xref: /openbmc/linux/fs/exec.c (revision 606d099c)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/pagemap.h>
34 #include <linux/highmem.h>
35 #include <linux/spinlock.h>
36 #include <linux/key.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
56 
57 #ifdef CONFIG_KMOD
58 #include <linux/kmod.h>
59 #endif
60 
61 int core_uses_pid;
62 char core_pattern[128] = "core";
63 int suid_dumpable = 0;
64 
65 EXPORT_SYMBOL(suid_dumpable);
66 /* The maximal length of core_pattern is also specified in sysctl.c */
67 
68 static struct linux_binfmt *formats;
69 static DEFINE_RWLOCK(binfmt_lock);
70 
71 int register_binfmt(struct linux_binfmt * fmt)
72 {
73 	struct linux_binfmt ** tmp = &formats;
74 
75 	if (!fmt)
76 		return -EINVAL;
77 	if (fmt->next)
78 		return -EBUSY;
79 	write_lock(&binfmt_lock);
80 	while (*tmp) {
81 		if (fmt == *tmp) {
82 			write_unlock(&binfmt_lock);
83 			return -EBUSY;
84 		}
85 		tmp = &(*tmp)->next;
86 	}
87 	fmt->next = formats;
88 	formats = fmt;
89 	write_unlock(&binfmt_lock);
90 	return 0;
91 }
92 
93 EXPORT_SYMBOL(register_binfmt);
94 
95 int unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 	struct linux_binfmt ** tmp = &formats;
98 
99 	write_lock(&binfmt_lock);
100 	while (*tmp) {
101 		if (fmt == *tmp) {
102 			*tmp = fmt->next;
103 			write_unlock(&binfmt_lock);
104 			return 0;
105 		}
106 		tmp = &(*tmp)->next;
107 	}
108 	write_unlock(&binfmt_lock);
109 	return -EINVAL;
110 }
111 
112 EXPORT_SYMBOL(unregister_binfmt);
113 
114 static inline void put_binfmt(struct linux_binfmt * fmt)
115 {
116 	module_put(fmt->module);
117 }
118 
119 /*
120  * Note that a shared library must be both readable and executable due to
121  * security reasons.
122  *
123  * Also note that we take the address to load from from the file itself.
124  */
125 asmlinkage long sys_uselib(const char __user * library)
126 {
127 	struct file * file;
128 	struct nameidata nd;
129 	int error;
130 
131 	error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
132 	if (error)
133 		goto out;
134 
135 	error = -EINVAL;
136 	if (!S_ISREG(nd.dentry->d_inode->i_mode))
137 		goto exit;
138 
139 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
140 	if (error)
141 		goto exit;
142 
143 	file = nameidata_to_filp(&nd, O_RDONLY);
144 	error = PTR_ERR(file);
145 	if (IS_ERR(file))
146 		goto out;
147 
148 	error = -ENOEXEC;
149 	if(file->f_op) {
150 		struct linux_binfmt * fmt;
151 
152 		read_lock(&binfmt_lock);
153 		for (fmt = formats ; fmt ; fmt = fmt->next) {
154 			if (!fmt->load_shlib)
155 				continue;
156 			if (!try_module_get(fmt->module))
157 				continue;
158 			read_unlock(&binfmt_lock);
159 			error = fmt->load_shlib(file);
160 			read_lock(&binfmt_lock);
161 			put_binfmt(fmt);
162 			if (error != -ENOEXEC)
163 				break;
164 		}
165 		read_unlock(&binfmt_lock);
166 	}
167 	fput(file);
168 out:
169   	return error;
170 exit:
171 	release_open_intent(&nd);
172 	path_release(&nd);
173 	goto out;
174 }
175 
176 /*
177  * count() counts the number of strings in array ARGV.
178  */
179 static int count(char __user * __user * argv, int max)
180 {
181 	int i = 0;
182 
183 	if (argv != NULL) {
184 		for (;;) {
185 			char __user * p;
186 
187 			if (get_user(p, argv))
188 				return -EFAULT;
189 			if (!p)
190 				break;
191 			argv++;
192 			if(++i > max)
193 				return -E2BIG;
194 			cond_resched();
195 		}
196 	}
197 	return i;
198 }
199 
200 /*
201  * 'copy_strings()' copies argument/environment strings from user
202  * memory to free pages in kernel mem. These are in a format ready
203  * to be put directly into the top of new user memory.
204  */
205 static int copy_strings(int argc, char __user * __user * argv,
206 			struct linux_binprm *bprm)
207 {
208 	struct page *kmapped_page = NULL;
209 	char *kaddr = NULL;
210 	int ret;
211 
212 	while (argc-- > 0) {
213 		char __user *str;
214 		int len;
215 		unsigned long pos;
216 
217 		if (get_user(str, argv+argc) ||
218 				!(len = strnlen_user(str, bprm->p))) {
219 			ret = -EFAULT;
220 			goto out;
221 		}
222 
223 		if (bprm->p < len)  {
224 			ret = -E2BIG;
225 			goto out;
226 		}
227 
228 		bprm->p -= len;
229 		/* XXX: add architecture specific overflow check here. */
230 		pos = bprm->p;
231 
232 		while (len > 0) {
233 			int i, new, err;
234 			int offset, bytes_to_copy;
235 			struct page *page;
236 
237 			offset = pos % PAGE_SIZE;
238 			i = pos/PAGE_SIZE;
239 			page = bprm->page[i];
240 			new = 0;
241 			if (!page) {
242 				page = alloc_page(GFP_HIGHUSER);
243 				bprm->page[i] = page;
244 				if (!page) {
245 					ret = -ENOMEM;
246 					goto out;
247 				}
248 				new = 1;
249 			}
250 
251 			if (page != kmapped_page) {
252 				if (kmapped_page)
253 					kunmap(kmapped_page);
254 				kmapped_page = page;
255 				kaddr = kmap(kmapped_page);
256 			}
257 			if (new && offset)
258 				memset(kaddr, 0, offset);
259 			bytes_to_copy = PAGE_SIZE - offset;
260 			if (bytes_to_copy > len) {
261 				bytes_to_copy = len;
262 				if (new)
263 					memset(kaddr+offset+len, 0,
264 						PAGE_SIZE-offset-len);
265 			}
266 			err = copy_from_user(kaddr+offset, str, bytes_to_copy);
267 			if (err) {
268 				ret = -EFAULT;
269 				goto out;
270 			}
271 
272 			pos += bytes_to_copy;
273 			str += bytes_to_copy;
274 			len -= bytes_to_copy;
275 		}
276 	}
277 	ret = 0;
278 out:
279 	if (kmapped_page)
280 		kunmap(kmapped_page);
281 	return ret;
282 }
283 
284 /*
285  * Like copy_strings, but get argv and its values from kernel memory.
286  */
287 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
288 {
289 	int r;
290 	mm_segment_t oldfs = get_fs();
291 	set_fs(KERNEL_DS);
292 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
293 	set_fs(oldfs);
294 	return r;
295 }
296 
297 EXPORT_SYMBOL(copy_strings_kernel);
298 
299 #ifdef CONFIG_MMU
300 /*
301  * This routine is used to map in a page into an address space: needed by
302  * execve() for the initial stack and environment pages.
303  *
304  * vma->vm_mm->mmap_sem is held for writing.
305  */
306 void install_arg_page(struct vm_area_struct *vma,
307 			struct page *page, unsigned long address)
308 {
309 	struct mm_struct *mm = vma->vm_mm;
310 	pte_t * pte;
311 	spinlock_t *ptl;
312 
313 	if (unlikely(anon_vma_prepare(vma)))
314 		goto out;
315 
316 	flush_dcache_page(page);
317 	pte = get_locked_pte(mm, address, &ptl);
318 	if (!pte)
319 		goto out;
320 	if (!pte_none(*pte)) {
321 		pte_unmap_unlock(pte, ptl);
322 		goto out;
323 	}
324 	inc_mm_counter(mm, anon_rss);
325 	lru_cache_add_active(page);
326 	set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
327 					page, vma->vm_page_prot))));
328 	page_add_new_anon_rmap(page, vma, address);
329 	pte_unmap_unlock(pte, ptl);
330 
331 	/* no need for flush_tlb */
332 	return;
333 out:
334 	__free_page(page);
335 	force_sig(SIGKILL, current);
336 }
337 
338 #define EXTRA_STACK_VM_PAGES	20	/* random */
339 
340 int setup_arg_pages(struct linux_binprm *bprm,
341 		    unsigned long stack_top,
342 		    int executable_stack)
343 {
344 	unsigned long stack_base;
345 	struct vm_area_struct *mpnt;
346 	struct mm_struct *mm = current->mm;
347 	int i, ret;
348 	long arg_size;
349 
350 #ifdef CONFIG_STACK_GROWSUP
351 	/* Move the argument and environment strings to the bottom of the
352 	 * stack space.
353 	 */
354 	int offset, j;
355 	char *to, *from;
356 
357 	/* Start by shifting all the pages down */
358 	i = 0;
359 	for (j = 0; j < MAX_ARG_PAGES; j++) {
360 		struct page *page = bprm->page[j];
361 		if (!page)
362 			continue;
363 		bprm->page[i++] = page;
364 	}
365 
366 	/* Now move them within their pages */
367 	offset = bprm->p % PAGE_SIZE;
368 	to = kmap(bprm->page[0]);
369 	for (j = 1; j < i; j++) {
370 		memmove(to, to + offset, PAGE_SIZE - offset);
371 		from = kmap(bprm->page[j]);
372 		memcpy(to + PAGE_SIZE - offset, from, offset);
373 		kunmap(bprm->page[j - 1]);
374 		to = from;
375 	}
376 	memmove(to, to + offset, PAGE_SIZE - offset);
377 	kunmap(bprm->page[j - 1]);
378 
379 	/* Limit stack size to 1GB */
380 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
381 	if (stack_base > (1 << 30))
382 		stack_base = 1 << 30;
383 	stack_base = PAGE_ALIGN(stack_top - stack_base);
384 
385 	/* Adjust bprm->p to point to the end of the strings. */
386 	bprm->p = stack_base + PAGE_SIZE * i - offset;
387 
388 	mm->arg_start = stack_base;
389 	arg_size = i << PAGE_SHIFT;
390 
391 	/* zero pages that were copied above */
392 	while (i < MAX_ARG_PAGES)
393 		bprm->page[i++] = NULL;
394 #else
395 	stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
396 	stack_base = PAGE_ALIGN(stack_base);
397 	bprm->p += stack_base;
398 	mm->arg_start = bprm->p;
399 	arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
400 #endif
401 
402 	arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
403 
404 	if (bprm->loader)
405 		bprm->loader += stack_base;
406 	bprm->exec += stack_base;
407 
408 	mpnt = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
409 	if (!mpnt)
410 		return -ENOMEM;
411 
412 	memset(mpnt, 0, sizeof(*mpnt));
413 
414 	down_write(&mm->mmap_sem);
415 	{
416 		mpnt->vm_mm = mm;
417 #ifdef CONFIG_STACK_GROWSUP
418 		mpnt->vm_start = stack_base;
419 		mpnt->vm_end = stack_base + arg_size;
420 #else
421 		mpnt->vm_end = stack_top;
422 		mpnt->vm_start = mpnt->vm_end - arg_size;
423 #endif
424 		/* Adjust stack execute permissions; explicitly enable
425 		 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
426 		 * and leave alone (arch default) otherwise. */
427 		if (unlikely(executable_stack == EXSTACK_ENABLE_X))
428 			mpnt->vm_flags = VM_STACK_FLAGS |  VM_EXEC;
429 		else if (executable_stack == EXSTACK_DISABLE_X)
430 			mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
431 		else
432 			mpnt->vm_flags = VM_STACK_FLAGS;
433 		mpnt->vm_flags |= mm->def_flags;
434 		mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
435 		if ((ret = insert_vm_struct(mm, mpnt))) {
436 			up_write(&mm->mmap_sem);
437 			kmem_cache_free(vm_area_cachep, mpnt);
438 			return ret;
439 		}
440 		mm->stack_vm = mm->total_vm = vma_pages(mpnt);
441 	}
442 
443 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
444 		struct page *page = bprm->page[i];
445 		if (page) {
446 			bprm->page[i] = NULL;
447 			install_arg_page(mpnt, page, stack_base);
448 		}
449 		stack_base += PAGE_SIZE;
450 	}
451 	up_write(&mm->mmap_sem);
452 
453 	return 0;
454 }
455 
456 EXPORT_SYMBOL(setup_arg_pages);
457 
458 #define free_arg_pages(bprm) do { } while (0)
459 
460 #else
461 
462 static inline void free_arg_pages(struct linux_binprm *bprm)
463 {
464 	int i;
465 
466 	for (i = 0; i < MAX_ARG_PAGES; i++) {
467 		if (bprm->page[i])
468 			__free_page(bprm->page[i]);
469 		bprm->page[i] = NULL;
470 	}
471 }
472 
473 #endif /* CONFIG_MMU */
474 
475 struct file *open_exec(const char *name)
476 {
477 	struct nameidata nd;
478 	int err;
479 	struct file *file;
480 
481 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
482 	file = ERR_PTR(err);
483 
484 	if (!err) {
485 		struct inode *inode = nd.dentry->d_inode;
486 		file = ERR_PTR(-EACCES);
487 		if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
488 		    S_ISREG(inode->i_mode)) {
489 			int err = vfs_permission(&nd, MAY_EXEC);
490 			file = ERR_PTR(err);
491 			if (!err) {
492 				file = nameidata_to_filp(&nd, O_RDONLY);
493 				if (!IS_ERR(file)) {
494 					err = deny_write_access(file);
495 					if (err) {
496 						fput(file);
497 						file = ERR_PTR(err);
498 					}
499 				}
500 out:
501 				return file;
502 			}
503 		}
504 		release_open_intent(&nd);
505 		path_release(&nd);
506 	}
507 	goto out;
508 }
509 
510 EXPORT_SYMBOL(open_exec);
511 
512 int kernel_read(struct file *file, unsigned long offset,
513 	char *addr, unsigned long count)
514 {
515 	mm_segment_t old_fs;
516 	loff_t pos = offset;
517 	int result;
518 
519 	old_fs = get_fs();
520 	set_fs(get_ds());
521 	/* The cast to a user pointer is valid due to the set_fs() */
522 	result = vfs_read(file, (void __user *)addr, count, &pos);
523 	set_fs(old_fs);
524 	return result;
525 }
526 
527 EXPORT_SYMBOL(kernel_read);
528 
529 static int exec_mmap(struct mm_struct *mm)
530 {
531 	struct task_struct *tsk;
532 	struct mm_struct * old_mm, *active_mm;
533 
534 	/* Notify parent that we're no longer interested in the old VM */
535 	tsk = current;
536 	old_mm = current->mm;
537 	mm_release(tsk, old_mm);
538 
539 	if (old_mm) {
540 		/*
541 		 * Make sure that if there is a core dump in progress
542 		 * for the old mm, we get out and die instead of going
543 		 * through with the exec.  We must hold mmap_sem around
544 		 * checking core_waiters and changing tsk->mm.  The
545 		 * core-inducing thread will increment core_waiters for
546 		 * each thread whose ->mm == old_mm.
547 		 */
548 		down_read(&old_mm->mmap_sem);
549 		if (unlikely(old_mm->core_waiters)) {
550 			up_read(&old_mm->mmap_sem);
551 			return -EINTR;
552 		}
553 	}
554 	task_lock(tsk);
555 	active_mm = tsk->active_mm;
556 	tsk->mm = mm;
557 	tsk->active_mm = mm;
558 	activate_mm(active_mm, mm);
559 	task_unlock(tsk);
560 	arch_pick_mmap_layout(mm);
561 	if (old_mm) {
562 		up_read(&old_mm->mmap_sem);
563 		BUG_ON(active_mm != old_mm);
564 		mmput(old_mm);
565 		return 0;
566 	}
567 	mmdrop(active_mm);
568 	return 0;
569 }
570 
571 /*
572  * This function makes sure the current process has its own signal table,
573  * so that flush_signal_handlers can later reset the handlers without
574  * disturbing other processes.  (Other processes might share the signal
575  * table via the CLONE_SIGHAND option to clone().)
576  */
577 static int de_thread(struct task_struct *tsk)
578 {
579 	struct signal_struct *sig = tsk->signal;
580 	struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
581 	spinlock_t *lock = &oldsighand->siglock;
582 	struct task_struct *leader = NULL;
583 	int count;
584 
585 	/*
586 	 * If we don't share sighandlers, then we aren't sharing anything
587 	 * and we can just re-use it all.
588 	 */
589 	if (atomic_read(&oldsighand->count) <= 1) {
590 		BUG_ON(atomic_read(&sig->count) != 1);
591 		exit_itimers(sig);
592 		return 0;
593 	}
594 
595 	newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
596 	if (!newsighand)
597 		return -ENOMEM;
598 
599 	if (thread_group_empty(tsk))
600 		goto no_thread_group;
601 
602 	/*
603 	 * Kill all other threads in the thread group.
604 	 * We must hold tasklist_lock to call zap_other_threads.
605 	 */
606 	read_lock(&tasklist_lock);
607 	spin_lock_irq(lock);
608 	if (sig->flags & SIGNAL_GROUP_EXIT) {
609 		/*
610 		 * Another group action in progress, just
611 		 * return so that the signal is processed.
612 		 */
613 		spin_unlock_irq(lock);
614 		read_unlock(&tasklist_lock);
615 		kmem_cache_free(sighand_cachep, newsighand);
616 		return -EAGAIN;
617 	}
618 
619 	/*
620 	 * child_reaper ignores SIGKILL, change it now.
621 	 * Reparenting needs write_lock on tasklist_lock,
622 	 * so it is safe to do it under read_lock.
623 	 */
624 	if (unlikely(tsk->group_leader == child_reaper(tsk)))
625 		tsk->nsproxy->pid_ns->child_reaper = tsk;
626 
627 	zap_other_threads(tsk);
628 	read_unlock(&tasklist_lock);
629 
630 	/*
631 	 * Account for the thread group leader hanging around:
632 	 */
633 	count = 1;
634 	if (!thread_group_leader(tsk)) {
635 		count = 2;
636 		/*
637 		 * The SIGALRM timer survives the exec, but needs to point
638 		 * at us as the new group leader now.  We have a race with
639 		 * a timer firing now getting the old leader, so we need to
640 		 * synchronize with any firing (by calling del_timer_sync)
641 		 * before we can safely let the old group leader die.
642 		 */
643 		sig->tsk = tsk;
644 		spin_unlock_irq(lock);
645 		if (hrtimer_cancel(&sig->real_timer))
646 			hrtimer_restart(&sig->real_timer);
647 		spin_lock_irq(lock);
648 	}
649 	while (atomic_read(&sig->count) > count) {
650 		sig->group_exit_task = tsk;
651 		sig->notify_count = count;
652 		__set_current_state(TASK_UNINTERRUPTIBLE);
653 		spin_unlock_irq(lock);
654 		schedule();
655 		spin_lock_irq(lock);
656 	}
657 	sig->group_exit_task = NULL;
658 	sig->notify_count = 0;
659 	spin_unlock_irq(lock);
660 
661 	/*
662 	 * At this point all other threads have exited, all we have to
663 	 * do is to wait for the thread group leader to become inactive,
664 	 * and to assume its PID:
665 	 */
666 	if (!thread_group_leader(tsk)) {
667 		/*
668 		 * Wait for the thread group leader to be a zombie.
669 		 * It should already be zombie at this point, most
670 		 * of the time.
671 		 */
672 		leader = tsk->group_leader;
673 		while (leader->exit_state != EXIT_ZOMBIE)
674 			yield();
675 
676 		/*
677 		 * The only record we have of the real-time age of a
678 		 * process, regardless of execs it's done, is start_time.
679 		 * All the past CPU time is accumulated in signal_struct
680 		 * from sister threads now dead.  But in this non-leader
681 		 * exec, nothing survives from the original leader thread,
682 		 * whose birth marks the true age of this process now.
683 		 * When we take on its identity by switching to its PID, we
684 		 * also take its birthdate (always earlier than our own).
685 		 */
686 		tsk->start_time = leader->start_time;
687 
688 		write_lock_irq(&tasklist_lock);
689 
690 		BUG_ON(leader->tgid != tsk->tgid);
691 		BUG_ON(tsk->pid == tsk->tgid);
692 		/*
693 		 * An exec() starts a new thread group with the
694 		 * TGID of the previous thread group. Rehash the
695 		 * two threads with a switched PID, and release
696 		 * the former thread group leader:
697 		 */
698 
699 		/* Become a process group leader with the old leader's pid.
700 		 * The old leader becomes a thread of the this thread group.
701 		 * Note: The old leader also uses this pid until release_task
702 		 *       is called.  Odd but simple and correct.
703 		 */
704 		detach_pid(tsk, PIDTYPE_PID);
705 		tsk->pid = leader->pid;
706 		attach_pid(tsk, PIDTYPE_PID,  tsk->pid);
707 		transfer_pid(leader, tsk, PIDTYPE_PGID);
708 		transfer_pid(leader, tsk, PIDTYPE_SID);
709 		list_replace_rcu(&leader->tasks, &tsk->tasks);
710 
711 		tsk->group_leader = tsk;
712 		leader->group_leader = tsk;
713 
714 		tsk->exit_signal = SIGCHLD;
715 
716 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
717 		leader->exit_state = EXIT_DEAD;
718 
719 		write_unlock_irq(&tasklist_lock);
720         }
721 
722 	/*
723 	 * There may be one thread left which is just exiting,
724 	 * but it's safe to stop telling the group to kill themselves.
725 	 */
726 	sig->flags = 0;
727 
728 no_thread_group:
729 	exit_itimers(sig);
730 	if (leader)
731 		release_task(leader);
732 
733 	BUG_ON(atomic_read(&sig->count) != 1);
734 
735 	if (atomic_read(&oldsighand->count) == 1) {
736 		/*
737 		 * Now that we nuked the rest of the thread group,
738 		 * it turns out we are not sharing sighand any more either.
739 		 * So we can just keep it.
740 		 */
741 		kmem_cache_free(sighand_cachep, newsighand);
742 	} else {
743 		/*
744 		 * Move our state over to newsighand and switch it in.
745 		 */
746 		atomic_set(&newsighand->count, 1);
747 		memcpy(newsighand->action, oldsighand->action,
748 		       sizeof(newsighand->action));
749 
750 		write_lock_irq(&tasklist_lock);
751 		spin_lock(&oldsighand->siglock);
752 		spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING);
753 
754 		rcu_assign_pointer(tsk->sighand, newsighand);
755 		recalc_sigpending();
756 
757 		spin_unlock(&newsighand->siglock);
758 		spin_unlock(&oldsighand->siglock);
759 		write_unlock_irq(&tasklist_lock);
760 
761 		if (atomic_dec_and_test(&oldsighand->count))
762 			kmem_cache_free(sighand_cachep, oldsighand);
763 	}
764 
765 	BUG_ON(!thread_group_leader(tsk));
766 	return 0;
767 }
768 
769 /*
770  * These functions flushes out all traces of the currently running executable
771  * so that a new one can be started
772  */
773 
774 static void flush_old_files(struct files_struct * files)
775 {
776 	long j = -1;
777 	struct fdtable *fdt;
778 
779 	spin_lock(&files->file_lock);
780 	for (;;) {
781 		unsigned long set, i;
782 
783 		j++;
784 		i = j * __NFDBITS;
785 		fdt = files_fdtable(files);
786 		if (i >= fdt->max_fds || i >= fdt->max_fdset)
787 			break;
788 		set = fdt->close_on_exec->fds_bits[j];
789 		if (!set)
790 			continue;
791 		fdt->close_on_exec->fds_bits[j] = 0;
792 		spin_unlock(&files->file_lock);
793 		for ( ; set ; i++,set >>= 1) {
794 			if (set & 1) {
795 				sys_close(i);
796 			}
797 		}
798 		spin_lock(&files->file_lock);
799 
800 	}
801 	spin_unlock(&files->file_lock);
802 }
803 
804 void get_task_comm(char *buf, struct task_struct *tsk)
805 {
806 	/* buf must be at least sizeof(tsk->comm) in size */
807 	task_lock(tsk);
808 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
809 	task_unlock(tsk);
810 }
811 
812 void set_task_comm(struct task_struct *tsk, char *buf)
813 {
814 	task_lock(tsk);
815 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
816 	task_unlock(tsk);
817 }
818 
819 int flush_old_exec(struct linux_binprm * bprm)
820 {
821 	char * name;
822 	int i, ch, retval;
823 	struct files_struct *files;
824 	char tcomm[sizeof(current->comm)];
825 
826 	/*
827 	 * Make sure we have a private signal table and that
828 	 * we are unassociated from the previous thread group.
829 	 */
830 	retval = de_thread(current);
831 	if (retval)
832 		goto out;
833 
834 	/*
835 	 * Make sure we have private file handles. Ask the
836 	 * fork helper to do the work for us and the exit
837 	 * helper to do the cleanup of the old one.
838 	 */
839 	files = current->files;		/* refcounted so safe to hold */
840 	retval = unshare_files();
841 	if (retval)
842 		goto out;
843 	/*
844 	 * Release all of the old mmap stuff
845 	 */
846 	retval = exec_mmap(bprm->mm);
847 	if (retval)
848 		goto mmap_failed;
849 
850 	bprm->mm = NULL;		/* We're using it now */
851 
852 	/* This is the point of no return */
853 	put_files_struct(files);
854 
855 	current->sas_ss_sp = current->sas_ss_size = 0;
856 
857 	if (current->euid == current->uid && current->egid == current->gid)
858 		current->mm->dumpable = 1;
859 	else
860 		current->mm->dumpable = suid_dumpable;
861 
862 	name = bprm->filename;
863 
864 	/* Copies the binary name from after last slash */
865 	for (i=0; (ch = *(name++)) != '\0';) {
866 		if (ch == '/')
867 			i = 0; /* overwrite what we wrote */
868 		else
869 			if (i < (sizeof(tcomm) - 1))
870 				tcomm[i++] = ch;
871 	}
872 	tcomm[i] = '\0';
873 	set_task_comm(current, tcomm);
874 
875 	current->flags &= ~PF_RANDOMIZE;
876 	flush_thread();
877 
878 	/* Set the new mm task size. We have to do that late because it may
879 	 * depend on TIF_32BIT which is only updated in flush_thread() on
880 	 * some architectures like powerpc
881 	 */
882 	current->mm->task_size = TASK_SIZE;
883 
884 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
885 	    file_permission(bprm->file, MAY_READ) ||
886 	    (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
887 		suid_keys(current);
888 		current->mm->dumpable = suid_dumpable;
889 	}
890 
891 	/* An exec changes our domain. We are no longer part of the thread
892 	   group */
893 
894 	current->self_exec_id++;
895 
896 	flush_signal_handlers(current, 0);
897 	flush_old_files(current->files);
898 
899 	return 0;
900 
901 mmap_failed:
902 	reset_files_struct(current, files);
903 out:
904 	return retval;
905 }
906 
907 EXPORT_SYMBOL(flush_old_exec);
908 
909 /*
910  * Fill the binprm structure from the inode.
911  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
912  */
913 int prepare_binprm(struct linux_binprm *bprm)
914 {
915 	int mode;
916 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
917 	int retval;
918 
919 	mode = inode->i_mode;
920 	if (bprm->file->f_op == NULL)
921 		return -EACCES;
922 
923 	bprm->e_uid = current->euid;
924 	bprm->e_gid = current->egid;
925 
926 	if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
927 		/* Set-uid? */
928 		if (mode & S_ISUID) {
929 			current->personality &= ~PER_CLEAR_ON_SETID;
930 			bprm->e_uid = inode->i_uid;
931 		}
932 
933 		/* Set-gid? */
934 		/*
935 		 * If setgid is set but no group execute bit then this
936 		 * is a candidate for mandatory locking, not a setgid
937 		 * executable.
938 		 */
939 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
940 			current->personality &= ~PER_CLEAR_ON_SETID;
941 			bprm->e_gid = inode->i_gid;
942 		}
943 	}
944 
945 	/* fill in binprm security blob */
946 	retval = security_bprm_set(bprm);
947 	if (retval)
948 		return retval;
949 
950 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
951 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
952 }
953 
954 EXPORT_SYMBOL(prepare_binprm);
955 
956 static int unsafe_exec(struct task_struct *p)
957 {
958 	int unsafe = 0;
959 	if (p->ptrace & PT_PTRACED) {
960 		if (p->ptrace & PT_PTRACE_CAP)
961 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
962 		else
963 			unsafe |= LSM_UNSAFE_PTRACE;
964 	}
965 	if (atomic_read(&p->fs->count) > 1 ||
966 	    atomic_read(&p->files->count) > 1 ||
967 	    atomic_read(&p->sighand->count) > 1)
968 		unsafe |= LSM_UNSAFE_SHARE;
969 
970 	return unsafe;
971 }
972 
973 void compute_creds(struct linux_binprm *bprm)
974 {
975 	int unsafe;
976 
977 	if (bprm->e_uid != current->uid)
978 		suid_keys(current);
979 	exec_keys(current);
980 
981 	task_lock(current);
982 	unsafe = unsafe_exec(current);
983 	security_bprm_apply_creds(bprm, unsafe);
984 	task_unlock(current);
985 	security_bprm_post_apply_creds(bprm);
986 }
987 
988 EXPORT_SYMBOL(compute_creds);
989 
990 void remove_arg_zero(struct linux_binprm *bprm)
991 {
992 	if (bprm->argc) {
993 		unsigned long offset;
994 		char * kaddr;
995 		struct page *page;
996 
997 		offset = bprm->p % PAGE_SIZE;
998 		goto inside;
999 
1000 		while (bprm->p++, *(kaddr+offset++)) {
1001 			if (offset != PAGE_SIZE)
1002 				continue;
1003 			offset = 0;
1004 			kunmap_atomic(kaddr, KM_USER0);
1005 inside:
1006 			page = bprm->page[bprm->p/PAGE_SIZE];
1007 			kaddr = kmap_atomic(page, KM_USER0);
1008 		}
1009 		kunmap_atomic(kaddr, KM_USER0);
1010 		bprm->argc--;
1011 	}
1012 }
1013 
1014 EXPORT_SYMBOL(remove_arg_zero);
1015 
1016 /*
1017  * cycle the list of binary formats handler, until one recognizes the image
1018  */
1019 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1020 {
1021 	int try,retval;
1022 	struct linux_binfmt *fmt;
1023 #ifdef __alpha__
1024 	/* handle /sbin/loader.. */
1025 	{
1026 	    struct exec * eh = (struct exec *) bprm->buf;
1027 
1028 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1029 		(eh->fh.f_flags & 0x3000) == 0x3000)
1030 	    {
1031 		struct file * file;
1032 		unsigned long loader;
1033 
1034 		allow_write_access(bprm->file);
1035 		fput(bprm->file);
1036 		bprm->file = NULL;
1037 
1038 	        loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1039 
1040 		file = open_exec("/sbin/loader");
1041 		retval = PTR_ERR(file);
1042 		if (IS_ERR(file))
1043 			return retval;
1044 
1045 		/* Remember if the application is TASO.  */
1046 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1047 
1048 		bprm->file = file;
1049 		bprm->loader = loader;
1050 		retval = prepare_binprm(bprm);
1051 		if (retval<0)
1052 			return retval;
1053 		/* should call search_binary_handler recursively here,
1054 		   but it does not matter */
1055 	    }
1056 	}
1057 #endif
1058 	retval = security_bprm_check(bprm);
1059 	if (retval)
1060 		return retval;
1061 
1062 	/* kernel module loader fixup */
1063 	/* so we don't try to load run modprobe in kernel space. */
1064 	set_fs(USER_DS);
1065 
1066 	retval = audit_bprm(bprm);
1067 	if (retval)
1068 		return retval;
1069 
1070 	retval = -ENOENT;
1071 	for (try=0; try<2; try++) {
1072 		read_lock(&binfmt_lock);
1073 		for (fmt = formats ; fmt ; fmt = fmt->next) {
1074 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1075 			if (!fn)
1076 				continue;
1077 			if (!try_module_get(fmt->module))
1078 				continue;
1079 			read_unlock(&binfmt_lock);
1080 			retval = fn(bprm, regs);
1081 			if (retval >= 0) {
1082 				put_binfmt(fmt);
1083 				allow_write_access(bprm->file);
1084 				if (bprm->file)
1085 					fput(bprm->file);
1086 				bprm->file = NULL;
1087 				current->did_exec = 1;
1088 				proc_exec_connector(current);
1089 				return retval;
1090 			}
1091 			read_lock(&binfmt_lock);
1092 			put_binfmt(fmt);
1093 			if (retval != -ENOEXEC || bprm->mm == NULL)
1094 				break;
1095 			if (!bprm->file) {
1096 				read_unlock(&binfmt_lock);
1097 				return retval;
1098 			}
1099 		}
1100 		read_unlock(&binfmt_lock);
1101 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1102 			break;
1103 #ifdef CONFIG_KMOD
1104 		}else{
1105 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1106 			if (printable(bprm->buf[0]) &&
1107 			    printable(bprm->buf[1]) &&
1108 			    printable(bprm->buf[2]) &&
1109 			    printable(bprm->buf[3]))
1110 				break; /* -ENOEXEC */
1111 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1112 #endif
1113 		}
1114 	}
1115 	return retval;
1116 }
1117 
1118 EXPORT_SYMBOL(search_binary_handler);
1119 
1120 /*
1121  * sys_execve() executes a new program.
1122  */
1123 int do_execve(char * filename,
1124 	char __user *__user *argv,
1125 	char __user *__user *envp,
1126 	struct pt_regs * regs)
1127 {
1128 	struct linux_binprm *bprm;
1129 	struct file *file;
1130 	int retval;
1131 	int i;
1132 
1133 	retval = -ENOMEM;
1134 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1135 	if (!bprm)
1136 		goto out_ret;
1137 
1138 	file = open_exec(filename);
1139 	retval = PTR_ERR(file);
1140 	if (IS_ERR(file))
1141 		goto out_kfree;
1142 
1143 	sched_exec();
1144 
1145 	bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1146 
1147 	bprm->file = file;
1148 	bprm->filename = filename;
1149 	bprm->interp = filename;
1150 	bprm->mm = mm_alloc();
1151 	retval = -ENOMEM;
1152 	if (!bprm->mm)
1153 		goto out_file;
1154 
1155 	retval = init_new_context(current, bprm->mm);
1156 	if (retval < 0)
1157 		goto out_mm;
1158 
1159 	bprm->argc = count(argv, bprm->p / sizeof(void *));
1160 	if ((retval = bprm->argc) < 0)
1161 		goto out_mm;
1162 
1163 	bprm->envc = count(envp, bprm->p / sizeof(void *));
1164 	if ((retval = bprm->envc) < 0)
1165 		goto out_mm;
1166 
1167 	retval = security_bprm_alloc(bprm);
1168 	if (retval)
1169 		goto out;
1170 
1171 	retval = prepare_binprm(bprm);
1172 	if (retval < 0)
1173 		goto out;
1174 
1175 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1176 	if (retval < 0)
1177 		goto out;
1178 
1179 	bprm->exec = bprm->p;
1180 	retval = copy_strings(bprm->envc, envp, bprm);
1181 	if (retval < 0)
1182 		goto out;
1183 
1184 	retval = copy_strings(bprm->argc, argv, bprm);
1185 	if (retval < 0)
1186 		goto out;
1187 
1188 	retval = search_binary_handler(bprm,regs);
1189 	if (retval >= 0) {
1190 		free_arg_pages(bprm);
1191 
1192 		/* execve success */
1193 		security_bprm_free(bprm);
1194 		acct_update_integrals(current);
1195 		kfree(bprm);
1196 		return retval;
1197 	}
1198 
1199 out:
1200 	/* Something went wrong, return the inode and free the argument pages*/
1201 	for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1202 		struct page * page = bprm->page[i];
1203 		if (page)
1204 			__free_page(page);
1205 	}
1206 
1207 	if (bprm->security)
1208 		security_bprm_free(bprm);
1209 
1210 out_mm:
1211 	if (bprm->mm)
1212 		mmdrop(bprm->mm);
1213 
1214 out_file:
1215 	if (bprm->file) {
1216 		allow_write_access(bprm->file);
1217 		fput(bprm->file);
1218 	}
1219 
1220 out_kfree:
1221 	kfree(bprm);
1222 
1223 out_ret:
1224 	return retval;
1225 }
1226 
1227 int set_binfmt(struct linux_binfmt *new)
1228 {
1229 	struct linux_binfmt *old = current->binfmt;
1230 
1231 	if (new) {
1232 		if (!try_module_get(new->module))
1233 			return -1;
1234 	}
1235 	current->binfmt = new;
1236 	if (old)
1237 		module_put(old->module);
1238 	return 0;
1239 }
1240 
1241 EXPORT_SYMBOL(set_binfmt);
1242 
1243 #define CORENAME_MAX_SIZE 64
1244 
1245 /* format_corename will inspect the pattern parameter, and output a
1246  * name into corename, which must have space for at least
1247  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1248  */
1249 static void format_corename(char *corename, const char *pattern, long signr)
1250 {
1251 	const char *pat_ptr = pattern;
1252 	char *out_ptr = corename;
1253 	char *const out_end = corename + CORENAME_MAX_SIZE;
1254 	int rc;
1255 	int pid_in_pattern = 0;
1256 
1257 	/* Repeat as long as we have more pattern to process and more output
1258 	   space */
1259 	while (*pat_ptr) {
1260 		if (*pat_ptr != '%') {
1261 			if (out_ptr == out_end)
1262 				goto out;
1263 			*out_ptr++ = *pat_ptr++;
1264 		} else {
1265 			switch (*++pat_ptr) {
1266 			case 0:
1267 				goto out;
1268 			/* Double percent, output one percent */
1269 			case '%':
1270 				if (out_ptr == out_end)
1271 					goto out;
1272 				*out_ptr++ = '%';
1273 				break;
1274 			/* pid */
1275 			case 'p':
1276 				pid_in_pattern = 1;
1277 				rc = snprintf(out_ptr, out_end - out_ptr,
1278 					      "%d", current->tgid);
1279 				if (rc > out_end - out_ptr)
1280 					goto out;
1281 				out_ptr += rc;
1282 				break;
1283 			/* uid */
1284 			case 'u':
1285 				rc = snprintf(out_ptr, out_end - out_ptr,
1286 					      "%d", current->uid);
1287 				if (rc > out_end - out_ptr)
1288 					goto out;
1289 				out_ptr += rc;
1290 				break;
1291 			/* gid */
1292 			case 'g':
1293 				rc = snprintf(out_ptr, out_end - out_ptr,
1294 					      "%d", current->gid);
1295 				if (rc > out_end - out_ptr)
1296 					goto out;
1297 				out_ptr += rc;
1298 				break;
1299 			/* signal that caused the coredump */
1300 			case 's':
1301 				rc = snprintf(out_ptr, out_end - out_ptr,
1302 					      "%ld", signr);
1303 				if (rc > out_end - out_ptr)
1304 					goto out;
1305 				out_ptr += rc;
1306 				break;
1307 			/* UNIX time of coredump */
1308 			case 't': {
1309 				struct timeval tv;
1310 				do_gettimeofday(&tv);
1311 				rc = snprintf(out_ptr, out_end - out_ptr,
1312 					      "%lu", tv.tv_sec);
1313 				if (rc > out_end - out_ptr)
1314 					goto out;
1315 				out_ptr += rc;
1316 				break;
1317 			}
1318 			/* hostname */
1319 			case 'h':
1320 				down_read(&uts_sem);
1321 				rc = snprintf(out_ptr, out_end - out_ptr,
1322 					      "%s", utsname()->nodename);
1323 				up_read(&uts_sem);
1324 				if (rc > out_end - out_ptr)
1325 					goto out;
1326 				out_ptr += rc;
1327 				break;
1328 			/* executable */
1329 			case 'e':
1330 				rc = snprintf(out_ptr, out_end - out_ptr,
1331 					      "%s", current->comm);
1332 				if (rc > out_end - out_ptr)
1333 					goto out;
1334 				out_ptr += rc;
1335 				break;
1336 			default:
1337 				break;
1338 			}
1339 			++pat_ptr;
1340 		}
1341 	}
1342 	/* Backward compatibility with core_uses_pid:
1343 	 *
1344 	 * If core_pattern does not include a %p (as is the default)
1345 	 * and core_uses_pid is set, then .%pid will be appended to
1346 	 * the filename */
1347 	if (!pid_in_pattern
1348             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1349 		rc = snprintf(out_ptr, out_end - out_ptr,
1350 			      ".%d", current->tgid);
1351 		if (rc > out_end - out_ptr)
1352 			goto out;
1353 		out_ptr += rc;
1354 	}
1355       out:
1356 	*out_ptr = 0;
1357 }
1358 
1359 static void zap_process(struct task_struct *start)
1360 {
1361 	struct task_struct *t;
1362 
1363 	start->signal->flags = SIGNAL_GROUP_EXIT;
1364 	start->signal->group_stop_count = 0;
1365 
1366 	t = start;
1367 	do {
1368 		if (t != current && t->mm) {
1369 			t->mm->core_waiters++;
1370 			sigaddset(&t->pending.signal, SIGKILL);
1371 			signal_wake_up(t, 1);
1372 		}
1373 	} while ((t = next_thread(t)) != start);
1374 }
1375 
1376 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1377 				int exit_code)
1378 {
1379 	struct task_struct *g, *p;
1380 	unsigned long flags;
1381 	int err = -EAGAIN;
1382 
1383 	spin_lock_irq(&tsk->sighand->siglock);
1384 	if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1385 		tsk->signal->group_exit_code = exit_code;
1386 		zap_process(tsk);
1387 		err = 0;
1388 	}
1389 	spin_unlock_irq(&tsk->sighand->siglock);
1390 	if (err)
1391 		return err;
1392 
1393 	if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1394 		goto done;
1395 
1396 	rcu_read_lock();
1397 	for_each_process(g) {
1398 		if (g == tsk->group_leader)
1399 			continue;
1400 
1401 		p = g;
1402 		do {
1403 			if (p->mm) {
1404 				if (p->mm == mm) {
1405 					/*
1406 					 * p->sighand can't disappear, but
1407 					 * may be changed by de_thread()
1408 					 */
1409 					lock_task_sighand(p, &flags);
1410 					zap_process(p);
1411 					unlock_task_sighand(p, &flags);
1412 				}
1413 				break;
1414 			}
1415 		} while ((p = next_thread(p)) != g);
1416 	}
1417 	rcu_read_unlock();
1418 done:
1419 	return mm->core_waiters;
1420 }
1421 
1422 static int coredump_wait(int exit_code)
1423 {
1424 	struct task_struct *tsk = current;
1425 	struct mm_struct *mm = tsk->mm;
1426 	struct completion startup_done;
1427 	struct completion *vfork_done;
1428 	int core_waiters;
1429 
1430 	init_completion(&mm->core_done);
1431 	init_completion(&startup_done);
1432 	mm->core_startup_done = &startup_done;
1433 
1434 	core_waiters = zap_threads(tsk, mm, exit_code);
1435 	up_write(&mm->mmap_sem);
1436 
1437 	if (unlikely(core_waiters < 0))
1438 		goto fail;
1439 
1440 	/*
1441 	 * Make sure nobody is waiting for us to release the VM,
1442 	 * otherwise we can deadlock when we wait on each other
1443 	 */
1444 	vfork_done = tsk->vfork_done;
1445 	if (vfork_done) {
1446 		tsk->vfork_done = NULL;
1447 		complete(vfork_done);
1448 	}
1449 
1450 	if (core_waiters)
1451 		wait_for_completion(&startup_done);
1452 fail:
1453 	BUG_ON(mm->core_waiters);
1454 	return core_waiters;
1455 }
1456 
1457 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1458 {
1459 	char corename[CORENAME_MAX_SIZE + 1];
1460 	struct mm_struct *mm = current->mm;
1461 	struct linux_binfmt * binfmt;
1462 	struct inode * inode;
1463 	struct file * file;
1464 	int retval = 0;
1465 	int fsuid = current->fsuid;
1466 	int flag = 0;
1467 	int ispipe = 0;
1468 
1469 	binfmt = current->binfmt;
1470 	if (!binfmt || !binfmt->core_dump)
1471 		goto fail;
1472 	down_write(&mm->mmap_sem);
1473 	if (!mm->dumpable) {
1474 		up_write(&mm->mmap_sem);
1475 		goto fail;
1476 	}
1477 
1478 	/*
1479 	 *	We cannot trust fsuid as being the "true" uid of the
1480 	 *	process nor do we know its entire history. We only know it
1481 	 *	was tainted so we dump it as root in mode 2.
1482 	 */
1483 	if (mm->dumpable == 2) {	/* Setuid core dump mode */
1484 		flag = O_EXCL;		/* Stop rewrite attacks */
1485 		current->fsuid = 0;	/* Dump root private */
1486 	}
1487 	mm->dumpable = 0;
1488 
1489 	retval = coredump_wait(exit_code);
1490 	if (retval < 0)
1491 		goto fail;
1492 
1493 	/*
1494 	 * Clear any false indication of pending signals that might
1495 	 * be seen by the filesystem code called to write the core file.
1496 	 */
1497 	clear_thread_flag(TIF_SIGPENDING);
1498 
1499 	if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1500 		goto fail_unlock;
1501 
1502 	/*
1503 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1504 	 * uses lock_kernel()
1505 	 */
1506  	lock_kernel();
1507 	format_corename(corename, core_pattern, signr);
1508 	unlock_kernel();
1509  	if (corename[0] == '|') {
1510 		/* SIGPIPE can happen, but it's just never processed */
1511  		if(call_usermodehelper_pipe(corename+1, NULL, NULL, &file)) {
1512  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1513 			       corename);
1514  			goto fail_unlock;
1515  		}
1516 		ispipe = 1;
1517  	} else
1518  		file = filp_open(corename,
1519 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1520 				 0600);
1521 	if (IS_ERR(file))
1522 		goto fail_unlock;
1523 	inode = file->f_path.dentry->d_inode;
1524 	if (inode->i_nlink > 1)
1525 		goto close_fail;	/* multiple links - don't dump */
1526 	if (!ispipe && d_unhashed(file->f_path.dentry))
1527 		goto close_fail;
1528 
1529 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1530 	   but keep the previous behaviour for now. */
1531 	if (!ispipe && !S_ISREG(inode->i_mode))
1532 		goto close_fail;
1533 	if (!file->f_op)
1534 		goto close_fail;
1535 	if (!file->f_op->write)
1536 		goto close_fail;
1537 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1538 		goto close_fail;
1539 
1540 	retval = binfmt->core_dump(signr, regs, file);
1541 
1542 	if (retval)
1543 		current->signal->group_exit_code |= 0x80;
1544 close_fail:
1545 	filp_close(file, NULL);
1546 fail_unlock:
1547 	current->fsuid = fsuid;
1548 	complete_all(&mm->core_done);
1549 fail:
1550 	return retval;
1551 }
1552