xref: /openbmc/linux/fs/exec.c (revision 6726d552)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 #include <linux/io_uring.h>
66 #include <linux/syscall_user_dispatch.h>
67 #include <linux/coredump.h>
68 #include <linux/time_namespace.h>
69 
70 #include <linux/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/tlb.h>
73 
74 #include <trace/events/task.h>
75 #include "internal.h"
76 
77 #include <trace/events/sched.h>
78 
79 static int bprm_creds_from_file(struct linux_binprm *bprm);
80 
81 int suid_dumpable = 0;
82 
83 static LIST_HEAD(formats);
84 static DEFINE_RWLOCK(binfmt_lock);
85 
86 void __register_binfmt(struct linux_binfmt * fmt, int insert)
87 {
88 	write_lock(&binfmt_lock);
89 	insert ? list_add(&fmt->lh, &formats) :
90 		 list_add_tail(&fmt->lh, &formats);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(__register_binfmt);
95 
96 void unregister_binfmt(struct linux_binfmt * fmt)
97 {
98 	write_lock(&binfmt_lock);
99 	list_del(&fmt->lh);
100 	write_unlock(&binfmt_lock);
101 }
102 
103 EXPORT_SYMBOL(unregister_binfmt);
104 
105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107 	module_put(fmt->module);
108 }
109 
110 bool path_noexec(const struct path *path)
111 {
112 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
113 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
114 }
115 
116 #ifdef CONFIG_USELIB
117 /*
118  * Note that a shared library must be both readable and executable due to
119  * security reasons.
120  *
121  * Also note that we take the address to load from the file itself.
122  */
123 SYSCALL_DEFINE1(uselib, const char __user *, library)
124 {
125 	struct linux_binfmt *fmt;
126 	struct file *file;
127 	struct filename *tmp = getname(library);
128 	int error = PTR_ERR(tmp);
129 	static const struct open_flags uselib_flags = {
130 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
131 		.acc_mode = MAY_READ | MAY_EXEC,
132 		.intent = LOOKUP_OPEN,
133 		.lookup_flags = LOOKUP_FOLLOW,
134 	};
135 
136 	if (IS_ERR(tmp))
137 		goto out;
138 
139 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
140 	putname(tmp);
141 	error = PTR_ERR(file);
142 	if (IS_ERR(file))
143 		goto out;
144 
145 	/*
146 	 * may_open() has already checked for this, so it should be
147 	 * impossible to trip now. But we need to be extra cautious
148 	 * and check again at the very end too.
149 	 */
150 	error = -EACCES;
151 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
152 			 path_noexec(&file->f_path)))
153 		goto exit;
154 
155 	fsnotify_open(file);
156 
157 	error = -ENOEXEC;
158 
159 	read_lock(&binfmt_lock);
160 	list_for_each_entry(fmt, &formats, lh) {
161 		if (!fmt->load_shlib)
162 			continue;
163 		if (!try_module_get(fmt->module))
164 			continue;
165 		read_unlock(&binfmt_lock);
166 		error = fmt->load_shlib(file);
167 		read_lock(&binfmt_lock);
168 		put_binfmt(fmt);
169 		if (error != -ENOEXEC)
170 			break;
171 	}
172 	read_unlock(&binfmt_lock);
173 exit:
174 	fput(file);
175 out:
176   	return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179 
180 #ifdef CONFIG_MMU
181 /*
182  * The nascent bprm->mm is not visible until exec_mmap() but it can
183  * use a lot of memory, account these pages in current->mm temporary
184  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185  * change the counter back via acct_arg_size(0).
186  */
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189 	struct mm_struct *mm = current->mm;
190 	long diff = (long)(pages - bprm->vma_pages);
191 
192 	if (!mm || !diff)
193 		return;
194 
195 	bprm->vma_pages = pages;
196 	add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198 
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200 		int write)
201 {
202 	struct page *page;
203 	int ret;
204 	unsigned int gup_flags = FOLL_FORCE;
205 
206 #ifdef CONFIG_STACK_GROWSUP
207 	if (write) {
208 		ret = expand_downwards(bprm->vma, pos);
209 		if (ret < 0)
210 			return NULL;
211 	}
212 #endif
213 
214 	if (write)
215 		gup_flags |= FOLL_WRITE;
216 
217 	/*
218 	 * We are doing an exec().  'current' is the process
219 	 * doing the exec and bprm->mm is the new process's mm.
220 	 */
221 	mmap_read_lock(bprm->mm);
222 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
223 			&page, NULL, NULL);
224 	mmap_read_unlock(bprm->mm);
225 	if (ret <= 0)
226 		return NULL;
227 
228 	if (write)
229 		acct_arg_size(bprm, vma_pages(bprm->vma));
230 
231 	return page;
232 }
233 
234 static void put_arg_page(struct page *page)
235 {
236 	put_page(page);
237 }
238 
239 static void free_arg_pages(struct linux_binprm *bprm)
240 {
241 }
242 
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244 		struct page *page)
245 {
246 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 }
248 
249 static int __bprm_mm_init(struct linux_binprm *bprm)
250 {
251 	int err;
252 	struct vm_area_struct *vma = NULL;
253 	struct mm_struct *mm = bprm->mm;
254 
255 	bprm->vma = vma = vm_area_alloc(mm);
256 	if (!vma)
257 		return -ENOMEM;
258 	vma_set_anonymous(vma);
259 
260 	if (mmap_write_lock_killable(mm)) {
261 		err = -EINTR;
262 		goto err_free;
263 	}
264 
265 	/*
266 	 * Place the stack at the largest stack address the architecture
267 	 * supports. Later, we'll move this to an appropriate place. We don't
268 	 * use STACK_TOP because that can depend on attributes which aren't
269 	 * configured yet.
270 	 */
271 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
272 	vma->vm_end = STACK_TOP_MAX;
273 	vma->vm_start = vma->vm_end - PAGE_SIZE;
274 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
275 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
276 
277 	err = insert_vm_struct(mm, vma);
278 	if (err)
279 		goto err;
280 
281 	mm->stack_vm = mm->total_vm = 1;
282 	mmap_write_unlock(mm);
283 	bprm->p = vma->vm_end - sizeof(void *);
284 	return 0;
285 err:
286 	mmap_write_unlock(mm);
287 err_free:
288 	bprm->vma = NULL;
289 	vm_area_free(vma);
290 	return err;
291 }
292 
293 static bool valid_arg_len(struct linux_binprm *bprm, long len)
294 {
295 	return len <= MAX_ARG_STRLEN;
296 }
297 
298 #else
299 
300 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
301 {
302 }
303 
304 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
305 		int write)
306 {
307 	struct page *page;
308 
309 	page = bprm->page[pos / PAGE_SIZE];
310 	if (!page && write) {
311 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
312 		if (!page)
313 			return NULL;
314 		bprm->page[pos / PAGE_SIZE] = page;
315 	}
316 
317 	return page;
318 }
319 
320 static void put_arg_page(struct page *page)
321 {
322 }
323 
324 static void free_arg_page(struct linux_binprm *bprm, int i)
325 {
326 	if (bprm->page[i]) {
327 		__free_page(bprm->page[i]);
328 		bprm->page[i] = NULL;
329 	}
330 }
331 
332 static void free_arg_pages(struct linux_binprm *bprm)
333 {
334 	int i;
335 
336 	for (i = 0; i < MAX_ARG_PAGES; i++)
337 		free_arg_page(bprm, i);
338 }
339 
340 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
341 		struct page *page)
342 {
343 }
344 
345 static int __bprm_mm_init(struct linux_binprm *bprm)
346 {
347 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
348 	return 0;
349 }
350 
351 static bool valid_arg_len(struct linux_binprm *bprm, long len)
352 {
353 	return len <= bprm->p;
354 }
355 
356 #endif /* CONFIG_MMU */
357 
358 /*
359  * Create a new mm_struct and populate it with a temporary stack
360  * vm_area_struct.  We don't have enough context at this point to set the stack
361  * flags, permissions, and offset, so we use temporary values.  We'll update
362  * them later in setup_arg_pages().
363  */
364 static int bprm_mm_init(struct linux_binprm *bprm)
365 {
366 	int err;
367 	struct mm_struct *mm = NULL;
368 
369 	bprm->mm = mm = mm_alloc();
370 	err = -ENOMEM;
371 	if (!mm)
372 		goto err;
373 
374 	/* Save current stack limit for all calculations made during exec. */
375 	task_lock(current->group_leader);
376 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
377 	task_unlock(current->group_leader);
378 
379 	err = __bprm_mm_init(bprm);
380 	if (err)
381 		goto err;
382 
383 	return 0;
384 
385 err:
386 	if (mm) {
387 		bprm->mm = NULL;
388 		mmdrop(mm);
389 	}
390 
391 	return err;
392 }
393 
394 struct user_arg_ptr {
395 #ifdef CONFIG_COMPAT
396 	bool is_compat;
397 #endif
398 	union {
399 		const char __user *const __user *native;
400 #ifdef CONFIG_COMPAT
401 		const compat_uptr_t __user *compat;
402 #endif
403 	} ptr;
404 };
405 
406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
407 {
408 	const char __user *native;
409 
410 #ifdef CONFIG_COMPAT
411 	if (unlikely(argv.is_compat)) {
412 		compat_uptr_t compat;
413 
414 		if (get_user(compat, argv.ptr.compat + nr))
415 			return ERR_PTR(-EFAULT);
416 
417 		return compat_ptr(compat);
418 	}
419 #endif
420 
421 	if (get_user(native, argv.ptr.native + nr))
422 		return ERR_PTR(-EFAULT);
423 
424 	return native;
425 }
426 
427 /*
428  * count() counts the number of strings in array ARGV.
429  */
430 static int count(struct user_arg_ptr argv, int max)
431 {
432 	int i = 0;
433 
434 	if (argv.ptr.native != NULL) {
435 		for (;;) {
436 			const char __user *p = get_user_arg_ptr(argv, i);
437 
438 			if (!p)
439 				break;
440 
441 			if (IS_ERR(p))
442 				return -EFAULT;
443 
444 			if (i >= max)
445 				return -E2BIG;
446 			++i;
447 
448 			if (fatal_signal_pending(current))
449 				return -ERESTARTNOHAND;
450 			cond_resched();
451 		}
452 	}
453 	return i;
454 }
455 
456 static int count_strings_kernel(const char *const *argv)
457 {
458 	int i;
459 
460 	if (!argv)
461 		return 0;
462 
463 	for (i = 0; argv[i]; ++i) {
464 		if (i >= MAX_ARG_STRINGS)
465 			return -E2BIG;
466 		if (fatal_signal_pending(current))
467 			return -ERESTARTNOHAND;
468 		cond_resched();
469 	}
470 	return i;
471 }
472 
473 static int bprm_stack_limits(struct linux_binprm *bprm)
474 {
475 	unsigned long limit, ptr_size;
476 
477 	/*
478 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
479 	 * (whichever is smaller) for the argv+env strings.
480 	 * This ensures that:
481 	 *  - the remaining binfmt code will not run out of stack space,
482 	 *  - the program will have a reasonable amount of stack left
483 	 *    to work from.
484 	 */
485 	limit = _STK_LIM / 4 * 3;
486 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
487 	/*
488 	 * We've historically supported up to 32 pages (ARG_MAX)
489 	 * of argument strings even with small stacks
490 	 */
491 	limit = max_t(unsigned long, limit, ARG_MAX);
492 	/*
493 	 * We must account for the size of all the argv and envp pointers to
494 	 * the argv and envp strings, since they will also take up space in
495 	 * the stack. They aren't stored until much later when we can't
496 	 * signal to the parent that the child has run out of stack space.
497 	 * Instead, calculate it here so it's possible to fail gracefully.
498 	 *
499 	 * In the case of argc = 0, make sure there is space for adding a
500 	 * empty string (which will bump argc to 1), to ensure confused
501 	 * userspace programs don't start processing from argv[1], thinking
502 	 * argc can never be 0, to keep them from walking envp by accident.
503 	 * See do_execveat_common().
504 	 */
505 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
506 	if (limit <= ptr_size)
507 		return -E2BIG;
508 	limit -= ptr_size;
509 
510 	bprm->argmin = bprm->p - limit;
511 	return 0;
512 }
513 
514 /*
515  * 'copy_strings()' copies argument/environment strings from the old
516  * processes's memory to the new process's stack.  The call to get_user_pages()
517  * ensures the destination page is created and not swapped out.
518  */
519 static int copy_strings(int argc, struct user_arg_ptr argv,
520 			struct linux_binprm *bprm)
521 {
522 	struct page *kmapped_page = NULL;
523 	char *kaddr = NULL;
524 	unsigned long kpos = 0;
525 	int ret;
526 
527 	while (argc-- > 0) {
528 		const char __user *str;
529 		int len;
530 		unsigned long pos;
531 
532 		ret = -EFAULT;
533 		str = get_user_arg_ptr(argv, argc);
534 		if (IS_ERR(str))
535 			goto out;
536 
537 		len = strnlen_user(str, MAX_ARG_STRLEN);
538 		if (!len)
539 			goto out;
540 
541 		ret = -E2BIG;
542 		if (!valid_arg_len(bprm, len))
543 			goto out;
544 
545 		/* We're going to work our way backwards. */
546 		pos = bprm->p;
547 		str += len;
548 		bprm->p -= len;
549 #ifdef CONFIG_MMU
550 		if (bprm->p < bprm->argmin)
551 			goto out;
552 #endif
553 
554 		while (len > 0) {
555 			int offset, bytes_to_copy;
556 
557 			if (fatal_signal_pending(current)) {
558 				ret = -ERESTARTNOHAND;
559 				goto out;
560 			}
561 			cond_resched();
562 
563 			offset = pos % PAGE_SIZE;
564 			if (offset == 0)
565 				offset = PAGE_SIZE;
566 
567 			bytes_to_copy = offset;
568 			if (bytes_to_copy > len)
569 				bytes_to_copy = len;
570 
571 			offset -= bytes_to_copy;
572 			pos -= bytes_to_copy;
573 			str -= bytes_to_copy;
574 			len -= bytes_to_copy;
575 
576 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
577 				struct page *page;
578 
579 				page = get_arg_page(bprm, pos, 1);
580 				if (!page) {
581 					ret = -E2BIG;
582 					goto out;
583 				}
584 
585 				if (kmapped_page) {
586 					flush_dcache_page(kmapped_page);
587 					kunmap(kmapped_page);
588 					put_arg_page(kmapped_page);
589 				}
590 				kmapped_page = page;
591 				kaddr = kmap(kmapped_page);
592 				kpos = pos & PAGE_MASK;
593 				flush_arg_page(bprm, kpos, kmapped_page);
594 			}
595 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
596 				ret = -EFAULT;
597 				goto out;
598 			}
599 		}
600 	}
601 	ret = 0;
602 out:
603 	if (kmapped_page) {
604 		flush_dcache_page(kmapped_page);
605 		kunmap(kmapped_page);
606 		put_arg_page(kmapped_page);
607 	}
608 	return ret;
609 }
610 
611 /*
612  * Copy and argument/environment string from the kernel to the processes stack.
613  */
614 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
615 {
616 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
617 	unsigned long pos = bprm->p;
618 
619 	if (len == 0)
620 		return -EFAULT;
621 	if (!valid_arg_len(bprm, len))
622 		return -E2BIG;
623 
624 	/* We're going to work our way backwards. */
625 	arg += len;
626 	bprm->p -= len;
627 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
628 		return -E2BIG;
629 
630 	while (len > 0) {
631 		unsigned int bytes_to_copy = min_t(unsigned int, len,
632 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
633 		struct page *page;
634 
635 		pos -= bytes_to_copy;
636 		arg -= bytes_to_copy;
637 		len -= bytes_to_copy;
638 
639 		page = get_arg_page(bprm, pos, 1);
640 		if (!page)
641 			return -E2BIG;
642 		flush_arg_page(bprm, pos & PAGE_MASK, page);
643 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
644 		put_arg_page(page);
645 	}
646 
647 	return 0;
648 }
649 EXPORT_SYMBOL(copy_string_kernel);
650 
651 static int copy_strings_kernel(int argc, const char *const *argv,
652 			       struct linux_binprm *bprm)
653 {
654 	while (argc-- > 0) {
655 		int ret = copy_string_kernel(argv[argc], bprm);
656 		if (ret < 0)
657 			return ret;
658 		if (fatal_signal_pending(current))
659 			return -ERESTARTNOHAND;
660 		cond_resched();
661 	}
662 	return 0;
663 }
664 
665 #ifdef CONFIG_MMU
666 
667 /*
668  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
669  * the binfmt code determines where the new stack should reside, we shift it to
670  * its final location.  The process proceeds as follows:
671  *
672  * 1) Use shift to calculate the new vma endpoints.
673  * 2) Extend vma to cover both the old and new ranges.  This ensures the
674  *    arguments passed to subsequent functions are consistent.
675  * 3) Move vma's page tables to the new range.
676  * 4) Free up any cleared pgd range.
677  * 5) Shrink the vma to cover only the new range.
678  */
679 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
680 {
681 	struct mm_struct *mm = vma->vm_mm;
682 	unsigned long old_start = vma->vm_start;
683 	unsigned long old_end = vma->vm_end;
684 	unsigned long length = old_end - old_start;
685 	unsigned long new_start = old_start - shift;
686 	unsigned long new_end = old_end - shift;
687 	struct mmu_gather tlb;
688 
689 	BUG_ON(new_start > new_end);
690 
691 	/*
692 	 * ensure there are no vmas between where we want to go
693 	 * and where we are
694 	 */
695 	if (vma != find_vma(mm, new_start))
696 		return -EFAULT;
697 
698 	/*
699 	 * cover the whole range: [new_start, old_end)
700 	 */
701 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
702 		return -ENOMEM;
703 
704 	/*
705 	 * move the page tables downwards, on failure we rely on
706 	 * process cleanup to remove whatever mess we made.
707 	 */
708 	if (length != move_page_tables(vma, old_start,
709 				       vma, new_start, length, false))
710 		return -ENOMEM;
711 
712 	lru_add_drain();
713 	tlb_gather_mmu(&tlb, mm);
714 	if (new_end > old_start) {
715 		/*
716 		 * when the old and new regions overlap clear from new_end.
717 		 */
718 		free_pgd_range(&tlb, new_end, old_end, new_end,
719 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
720 	} else {
721 		/*
722 		 * otherwise, clean from old_start; this is done to not touch
723 		 * the address space in [new_end, old_start) some architectures
724 		 * have constraints on va-space that make this illegal (IA64) -
725 		 * for the others its just a little faster.
726 		 */
727 		free_pgd_range(&tlb, old_start, old_end, new_end,
728 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
729 	}
730 	tlb_finish_mmu(&tlb);
731 
732 	/*
733 	 * Shrink the vma to just the new range.  Always succeeds.
734 	 */
735 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
736 
737 	return 0;
738 }
739 
740 /*
741  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
742  * the stack is optionally relocated, and some extra space is added.
743  */
744 int setup_arg_pages(struct linux_binprm *bprm,
745 		    unsigned long stack_top,
746 		    int executable_stack)
747 {
748 	unsigned long ret;
749 	unsigned long stack_shift;
750 	struct mm_struct *mm = current->mm;
751 	struct vm_area_struct *vma = bprm->vma;
752 	struct vm_area_struct *prev = NULL;
753 	unsigned long vm_flags;
754 	unsigned long stack_base;
755 	unsigned long stack_size;
756 	unsigned long stack_expand;
757 	unsigned long rlim_stack;
758 	struct mmu_gather tlb;
759 
760 #ifdef CONFIG_STACK_GROWSUP
761 	/* Limit stack size */
762 	stack_base = bprm->rlim_stack.rlim_max;
763 
764 	stack_base = calc_max_stack_size(stack_base);
765 
766 	/* Add space for stack randomization. */
767 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
768 
769 	/* Make sure we didn't let the argument array grow too large. */
770 	if (vma->vm_end - vma->vm_start > stack_base)
771 		return -ENOMEM;
772 
773 	stack_base = PAGE_ALIGN(stack_top - stack_base);
774 
775 	stack_shift = vma->vm_start - stack_base;
776 	mm->arg_start = bprm->p - stack_shift;
777 	bprm->p = vma->vm_end - stack_shift;
778 #else
779 	stack_top = arch_align_stack(stack_top);
780 	stack_top = PAGE_ALIGN(stack_top);
781 
782 	if (unlikely(stack_top < mmap_min_addr) ||
783 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
784 		return -ENOMEM;
785 
786 	stack_shift = vma->vm_end - stack_top;
787 
788 	bprm->p -= stack_shift;
789 	mm->arg_start = bprm->p;
790 #endif
791 
792 	if (bprm->loader)
793 		bprm->loader -= stack_shift;
794 	bprm->exec -= stack_shift;
795 
796 	if (mmap_write_lock_killable(mm))
797 		return -EINTR;
798 
799 	vm_flags = VM_STACK_FLAGS;
800 
801 	/*
802 	 * Adjust stack execute permissions; explicitly enable for
803 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
804 	 * (arch default) otherwise.
805 	 */
806 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
807 		vm_flags |= VM_EXEC;
808 	else if (executable_stack == EXSTACK_DISABLE_X)
809 		vm_flags &= ~VM_EXEC;
810 	vm_flags |= mm->def_flags;
811 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
812 
813 	tlb_gather_mmu(&tlb, mm);
814 	ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end,
815 			vm_flags);
816 	tlb_finish_mmu(&tlb);
817 
818 	if (ret)
819 		goto out_unlock;
820 	BUG_ON(prev != vma);
821 
822 	if (unlikely(vm_flags & VM_EXEC)) {
823 		pr_warn_once("process '%pD4' started with executable stack\n",
824 			     bprm->file);
825 	}
826 
827 	/* Move stack pages down in memory. */
828 	if (stack_shift) {
829 		ret = shift_arg_pages(vma, stack_shift);
830 		if (ret)
831 			goto out_unlock;
832 	}
833 
834 	/* mprotect_fixup is overkill to remove the temporary stack flags */
835 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
836 
837 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
838 	stack_size = vma->vm_end - vma->vm_start;
839 	/*
840 	 * Align this down to a page boundary as expand_stack
841 	 * will align it up.
842 	 */
843 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
844 #ifdef CONFIG_STACK_GROWSUP
845 	if (stack_size + stack_expand > rlim_stack)
846 		stack_base = vma->vm_start + rlim_stack;
847 	else
848 		stack_base = vma->vm_end + stack_expand;
849 #else
850 	if (stack_size + stack_expand > rlim_stack)
851 		stack_base = vma->vm_end - rlim_stack;
852 	else
853 		stack_base = vma->vm_start - stack_expand;
854 #endif
855 	current->mm->start_stack = bprm->p;
856 	ret = expand_stack(vma, stack_base);
857 	if (ret)
858 		ret = -EFAULT;
859 
860 out_unlock:
861 	mmap_write_unlock(mm);
862 	return ret;
863 }
864 EXPORT_SYMBOL(setup_arg_pages);
865 
866 #else
867 
868 /*
869  * Transfer the program arguments and environment from the holding pages
870  * onto the stack. The provided stack pointer is adjusted accordingly.
871  */
872 int transfer_args_to_stack(struct linux_binprm *bprm,
873 			   unsigned long *sp_location)
874 {
875 	unsigned long index, stop, sp;
876 	int ret = 0;
877 
878 	stop = bprm->p >> PAGE_SHIFT;
879 	sp = *sp_location;
880 
881 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
882 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
883 		char *src = kmap(bprm->page[index]) + offset;
884 		sp -= PAGE_SIZE - offset;
885 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
886 			ret = -EFAULT;
887 		kunmap(bprm->page[index]);
888 		if (ret)
889 			goto out;
890 	}
891 
892 	*sp_location = sp;
893 
894 out:
895 	return ret;
896 }
897 EXPORT_SYMBOL(transfer_args_to_stack);
898 
899 #endif /* CONFIG_MMU */
900 
901 static struct file *do_open_execat(int fd, struct filename *name, int flags)
902 {
903 	struct file *file;
904 	int err;
905 	struct open_flags open_exec_flags = {
906 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
907 		.acc_mode = MAY_EXEC,
908 		.intent = LOOKUP_OPEN,
909 		.lookup_flags = LOOKUP_FOLLOW,
910 	};
911 
912 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
913 		return ERR_PTR(-EINVAL);
914 	if (flags & AT_SYMLINK_NOFOLLOW)
915 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
916 	if (flags & AT_EMPTY_PATH)
917 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
918 
919 	file = do_filp_open(fd, name, &open_exec_flags);
920 	if (IS_ERR(file))
921 		goto out;
922 
923 	/*
924 	 * may_open() has already checked for this, so it should be
925 	 * impossible to trip now. But we need to be extra cautious
926 	 * and check again at the very end too.
927 	 */
928 	err = -EACCES;
929 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
930 			 path_noexec(&file->f_path)))
931 		goto exit;
932 
933 	err = deny_write_access(file);
934 	if (err)
935 		goto exit;
936 
937 	if (name->name[0] != '\0')
938 		fsnotify_open(file);
939 
940 out:
941 	return file;
942 
943 exit:
944 	fput(file);
945 	return ERR_PTR(err);
946 }
947 
948 struct file *open_exec(const char *name)
949 {
950 	struct filename *filename = getname_kernel(name);
951 	struct file *f = ERR_CAST(filename);
952 
953 	if (!IS_ERR(filename)) {
954 		f = do_open_execat(AT_FDCWD, filename, 0);
955 		putname(filename);
956 	}
957 	return f;
958 }
959 EXPORT_SYMBOL(open_exec);
960 
961 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
962     defined(CONFIG_BINFMT_ELF_FDPIC)
963 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
964 {
965 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
966 	if (res > 0)
967 		flush_icache_user_range(addr, addr + len);
968 	return res;
969 }
970 EXPORT_SYMBOL(read_code);
971 #endif
972 
973 /*
974  * Maps the mm_struct mm into the current task struct.
975  * On success, this function returns with exec_update_lock
976  * held for writing.
977  */
978 static int exec_mmap(struct mm_struct *mm)
979 {
980 	struct task_struct *tsk;
981 	struct mm_struct *old_mm, *active_mm;
982 	bool vfork;
983 	int ret;
984 
985 	/* Notify parent that we're no longer interested in the old VM */
986 	tsk = current;
987 	vfork = !!tsk->vfork_done;
988 	old_mm = current->mm;
989 	exec_mm_release(tsk, old_mm);
990 	if (old_mm)
991 		sync_mm_rss(old_mm);
992 
993 	ret = down_write_killable(&tsk->signal->exec_update_lock);
994 	if (ret)
995 		return ret;
996 
997 	if (old_mm) {
998 		/*
999 		 * If there is a pending fatal signal perhaps a signal
1000 		 * whose default action is to create a coredump get
1001 		 * out and die instead of going through with the exec.
1002 		 */
1003 		ret = mmap_read_lock_killable(old_mm);
1004 		if (ret) {
1005 			up_write(&tsk->signal->exec_update_lock);
1006 			return ret;
1007 		}
1008 	}
1009 
1010 	task_lock(tsk);
1011 	membarrier_exec_mmap(mm);
1012 
1013 	local_irq_disable();
1014 	active_mm = tsk->active_mm;
1015 	tsk->active_mm = mm;
1016 	tsk->mm = mm;
1017 	/*
1018 	 * This prevents preemption while active_mm is being loaded and
1019 	 * it and mm are being updated, which could cause problems for
1020 	 * lazy tlb mm refcounting when these are updated by context
1021 	 * switches. Not all architectures can handle irqs off over
1022 	 * activate_mm yet.
1023 	 */
1024 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1025 		local_irq_enable();
1026 	activate_mm(active_mm, mm);
1027 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1028 		local_irq_enable();
1029 	tsk->mm->vmacache_seqnum = 0;
1030 	vmacache_flush(tsk);
1031 	task_unlock(tsk);
1032 
1033 	if (vfork)
1034 		timens_on_fork(tsk->nsproxy, tsk);
1035 
1036 	if (old_mm) {
1037 		mmap_read_unlock(old_mm);
1038 		BUG_ON(active_mm != old_mm);
1039 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1040 		mm_update_next_owner(old_mm);
1041 		mmput(old_mm);
1042 		return 0;
1043 	}
1044 	mmdrop(active_mm);
1045 	return 0;
1046 }
1047 
1048 static int de_thread(struct task_struct *tsk)
1049 {
1050 	struct signal_struct *sig = tsk->signal;
1051 	struct sighand_struct *oldsighand = tsk->sighand;
1052 	spinlock_t *lock = &oldsighand->siglock;
1053 
1054 	if (thread_group_empty(tsk))
1055 		goto no_thread_group;
1056 
1057 	/*
1058 	 * Kill all other threads in the thread group.
1059 	 */
1060 	spin_lock_irq(lock);
1061 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1062 		/*
1063 		 * Another group action in progress, just
1064 		 * return so that the signal is processed.
1065 		 */
1066 		spin_unlock_irq(lock);
1067 		return -EAGAIN;
1068 	}
1069 
1070 	sig->group_exec_task = tsk;
1071 	sig->notify_count = zap_other_threads(tsk);
1072 	if (!thread_group_leader(tsk))
1073 		sig->notify_count--;
1074 
1075 	while (sig->notify_count) {
1076 		__set_current_state(TASK_KILLABLE);
1077 		spin_unlock_irq(lock);
1078 		schedule();
1079 		if (__fatal_signal_pending(tsk))
1080 			goto killed;
1081 		spin_lock_irq(lock);
1082 	}
1083 	spin_unlock_irq(lock);
1084 
1085 	/*
1086 	 * At this point all other threads have exited, all we have to
1087 	 * do is to wait for the thread group leader to become inactive,
1088 	 * and to assume its PID:
1089 	 */
1090 	if (!thread_group_leader(tsk)) {
1091 		struct task_struct *leader = tsk->group_leader;
1092 
1093 		for (;;) {
1094 			cgroup_threadgroup_change_begin(tsk);
1095 			write_lock_irq(&tasklist_lock);
1096 			/*
1097 			 * Do this under tasklist_lock to ensure that
1098 			 * exit_notify() can't miss ->group_exec_task
1099 			 */
1100 			sig->notify_count = -1;
1101 			if (likely(leader->exit_state))
1102 				break;
1103 			__set_current_state(TASK_KILLABLE);
1104 			write_unlock_irq(&tasklist_lock);
1105 			cgroup_threadgroup_change_end(tsk);
1106 			schedule();
1107 			if (__fatal_signal_pending(tsk))
1108 				goto killed;
1109 		}
1110 
1111 		/*
1112 		 * The only record we have of the real-time age of a
1113 		 * process, regardless of execs it's done, is start_time.
1114 		 * All the past CPU time is accumulated in signal_struct
1115 		 * from sister threads now dead.  But in this non-leader
1116 		 * exec, nothing survives from the original leader thread,
1117 		 * whose birth marks the true age of this process now.
1118 		 * When we take on its identity by switching to its PID, we
1119 		 * also take its birthdate (always earlier than our own).
1120 		 */
1121 		tsk->start_time = leader->start_time;
1122 		tsk->start_boottime = leader->start_boottime;
1123 
1124 		BUG_ON(!same_thread_group(leader, tsk));
1125 		/*
1126 		 * An exec() starts a new thread group with the
1127 		 * TGID of the previous thread group. Rehash the
1128 		 * two threads with a switched PID, and release
1129 		 * the former thread group leader:
1130 		 */
1131 
1132 		/* Become a process group leader with the old leader's pid.
1133 		 * The old leader becomes a thread of the this thread group.
1134 		 */
1135 		exchange_tids(tsk, leader);
1136 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1137 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1138 		transfer_pid(leader, tsk, PIDTYPE_SID);
1139 
1140 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1141 		list_replace_init(&leader->sibling, &tsk->sibling);
1142 
1143 		tsk->group_leader = tsk;
1144 		leader->group_leader = tsk;
1145 
1146 		tsk->exit_signal = SIGCHLD;
1147 		leader->exit_signal = -1;
1148 
1149 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1150 		leader->exit_state = EXIT_DEAD;
1151 
1152 		/*
1153 		 * We are going to release_task()->ptrace_unlink() silently,
1154 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1155 		 * the tracer won't block again waiting for this thread.
1156 		 */
1157 		if (unlikely(leader->ptrace))
1158 			__wake_up_parent(leader, leader->parent);
1159 		write_unlock_irq(&tasklist_lock);
1160 		cgroup_threadgroup_change_end(tsk);
1161 
1162 		release_task(leader);
1163 	}
1164 
1165 	sig->group_exec_task = NULL;
1166 	sig->notify_count = 0;
1167 
1168 no_thread_group:
1169 	/* we have changed execution domain */
1170 	tsk->exit_signal = SIGCHLD;
1171 
1172 	BUG_ON(!thread_group_leader(tsk));
1173 	return 0;
1174 
1175 killed:
1176 	/* protects against exit_notify() and __exit_signal() */
1177 	read_lock(&tasklist_lock);
1178 	sig->group_exec_task = NULL;
1179 	sig->notify_count = 0;
1180 	read_unlock(&tasklist_lock);
1181 	return -EAGAIN;
1182 }
1183 
1184 
1185 /*
1186  * This function makes sure the current process has its own signal table,
1187  * so that flush_signal_handlers can later reset the handlers without
1188  * disturbing other processes.  (Other processes might share the signal
1189  * table via the CLONE_SIGHAND option to clone().)
1190  */
1191 static int unshare_sighand(struct task_struct *me)
1192 {
1193 	struct sighand_struct *oldsighand = me->sighand;
1194 
1195 	if (refcount_read(&oldsighand->count) != 1) {
1196 		struct sighand_struct *newsighand;
1197 		/*
1198 		 * This ->sighand is shared with the CLONE_SIGHAND
1199 		 * but not CLONE_THREAD task, switch to the new one.
1200 		 */
1201 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1202 		if (!newsighand)
1203 			return -ENOMEM;
1204 
1205 		refcount_set(&newsighand->count, 1);
1206 		memcpy(newsighand->action, oldsighand->action,
1207 		       sizeof(newsighand->action));
1208 
1209 		write_lock_irq(&tasklist_lock);
1210 		spin_lock(&oldsighand->siglock);
1211 		rcu_assign_pointer(me->sighand, newsighand);
1212 		spin_unlock(&oldsighand->siglock);
1213 		write_unlock_irq(&tasklist_lock);
1214 
1215 		__cleanup_sighand(oldsighand);
1216 	}
1217 	return 0;
1218 }
1219 
1220 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1221 {
1222 	task_lock(tsk);
1223 	/* Always NUL terminated and zero-padded */
1224 	strscpy_pad(buf, tsk->comm, buf_size);
1225 	task_unlock(tsk);
1226 	return buf;
1227 }
1228 EXPORT_SYMBOL_GPL(__get_task_comm);
1229 
1230 /*
1231  * These functions flushes out all traces of the currently running executable
1232  * so that a new one can be started
1233  */
1234 
1235 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1236 {
1237 	task_lock(tsk);
1238 	trace_task_rename(tsk, buf);
1239 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1240 	task_unlock(tsk);
1241 	perf_event_comm(tsk, exec);
1242 }
1243 
1244 /*
1245  * Calling this is the point of no return. None of the failures will be
1246  * seen by userspace since either the process is already taking a fatal
1247  * signal (via de_thread() or coredump), or will have SEGV raised
1248  * (after exec_mmap()) by search_binary_handler (see below).
1249  */
1250 int begin_new_exec(struct linux_binprm * bprm)
1251 {
1252 	struct task_struct *me = current;
1253 	int retval;
1254 
1255 	/* Once we are committed compute the creds */
1256 	retval = bprm_creds_from_file(bprm);
1257 	if (retval)
1258 		return retval;
1259 
1260 	/*
1261 	 * Ensure all future errors are fatal.
1262 	 */
1263 	bprm->point_of_no_return = true;
1264 
1265 	/*
1266 	 * Make this the only thread in the thread group.
1267 	 */
1268 	retval = de_thread(me);
1269 	if (retval)
1270 		goto out;
1271 
1272 	/*
1273 	 * Cancel any io_uring activity across execve
1274 	 */
1275 	io_uring_task_cancel();
1276 
1277 	/* Ensure the files table is not shared. */
1278 	retval = unshare_files();
1279 	if (retval)
1280 		goto out;
1281 
1282 	/*
1283 	 * Must be called _before_ exec_mmap() as bprm->mm is
1284 	 * not visible until then. This also enables the update
1285 	 * to be lockless.
1286 	 */
1287 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1288 	if (retval)
1289 		goto out;
1290 
1291 	/* If the binary is not readable then enforce mm->dumpable=0 */
1292 	would_dump(bprm, bprm->file);
1293 	if (bprm->have_execfd)
1294 		would_dump(bprm, bprm->executable);
1295 
1296 	/*
1297 	 * Release all of the old mmap stuff
1298 	 */
1299 	acct_arg_size(bprm, 0);
1300 	retval = exec_mmap(bprm->mm);
1301 	if (retval)
1302 		goto out;
1303 
1304 	bprm->mm = NULL;
1305 
1306 #ifdef CONFIG_POSIX_TIMERS
1307 	spin_lock_irq(&me->sighand->siglock);
1308 	posix_cpu_timers_exit(me);
1309 	spin_unlock_irq(&me->sighand->siglock);
1310 	exit_itimers(me);
1311 	flush_itimer_signals();
1312 #endif
1313 
1314 	/*
1315 	 * Make the signal table private.
1316 	 */
1317 	retval = unshare_sighand(me);
1318 	if (retval)
1319 		goto out_unlock;
1320 
1321 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1322 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1323 	flush_thread();
1324 	me->personality &= ~bprm->per_clear;
1325 
1326 	clear_syscall_work_syscall_user_dispatch(me);
1327 
1328 	/*
1329 	 * We have to apply CLOEXEC before we change whether the process is
1330 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1331 	 * trying to access the should-be-closed file descriptors of a process
1332 	 * undergoing exec(2).
1333 	 */
1334 	do_close_on_exec(me->files);
1335 
1336 	if (bprm->secureexec) {
1337 		/* Make sure parent cannot signal privileged process. */
1338 		me->pdeath_signal = 0;
1339 
1340 		/*
1341 		 * For secureexec, reset the stack limit to sane default to
1342 		 * avoid bad behavior from the prior rlimits. This has to
1343 		 * happen before arch_pick_mmap_layout(), which examines
1344 		 * RLIMIT_STACK, but after the point of no return to avoid
1345 		 * needing to clean up the change on failure.
1346 		 */
1347 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1348 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1349 	}
1350 
1351 	me->sas_ss_sp = me->sas_ss_size = 0;
1352 
1353 	/*
1354 	 * Figure out dumpability. Note that this checking only of current
1355 	 * is wrong, but userspace depends on it. This should be testing
1356 	 * bprm->secureexec instead.
1357 	 */
1358 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1359 	    !(uid_eq(current_euid(), current_uid()) &&
1360 	      gid_eq(current_egid(), current_gid())))
1361 		set_dumpable(current->mm, suid_dumpable);
1362 	else
1363 		set_dumpable(current->mm, SUID_DUMP_USER);
1364 
1365 	perf_event_exec();
1366 	__set_task_comm(me, kbasename(bprm->filename), true);
1367 
1368 	/* An exec changes our domain. We are no longer part of the thread
1369 	   group */
1370 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1371 	flush_signal_handlers(me, 0);
1372 
1373 	retval = set_cred_ucounts(bprm->cred);
1374 	if (retval < 0)
1375 		goto out_unlock;
1376 
1377 	/*
1378 	 * install the new credentials for this executable
1379 	 */
1380 	security_bprm_committing_creds(bprm);
1381 
1382 	commit_creds(bprm->cred);
1383 	bprm->cred = NULL;
1384 
1385 	/*
1386 	 * Disable monitoring for regular users
1387 	 * when executing setuid binaries. Must
1388 	 * wait until new credentials are committed
1389 	 * by commit_creds() above
1390 	 */
1391 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1392 		perf_event_exit_task(me);
1393 	/*
1394 	 * cred_guard_mutex must be held at least to this point to prevent
1395 	 * ptrace_attach() from altering our determination of the task's
1396 	 * credentials; any time after this it may be unlocked.
1397 	 */
1398 	security_bprm_committed_creds(bprm);
1399 
1400 	/* Pass the opened binary to the interpreter. */
1401 	if (bprm->have_execfd) {
1402 		retval = get_unused_fd_flags(0);
1403 		if (retval < 0)
1404 			goto out_unlock;
1405 		fd_install(retval, bprm->executable);
1406 		bprm->executable = NULL;
1407 		bprm->execfd = retval;
1408 	}
1409 	return 0;
1410 
1411 out_unlock:
1412 	up_write(&me->signal->exec_update_lock);
1413 out:
1414 	return retval;
1415 }
1416 EXPORT_SYMBOL(begin_new_exec);
1417 
1418 void would_dump(struct linux_binprm *bprm, struct file *file)
1419 {
1420 	struct inode *inode = file_inode(file);
1421 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1422 	if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1423 		struct user_namespace *old, *user_ns;
1424 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1425 
1426 		/* Ensure mm->user_ns contains the executable */
1427 		user_ns = old = bprm->mm->user_ns;
1428 		while ((user_ns != &init_user_ns) &&
1429 		       !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1430 			user_ns = user_ns->parent;
1431 
1432 		if (old != user_ns) {
1433 			bprm->mm->user_ns = get_user_ns(user_ns);
1434 			put_user_ns(old);
1435 		}
1436 	}
1437 }
1438 EXPORT_SYMBOL(would_dump);
1439 
1440 void setup_new_exec(struct linux_binprm * bprm)
1441 {
1442 	/* Setup things that can depend upon the personality */
1443 	struct task_struct *me = current;
1444 
1445 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1446 
1447 	arch_setup_new_exec();
1448 
1449 	/* Set the new mm task size. We have to do that late because it may
1450 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1451 	 * some architectures like powerpc
1452 	 */
1453 	me->mm->task_size = TASK_SIZE;
1454 	up_write(&me->signal->exec_update_lock);
1455 	mutex_unlock(&me->signal->cred_guard_mutex);
1456 }
1457 EXPORT_SYMBOL(setup_new_exec);
1458 
1459 /* Runs immediately before start_thread() takes over. */
1460 void finalize_exec(struct linux_binprm *bprm)
1461 {
1462 	/* Store any stack rlimit changes before starting thread. */
1463 	task_lock(current->group_leader);
1464 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1465 	task_unlock(current->group_leader);
1466 }
1467 EXPORT_SYMBOL(finalize_exec);
1468 
1469 /*
1470  * Prepare credentials and lock ->cred_guard_mutex.
1471  * setup_new_exec() commits the new creds and drops the lock.
1472  * Or, if exec fails before, free_bprm() should release ->cred
1473  * and unlock.
1474  */
1475 static int prepare_bprm_creds(struct linux_binprm *bprm)
1476 {
1477 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1478 		return -ERESTARTNOINTR;
1479 
1480 	bprm->cred = prepare_exec_creds();
1481 	if (likely(bprm->cred))
1482 		return 0;
1483 
1484 	mutex_unlock(&current->signal->cred_guard_mutex);
1485 	return -ENOMEM;
1486 }
1487 
1488 static void free_bprm(struct linux_binprm *bprm)
1489 {
1490 	if (bprm->mm) {
1491 		acct_arg_size(bprm, 0);
1492 		mmput(bprm->mm);
1493 	}
1494 	free_arg_pages(bprm);
1495 	if (bprm->cred) {
1496 		mutex_unlock(&current->signal->cred_guard_mutex);
1497 		abort_creds(bprm->cred);
1498 	}
1499 	if (bprm->file) {
1500 		allow_write_access(bprm->file);
1501 		fput(bprm->file);
1502 	}
1503 	if (bprm->executable)
1504 		fput(bprm->executable);
1505 	/* If a binfmt changed the interp, free it. */
1506 	if (bprm->interp != bprm->filename)
1507 		kfree(bprm->interp);
1508 	kfree(bprm->fdpath);
1509 	kfree(bprm);
1510 }
1511 
1512 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1513 {
1514 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1515 	int retval = -ENOMEM;
1516 	if (!bprm)
1517 		goto out;
1518 
1519 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1520 		bprm->filename = filename->name;
1521 	} else {
1522 		if (filename->name[0] == '\0')
1523 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1524 		else
1525 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1526 						  fd, filename->name);
1527 		if (!bprm->fdpath)
1528 			goto out_free;
1529 
1530 		bprm->filename = bprm->fdpath;
1531 	}
1532 	bprm->interp = bprm->filename;
1533 
1534 	retval = bprm_mm_init(bprm);
1535 	if (retval)
1536 		goto out_free;
1537 	return bprm;
1538 
1539 out_free:
1540 	free_bprm(bprm);
1541 out:
1542 	return ERR_PTR(retval);
1543 }
1544 
1545 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1546 {
1547 	/* If a binfmt changed the interp, free it first. */
1548 	if (bprm->interp != bprm->filename)
1549 		kfree(bprm->interp);
1550 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1551 	if (!bprm->interp)
1552 		return -ENOMEM;
1553 	return 0;
1554 }
1555 EXPORT_SYMBOL(bprm_change_interp);
1556 
1557 /*
1558  * determine how safe it is to execute the proposed program
1559  * - the caller must hold ->cred_guard_mutex to protect against
1560  *   PTRACE_ATTACH or seccomp thread-sync
1561  */
1562 static void check_unsafe_exec(struct linux_binprm *bprm)
1563 {
1564 	struct task_struct *p = current, *t;
1565 	unsigned n_fs;
1566 
1567 	if (p->ptrace)
1568 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1569 
1570 	/*
1571 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1572 	 * mess up.
1573 	 */
1574 	if (task_no_new_privs(current))
1575 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1576 
1577 	t = p;
1578 	n_fs = 1;
1579 	spin_lock(&p->fs->lock);
1580 	rcu_read_lock();
1581 	while_each_thread(p, t) {
1582 		if (t->fs == p->fs)
1583 			n_fs++;
1584 	}
1585 	rcu_read_unlock();
1586 
1587 	if (p->fs->users > n_fs)
1588 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1589 	else
1590 		p->fs->in_exec = 1;
1591 	spin_unlock(&p->fs->lock);
1592 }
1593 
1594 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1595 {
1596 	/* Handle suid and sgid on files */
1597 	struct user_namespace *mnt_userns;
1598 	struct inode *inode;
1599 	unsigned int mode;
1600 	kuid_t uid;
1601 	kgid_t gid;
1602 
1603 	if (!mnt_may_suid(file->f_path.mnt))
1604 		return;
1605 
1606 	if (task_no_new_privs(current))
1607 		return;
1608 
1609 	inode = file->f_path.dentry->d_inode;
1610 	mode = READ_ONCE(inode->i_mode);
1611 	if (!(mode & (S_ISUID|S_ISGID)))
1612 		return;
1613 
1614 	mnt_userns = file_mnt_user_ns(file);
1615 
1616 	/* Be careful if suid/sgid is set */
1617 	inode_lock(inode);
1618 
1619 	/* reload atomically mode/uid/gid now that lock held */
1620 	mode = inode->i_mode;
1621 	uid = i_uid_into_mnt(mnt_userns, inode);
1622 	gid = i_gid_into_mnt(mnt_userns, inode);
1623 	inode_unlock(inode);
1624 
1625 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1626 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1627 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1628 		return;
1629 
1630 	if (mode & S_ISUID) {
1631 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1632 		bprm->cred->euid = uid;
1633 	}
1634 
1635 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1636 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1637 		bprm->cred->egid = gid;
1638 	}
1639 }
1640 
1641 /*
1642  * Compute brpm->cred based upon the final binary.
1643  */
1644 static int bprm_creds_from_file(struct linux_binprm *bprm)
1645 {
1646 	/* Compute creds based on which file? */
1647 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1648 
1649 	bprm_fill_uid(bprm, file);
1650 	return security_bprm_creds_from_file(bprm, file);
1651 }
1652 
1653 /*
1654  * Fill the binprm structure from the inode.
1655  * Read the first BINPRM_BUF_SIZE bytes
1656  *
1657  * This may be called multiple times for binary chains (scripts for example).
1658  */
1659 static int prepare_binprm(struct linux_binprm *bprm)
1660 {
1661 	loff_t pos = 0;
1662 
1663 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1664 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1665 }
1666 
1667 /*
1668  * Arguments are '\0' separated strings found at the location bprm->p
1669  * points to; chop off the first by relocating brpm->p to right after
1670  * the first '\0' encountered.
1671  */
1672 int remove_arg_zero(struct linux_binprm *bprm)
1673 {
1674 	int ret = 0;
1675 	unsigned long offset;
1676 	char *kaddr;
1677 	struct page *page;
1678 
1679 	if (!bprm->argc)
1680 		return 0;
1681 
1682 	do {
1683 		offset = bprm->p & ~PAGE_MASK;
1684 		page = get_arg_page(bprm, bprm->p, 0);
1685 		if (!page) {
1686 			ret = -EFAULT;
1687 			goto out;
1688 		}
1689 		kaddr = kmap_atomic(page);
1690 
1691 		for (; offset < PAGE_SIZE && kaddr[offset];
1692 				offset++, bprm->p++)
1693 			;
1694 
1695 		kunmap_atomic(kaddr);
1696 		put_arg_page(page);
1697 	} while (offset == PAGE_SIZE);
1698 
1699 	bprm->p++;
1700 	bprm->argc--;
1701 	ret = 0;
1702 
1703 out:
1704 	return ret;
1705 }
1706 EXPORT_SYMBOL(remove_arg_zero);
1707 
1708 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1709 /*
1710  * cycle the list of binary formats handler, until one recognizes the image
1711  */
1712 static int search_binary_handler(struct linux_binprm *bprm)
1713 {
1714 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1715 	struct linux_binfmt *fmt;
1716 	int retval;
1717 
1718 	retval = prepare_binprm(bprm);
1719 	if (retval < 0)
1720 		return retval;
1721 
1722 	retval = security_bprm_check(bprm);
1723 	if (retval)
1724 		return retval;
1725 
1726 	retval = -ENOENT;
1727  retry:
1728 	read_lock(&binfmt_lock);
1729 	list_for_each_entry(fmt, &formats, lh) {
1730 		if (!try_module_get(fmt->module))
1731 			continue;
1732 		read_unlock(&binfmt_lock);
1733 
1734 		retval = fmt->load_binary(bprm);
1735 
1736 		read_lock(&binfmt_lock);
1737 		put_binfmt(fmt);
1738 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1739 			read_unlock(&binfmt_lock);
1740 			return retval;
1741 		}
1742 	}
1743 	read_unlock(&binfmt_lock);
1744 
1745 	if (need_retry) {
1746 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1747 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1748 			return retval;
1749 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1750 			return retval;
1751 		need_retry = false;
1752 		goto retry;
1753 	}
1754 
1755 	return retval;
1756 }
1757 
1758 static int exec_binprm(struct linux_binprm *bprm)
1759 {
1760 	pid_t old_pid, old_vpid;
1761 	int ret, depth;
1762 
1763 	/* Need to fetch pid before load_binary changes it */
1764 	old_pid = current->pid;
1765 	rcu_read_lock();
1766 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1767 	rcu_read_unlock();
1768 
1769 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1770 	for (depth = 0;; depth++) {
1771 		struct file *exec;
1772 		if (depth > 5)
1773 			return -ELOOP;
1774 
1775 		ret = search_binary_handler(bprm);
1776 		if (ret < 0)
1777 			return ret;
1778 		if (!bprm->interpreter)
1779 			break;
1780 
1781 		exec = bprm->file;
1782 		bprm->file = bprm->interpreter;
1783 		bprm->interpreter = NULL;
1784 
1785 		allow_write_access(exec);
1786 		if (unlikely(bprm->have_execfd)) {
1787 			if (bprm->executable) {
1788 				fput(exec);
1789 				return -ENOEXEC;
1790 			}
1791 			bprm->executable = exec;
1792 		} else
1793 			fput(exec);
1794 	}
1795 
1796 	audit_bprm(bprm);
1797 	trace_sched_process_exec(current, old_pid, bprm);
1798 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1799 	proc_exec_connector(current);
1800 	return 0;
1801 }
1802 
1803 /*
1804  * sys_execve() executes a new program.
1805  */
1806 static int bprm_execve(struct linux_binprm *bprm,
1807 		       int fd, struct filename *filename, int flags)
1808 {
1809 	struct file *file;
1810 	int retval;
1811 
1812 	retval = prepare_bprm_creds(bprm);
1813 	if (retval)
1814 		return retval;
1815 
1816 	check_unsafe_exec(bprm);
1817 	current->in_execve = 1;
1818 
1819 	file = do_open_execat(fd, filename, flags);
1820 	retval = PTR_ERR(file);
1821 	if (IS_ERR(file))
1822 		goto out_unmark;
1823 
1824 	sched_exec();
1825 
1826 	bprm->file = file;
1827 	/*
1828 	 * Record that a name derived from an O_CLOEXEC fd will be
1829 	 * inaccessible after exec.  This allows the code in exec to
1830 	 * choose to fail when the executable is not mmaped into the
1831 	 * interpreter and an open file descriptor is not passed to
1832 	 * the interpreter.  This makes for a better user experience
1833 	 * than having the interpreter start and then immediately fail
1834 	 * when it finds the executable is inaccessible.
1835 	 */
1836 	if (bprm->fdpath && get_close_on_exec(fd))
1837 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1838 
1839 	/* Set the unchanging part of bprm->cred */
1840 	retval = security_bprm_creds_for_exec(bprm);
1841 	if (retval)
1842 		goto out;
1843 
1844 	retval = exec_binprm(bprm);
1845 	if (retval < 0)
1846 		goto out;
1847 
1848 	/* execve succeeded */
1849 	current->fs->in_exec = 0;
1850 	current->in_execve = 0;
1851 	rseq_execve(current);
1852 	acct_update_integrals(current);
1853 	task_numa_free(current, false);
1854 	return retval;
1855 
1856 out:
1857 	/*
1858 	 * If past the point of no return ensure the code never
1859 	 * returns to the userspace process.  Use an existing fatal
1860 	 * signal if present otherwise terminate the process with
1861 	 * SIGSEGV.
1862 	 */
1863 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1864 		force_fatal_sig(SIGSEGV);
1865 
1866 out_unmark:
1867 	current->fs->in_exec = 0;
1868 	current->in_execve = 0;
1869 
1870 	return retval;
1871 }
1872 
1873 static int do_execveat_common(int fd, struct filename *filename,
1874 			      struct user_arg_ptr argv,
1875 			      struct user_arg_ptr envp,
1876 			      int flags)
1877 {
1878 	struct linux_binprm *bprm;
1879 	int retval;
1880 
1881 	if (IS_ERR(filename))
1882 		return PTR_ERR(filename);
1883 
1884 	/*
1885 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1886 	 * set*uid() to execve() because too many poorly written programs
1887 	 * don't check setuid() return code.  Here we additionally recheck
1888 	 * whether NPROC limit is still exceeded.
1889 	 */
1890 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1891 	    is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1892 		retval = -EAGAIN;
1893 		goto out_ret;
1894 	}
1895 
1896 	/* We're below the limit (still or again), so we don't want to make
1897 	 * further execve() calls fail. */
1898 	current->flags &= ~PF_NPROC_EXCEEDED;
1899 
1900 	bprm = alloc_bprm(fd, filename);
1901 	if (IS_ERR(bprm)) {
1902 		retval = PTR_ERR(bprm);
1903 		goto out_ret;
1904 	}
1905 
1906 	retval = count(argv, MAX_ARG_STRINGS);
1907 	if (retval == 0)
1908 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1909 			     current->comm, bprm->filename);
1910 	if (retval < 0)
1911 		goto out_free;
1912 	bprm->argc = retval;
1913 
1914 	retval = count(envp, MAX_ARG_STRINGS);
1915 	if (retval < 0)
1916 		goto out_free;
1917 	bprm->envc = retval;
1918 
1919 	retval = bprm_stack_limits(bprm);
1920 	if (retval < 0)
1921 		goto out_free;
1922 
1923 	retval = copy_string_kernel(bprm->filename, bprm);
1924 	if (retval < 0)
1925 		goto out_free;
1926 	bprm->exec = bprm->p;
1927 
1928 	retval = copy_strings(bprm->envc, envp, bprm);
1929 	if (retval < 0)
1930 		goto out_free;
1931 
1932 	retval = copy_strings(bprm->argc, argv, bprm);
1933 	if (retval < 0)
1934 		goto out_free;
1935 
1936 	/*
1937 	 * When argv is empty, add an empty string ("") as argv[0] to
1938 	 * ensure confused userspace programs that start processing
1939 	 * from argv[1] won't end up walking envp. See also
1940 	 * bprm_stack_limits().
1941 	 */
1942 	if (bprm->argc == 0) {
1943 		retval = copy_string_kernel("", bprm);
1944 		if (retval < 0)
1945 			goto out_free;
1946 		bprm->argc = 1;
1947 	}
1948 
1949 	retval = bprm_execve(bprm, fd, filename, flags);
1950 out_free:
1951 	free_bprm(bprm);
1952 
1953 out_ret:
1954 	putname(filename);
1955 	return retval;
1956 }
1957 
1958 int kernel_execve(const char *kernel_filename,
1959 		  const char *const *argv, const char *const *envp)
1960 {
1961 	struct filename *filename;
1962 	struct linux_binprm *bprm;
1963 	int fd = AT_FDCWD;
1964 	int retval;
1965 
1966 	/* It is non-sense for kernel threads to call execve */
1967 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1968 		return -EINVAL;
1969 
1970 	filename = getname_kernel(kernel_filename);
1971 	if (IS_ERR(filename))
1972 		return PTR_ERR(filename);
1973 
1974 	bprm = alloc_bprm(fd, filename);
1975 	if (IS_ERR(bprm)) {
1976 		retval = PTR_ERR(bprm);
1977 		goto out_ret;
1978 	}
1979 
1980 	retval = count_strings_kernel(argv);
1981 	if (WARN_ON_ONCE(retval == 0))
1982 		retval = -EINVAL;
1983 	if (retval < 0)
1984 		goto out_free;
1985 	bprm->argc = retval;
1986 
1987 	retval = count_strings_kernel(envp);
1988 	if (retval < 0)
1989 		goto out_free;
1990 	bprm->envc = retval;
1991 
1992 	retval = bprm_stack_limits(bprm);
1993 	if (retval < 0)
1994 		goto out_free;
1995 
1996 	retval = copy_string_kernel(bprm->filename, bprm);
1997 	if (retval < 0)
1998 		goto out_free;
1999 	bprm->exec = bprm->p;
2000 
2001 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2002 	if (retval < 0)
2003 		goto out_free;
2004 
2005 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2006 	if (retval < 0)
2007 		goto out_free;
2008 
2009 	retval = bprm_execve(bprm, fd, filename, 0);
2010 out_free:
2011 	free_bprm(bprm);
2012 out_ret:
2013 	putname(filename);
2014 	return retval;
2015 }
2016 
2017 static int do_execve(struct filename *filename,
2018 	const char __user *const __user *__argv,
2019 	const char __user *const __user *__envp)
2020 {
2021 	struct user_arg_ptr argv = { .ptr.native = __argv };
2022 	struct user_arg_ptr envp = { .ptr.native = __envp };
2023 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2024 }
2025 
2026 static int do_execveat(int fd, struct filename *filename,
2027 		const char __user *const __user *__argv,
2028 		const char __user *const __user *__envp,
2029 		int flags)
2030 {
2031 	struct user_arg_ptr argv = { .ptr.native = __argv };
2032 	struct user_arg_ptr envp = { .ptr.native = __envp };
2033 
2034 	return do_execveat_common(fd, filename, argv, envp, flags);
2035 }
2036 
2037 #ifdef CONFIG_COMPAT
2038 static int compat_do_execve(struct filename *filename,
2039 	const compat_uptr_t __user *__argv,
2040 	const compat_uptr_t __user *__envp)
2041 {
2042 	struct user_arg_ptr argv = {
2043 		.is_compat = true,
2044 		.ptr.compat = __argv,
2045 	};
2046 	struct user_arg_ptr envp = {
2047 		.is_compat = true,
2048 		.ptr.compat = __envp,
2049 	};
2050 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2051 }
2052 
2053 static int compat_do_execveat(int fd, struct filename *filename,
2054 			      const compat_uptr_t __user *__argv,
2055 			      const compat_uptr_t __user *__envp,
2056 			      int flags)
2057 {
2058 	struct user_arg_ptr argv = {
2059 		.is_compat = true,
2060 		.ptr.compat = __argv,
2061 	};
2062 	struct user_arg_ptr envp = {
2063 		.is_compat = true,
2064 		.ptr.compat = __envp,
2065 	};
2066 	return do_execveat_common(fd, filename, argv, envp, flags);
2067 }
2068 #endif
2069 
2070 void set_binfmt(struct linux_binfmt *new)
2071 {
2072 	struct mm_struct *mm = current->mm;
2073 
2074 	if (mm->binfmt)
2075 		module_put(mm->binfmt->module);
2076 
2077 	mm->binfmt = new;
2078 	if (new)
2079 		__module_get(new->module);
2080 }
2081 EXPORT_SYMBOL(set_binfmt);
2082 
2083 /*
2084  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2085  */
2086 void set_dumpable(struct mm_struct *mm, int value)
2087 {
2088 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2089 		return;
2090 
2091 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2092 }
2093 
2094 SYSCALL_DEFINE3(execve,
2095 		const char __user *, filename,
2096 		const char __user *const __user *, argv,
2097 		const char __user *const __user *, envp)
2098 {
2099 	return do_execve(getname(filename), argv, envp);
2100 }
2101 
2102 SYSCALL_DEFINE5(execveat,
2103 		int, fd, const char __user *, filename,
2104 		const char __user *const __user *, argv,
2105 		const char __user *const __user *, envp,
2106 		int, flags)
2107 {
2108 	return do_execveat(fd,
2109 			   getname_uflags(filename, flags),
2110 			   argv, envp, flags);
2111 }
2112 
2113 #ifdef CONFIG_COMPAT
2114 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2115 	const compat_uptr_t __user *, argv,
2116 	const compat_uptr_t __user *, envp)
2117 {
2118 	return compat_do_execve(getname(filename), argv, envp);
2119 }
2120 
2121 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2122 		       const char __user *, filename,
2123 		       const compat_uptr_t __user *, argv,
2124 		       const compat_uptr_t __user *, envp,
2125 		       int,  flags)
2126 {
2127 	return compat_do_execveat(fd,
2128 				  getname_uflags(filename, flags),
2129 				  argv, envp, flags);
2130 }
2131 #endif
2132 
2133 #ifdef CONFIG_SYSCTL
2134 
2135 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2136 		void *buffer, size_t *lenp, loff_t *ppos)
2137 {
2138 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2139 
2140 	if (!error)
2141 		validate_coredump_safety();
2142 	return error;
2143 }
2144 
2145 static struct ctl_table fs_exec_sysctls[] = {
2146 	{
2147 		.procname	= "suid_dumpable",
2148 		.data		= &suid_dumpable,
2149 		.maxlen		= sizeof(int),
2150 		.mode		= 0644,
2151 		.proc_handler	= proc_dointvec_minmax_coredump,
2152 		.extra1		= SYSCTL_ZERO,
2153 		.extra2		= SYSCTL_TWO,
2154 	},
2155 	{ }
2156 };
2157 
2158 static int __init init_fs_exec_sysctls(void)
2159 {
2160 	register_sysctl_init("fs", fs_exec_sysctls);
2161 	return 0;
2162 }
2163 
2164 fs_initcall(init_fs_exec_sysctls);
2165 #endif /* CONFIG_SYSCTL */
2166