  		goto out;
1800  
1801  	retval = prepare_binprm(bprm);
1802  	if (retval < 0)
1803  		goto out;
1804  
1805  	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1806  	if (retval < 0)
1807  		goto out;
1808  
1809  	bprm->exec = bprm->p;
1810  	retval = copy_strings(bprm->envc, envp, bprm);
1811  	if (retval < 0)
1812  		goto out;
1813  
1814  	retval = copy_strings(bprm->argc, argv, bprm);
1815  	if (retval < 0)
1816  		goto out;
1817  
1818  	would_dump(bprm, bprm->file);
1819  
1820  	retval = exec_binprm(bprm);
1821  	if (retval < 0)
1822  		goto out;
1823  
1824  	/* execve succeeded */
1825  	current->fs->in_exec = 0;
1826  	current->in_execve = 0;
1827  	membarrier_execve(current);
1828  	rseq_execve(current);
1829  	acct_update_integrals(current);
1830  	task_numa_free(current);
1831  	free_bprm(bprm);
1832  	kfree(pathbuf);
1833  	if (filename)
1834  		putname(filename);
1835  	if (displaced)
1836  		put_files_struct(displaced);
1837  	return retval;
1838  
1839  out:
1840  	if (bprm->mm) {
1841  		acct_arg_size(bprm, 0);
1842  		mmput(bprm->mm);
1843  	}
1844  
1845  out_unmark:
1846  	current->fs->in_exec = 0;
1847  	current->in_execve = 0;
1848  
1849  out_free:
1850  	free_bprm(bprm);
1851  	kfree(pathbuf);
1852  
1853  out_files:
1854  	if (displaced)
1855  		reset_files_struct(displaced);
1856  out_ret:
1857  	if (filename)
1858  		putname(filename);
1859  	return retval;
1860  }
1861  
1862  static int do_execveat_common(int fd, struct filename *filename,
1863  			      struct user_arg_ptr argv,
1864  			      struct user_arg_ptr envp,
1865  			      int flags)
1866  {
1867  	return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1868  }
1869  
1870  int do_execve_file(struct file *file, void *__argv, void *__envp)
1871  {
1872  	struct user_arg_ptr argv = { .ptr.native = __argv };
1873  	struct user_arg_ptr envp = { .ptr.native = __envp };
1874  
1875  	return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1876  }
1877  
1878  int do_execve(struct filename *filename,
1879  	const char __user *const __user *__argv,
1880  	const char __user *const __user *__envp)
1881  {
1882  	struct user_arg_ptr argv = { .ptr.native = __argv };
1883  	struct user_arg_ptr envp = { .ptr.native = __envp };
1884  	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1885  }
1886  
1887  int do_execveat(int fd, struct filename *filename,
1888  		const char __user *const __user *__argv,
1889  		const char __user *const __user *__envp,
1890  		int flags)
1891  {
1892  	struct user_arg_ptr argv = { .ptr.native = __argv };
1893  	struct user_arg_ptr envp = { .ptr.native = __envp };
1894  
1895  	return do_execveat_common(fd, filename, argv, envp, flags);
1896  }
1897  
1898  #ifdef CONFIG_COMPAT
1899  static int compat_do_execve(struct filename *filename,
1900  	const compat_uptr_t __user *__argv,
1901  	const compat_uptr_t __user *__envp)
1902  {
1903  	struct user_arg_ptr argv = {
1904  		.is_compat = true,
1905  		.ptr.compat = __argv,
1906  	};
1907  	struct user_arg_ptr envp = {
1908  		.is_compat = true,
1909  		.ptr.compat = __envp,
1910  	};
1911  	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1912  }
1913  
1914  static int compat_do_execveat(int fd, struct filename *filename,
1915  			      const compat_uptr_t __user *__argv,
1916  			      const compat_uptr_t __user *__envp,
1917  			      int flags)
1918  {
1919  	struct user_arg_ptr argv = {
1920  		.is_compat = true,
1921  		.ptr.compat = __argv,
1922  	};
1923  	struct user_arg_ptr envp = {
1924  		.is_compat = true,
1925  		.ptr.compat = __envp,
1926  	};
1927  	return do_execveat_common(fd, filename, argv, envp, flags);
1928  }
1929  #endif
1930  
1931  void set_binfmt(struct linux_binfmt *new)
1932  {
1933  	struct mm_struct *mm = current->mm;
1934  
1935  	if (mm->binfmt)
1936  		module_put(mm->binfmt->module);
1937  
1938  	mm->binfmt = new;
1939  	if (new)
1940  		__module_get(new->module);
1941  }
1942  EXPORT_SYMBOL(set_binfmt);
1943  
1944  /*
1945   * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1946   */
1947  void set_dumpable(struct mm_struct *mm, int value)
1948  {
1949  	unsigned long old, new;
1950  
1951  	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1952  		return;
1953  
1954  	do {
1955  		old = READ_ONCE(mm->flags);
1956  		new = (old & ~MMF_DUMPABLE_MASK) | value;
1957  	} while (cmpxchg(&mm->flags, old, new) != old);
1958  }
1959  
1960  SYSCALL_DEFINE3(execve,
1961  		const char __user *, filename,
1962  		const char __user *const __user *, argv,
1963  		const char __user *const __user *, envp)
1964  {
1965  	return do_execve(getname(filename), argv, envp);
1966  }
1967  
1968  SYSCALL_DEFINE5(execveat,
1969  		int, fd, const char __user *, filename,
1970  		const char __user *const __user *, argv,
1971  		const char __user *const __user *, envp,
1972  		int, flags)
1973  {
1974  	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1975  
1976  	return do_execveat(fd,
1977  			   getname_flags(filename, lookup_flags, NULL),
1978  			   argv, envp, flags);
1979  }
1980  
1981  #ifdef CONFIG_COMPAT
1982  COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1983  	const compat_uptr_t __user *, argv,
1984  	const compat_uptr_t __user *, envp)
1985  {
1986  	return compat_do_execve(getname(filename), argv, envp);
1987  }
1988  
1989  COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1990  		       const char __user *, filename,
1991  		       const compat_uptr_t __user *, argv,
1992  		       const compat_uptr_t __user *, envp,
1993  		       int,  flags)
1994  {
1995  	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1996  
1997  	return compat_do_execveat(fd,
1998  				  getname_flags(filename, lookup_flags, NULL),
1999  				  argv, envp, flags);
2000  }
2001  #endif
2002