xref: /openbmc/linux/fs/exec.c (revision 64c70b1c)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/pagemap.h>
34 #include <linux/highmem.h>
35 #include <linux/spinlock.h>
36 #include <linux/key.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/signalfd.h>
54 
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 
58 #ifdef CONFIG_KMOD
59 #include <linux/kmod.h>
60 #endif
61 
62 int core_uses_pid;
63 char core_pattern[CORENAME_MAX_SIZE] = "core";
64 int suid_dumpable = 0;
65 
66 EXPORT_SYMBOL(suid_dumpable);
67 /* The maximal length of core_pattern is also specified in sysctl.c */
68 
69 static struct linux_binfmt *formats;
70 static DEFINE_RWLOCK(binfmt_lock);
71 
72 int register_binfmt(struct linux_binfmt * fmt)
73 {
74 	struct linux_binfmt ** tmp = &formats;
75 
76 	if (!fmt)
77 		return -EINVAL;
78 	if (fmt->next)
79 		return -EBUSY;
80 	write_lock(&binfmt_lock);
81 	while (*tmp) {
82 		if (fmt == *tmp) {
83 			write_unlock(&binfmt_lock);
84 			return -EBUSY;
85 		}
86 		tmp = &(*tmp)->next;
87 	}
88 	fmt->next = formats;
89 	formats = fmt;
90 	write_unlock(&binfmt_lock);
91 	return 0;
92 }
93 
94 EXPORT_SYMBOL(register_binfmt);
95 
96 int unregister_binfmt(struct linux_binfmt * fmt)
97 {
98 	struct linux_binfmt ** tmp = &formats;
99 
100 	write_lock(&binfmt_lock);
101 	while (*tmp) {
102 		if (fmt == *tmp) {
103 			*tmp = fmt->next;
104 			fmt->next = NULL;
105 			write_unlock(&binfmt_lock);
106 			return 0;
107 		}
108 		tmp = &(*tmp)->next;
109 	}
110 	write_unlock(&binfmt_lock);
111 	return -EINVAL;
112 }
113 
114 EXPORT_SYMBOL(unregister_binfmt);
115 
116 static inline void put_binfmt(struct linux_binfmt * fmt)
117 {
118 	module_put(fmt->module);
119 }
120 
121 /*
122  * Note that a shared library must be both readable and executable due to
123  * security reasons.
124  *
125  * Also note that we take the address to load from from the file itself.
126  */
127 asmlinkage long sys_uselib(const char __user * library)
128 {
129 	struct file * file;
130 	struct nameidata nd;
131 	int error;
132 
133 	error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
134 	if (error)
135 		goto out;
136 
137 	error = -EACCES;
138 	if (nd.mnt->mnt_flags & MNT_NOEXEC)
139 		goto exit;
140 	error = -EINVAL;
141 	if (!S_ISREG(nd.dentry->d_inode->i_mode))
142 		goto exit;
143 
144 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
145 	if (error)
146 		goto exit;
147 
148 	file = nameidata_to_filp(&nd, O_RDONLY);
149 	error = PTR_ERR(file);
150 	if (IS_ERR(file))
151 		goto out;
152 
153 	error = -ENOEXEC;
154 	if(file->f_op) {
155 		struct linux_binfmt * fmt;
156 
157 		read_lock(&binfmt_lock);
158 		for (fmt = formats ; fmt ; fmt = fmt->next) {
159 			if (!fmt->load_shlib)
160 				continue;
161 			if (!try_module_get(fmt->module))
162 				continue;
163 			read_unlock(&binfmt_lock);
164 			error = fmt->load_shlib(file);
165 			read_lock(&binfmt_lock);
166 			put_binfmt(fmt);
167 			if (error != -ENOEXEC)
168 				break;
169 		}
170 		read_unlock(&binfmt_lock);
171 	}
172 	fput(file);
173 out:
174   	return error;
175 exit:
176 	release_open_intent(&nd);
177 	path_release(&nd);
178 	goto out;
179 }
180 
181 /*
182  * count() counts the number of strings in array ARGV.
183  */
184 static int count(char __user * __user * argv, int max)
185 {
186 	int i = 0;
187 
188 	if (argv != NULL) {
189 		for (;;) {
190 			char __user * p;
191 
192 			if (get_user(p, argv))
193 				return -EFAULT;
194 			if (!p)
195 				break;
196 			argv++;
197 			if(++i > max)
198 				return -E2BIG;
199 			cond_resched();
200 		}
201 	}
202 	return i;
203 }
204 
205 /*
206  * 'copy_strings()' copies argument/environment strings from user
207  * memory to free pages in kernel mem. These are in a format ready
208  * to be put directly into the top of new user memory.
209  */
210 static int copy_strings(int argc, char __user * __user * argv,
211 			struct linux_binprm *bprm)
212 {
213 	struct page *kmapped_page = NULL;
214 	char *kaddr = NULL;
215 	int ret;
216 
217 	while (argc-- > 0) {
218 		char __user *str;
219 		int len;
220 		unsigned long pos;
221 
222 		if (get_user(str, argv+argc) ||
223 				!(len = strnlen_user(str, bprm->p))) {
224 			ret = -EFAULT;
225 			goto out;
226 		}
227 
228 		if (bprm->p < len)  {
229 			ret = -E2BIG;
230 			goto out;
231 		}
232 
233 		bprm->p -= len;
234 		/* XXX: add architecture specific overflow check here. */
235 		pos = bprm->p;
236 
237 		while (len > 0) {
238 			int i, new, err;
239 			int offset, bytes_to_copy;
240 			struct page *page;
241 
242 			offset = pos % PAGE_SIZE;
243 			i = pos/PAGE_SIZE;
244 			page = bprm->page[i];
245 			new = 0;
246 			if (!page) {
247 				page = alloc_page(GFP_HIGHUSER);
248 				bprm->page[i] = page;
249 				if (!page) {
250 					ret = -ENOMEM;
251 					goto out;
252 				}
253 				new = 1;
254 			}
255 
256 			if (page != kmapped_page) {
257 				if (kmapped_page)
258 					kunmap(kmapped_page);
259 				kmapped_page = page;
260 				kaddr = kmap(kmapped_page);
261 			}
262 			if (new && offset)
263 				memset(kaddr, 0, offset);
264 			bytes_to_copy = PAGE_SIZE - offset;
265 			if (bytes_to_copy > len) {
266 				bytes_to_copy = len;
267 				if (new)
268 					memset(kaddr+offset+len, 0,
269 						PAGE_SIZE-offset-len);
270 			}
271 			err = copy_from_user(kaddr+offset, str, bytes_to_copy);
272 			if (err) {
273 				ret = -EFAULT;
274 				goto out;
275 			}
276 
277 			pos += bytes_to_copy;
278 			str += bytes_to_copy;
279 			len -= bytes_to_copy;
280 		}
281 	}
282 	ret = 0;
283 out:
284 	if (kmapped_page)
285 		kunmap(kmapped_page);
286 	return ret;
287 }
288 
289 /*
290  * Like copy_strings, but get argv and its values from kernel memory.
291  */
292 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
293 {
294 	int r;
295 	mm_segment_t oldfs = get_fs();
296 	set_fs(KERNEL_DS);
297 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
298 	set_fs(oldfs);
299 	return r;
300 }
301 
302 EXPORT_SYMBOL(copy_strings_kernel);
303 
304 #ifdef CONFIG_MMU
305 /*
306  * This routine is used to map in a page into an address space: needed by
307  * execve() for the initial stack and environment pages.
308  *
309  * vma->vm_mm->mmap_sem is held for writing.
310  */
311 void install_arg_page(struct vm_area_struct *vma,
312 			struct page *page, unsigned long address)
313 {
314 	struct mm_struct *mm = vma->vm_mm;
315 	pte_t * pte;
316 	spinlock_t *ptl;
317 
318 	if (unlikely(anon_vma_prepare(vma)))
319 		goto out;
320 
321 	flush_dcache_page(page);
322 	pte = get_locked_pte(mm, address, &ptl);
323 	if (!pte)
324 		goto out;
325 	if (!pte_none(*pte)) {
326 		pte_unmap_unlock(pte, ptl);
327 		goto out;
328 	}
329 	inc_mm_counter(mm, anon_rss);
330 	lru_cache_add_active(page);
331 	set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
332 					page, vma->vm_page_prot))));
333 	page_add_new_anon_rmap(page, vma, address);
334 	pte_unmap_unlock(pte, ptl);
335 
336 	/* no need for flush_tlb */
337 	return;
338 out:
339 	__free_page(page);
340 	force_sig(SIGKILL, current);
341 }
342 
343 #define EXTRA_STACK_VM_PAGES	20	/* random */
344 
345 int setup_arg_pages(struct linux_binprm *bprm,
346 		    unsigned long stack_top,
347 		    int executable_stack)
348 {
349 	unsigned long stack_base;
350 	struct vm_area_struct *mpnt;
351 	struct mm_struct *mm = current->mm;
352 	int i, ret;
353 	long arg_size;
354 
355 #ifdef CONFIG_STACK_GROWSUP
356 	/* Move the argument and environment strings to the bottom of the
357 	 * stack space.
358 	 */
359 	int offset, j;
360 	char *to, *from;
361 
362 	/* Start by shifting all the pages down */
363 	i = 0;
364 	for (j = 0; j < MAX_ARG_PAGES; j++) {
365 		struct page *page = bprm->page[j];
366 		if (!page)
367 			continue;
368 		bprm->page[i++] = page;
369 	}
370 
371 	/* Now move them within their pages */
372 	offset = bprm->p % PAGE_SIZE;
373 	to = kmap(bprm->page[0]);
374 	for (j = 1; j < i; j++) {
375 		memmove(to, to + offset, PAGE_SIZE - offset);
376 		from = kmap(bprm->page[j]);
377 		memcpy(to + PAGE_SIZE - offset, from, offset);
378 		kunmap(bprm->page[j - 1]);
379 		to = from;
380 	}
381 	memmove(to, to + offset, PAGE_SIZE - offset);
382 	kunmap(bprm->page[j - 1]);
383 
384 	/* Limit stack size to 1GB */
385 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
386 	if (stack_base > (1 << 30))
387 		stack_base = 1 << 30;
388 	stack_base = PAGE_ALIGN(stack_top - stack_base);
389 
390 	/* Adjust bprm->p to point to the end of the strings. */
391 	bprm->p = stack_base + PAGE_SIZE * i - offset;
392 
393 	mm->arg_start = stack_base;
394 	arg_size = i << PAGE_SHIFT;
395 
396 	/* zero pages that were copied above */
397 	while (i < MAX_ARG_PAGES)
398 		bprm->page[i++] = NULL;
399 #else
400 	stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
401 	stack_base = PAGE_ALIGN(stack_base);
402 	bprm->p += stack_base;
403 	mm->arg_start = bprm->p;
404 	arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
405 #endif
406 
407 	arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
408 
409 	if (bprm->loader)
410 		bprm->loader += stack_base;
411 	bprm->exec += stack_base;
412 
413 	mpnt = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
414 	if (!mpnt)
415 		return -ENOMEM;
416 
417 	down_write(&mm->mmap_sem);
418 	{
419 		mpnt->vm_mm = mm;
420 #ifdef CONFIG_STACK_GROWSUP
421 		mpnt->vm_start = stack_base;
422 		mpnt->vm_end = stack_base + arg_size;
423 #else
424 		mpnt->vm_end = stack_top;
425 		mpnt->vm_start = mpnt->vm_end - arg_size;
426 #endif
427 		/* Adjust stack execute permissions; explicitly enable
428 		 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
429 		 * and leave alone (arch default) otherwise. */
430 		if (unlikely(executable_stack == EXSTACK_ENABLE_X))
431 			mpnt->vm_flags = VM_STACK_FLAGS |  VM_EXEC;
432 		else if (executable_stack == EXSTACK_DISABLE_X)
433 			mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
434 		else
435 			mpnt->vm_flags = VM_STACK_FLAGS;
436 		mpnt->vm_flags |= mm->def_flags;
437 		mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
438 		if ((ret = insert_vm_struct(mm, mpnt))) {
439 			up_write(&mm->mmap_sem);
440 			kmem_cache_free(vm_area_cachep, mpnt);
441 			return ret;
442 		}
443 		mm->stack_vm = mm->total_vm = vma_pages(mpnt);
444 	}
445 
446 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
447 		struct page *page = bprm->page[i];
448 		if (page) {
449 			bprm->page[i] = NULL;
450 			install_arg_page(mpnt, page, stack_base);
451 		}
452 		stack_base += PAGE_SIZE;
453 	}
454 	up_write(&mm->mmap_sem);
455 
456 	return 0;
457 }
458 
459 EXPORT_SYMBOL(setup_arg_pages);
460 
461 #define free_arg_pages(bprm) do { } while (0)
462 
463 #else
464 
465 static inline void free_arg_pages(struct linux_binprm *bprm)
466 {
467 	int i;
468 
469 	for (i = 0; i < MAX_ARG_PAGES; i++) {
470 		if (bprm->page[i])
471 			__free_page(bprm->page[i]);
472 		bprm->page[i] = NULL;
473 	}
474 }
475 
476 #endif /* CONFIG_MMU */
477 
478 struct file *open_exec(const char *name)
479 {
480 	struct nameidata nd;
481 	int err;
482 	struct file *file;
483 
484 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
485 	file = ERR_PTR(err);
486 
487 	if (!err) {
488 		struct inode *inode = nd.dentry->d_inode;
489 		file = ERR_PTR(-EACCES);
490 		if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
491 		    S_ISREG(inode->i_mode)) {
492 			int err = vfs_permission(&nd, MAY_EXEC);
493 			file = ERR_PTR(err);
494 			if (!err) {
495 				file = nameidata_to_filp(&nd, O_RDONLY);
496 				if (!IS_ERR(file)) {
497 					err = deny_write_access(file);
498 					if (err) {
499 						fput(file);
500 						file = ERR_PTR(err);
501 					}
502 				}
503 out:
504 				return file;
505 			}
506 		}
507 		release_open_intent(&nd);
508 		path_release(&nd);
509 	}
510 	goto out;
511 }
512 
513 EXPORT_SYMBOL(open_exec);
514 
515 int kernel_read(struct file *file, unsigned long offset,
516 	char *addr, unsigned long count)
517 {
518 	mm_segment_t old_fs;
519 	loff_t pos = offset;
520 	int result;
521 
522 	old_fs = get_fs();
523 	set_fs(get_ds());
524 	/* The cast to a user pointer is valid due to the set_fs() */
525 	result = vfs_read(file, (void __user *)addr, count, &pos);
526 	set_fs(old_fs);
527 	return result;
528 }
529 
530 EXPORT_SYMBOL(kernel_read);
531 
532 static int exec_mmap(struct mm_struct *mm)
533 {
534 	struct task_struct *tsk;
535 	struct mm_struct * old_mm, *active_mm;
536 
537 	/* Notify parent that we're no longer interested in the old VM */
538 	tsk = current;
539 	old_mm = current->mm;
540 	mm_release(tsk, old_mm);
541 
542 	if (old_mm) {
543 		/*
544 		 * Make sure that if there is a core dump in progress
545 		 * for the old mm, we get out and die instead of going
546 		 * through with the exec.  We must hold mmap_sem around
547 		 * checking core_waiters and changing tsk->mm.  The
548 		 * core-inducing thread will increment core_waiters for
549 		 * each thread whose ->mm == old_mm.
550 		 */
551 		down_read(&old_mm->mmap_sem);
552 		if (unlikely(old_mm->core_waiters)) {
553 			up_read(&old_mm->mmap_sem);
554 			return -EINTR;
555 		}
556 	}
557 	task_lock(tsk);
558 	active_mm = tsk->active_mm;
559 	tsk->mm = mm;
560 	tsk->active_mm = mm;
561 	activate_mm(active_mm, mm);
562 	task_unlock(tsk);
563 	arch_pick_mmap_layout(mm);
564 	if (old_mm) {
565 		up_read(&old_mm->mmap_sem);
566 		BUG_ON(active_mm != old_mm);
567 		mmput(old_mm);
568 		return 0;
569 	}
570 	mmdrop(active_mm);
571 	return 0;
572 }
573 
574 /*
575  * This function makes sure the current process has its own signal table,
576  * so that flush_signal_handlers can later reset the handlers without
577  * disturbing other processes.  (Other processes might share the signal
578  * table via the CLONE_SIGHAND option to clone().)
579  */
580 static int de_thread(struct task_struct *tsk)
581 {
582 	struct signal_struct *sig = tsk->signal;
583 	struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
584 	spinlock_t *lock = &oldsighand->siglock;
585 	struct task_struct *leader = NULL;
586 	int count;
587 
588 	/*
589 	 * Tell all the sighand listeners that this sighand has
590 	 * been detached. The signalfd_detach() function grabs the
591 	 * sighand lock, if signal listeners are present on the sighand.
592 	 */
593 	signalfd_detach(tsk);
594 
595 	/*
596 	 * If we don't share sighandlers, then we aren't sharing anything
597 	 * and we can just re-use it all.
598 	 */
599 	if (atomic_read(&oldsighand->count) <= 1) {
600 		BUG_ON(atomic_read(&sig->count) != 1);
601 		exit_itimers(sig);
602 		return 0;
603 	}
604 
605 	newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
606 	if (!newsighand)
607 		return -ENOMEM;
608 
609 	if (thread_group_empty(tsk))
610 		goto no_thread_group;
611 
612 	/*
613 	 * Kill all other threads in the thread group.
614 	 * We must hold tasklist_lock to call zap_other_threads.
615 	 */
616 	read_lock(&tasklist_lock);
617 	spin_lock_irq(lock);
618 	if (sig->flags & SIGNAL_GROUP_EXIT) {
619 		/*
620 		 * Another group action in progress, just
621 		 * return so that the signal is processed.
622 		 */
623 		spin_unlock_irq(lock);
624 		read_unlock(&tasklist_lock);
625 		kmem_cache_free(sighand_cachep, newsighand);
626 		return -EAGAIN;
627 	}
628 
629 	/*
630 	 * child_reaper ignores SIGKILL, change it now.
631 	 * Reparenting needs write_lock on tasklist_lock,
632 	 * so it is safe to do it under read_lock.
633 	 */
634 	if (unlikely(tsk->group_leader == child_reaper(tsk)))
635 		tsk->nsproxy->pid_ns->child_reaper = tsk;
636 
637 	zap_other_threads(tsk);
638 	read_unlock(&tasklist_lock);
639 
640 	/*
641 	 * Account for the thread group leader hanging around:
642 	 */
643 	count = 1;
644 	if (!thread_group_leader(tsk)) {
645 		count = 2;
646 		/*
647 		 * The SIGALRM timer survives the exec, but needs to point
648 		 * at us as the new group leader now.  We have a race with
649 		 * a timer firing now getting the old leader, so we need to
650 		 * synchronize with any firing (by calling del_timer_sync)
651 		 * before we can safely let the old group leader die.
652 		 */
653 		sig->tsk = tsk;
654 		spin_unlock_irq(lock);
655 		if (hrtimer_cancel(&sig->real_timer))
656 			hrtimer_restart(&sig->real_timer);
657 		spin_lock_irq(lock);
658 	}
659 	while (atomic_read(&sig->count) > count) {
660 		sig->group_exit_task = tsk;
661 		sig->notify_count = count;
662 		__set_current_state(TASK_UNINTERRUPTIBLE);
663 		spin_unlock_irq(lock);
664 		schedule();
665 		spin_lock_irq(lock);
666 	}
667 	sig->group_exit_task = NULL;
668 	sig->notify_count = 0;
669 	spin_unlock_irq(lock);
670 
671 	/*
672 	 * At this point all other threads have exited, all we have to
673 	 * do is to wait for the thread group leader to become inactive,
674 	 * and to assume its PID:
675 	 */
676 	if (!thread_group_leader(tsk)) {
677 		/*
678 		 * Wait for the thread group leader to be a zombie.
679 		 * It should already be zombie at this point, most
680 		 * of the time.
681 		 */
682 		leader = tsk->group_leader;
683 		while (leader->exit_state != EXIT_ZOMBIE)
684 			yield();
685 
686 		/*
687 		 * The only record we have of the real-time age of a
688 		 * process, regardless of execs it's done, is start_time.
689 		 * All the past CPU time is accumulated in signal_struct
690 		 * from sister threads now dead.  But in this non-leader
691 		 * exec, nothing survives from the original leader thread,
692 		 * whose birth marks the true age of this process now.
693 		 * When we take on its identity by switching to its PID, we
694 		 * also take its birthdate (always earlier than our own).
695 		 */
696 		tsk->start_time = leader->start_time;
697 
698 		write_lock_irq(&tasklist_lock);
699 
700 		BUG_ON(leader->tgid != tsk->tgid);
701 		BUG_ON(tsk->pid == tsk->tgid);
702 		/*
703 		 * An exec() starts a new thread group with the
704 		 * TGID of the previous thread group. Rehash the
705 		 * two threads with a switched PID, and release
706 		 * the former thread group leader:
707 		 */
708 
709 		/* Become a process group leader with the old leader's pid.
710 		 * The old leader becomes a thread of the this thread group.
711 		 * Note: The old leader also uses this pid until release_task
712 		 *       is called.  Odd but simple and correct.
713 		 */
714 		detach_pid(tsk, PIDTYPE_PID);
715 		tsk->pid = leader->pid;
716 		attach_pid(tsk, PIDTYPE_PID,  find_pid(tsk->pid));
717 		transfer_pid(leader, tsk, PIDTYPE_PGID);
718 		transfer_pid(leader, tsk, PIDTYPE_SID);
719 		list_replace_rcu(&leader->tasks, &tsk->tasks);
720 
721 		tsk->group_leader = tsk;
722 		leader->group_leader = tsk;
723 
724 		tsk->exit_signal = SIGCHLD;
725 
726 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
727 		leader->exit_state = EXIT_DEAD;
728 
729 		write_unlock_irq(&tasklist_lock);
730         }
731 
732 	/*
733 	 * There may be one thread left which is just exiting,
734 	 * but it's safe to stop telling the group to kill themselves.
735 	 */
736 	sig->flags = 0;
737 
738 no_thread_group:
739 	exit_itimers(sig);
740 	if (leader)
741 		release_task(leader);
742 
743 	BUG_ON(atomic_read(&sig->count) != 1);
744 
745 	if (atomic_read(&oldsighand->count) == 1) {
746 		/*
747 		 * Now that we nuked the rest of the thread group,
748 		 * it turns out we are not sharing sighand any more either.
749 		 * So we can just keep it.
750 		 */
751 		kmem_cache_free(sighand_cachep, newsighand);
752 	} else {
753 		/*
754 		 * Move our state over to newsighand and switch it in.
755 		 */
756 		atomic_set(&newsighand->count, 1);
757 		memcpy(newsighand->action, oldsighand->action,
758 		       sizeof(newsighand->action));
759 
760 		write_lock_irq(&tasklist_lock);
761 		spin_lock(&oldsighand->siglock);
762 		spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING);
763 
764 		rcu_assign_pointer(tsk->sighand, newsighand);
765 		recalc_sigpending();
766 
767 		spin_unlock(&newsighand->siglock);
768 		spin_unlock(&oldsighand->siglock);
769 		write_unlock_irq(&tasklist_lock);
770 
771 		__cleanup_sighand(oldsighand);
772 	}
773 
774 	BUG_ON(!thread_group_leader(tsk));
775 	return 0;
776 }
777 
778 /*
779  * These functions flushes out all traces of the currently running executable
780  * so that a new one can be started
781  */
782 
783 static void flush_old_files(struct files_struct * files)
784 {
785 	long j = -1;
786 	struct fdtable *fdt;
787 
788 	spin_lock(&files->file_lock);
789 	for (;;) {
790 		unsigned long set, i;
791 
792 		j++;
793 		i = j * __NFDBITS;
794 		fdt = files_fdtable(files);
795 		if (i >= fdt->max_fds)
796 			break;
797 		set = fdt->close_on_exec->fds_bits[j];
798 		if (!set)
799 			continue;
800 		fdt->close_on_exec->fds_bits[j] = 0;
801 		spin_unlock(&files->file_lock);
802 		for ( ; set ; i++,set >>= 1) {
803 			if (set & 1) {
804 				sys_close(i);
805 			}
806 		}
807 		spin_lock(&files->file_lock);
808 
809 	}
810 	spin_unlock(&files->file_lock);
811 }
812 
813 void get_task_comm(char *buf, struct task_struct *tsk)
814 {
815 	/* buf must be at least sizeof(tsk->comm) in size */
816 	task_lock(tsk);
817 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
818 	task_unlock(tsk);
819 }
820 
821 void set_task_comm(struct task_struct *tsk, char *buf)
822 {
823 	task_lock(tsk);
824 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
825 	task_unlock(tsk);
826 }
827 
828 int flush_old_exec(struct linux_binprm * bprm)
829 {
830 	char * name;
831 	int i, ch, retval;
832 	struct files_struct *files;
833 	char tcomm[sizeof(current->comm)];
834 
835 	/*
836 	 * Make sure we have a private signal table and that
837 	 * we are unassociated from the previous thread group.
838 	 */
839 	retval = de_thread(current);
840 	if (retval)
841 		goto out;
842 
843 	/*
844 	 * Make sure we have private file handles. Ask the
845 	 * fork helper to do the work for us and the exit
846 	 * helper to do the cleanup of the old one.
847 	 */
848 	files = current->files;		/* refcounted so safe to hold */
849 	retval = unshare_files();
850 	if (retval)
851 		goto out;
852 	/*
853 	 * Release all of the old mmap stuff
854 	 */
855 	retval = exec_mmap(bprm->mm);
856 	if (retval)
857 		goto mmap_failed;
858 
859 	bprm->mm = NULL;		/* We're using it now */
860 
861 	/* This is the point of no return */
862 	put_files_struct(files);
863 
864 	current->sas_ss_sp = current->sas_ss_size = 0;
865 
866 	if (current->euid == current->uid && current->egid == current->gid)
867 		current->mm->dumpable = 1;
868 	else
869 		current->mm->dumpable = suid_dumpable;
870 
871 	name = bprm->filename;
872 
873 	/* Copies the binary name from after last slash */
874 	for (i=0; (ch = *(name++)) != '\0';) {
875 		if (ch == '/')
876 			i = 0; /* overwrite what we wrote */
877 		else
878 			if (i < (sizeof(tcomm) - 1))
879 				tcomm[i++] = ch;
880 	}
881 	tcomm[i] = '\0';
882 	set_task_comm(current, tcomm);
883 
884 	current->flags &= ~PF_RANDOMIZE;
885 	flush_thread();
886 
887 	/* Set the new mm task size. We have to do that late because it may
888 	 * depend on TIF_32BIT which is only updated in flush_thread() on
889 	 * some architectures like powerpc
890 	 */
891 	current->mm->task_size = TASK_SIZE;
892 
893 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
894 	    file_permission(bprm->file, MAY_READ) ||
895 	    (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
896 		suid_keys(current);
897 		current->mm->dumpable = suid_dumpable;
898 	}
899 
900 	/* An exec changes our domain. We are no longer part of the thread
901 	   group */
902 
903 	current->self_exec_id++;
904 
905 	flush_signal_handlers(current, 0);
906 	flush_old_files(current->files);
907 
908 	return 0;
909 
910 mmap_failed:
911 	reset_files_struct(current, files);
912 out:
913 	return retval;
914 }
915 
916 EXPORT_SYMBOL(flush_old_exec);
917 
918 /*
919  * Fill the binprm structure from the inode.
920  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
921  */
922 int prepare_binprm(struct linux_binprm *bprm)
923 {
924 	int mode;
925 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
926 	int retval;
927 
928 	mode = inode->i_mode;
929 	if (bprm->file->f_op == NULL)
930 		return -EACCES;
931 
932 	bprm->e_uid = current->euid;
933 	bprm->e_gid = current->egid;
934 
935 	if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
936 		/* Set-uid? */
937 		if (mode & S_ISUID) {
938 			current->personality &= ~PER_CLEAR_ON_SETID;
939 			bprm->e_uid = inode->i_uid;
940 		}
941 
942 		/* Set-gid? */
943 		/*
944 		 * If setgid is set but no group execute bit then this
945 		 * is a candidate for mandatory locking, not a setgid
946 		 * executable.
947 		 */
948 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
949 			current->personality &= ~PER_CLEAR_ON_SETID;
950 			bprm->e_gid = inode->i_gid;
951 		}
952 	}
953 
954 	/* fill in binprm security blob */
955 	retval = security_bprm_set(bprm);
956 	if (retval)
957 		return retval;
958 
959 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
960 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
961 }
962 
963 EXPORT_SYMBOL(prepare_binprm);
964 
965 static int unsafe_exec(struct task_struct *p)
966 {
967 	int unsafe = 0;
968 	if (p->ptrace & PT_PTRACED) {
969 		if (p->ptrace & PT_PTRACE_CAP)
970 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
971 		else
972 			unsafe |= LSM_UNSAFE_PTRACE;
973 	}
974 	if (atomic_read(&p->fs->count) > 1 ||
975 	    atomic_read(&p->files->count) > 1 ||
976 	    atomic_read(&p->sighand->count) > 1)
977 		unsafe |= LSM_UNSAFE_SHARE;
978 
979 	return unsafe;
980 }
981 
982 void compute_creds(struct linux_binprm *bprm)
983 {
984 	int unsafe;
985 
986 	if (bprm->e_uid != current->uid)
987 		suid_keys(current);
988 	exec_keys(current);
989 
990 	task_lock(current);
991 	unsafe = unsafe_exec(current);
992 	security_bprm_apply_creds(bprm, unsafe);
993 	task_unlock(current);
994 	security_bprm_post_apply_creds(bprm);
995 }
996 EXPORT_SYMBOL(compute_creds);
997 
998 /*
999  * Arguments are '\0' separated strings found at the location bprm->p
1000  * points to; chop off the first by relocating brpm->p to right after
1001  * the first '\0' encountered.
1002  */
1003 void remove_arg_zero(struct linux_binprm *bprm)
1004 {
1005 	if (bprm->argc) {
1006 		char ch;
1007 
1008 		do {
1009 			unsigned long offset;
1010 			unsigned long index;
1011 			char *kaddr;
1012 			struct page *page;
1013 
1014 			offset = bprm->p & ~PAGE_MASK;
1015 			index = bprm->p >> PAGE_SHIFT;
1016 
1017 			page = bprm->page[index];
1018 			kaddr = kmap_atomic(page, KM_USER0);
1019 
1020 			/* run through page until we reach end or find NUL */
1021 			do {
1022 				ch = *(kaddr + offset);
1023 
1024 				/* discard that character... */
1025 				bprm->p++;
1026 				offset++;
1027 			} while (offset < PAGE_SIZE && ch != '\0');
1028 
1029 			kunmap_atomic(kaddr, KM_USER0);
1030 
1031 			/* free the old page */
1032 			if (offset == PAGE_SIZE) {
1033 				__free_page(page);
1034 				bprm->page[index] = NULL;
1035 			}
1036 		} while (ch != '\0');
1037 
1038 		bprm->argc--;
1039 	}
1040 }
1041 EXPORT_SYMBOL(remove_arg_zero);
1042 
1043 /*
1044  * cycle the list of binary formats handler, until one recognizes the image
1045  */
1046 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1047 {
1048 	int try,retval;
1049 	struct linux_binfmt *fmt;
1050 #ifdef __alpha__
1051 	/* handle /sbin/loader.. */
1052 	{
1053 	    struct exec * eh = (struct exec *) bprm->buf;
1054 
1055 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1056 		(eh->fh.f_flags & 0x3000) == 0x3000)
1057 	    {
1058 		struct file * file;
1059 		unsigned long loader;
1060 
1061 		allow_write_access(bprm->file);
1062 		fput(bprm->file);
1063 		bprm->file = NULL;
1064 
1065 	        loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1066 
1067 		file = open_exec("/sbin/loader");
1068 		retval = PTR_ERR(file);
1069 		if (IS_ERR(file))
1070 			return retval;
1071 
1072 		/* Remember if the application is TASO.  */
1073 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1074 
1075 		bprm->file = file;
1076 		bprm->loader = loader;
1077 		retval = prepare_binprm(bprm);
1078 		if (retval<0)
1079 			return retval;
1080 		/* should call search_binary_handler recursively here,
1081 		   but it does not matter */
1082 	    }
1083 	}
1084 #endif
1085 	retval = security_bprm_check(bprm);
1086 	if (retval)
1087 		return retval;
1088 
1089 	/* kernel module loader fixup */
1090 	/* so we don't try to load run modprobe in kernel space. */
1091 	set_fs(USER_DS);
1092 
1093 	retval = audit_bprm(bprm);
1094 	if (retval)
1095 		return retval;
1096 
1097 	retval = -ENOENT;
1098 	for (try=0; try<2; try++) {
1099 		read_lock(&binfmt_lock);
1100 		for (fmt = formats ; fmt ; fmt = fmt->next) {
1101 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1102 			if (!fn)
1103 				continue;
1104 			if (!try_module_get(fmt->module))
1105 				continue;
1106 			read_unlock(&binfmt_lock);
1107 			retval = fn(bprm, regs);
1108 			if (retval >= 0) {
1109 				put_binfmt(fmt);
1110 				allow_write_access(bprm->file);
1111 				if (bprm->file)
1112 					fput(bprm->file);
1113 				bprm->file = NULL;
1114 				current->did_exec = 1;
1115 				proc_exec_connector(current);
1116 				return retval;
1117 			}
1118 			read_lock(&binfmt_lock);
1119 			put_binfmt(fmt);
1120 			if (retval != -ENOEXEC || bprm->mm == NULL)
1121 				break;
1122 			if (!bprm->file) {
1123 				read_unlock(&binfmt_lock);
1124 				return retval;
1125 			}
1126 		}
1127 		read_unlock(&binfmt_lock);
1128 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1129 			break;
1130 #ifdef CONFIG_KMOD
1131 		}else{
1132 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1133 			if (printable(bprm->buf[0]) &&
1134 			    printable(bprm->buf[1]) &&
1135 			    printable(bprm->buf[2]) &&
1136 			    printable(bprm->buf[3]))
1137 				break; /* -ENOEXEC */
1138 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1139 #endif
1140 		}
1141 	}
1142 	return retval;
1143 }
1144 
1145 EXPORT_SYMBOL(search_binary_handler);
1146 
1147 /*
1148  * sys_execve() executes a new program.
1149  */
1150 int do_execve(char * filename,
1151 	char __user *__user *argv,
1152 	char __user *__user *envp,
1153 	struct pt_regs * regs)
1154 {
1155 	struct linux_binprm *bprm;
1156 	struct file *file;
1157 	int retval;
1158 	int i;
1159 
1160 	retval = -ENOMEM;
1161 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1162 	if (!bprm)
1163 		goto out_ret;
1164 
1165 	file = open_exec(filename);
1166 	retval = PTR_ERR(file);
1167 	if (IS_ERR(file))
1168 		goto out_kfree;
1169 
1170 	sched_exec();
1171 
1172 	bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1173 
1174 	bprm->file = file;
1175 	bprm->filename = filename;
1176 	bprm->interp = filename;
1177 	bprm->mm = mm_alloc();
1178 	retval = -ENOMEM;
1179 	if (!bprm->mm)
1180 		goto out_file;
1181 
1182 	retval = init_new_context(current, bprm->mm);
1183 	if (retval < 0)
1184 		goto out_mm;
1185 
1186 	bprm->argc = count(argv, bprm->p / sizeof(void *));
1187 	if ((retval = bprm->argc) < 0)
1188 		goto out_mm;
1189 
1190 	bprm->envc = count(envp, bprm->p / sizeof(void *));
1191 	if ((retval = bprm->envc) < 0)
1192 		goto out_mm;
1193 
1194 	retval = security_bprm_alloc(bprm);
1195 	if (retval)
1196 		goto out;
1197 
1198 	retval = prepare_binprm(bprm);
1199 	if (retval < 0)
1200 		goto out;
1201 
1202 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1203 	if (retval < 0)
1204 		goto out;
1205 
1206 	bprm->exec = bprm->p;
1207 	retval = copy_strings(bprm->envc, envp, bprm);
1208 	if (retval < 0)
1209 		goto out;
1210 
1211 	retval = copy_strings(bprm->argc, argv, bprm);
1212 	if (retval < 0)
1213 		goto out;
1214 
1215 	retval = search_binary_handler(bprm,regs);
1216 	if (retval >= 0) {
1217 		free_arg_pages(bprm);
1218 
1219 		/* execve success */
1220 		security_bprm_free(bprm);
1221 		acct_update_integrals(current);
1222 		kfree(bprm);
1223 		return retval;
1224 	}
1225 
1226 out:
1227 	/* Something went wrong, return the inode and free the argument pages*/
1228 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1229 		struct page * page = bprm->page[i];
1230 		if (page)
1231 			__free_page(page);
1232 	}
1233 
1234 	if (bprm->security)
1235 		security_bprm_free(bprm);
1236 
1237 out_mm:
1238 	if (bprm->mm)
1239 		mmdrop(bprm->mm);
1240 
1241 out_file:
1242 	if (bprm->file) {
1243 		allow_write_access(bprm->file);
1244 		fput(bprm->file);
1245 	}
1246 
1247 out_kfree:
1248 	kfree(bprm);
1249 
1250 out_ret:
1251 	return retval;
1252 }
1253 
1254 int set_binfmt(struct linux_binfmt *new)
1255 {
1256 	struct linux_binfmt *old = current->binfmt;
1257 
1258 	if (new) {
1259 		if (!try_module_get(new->module))
1260 			return -1;
1261 	}
1262 	current->binfmt = new;
1263 	if (old)
1264 		module_put(old->module);
1265 	return 0;
1266 }
1267 
1268 EXPORT_SYMBOL(set_binfmt);
1269 
1270 /* format_corename will inspect the pattern parameter, and output a
1271  * name into corename, which must have space for at least
1272  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1273  */
1274 static int format_corename(char *corename, const char *pattern, long signr)
1275 {
1276 	const char *pat_ptr = pattern;
1277 	char *out_ptr = corename;
1278 	char *const out_end = corename + CORENAME_MAX_SIZE;
1279 	int rc;
1280 	int pid_in_pattern = 0;
1281 	int ispipe = 0;
1282 
1283 	if (*pattern == '|')
1284 		ispipe = 1;
1285 
1286 	/* Repeat as long as we have more pattern to process and more output
1287 	   space */
1288 	while (*pat_ptr) {
1289 		if (*pat_ptr != '%') {
1290 			if (out_ptr == out_end)
1291 				goto out;
1292 			*out_ptr++ = *pat_ptr++;
1293 		} else {
1294 			switch (*++pat_ptr) {
1295 			case 0:
1296 				goto out;
1297 			/* Double percent, output one percent */
1298 			case '%':
1299 				if (out_ptr == out_end)
1300 					goto out;
1301 				*out_ptr++ = '%';
1302 				break;
1303 			/* pid */
1304 			case 'p':
1305 				pid_in_pattern = 1;
1306 				rc = snprintf(out_ptr, out_end - out_ptr,
1307 					      "%d", current->tgid);
1308 				if (rc > out_end - out_ptr)
1309 					goto out;
1310 				out_ptr += rc;
1311 				break;
1312 			/* uid */
1313 			case 'u':
1314 				rc = snprintf(out_ptr, out_end - out_ptr,
1315 					      "%d", current->uid);
1316 				if (rc > out_end - out_ptr)
1317 					goto out;
1318 				out_ptr += rc;
1319 				break;
1320 			/* gid */
1321 			case 'g':
1322 				rc = snprintf(out_ptr, out_end - out_ptr,
1323 					      "%d", current->gid);
1324 				if (rc > out_end - out_ptr)
1325 					goto out;
1326 				out_ptr += rc;
1327 				break;
1328 			/* signal that caused the coredump */
1329 			case 's':
1330 				rc = snprintf(out_ptr, out_end - out_ptr,
1331 					      "%ld", signr);
1332 				if (rc > out_end - out_ptr)
1333 					goto out;
1334 				out_ptr += rc;
1335 				break;
1336 			/* UNIX time of coredump */
1337 			case 't': {
1338 				struct timeval tv;
1339 				do_gettimeofday(&tv);
1340 				rc = snprintf(out_ptr, out_end - out_ptr,
1341 					      "%lu", tv.tv_sec);
1342 				if (rc > out_end - out_ptr)
1343 					goto out;
1344 				out_ptr += rc;
1345 				break;
1346 			}
1347 			/* hostname */
1348 			case 'h':
1349 				down_read(&uts_sem);
1350 				rc = snprintf(out_ptr, out_end - out_ptr,
1351 					      "%s", utsname()->nodename);
1352 				up_read(&uts_sem);
1353 				if (rc > out_end - out_ptr)
1354 					goto out;
1355 				out_ptr += rc;
1356 				break;
1357 			/* executable */
1358 			case 'e':
1359 				rc = snprintf(out_ptr, out_end - out_ptr,
1360 					      "%s", current->comm);
1361 				if (rc > out_end - out_ptr)
1362 					goto out;
1363 				out_ptr += rc;
1364 				break;
1365 			default:
1366 				break;
1367 			}
1368 			++pat_ptr;
1369 		}
1370 	}
1371 	/* Backward compatibility with core_uses_pid:
1372 	 *
1373 	 * If core_pattern does not include a %p (as is the default)
1374 	 * and core_uses_pid is set, then .%pid will be appended to
1375 	 * the filename. Do not do this for piped commands. */
1376 	if (!ispipe && !pid_in_pattern
1377             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1378 		rc = snprintf(out_ptr, out_end - out_ptr,
1379 			      ".%d", current->tgid);
1380 		if (rc > out_end - out_ptr)
1381 			goto out;
1382 		out_ptr += rc;
1383 	}
1384 out:
1385 	*out_ptr = 0;
1386 	return ispipe;
1387 }
1388 
1389 static void zap_process(struct task_struct *start)
1390 {
1391 	struct task_struct *t;
1392 
1393 	start->signal->flags = SIGNAL_GROUP_EXIT;
1394 	start->signal->group_stop_count = 0;
1395 
1396 	t = start;
1397 	do {
1398 		if (t != current && t->mm) {
1399 			t->mm->core_waiters++;
1400 			sigaddset(&t->pending.signal, SIGKILL);
1401 			signal_wake_up(t, 1);
1402 		}
1403 	} while ((t = next_thread(t)) != start);
1404 }
1405 
1406 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1407 				int exit_code)
1408 {
1409 	struct task_struct *g, *p;
1410 	unsigned long flags;
1411 	int err = -EAGAIN;
1412 
1413 	spin_lock_irq(&tsk->sighand->siglock);
1414 	if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1415 		tsk->signal->group_exit_code = exit_code;
1416 		zap_process(tsk);
1417 		err = 0;
1418 	}
1419 	spin_unlock_irq(&tsk->sighand->siglock);
1420 	if (err)
1421 		return err;
1422 
1423 	if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1424 		goto done;
1425 
1426 	rcu_read_lock();
1427 	for_each_process(g) {
1428 		if (g == tsk->group_leader)
1429 			continue;
1430 
1431 		p = g;
1432 		do {
1433 			if (p->mm) {
1434 				if (p->mm == mm) {
1435 					/*
1436 					 * p->sighand can't disappear, but
1437 					 * may be changed by de_thread()
1438 					 */
1439 					lock_task_sighand(p, &flags);
1440 					zap_process(p);
1441 					unlock_task_sighand(p, &flags);
1442 				}
1443 				break;
1444 			}
1445 		} while ((p = next_thread(p)) != g);
1446 	}
1447 	rcu_read_unlock();
1448 done:
1449 	return mm->core_waiters;
1450 }
1451 
1452 static int coredump_wait(int exit_code)
1453 {
1454 	struct task_struct *tsk = current;
1455 	struct mm_struct *mm = tsk->mm;
1456 	struct completion startup_done;
1457 	struct completion *vfork_done;
1458 	int core_waiters;
1459 
1460 	init_completion(&mm->core_done);
1461 	init_completion(&startup_done);
1462 	mm->core_startup_done = &startup_done;
1463 
1464 	core_waiters = zap_threads(tsk, mm, exit_code);
1465 	up_write(&mm->mmap_sem);
1466 
1467 	if (unlikely(core_waiters < 0))
1468 		goto fail;
1469 
1470 	/*
1471 	 * Make sure nobody is waiting for us to release the VM,
1472 	 * otherwise we can deadlock when we wait on each other
1473 	 */
1474 	vfork_done = tsk->vfork_done;
1475 	if (vfork_done) {
1476 		tsk->vfork_done = NULL;
1477 		complete(vfork_done);
1478 	}
1479 
1480 	if (core_waiters)
1481 		wait_for_completion(&startup_done);
1482 fail:
1483 	BUG_ON(mm->core_waiters);
1484 	return core_waiters;
1485 }
1486 
1487 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1488 {
1489 	char corename[CORENAME_MAX_SIZE + 1];
1490 	struct mm_struct *mm = current->mm;
1491 	struct linux_binfmt * binfmt;
1492 	struct inode * inode;
1493 	struct file * file;
1494 	int retval = 0;
1495 	int fsuid = current->fsuid;
1496 	int flag = 0;
1497 	int ispipe = 0;
1498 
1499 	audit_core_dumps(signr);
1500 
1501 	binfmt = current->binfmt;
1502 	if (!binfmt || !binfmt->core_dump)
1503 		goto fail;
1504 	down_write(&mm->mmap_sem);
1505 	if (!mm->dumpable) {
1506 		up_write(&mm->mmap_sem);
1507 		goto fail;
1508 	}
1509 
1510 	/*
1511 	 *	We cannot trust fsuid as being the "true" uid of the
1512 	 *	process nor do we know its entire history. We only know it
1513 	 *	was tainted so we dump it as root in mode 2.
1514 	 */
1515 	if (mm->dumpable == 2) {	/* Setuid core dump mode */
1516 		flag = O_EXCL;		/* Stop rewrite attacks */
1517 		current->fsuid = 0;	/* Dump root private */
1518 	}
1519 	mm->dumpable = 0;
1520 
1521 	retval = coredump_wait(exit_code);
1522 	if (retval < 0)
1523 		goto fail;
1524 
1525 	/*
1526 	 * Clear any false indication of pending signals that might
1527 	 * be seen by the filesystem code called to write the core file.
1528 	 */
1529 	clear_thread_flag(TIF_SIGPENDING);
1530 
1531 	if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1532 		goto fail_unlock;
1533 
1534 	/*
1535 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1536 	 * uses lock_kernel()
1537 	 */
1538  	lock_kernel();
1539 	ispipe = format_corename(corename, core_pattern, signr);
1540 	unlock_kernel();
1541  	if (ispipe) {
1542 		/* SIGPIPE can happen, but it's just never processed */
1543  		if(call_usermodehelper_pipe(corename+1, NULL, NULL, &file)) {
1544  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1545 			       corename);
1546  			goto fail_unlock;
1547  		}
1548  	} else
1549  		file = filp_open(corename,
1550 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1551 				 0600);
1552 	if (IS_ERR(file))
1553 		goto fail_unlock;
1554 	inode = file->f_path.dentry->d_inode;
1555 	if (inode->i_nlink > 1)
1556 		goto close_fail;	/* multiple links - don't dump */
1557 	if (!ispipe && d_unhashed(file->f_path.dentry))
1558 		goto close_fail;
1559 
1560 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1561 	   but keep the previous behaviour for now. */
1562 	if (!ispipe && !S_ISREG(inode->i_mode))
1563 		goto close_fail;
1564 	if (!file->f_op)
1565 		goto close_fail;
1566 	if (!file->f_op->write)
1567 		goto close_fail;
1568 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1569 		goto close_fail;
1570 
1571 	retval = binfmt->core_dump(signr, regs, file);
1572 
1573 	if (retval)
1574 		current->signal->group_exit_code |= 0x80;
1575 close_fail:
1576 	filp_close(file, NULL);
1577 fail_unlock:
1578 	current->fsuid = fsuid;
1579 	complete_all(&mm->core_done);
1580 fail:
1581 	return retval;
1582 }
1583