xref: /openbmc/linux/fs/exec.c (revision 5f32c314)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 
63 #include <trace/events/task.h>
64 #include "internal.h"
65 
66 #include <trace/events/sched.h>
67 
68 int suid_dumpable = 0;
69 
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72 
73 void __register_binfmt(struct linux_binfmt * fmt, int insert)
74 {
75 	BUG_ON(!fmt);
76 	if (WARN_ON(!fmt->load_binary))
77 		return;
78 	write_lock(&binfmt_lock);
79 	insert ? list_add(&fmt->lh, &formats) :
80 		 list_add_tail(&fmt->lh, &formats);
81 	write_unlock(&binfmt_lock);
82 }
83 
84 EXPORT_SYMBOL(__register_binfmt);
85 
86 void unregister_binfmt(struct linux_binfmt * fmt)
87 {
88 	write_lock(&binfmt_lock);
89 	list_del(&fmt->lh);
90 	write_unlock(&binfmt_lock);
91 }
92 
93 EXPORT_SYMBOL(unregister_binfmt);
94 
95 static inline void put_binfmt(struct linux_binfmt * fmt)
96 {
97 	module_put(fmt->module);
98 }
99 
100 /*
101  * Note that a shared library must be both readable and executable due to
102  * security reasons.
103  *
104  * Also note that we take the address to load from from the file itself.
105  */
106 SYSCALL_DEFINE1(uselib, const char __user *, library)
107 {
108 	struct linux_binfmt *fmt;
109 	struct file *file;
110 	struct filename *tmp = getname(library);
111 	int error = PTR_ERR(tmp);
112 	static const struct open_flags uselib_flags = {
113 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
114 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
115 		.intent = LOOKUP_OPEN,
116 		.lookup_flags = LOOKUP_FOLLOW,
117 	};
118 
119 	if (IS_ERR(tmp))
120 		goto out;
121 
122 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
123 	putname(tmp);
124 	error = PTR_ERR(file);
125 	if (IS_ERR(file))
126 		goto out;
127 
128 	error = -EINVAL;
129 	if (!S_ISREG(file_inode(file)->i_mode))
130 		goto exit;
131 
132 	error = -EACCES;
133 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
134 		goto exit;
135 
136 	fsnotify_open(file);
137 
138 	error = -ENOEXEC;
139 
140 	read_lock(&binfmt_lock);
141 	list_for_each_entry(fmt, &formats, lh) {
142 		if (!fmt->load_shlib)
143 			continue;
144 		if (!try_module_get(fmt->module))
145 			continue;
146 		read_unlock(&binfmt_lock);
147 		error = fmt->load_shlib(file);
148 		read_lock(&binfmt_lock);
149 		put_binfmt(fmt);
150 		if (error != -ENOEXEC)
151 			break;
152 	}
153 	read_unlock(&binfmt_lock);
154 exit:
155 	fput(file);
156 out:
157   	return error;
158 }
159 
160 #ifdef CONFIG_MMU
161 /*
162  * The nascent bprm->mm is not visible until exec_mmap() but it can
163  * use a lot of memory, account these pages in current->mm temporary
164  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
165  * change the counter back via acct_arg_size(0).
166  */
167 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
168 {
169 	struct mm_struct *mm = current->mm;
170 	long diff = (long)(pages - bprm->vma_pages);
171 
172 	if (!mm || !diff)
173 		return;
174 
175 	bprm->vma_pages = pages;
176 	add_mm_counter(mm, MM_ANONPAGES, diff);
177 }
178 
179 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
180 		int write)
181 {
182 	struct page *page;
183 	int ret;
184 
185 #ifdef CONFIG_STACK_GROWSUP
186 	if (write) {
187 		ret = expand_downwards(bprm->vma, pos);
188 		if (ret < 0)
189 			return NULL;
190 	}
191 #endif
192 	ret = get_user_pages(current, bprm->mm, pos,
193 			1, write, 1, &page, NULL);
194 	if (ret <= 0)
195 		return NULL;
196 
197 	if (write) {
198 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
199 		struct rlimit *rlim;
200 
201 		acct_arg_size(bprm, size / PAGE_SIZE);
202 
203 		/*
204 		 * We've historically supported up to 32 pages (ARG_MAX)
205 		 * of argument strings even with small stacks
206 		 */
207 		if (size <= ARG_MAX)
208 			return page;
209 
210 		/*
211 		 * Limit to 1/4-th the stack size for the argv+env strings.
212 		 * This ensures that:
213 		 *  - the remaining binfmt code will not run out of stack space,
214 		 *  - the program will have a reasonable amount of stack left
215 		 *    to work from.
216 		 */
217 		rlim = current->signal->rlim;
218 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
219 			put_page(page);
220 			return NULL;
221 		}
222 	}
223 
224 	return page;
225 }
226 
227 static void put_arg_page(struct page *page)
228 {
229 	put_page(page);
230 }
231 
232 static void free_arg_page(struct linux_binprm *bprm, int i)
233 {
234 }
235 
236 static void free_arg_pages(struct linux_binprm *bprm)
237 {
238 }
239 
240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241 		struct page *page)
242 {
243 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244 }
245 
246 static int __bprm_mm_init(struct linux_binprm *bprm)
247 {
248 	int err;
249 	struct vm_area_struct *vma = NULL;
250 	struct mm_struct *mm = bprm->mm;
251 
252 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
253 	if (!vma)
254 		return -ENOMEM;
255 
256 	down_write(&mm->mmap_sem);
257 	vma->vm_mm = mm;
258 
259 	/*
260 	 * Place the stack at the largest stack address the architecture
261 	 * supports. Later, we'll move this to an appropriate place. We don't
262 	 * use STACK_TOP because that can depend on attributes which aren't
263 	 * configured yet.
264 	 */
265 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266 	vma->vm_end = STACK_TOP_MAX;
267 	vma->vm_start = vma->vm_end - PAGE_SIZE;
268 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270 	INIT_LIST_HEAD(&vma->anon_vma_chain);
271 
272 	err = insert_vm_struct(mm, vma);
273 	if (err)
274 		goto err;
275 
276 	mm->stack_vm = mm->total_vm = 1;
277 	up_write(&mm->mmap_sem);
278 	bprm->p = vma->vm_end - sizeof(void *);
279 	return 0;
280 err:
281 	up_write(&mm->mmap_sem);
282 	bprm->vma = NULL;
283 	kmem_cache_free(vm_area_cachep, vma);
284 	return err;
285 }
286 
287 static bool valid_arg_len(struct linux_binprm *bprm, long len)
288 {
289 	return len <= MAX_ARG_STRLEN;
290 }
291 
292 #else
293 
294 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
295 {
296 }
297 
298 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
299 		int write)
300 {
301 	struct page *page;
302 
303 	page = bprm->page[pos / PAGE_SIZE];
304 	if (!page && write) {
305 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
306 		if (!page)
307 			return NULL;
308 		bprm->page[pos / PAGE_SIZE] = page;
309 	}
310 
311 	return page;
312 }
313 
314 static void put_arg_page(struct page *page)
315 {
316 }
317 
318 static void free_arg_page(struct linux_binprm *bprm, int i)
319 {
320 	if (bprm->page[i]) {
321 		__free_page(bprm->page[i]);
322 		bprm->page[i] = NULL;
323 	}
324 }
325 
326 static void free_arg_pages(struct linux_binprm *bprm)
327 {
328 	int i;
329 
330 	for (i = 0; i < MAX_ARG_PAGES; i++)
331 		free_arg_page(bprm, i);
332 }
333 
334 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
335 		struct page *page)
336 {
337 }
338 
339 static int __bprm_mm_init(struct linux_binprm *bprm)
340 {
341 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
342 	return 0;
343 }
344 
345 static bool valid_arg_len(struct linux_binprm *bprm, long len)
346 {
347 	return len <= bprm->p;
348 }
349 
350 #endif /* CONFIG_MMU */
351 
352 /*
353  * Create a new mm_struct and populate it with a temporary stack
354  * vm_area_struct.  We don't have enough context at this point to set the stack
355  * flags, permissions, and offset, so we use temporary values.  We'll update
356  * them later in setup_arg_pages().
357  */
358 static int bprm_mm_init(struct linux_binprm *bprm)
359 {
360 	int err;
361 	struct mm_struct *mm = NULL;
362 
363 	bprm->mm = mm = mm_alloc();
364 	err = -ENOMEM;
365 	if (!mm)
366 		goto err;
367 
368 	err = init_new_context(current, mm);
369 	if (err)
370 		goto err;
371 
372 	err = __bprm_mm_init(bprm);
373 	if (err)
374 		goto err;
375 
376 	return 0;
377 
378 err:
379 	if (mm) {
380 		bprm->mm = NULL;
381 		mmdrop(mm);
382 	}
383 
384 	return err;
385 }
386 
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389 	bool is_compat;
390 #endif
391 	union {
392 		const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394 		const compat_uptr_t __user *compat;
395 #endif
396 	} ptr;
397 };
398 
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 {
401 	const char __user *native;
402 
403 #ifdef CONFIG_COMPAT
404 	if (unlikely(argv.is_compat)) {
405 		compat_uptr_t compat;
406 
407 		if (get_user(compat, argv.ptr.compat + nr))
408 			return ERR_PTR(-EFAULT);
409 
410 		return compat_ptr(compat);
411 	}
412 #endif
413 
414 	if (get_user(native, argv.ptr.native + nr))
415 		return ERR_PTR(-EFAULT);
416 
417 	return native;
418 }
419 
420 /*
421  * count() counts the number of strings in array ARGV.
422  */
423 static int count(struct user_arg_ptr argv, int max)
424 {
425 	int i = 0;
426 
427 	if (argv.ptr.native != NULL) {
428 		for (;;) {
429 			const char __user *p = get_user_arg_ptr(argv, i);
430 
431 			if (!p)
432 				break;
433 
434 			if (IS_ERR(p))
435 				return -EFAULT;
436 
437 			if (i >= max)
438 				return -E2BIG;
439 			++i;
440 
441 			if (fatal_signal_pending(current))
442 				return -ERESTARTNOHAND;
443 			cond_resched();
444 		}
445 	}
446 	return i;
447 }
448 
449 /*
450  * 'copy_strings()' copies argument/environment strings from the old
451  * processes's memory to the new process's stack.  The call to get_user_pages()
452  * ensures the destination page is created and not swapped out.
453  */
454 static int copy_strings(int argc, struct user_arg_ptr argv,
455 			struct linux_binprm *bprm)
456 {
457 	struct page *kmapped_page = NULL;
458 	char *kaddr = NULL;
459 	unsigned long kpos = 0;
460 	int ret;
461 
462 	while (argc-- > 0) {
463 		const char __user *str;
464 		int len;
465 		unsigned long pos;
466 
467 		ret = -EFAULT;
468 		str = get_user_arg_ptr(argv, argc);
469 		if (IS_ERR(str))
470 			goto out;
471 
472 		len = strnlen_user(str, MAX_ARG_STRLEN);
473 		if (!len)
474 			goto out;
475 
476 		ret = -E2BIG;
477 		if (!valid_arg_len(bprm, len))
478 			goto out;
479 
480 		/* We're going to work our way backwords. */
481 		pos = bprm->p;
482 		str += len;
483 		bprm->p -= len;
484 
485 		while (len > 0) {
486 			int offset, bytes_to_copy;
487 
488 			if (fatal_signal_pending(current)) {
489 				ret = -ERESTARTNOHAND;
490 				goto out;
491 			}
492 			cond_resched();
493 
494 			offset = pos % PAGE_SIZE;
495 			if (offset == 0)
496 				offset = PAGE_SIZE;
497 
498 			bytes_to_copy = offset;
499 			if (bytes_to_copy > len)
500 				bytes_to_copy = len;
501 
502 			offset -= bytes_to_copy;
503 			pos -= bytes_to_copy;
504 			str -= bytes_to_copy;
505 			len -= bytes_to_copy;
506 
507 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
508 				struct page *page;
509 
510 				page = get_arg_page(bprm, pos, 1);
511 				if (!page) {
512 					ret = -E2BIG;
513 					goto out;
514 				}
515 
516 				if (kmapped_page) {
517 					flush_kernel_dcache_page(kmapped_page);
518 					kunmap(kmapped_page);
519 					put_arg_page(kmapped_page);
520 				}
521 				kmapped_page = page;
522 				kaddr = kmap(kmapped_page);
523 				kpos = pos & PAGE_MASK;
524 				flush_arg_page(bprm, kpos, kmapped_page);
525 			}
526 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
527 				ret = -EFAULT;
528 				goto out;
529 			}
530 		}
531 	}
532 	ret = 0;
533 out:
534 	if (kmapped_page) {
535 		flush_kernel_dcache_page(kmapped_page);
536 		kunmap(kmapped_page);
537 		put_arg_page(kmapped_page);
538 	}
539 	return ret;
540 }
541 
542 /*
543  * Like copy_strings, but get argv and its values from kernel memory.
544  */
545 int copy_strings_kernel(int argc, const char *const *__argv,
546 			struct linux_binprm *bprm)
547 {
548 	int r;
549 	mm_segment_t oldfs = get_fs();
550 	struct user_arg_ptr argv = {
551 		.ptr.native = (const char __user *const  __user *)__argv,
552 	};
553 
554 	set_fs(KERNEL_DS);
555 	r = copy_strings(argc, argv, bprm);
556 	set_fs(oldfs);
557 
558 	return r;
559 }
560 EXPORT_SYMBOL(copy_strings_kernel);
561 
562 #ifdef CONFIG_MMU
563 
564 /*
565  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
566  * the binfmt code determines where the new stack should reside, we shift it to
567  * its final location.  The process proceeds as follows:
568  *
569  * 1) Use shift to calculate the new vma endpoints.
570  * 2) Extend vma to cover both the old and new ranges.  This ensures the
571  *    arguments passed to subsequent functions are consistent.
572  * 3) Move vma's page tables to the new range.
573  * 4) Free up any cleared pgd range.
574  * 5) Shrink the vma to cover only the new range.
575  */
576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
577 {
578 	struct mm_struct *mm = vma->vm_mm;
579 	unsigned long old_start = vma->vm_start;
580 	unsigned long old_end = vma->vm_end;
581 	unsigned long length = old_end - old_start;
582 	unsigned long new_start = old_start - shift;
583 	unsigned long new_end = old_end - shift;
584 	struct mmu_gather tlb;
585 
586 	BUG_ON(new_start > new_end);
587 
588 	/*
589 	 * ensure there are no vmas between where we want to go
590 	 * and where we are
591 	 */
592 	if (vma != find_vma(mm, new_start))
593 		return -EFAULT;
594 
595 	/*
596 	 * cover the whole range: [new_start, old_end)
597 	 */
598 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
599 		return -ENOMEM;
600 
601 	/*
602 	 * move the page tables downwards, on failure we rely on
603 	 * process cleanup to remove whatever mess we made.
604 	 */
605 	if (length != move_page_tables(vma, old_start,
606 				       vma, new_start, length, false))
607 		return -ENOMEM;
608 
609 	lru_add_drain();
610 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
611 	if (new_end > old_start) {
612 		/*
613 		 * when the old and new regions overlap clear from new_end.
614 		 */
615 		free_pgd_range(&tlb, new_end, old_end, new_end,
616 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
617 	} else {
618 		/*
619 		 * otherwise, clean from old_start; this is done to not touch
620 		 * the address space in [new_end, old_start) some architectures
621 		 * have constraints on va-space that make this illegal (IA64) -
622 		 * for the others its just a little faster.
623 		 */
624 		free_pgd_range(&tlb, old_start, old_end, new_end,
625 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
626 	}
627 	tlb_finish_mmu(&tlb, old_start, old_end);
628 
629 	/*
630 	 * Shrink the vma to just the new range.  Always succeeds.
631 	 */
632 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
633 
634 	return 0;
635 }
636 
637 /*
638  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
639  * the stack is optionally relocated, and some extra space is added.
640  */
641 int setup_arg_pages(struct linux_binprm *bprm,
642 		    unsigned long stack_top,
643 		    int executable_stack)
644 {
645 	unsigned long ret;
646 	unsigned long stack_shift;
647 	struct mm_struct *mm = current->mm;
648 	struct vm_area_struct *vma = bprm->vma;
649 	struct vm_area_struct *prev = NULL;
650 	unsigned long vm_flags;
651 	unsigned long stack_base;
652 	unsigned long stack_size;
653 	unsigned long stack_expand;
654 	unsigned long rlim_stack;
655 
656 #ifdef CONFIG_STACK_GROWSUP
657 	/* Limit stack size to 1GB */
658 	stack_base = rlimit_max(RLIMIT_STACK);
659 	if (stack_base > (1 << 30))
660 		stack_base = 1 << 30;
661 
662 	/* Make sure we didn't let the argument array grow too large. */
663 	if (vma->vm_end - vma->vm_start > stack_base)
664 		return -ENOMEM;
665 
666 	stack_base = PAGE_ALIGN(stack_top - stack_base);
667 
668 	stack_shift = vma->vm_start - stack_base;
669 	mm->arg_start = bprm->p - stack_shift;
670 	bprm->p = vma->vm_end - stack_shift;
671 #else
672 	stack_top = arch_align_stack(stack_top);
673 	stack_top = PAGE_ALIGN(stack_top);
674 
675 	if (unlikely(stack_top < mmap_min_addr) ||
676 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
677 		return -ENOMEM;
678 
679 	stack_shift = vma->vm_end - stack_top;
680 
681 	bprm->p -= stack_shift;
682 	mm->arg_start = bprm->p;
683 #endif
684 
685 	if (bprm->loader)
686 		bprm->loader -= stack_shift;
687 	bprm->exec -= stack_shift;
688 
689 	down_write(&mm->mmap_sem);
690 	vm_flags = VM_STACK_FLAGS;
691 
692 	/*
693 	 * Adjust stack execute permissions; explicitly enable for
694 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
695 	 * (arch default) otherwise.
696 	 */
697 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
698 		vm_flags |= VM_EXEC;
699 	else if (executable_stack == EXSTACK_DISABLE_X)
700 		vm_flags &= ~VM_EXEC;
701 	vm_flags |= mm->def_flags;
702 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
703 
704 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
705 			vm_flags);
706 	if (ret)
707 		goto out_unlock;
708 	BUG_ON(prev != vma);
709 
710 	/* Move stack pages down in memory. */
711 	if (stack_shift) {
712 		ret = shift_arg_pages(vma, stack_shift);
713 		if (ret)
714 			goto out_unlock;
715 	}
716 
717 	/* mprotect_fixup is overkill to remove the temporary stack flags */
718 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
719 
720 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
721 	stack_size = vma->vm_end - vma->vm_start;
722 	/*
723 	 * Align this down to a page boundary as expand_stack
724 	 * will align it up.
725 	 */
726 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
727 #ifdef CONFIG_STACK_GROWSUP
728 	if (stack_size + stack_expand > rlim_stack)
729 		stack_base = vma->vm_start + rlim_stack;
730 	else
731 		stack_base = vma->vm_end + stack_expand;
732 #else
733 	if (stack_size + stack_expand > rlim_stack)
734 		stack_base = vma->vm_end - rlim_stack;
735 	else
736 		stack_base = vma->vm_start - stack_expand;
737 #endif
738 	current->mm->start_stack = bprm->p;
739 	ret = expand_stack(vma, stack_base);
740 	if (ret)
741 		ret = -EFAULT;
742 
743 out_unlock:
744 	up_write(&mm->mmap_sem);
745 	return ret;
746 }
747 EXPORT_SYMBOL(setup_arg_pages);
748 
749 #endif /* CONFIG_MMU */
750 
751 struct file *open_exec(const char *name)
752 {
753 	struct file *file;
754 	int err;
755 	struct filename tmp = { .name = name };
756 	static const struct open_flags open_exec_flags = {
757 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
758 		.acc_mode = MAY_EXEC | MAY_OPEN,
759 		.intent = LOOKUP_OPEN,
760 		.lookup_flags = LOOKUP_FOLLOW,
761 	};
762 
763 	file = do_filp_open(AT_FDCWD, &tmp, &open_exec_flags);
764 	if (IS_ERR(file))
765 		goto out;
766 
767 	err = -EACCES;
768 	if (!S_ISREG(file_inode(file)->i_mode))
769 		goto exit;
770 
771 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
772 		goto exit;
773 
774 	fsnotify_open(file);
775 
776 	err = deny_write_access(file);
777 	if (err)
778 		goto exit;
779 
780 out:
781 	return file;
782 
783 exit:
784 	fput(file);
785 	return ERR_PTR(err);
786 }
787 EXPORT_SYMBOL(open_exec);
788 
789 int kernel_read(struct file *file, loff_t offset,
790 		char *addr, unsigned long count)
791 {
792 	mm_segment_t old_fs;
793 	loff_t pos = offset;
794 	int result;
795 
796 	old_fs = get_fs();
797 	set_fs(get_ds());
798 	/* The cast to a user pointer is valid due to the set_fs() */
799 	result = vfs_read(file, (void __user *)addr, count, &pos);
800 	set_fs(old_fs);
801 	return result;
802 }
803 
804 EXPORT_SYMBOL(kernel_read);
805 
806 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
807 {
808 	ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos);
809 	if (res > 0)
810 		flush_icache_range(addr, addr + len);
811 	return res;
812 }
813 EXPORT_SYMBOL(read_code);
814 
815 static int exec_mmap(struct mm_struct *mm)
816 {
817 	struct task_struct *tsk;
818 	struct mm_struct * old_mm, *active_mm;
819 
820 	/* Notify parent that we're no longer interested in the old VM */
821 	tsk = current;
822 	old_mm = current->mm;
823 	mm_release(tsk, old_mm);
824 
825 	if (old_mm) {
826 		sync_mm_rss(old_mm);
827 		/*
828 		 * Make sure that if there is a core dump in progress
829 		 * for the old mm, we get out and die instead of going
830 		 * through with the exec.  We must hold mmap_sem around
831 		 * checking core_state and changing tsk->mm.
832 		 */
833 		down_read(&old_mm->mmap_sem);
834 		if (unlikely(old_mm->core_state)) {
835 			up_read(&old_mm->mmap_sem);
836 			return -EINTR;
837 		}
838 	}
839 	task_lock(tsk);
840 	active_mm = tsk->active_mm;
841 	tsk->mm = mm;
842 	tsk->active_mm = mm;
843 	activate_mm(active_mm, mm);
844 	task_unlock(tsk);
845 	if (old_mm) {
846 		up_read(&old_mm->mmap_sem);
847 		BUG_ON(active_mm != old_mm);
848 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
849 		mm_update_next_owner(old_mm);
850 		mmput(old_mm);
851 		return 0;
852 	}
853 	mmdrop(active_mm);
854 	return 0;
855 }
856 
857 /*
858  * This function makes sure the current process has its own signal table,
859  * so that flush_signal_handlers can later reset the handlers without
860  * disturbing other processes.  (Other processes might share the signal
861  * table via the CLONE_SIGHAND option to clone().)
862  */
863 static int de_thread(struct task_struct *tsk)
864 {
865 	struct signal_struct *sig = tsk->signal;
866 	struct sighand_struct *oldsighand = tsk->sighand;
867 	spinlock_t *lock = &oldsighand->siglock;
868 
869 	if (thread_group_empty(tsk))
870 		goto no_thread_group;
871 
872 	/*
873 	 * Kill all other threads in the thread group.
874 	 */
875 	spin_lock_irq(lock);
876 	if (signal_group_exit(sig)) {
877 		/*
878 		 * Another group action in progress, just
879 		 * return so that the signal is processed.
880 		 */
881 		spin_unlock_irq(lock);
882 		return -EAGAIN;
883 	}
884 
885 	sig->group_exit_task = tsk;
886 	sig->notify_count = zap_other_threads(tsk);
887 	if (!thread_group_leader(tsk))
888 		sig->notify_count--;
889 
890 	while (sig->notify_count) {
891 		__set_current_state(TASK_KILLABLE);
892 		spin_unlock_irq(lock);
893 		schedule();
894 		if (unlikely(__fatal_signal_pending(tsk)))
895 			goto killed;
896 		spin_lock_irq(lock);
897 	}
898 	spin_unlock_irq(lock);
899 
900 	/*
901 	 * At this point all other threads have exited, all we have to
902 	 * do is to wait for the thread group leader to become inactive,
903 	 * and to assume its PID:
904 	 */
905 	if (!thread_group_leader(tsk)) {
906 		struct task_struct *leader = tsk->group_leader;
907 
908 		sig->notify_count = -1;	/* for exit_notify() */
909 		for (;;) {
910 			threadgroup_change_begin(tsk);
911 			write_lock_irq(&tasklist_lock);
912 			if (likely(leader->exit_state))
913 				break;
914 			__set_current_state(TASK_KILLABLE);
915 			write_unlock_irq(&tasklist_lock);
916 			threadgroup_change_end(tsk);
917 			schedule();
918 			if (unlikely(__fatal_signal_pending(tsk)))
919 				goto killed;
920 		}
921 
922 		/*
923 		 * The only record we have of the real-time age of a
924 		 * process, regardless of execs it's done, is start_time.
925 		 * All the past CPU time is accumulated in signal_struct
926 		 * from sister threads now dead.  But in this non-leader
927 		 * exec, nothing survives from the original leader thread,
928 		 * whose birth marks the true age of this process now.
929 		 * When we take on its identity by switching to its PID, we
930 		 * also take its birthdate (always earlier than our own).
931 		 */
932 		tsk->start_time = leader->start_time;
933 		tsk->real_start_time = leader->real_start_time;
934 
935 		BUG_ON(!same_thread_group(leader, tsk));
936 		BUG_ON(has_group_leader_pid(tsk));
937 		/*
938 		 * An exec() starts a new thread group with the
939 		 * TGID of the previous thread group. Rehash the
940 		 * two threads with a switched PID, and release
941 		 * the former thread group leader:
942 		 */
943 
944 		/* Become a process group leader with the old leader's pid.
945 		 * The old leader becomes a thread of the this thread group.
946 		 * Note: The old leader also uses this pid until release_task
947 		 *       is called.  Odd but simple and correct.
948 		 */
949 		tsk->pid = leader->pid;
950 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
951 		transfer_pid(leader, tsk, PIDTYPE_PGID);
952 		transfer_pid(leader, tsk, PIDTYPE_SID);
953 
954 		list_replace_rcu(&leader->tasks, &tsk->tasks);
955 		list_replace_init(&leader->sibling, &tsk->sibling);
956 
957 		tsk->group_leader = tsk;
958 		leader->group_leader = tsk;
959 
960 		tsk->exit_signal = SIGCHLD;
961 		leader->exit_signal = -1;
962 
963 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
964 		leader->exit_state = EXIT_DEAD;
965 
966 		/*
967 		 * We are going to release_task()->ptrace_unlink() silently,
968 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
969 		 * the tracer wont't block again waiting for this thread.
970 		 */
971 		if (unlikely(leader->ptrace))
972 			__wake_up_parent(leader, leader->parent);
973 		write_unlock_irq(&tasklist_lock);
974 		threadgroup_change_end(tsk);
975 
976 		release_task(leader);
977 	}
978 
979 	sig->group_exit_task = NULL;
980 	sig->notify_count = 0;
981 
982 no_thread_group:
983 	/* we have changed execution domain */
984 	tsk->exit_signal = SIGCHLD;
985 
986 	exit_itimers(sig);
987 	flush_itimer_signals();
988 
989 	if (atomic_read(&oldsighand->count) != 1) {
990 		struct sighand_struct *newsighand;
991 		/*
992 		 * This ->sighand is shared with the CLONE_SIGHAND
993 		 * but not CLONE_THREAD task, switch to the new one.
994 		 */
995 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
996 		if (!newsighand)
997 			return -ENOMEM;
998 
999 		atomic_set(&newsighand->count, 1);
1000 		memcpy(newsighand->action, oldsighand->action,
1001 		       sizeof(newsighand->action));
1002 
1003 		write_lock_irq(&tasklist_lock);
1004 		spin_lock(&oldsighand->siglock);
1005 		rcu_assign_pointer(tsk->sighand, newsighand);
1006 		spin_unlock(&oldsighand->siglock);
1007 		write_unlock_irq(&tasklist_lock);
1008 
1009 		__cleanup_sighand(oldsighand);
1010 	}
1011 
1012 	BUG_ON(!thread_group_leader(tsk));
1013 	return 0;
1014 
1015 killed:
1016 	/* protects against exit_notify() and __exit_signal() */
1017 	read_lock(&tasklist_lock);
1018 	sig->group_exit_task = NULL;
1019 	sig->notify_count = 0;
1020 	read_unlock(&tasklist_lock);
1021 	return -EAGAIN;
1022 }
1023 
1024 char *get_task_comm(char *buf, struct task_struct *tsk)
1025 {
1026 	/* buf must be at least sizeof(tsk->comm) in size */
1027 	task_lock(tsk);
1028 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1029 	task_unlock(tsk);
1030 	return buf;
1031 }
1032 EXPORT_SYMBOL_GPL(get_task_comm);
1033 
1034 /*
1035  * These functions flushes out all traces of the currently running executable
1036  * so that a new one can be started
1037  */
1038 
1039 void set_task_comm(struct task_struct *tsk, char *buf)
1040 {
1041 	task_lock(tsk);
1042 	trace_task_rename(tsk, buf);
1043 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1044 	task_unlock(tsk);
1045 	perf_event_comm(tsk);
1046 }
1047 
1048 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1049 {
1050 	int i, ch;
1051 
1052 	/* Copies the binary name from after last slash */
1053 	for (i = 0; (ch = *(fn++)) != '\0';) {
1054 		if (ch == '/')
1055 			i = 0; /* overwrite what we wrote */
1056 		else
1057 			if (i < len - 1)
1058 				tcomm[i++] = ch;
1059 	}
1060 	tcomm[i] = '\0';
1061 }
1062 
1063 int flush_old_exec(struct linux_binprm * bprm)
1064 {
1065 	int retval;
1066 
1067 	/*
1068 	 * Make sure we have a private signal table and that
1069 	 * we are unassociated from the previous thread group.
1070 	 */
1071 	retval = de_thread(current);
1072 	if (retval)
1073 		goto out;
1074 
1075 	set_mm_exe_file(bprm->mm, bprm->file);
1076 
1077 	filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1078 	/*
1079 	 * Release all of the old mmap stuff
1080 	 */
1081 	acct_arg_size(bprm, 0);
1082 	retval = exec_mmap(bprm->mm);
1083 	if (retval)
1084 		goto out;
1085 
1086 	bprm->mm = NULL;		/* We're using it now */
1087 
1088 	set_fs(USER_DS);
1089 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1090 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1091 	flush_thread();
1092 	current->personality &= ~bprm->per_clear;
1093 
1094 	return 0;
1095 
1096 out:
1097 	return retval;
1098 }
1099 EXPORT_SYMBOL(flush_old_exec);
1100 
1101 void would_dump(struct linux_binprm *bprm, struct file *file)
1102 {
1103 	if (inode_permission(file_inode(file), MAY_READ) < 0)
1104 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1105 }
1106 EXPORT_SYMBOL(would_dump);
1107 
1108 void setup_new_exec(struct linux_binprm * bprm)
1109 {
1110 	arch_pick_mmap_layout(current->mm);
1111 
1112 	/* This is the point of no return */
1113 	current->sas_ss_sp = current->sas_ss_size = 0;
1114 
1115 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1116 		set_dumpable(current->mm, SUID_DUMP_USER);
1117 	else
1118 		set_dumpable(current->mm, suid_dumpable);
1119 
1120 	set_task_comm(current, bprm->tcomm);
1121 
1122 	/* Set the new mm task size. We have to do that late because it may
1123 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1124 	 * some architectures like powerpc
1125 	 */
1126 	current->mm->task_size = TASK_SIZE;
1127 
1128 	/* install the new credentials */
1129 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1130 	    !gid_eq(bprm->cred->gid, current_egid())) {
1131 		current->pdeath_signal = 0;
1132 	} else {
1133 		would_dump(bprm, bprm->file);
1134 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1135 			set_dumpable(current->mm, suid_dumpable);
1136 	}
1137 
1138 	/* An exec changes our domain. We are no longer part of the thread
1139 	   group */
1140 	current->self_exec_id++;
1141 	flush_signal_handlers(current, 0);
1142 	do_close_on_exec(current->files);
1143 }
1144 EXPORT_SYMBOL(setup_new_exec);
1145 
1146 /*
1147  * Prepare credentials and lock ->cred_guard_mutex.
1148  * install_exec_creds() commits the new creds and drops the lock.
1149  * Or, if exec fails before, free_bprm() should release ->cred and
1150  * and unlock.
1151  */
1152 int prepare_bprm_creds(struct linux_binprm *bprm)
1153 {
1154 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1155 		return -ERESTARTNOINTR;
1156 
1157 	bprm->cred = prepare_exec_creds();
1158 	if (likely(bprm->cred))
1159 		return 0;
1160 
1161 	mutex_unlock(&current->signal->cred_guard_mutex);
1162 	return -ENOMEM;
1163 }
1164 
1165 void free_bprm(struct linux_binprm *bprm)
1166 {
1167 	free_arg_pages(bprm);
1168 	if (bprm->cred) {
1169 		mutex_unlock(&current->signal->cred_guard_mutex);
1170 		abort_creds(bprm->cred);
1171 	}
1172 	if (bprm->file) {
1173 		allow_write_access(bprm->file);
1174 		fput(bprm->file);
1175 	}
1176 	/* If a binfmt changed the interp, free it. */
1177 	if (bprm->interp != bprm->filename)
1178 		kfree(bprm->interp);
1179 	kfree(bprm);
1180 }
1181 
1182 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1183 {
1184 	/* If a binfmt changed the interp, free it first. */
1185 	if (bprm->interp != bprm->filename)
1186 		kfree(bprm->interp);
1187 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1188 	if (!bprm->interp)
1189 		return -ENOMEM;
1190 	return 0;
1191 }
1192 EXPORT_SYMBOL(bprm_change_interp);
1193 
1194 /*
1195  * install the new credentials for this executable
1196  */
1197 void install_exec_creds(struct linux_binprm *bprm)
1198 {
1199 	security_bprm_committing_creds(bprm);
1200 
1201 	commit_creds(bprm->cred);
1202 	bprm->cred = NULL;
1203 
1204 	/*
1205 	 * Disable monitoring for regular users
1206 	 * when executing setuid binaries. Must
1207 	 * wait until new credentials are committed
1208 	 * by commit_creds() above
1209 	 */
1210 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1211 		perf_event_exit_task(current);
1212 	/*
1213 	 * cred_guard_mutex must be held at least to this point to prevent
1214 	 * ptrace_attach() from altering our determination of the task's
1215 	 * credentials; any time after this it may be unlocked.
1216 	 */
1217 	security_bprm_committed_creds(bprm);
1218 	mutex_unlock(&current->signal->cred_guard_mutex);
1219 }
1220 EXPORT_SYMBOL(install_exec_creds);
1221 
1222 /*
1223  * determine how safe it is to execute the proposed program
1224  * - the caller must hold ->cred_guard_mutex to protect against
1225  *   PTRACE_ATTACH
1226  */
1227 static void check_unsafe_exec(struct linux_binprm *bprm)
1228 {
1229 	struct task_struct *p = current, *t;
1230 	unsigned n_fs;
1231 
1232 	if (p->ptrace) {
1233 		if (p->ptrace & PT_PTRACE_CAP)
1234 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1235 		else
1236 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1237 	}
1238 
1239 	/*
1240 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1241 	 * mess up.
1242 	 */
1243 	if (current->no_new_privs)
1244 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1245 
1246 	t = p;
1247 	n_fs = 1;
1248 	spin_lock(&p->fs->lock);
1249 	rcu_read_lock();
1250 	while_each_thread(p, t) {
1251 		if (t->fs == p->fs)
1252 			n_fs++;
1253 	}
1254 	rcu_read_unlock();
1255 
1256 	if (p->fs->users > n_fs)
1257 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1258 	else
1259 		p->fs->in_exec = 1;
1260 	spin_unlock(&p->fs->lock);
1261 }
1262 
1263 /*
1264  * Fill the binprm structure from the inode.
1265  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1266  *
1267  * This may be called multiple times for binary chains (scripts for example).
1268  */
1269 int prepare_binprm(struct linux_binprm *bprm)
1270 {
1271 	struct inode *inode = file_inode(bprm->file);
1272 	umode_t mode = inode->i_mode;
1273 	int retval;
1274 
1275 
1276 	/* clear any previous set[ug]id data from a previous binary */
1277 	bprm->cred->euid = current_euid();
1278 	bprm->cred->egid = current_egid();
1279 
1280 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1281 	    !current->no_new_privs &&
1282 	    kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1283 	    kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1284 		/* Set-uid? */
1285 		if (mode & S_ISUID) {
1286 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1287 			bprm->cred->euid = inode->i_uid;
1288 		}
1289 
1290 		/* Set-gid? */
1291 		/*
1292 		 * If setgid is set but no group execute bit then this
1293 		 * is a candidate for mandatory locking, not a setgid
1294 		 * executable.
1295 		 */
1296 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1297 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1298 			bprm->cred->egid = inode->i_gid;
1299 		}
1300 	}
1301 
1302 	/* fill in binprm security blob */
1303 	retval = security_bprm_set_creds(bprm);
1304 	if (retval)
1305 		return retval;
1306 	bprm->cred_prepared = 1;
1307 
1308 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1309 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1310 }
1311 
1312 EXPORT_SYMBOL(prepare_binprm);
1313 
1314 /*
1315  * Arguments are '\0' separated strings found at the location bprm->p
1316  * points to; chop off the first by relocating brpm->p to right after
1317  * the first '\0' encountered.
1318  */
1319 int remove_arg_zero(struct linux_binprm *bprm)
1320 {
1321 	int ret = 0;
1322 	unsigned long offset;
1323 	char *kaddr;
1324 	struct page *page;
1325 
1326 	if (!bprm->argc)
1327 		return 0;
1328 
1329 	do {
1330 		offset = bprm->p & ~PAGE_MASK;
1331 		page = get_arg_page(bprm, bprm->p, 0);
1332 		if (!page) {
1333 			ret = -EFAULT;
1334 			goto out;
1335 		}
1336 		kaddr = kmap_atomic(page);
1337 
1338 		for (; offset < PAGE_SIZE && kaddr[offset];
1339 				offset++, bprm->p++)
1340 			;
1341 
1342 		kunmap_atomic(kaddr);
1343 		put_arg_page(page);
1344 
1345 		if (offset == PAGE_SIZE)
1346 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1347 	} while (offset == PAGE_SIZE);
1348 
1349 	bprm->p++;
1350 	bprm->argc--;
1351 	ret = 0;
1352 
1353 out:
1354 	return ret;
1355 }
1356 EXPORT_SYMBOL(remove_arg_zero);
1357 
1358 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1359 /*
1360  * cycle the list of binary formats handler, until one recognizes the image
1361  */
1362 int search_binary_handler(struct linux_binprm *bprm)
1363 {
1364 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1365 	struct linux_binfmt *fmt;
1366 	int retval;
1367 
1368 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1369 	if (bprm->recursion_depth > 5)
1370 		return -ELOOP;
1371 
1372 	retval = security_bprm_check(bprm);
1373 	if (retval)
1374 		return retval;
1375 
1376 	retval = -ENOENT;
1377  retry:
1378 	read_lock(&binfmt_lock);
1379 	list_for_each_entry(fmt, &formats, lh) {
1380 		if (!try_module_get(fmt->module))
1381 			continue;
1382 		read_unlock(&binfmt_lock);
1383 		bprm->recursion_depth++;
1384 		retval = fmt->load_binary(bprm);
1385 		bprm->recursion_depth--;
1386 		if (retval >= 0 || retval != -ENOEXEC ||
1387 		    bprm->mm == NULL || bprm->file == NULL) {
1388 			put_binfmt(fmt);
1389 			return retval;
1390 		}
1391 		read_lock(&binfmt_lock);
1392 		put_binfmt(fmt);
1393 	}
1394 	read_unlock(&binfmt_lock);
1395 
1396 	if (need_retry && retval == -ENOEXEC) {
1397 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1398 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1399 			return retval;
1400 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1401 			return retval;
1402 		need_retry = false;
1403 		goto retry;
1404 	}
1405 
1406 	return retval;
1407 }
1408 EXPORT_SYMBOL(search_binary_handler);
1409 
1410 static int exec_binprm(struct linux_binprm *bprm)
1411 {
1412 	pid_t old_pid, old_vpid;
1413 	int ret;
1414 
1415 	/* Need to fetch pid before load_binary changes it */
1416 	old_pid = current->pid;
1417 	rcu_read_lock();
1418 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1419 	rcu_read_unlock();
1420 
1421 	ret = search_binary_handler(bprm);
1422 	if (ret >= 0) {
1423 		audit_bprm(bprm);
1424 		trace_sched_process_exec(current, old_pid, bprm);
1425 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1426 		proc_exec_connector(current);
1427 	}
1428 
1429 	return ret;
1430 }
1431 
1432 /*
1433  * sys_execve() executes a new program.
1434  */
1435 static int do_execve_common(const char *filename,
1436 				struct user_arg_ptr argv,
1437 				struct user_arg_ptr envp)
1438 {
1439 	struct linux_binprm *bprm;
1440 	struct file *file;
1441 	struct files_struct *displaced;
1442 	int retval;
1443 
1444 	/*
1445 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1446 	 * set*uid() to execve() because too many poorly written programs
1447 	 * don't check setuid() return code.  Here we additionally recheck
1448 	 * whether NPROC limit is still exceeded.
1449 	 */
1450 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1451 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1452 		retval = -EAGAIN;
1453 		goto out_ret;
1454 	}
1455 
1456 	/* We're below the limit (still or again), so we don't want to make
1457 	 * further execve() calls fail. */
1458 	current->flags &= ~PF_NPROC_EXCEEDED;
1459 
1460 	retval = unshare_files(&displaced);
1461 	if (retval)
1462 		goto out_ret;
1463 
1464 	retval = -ENOMEM;
1465 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1466 	if (!bprm)
1467 		goto out_files;
1468 
1469 	retval = prepare_bprm_creds(bprm);
1470 	if (retval)
1471 		goto out_free;
1472 
1473 	check_unsafe_exec(bprm);
1474 	current->in_execve = 1;
1475 
1476 	file = open_exec(filename);
1477 	retval = PTR_ERR(file);
1478 	if (IS_ERR(file))
1479 		goto out_unmark;
1480 
1481 	sched_exec();
1482 
1483 	bprm->file = file;
1484 	bprm->filename = filename;
1485 	bprm->interp = filename;
1486 
1487 	retval = bprm_mm_init(bprm);
1488 	if (retval)
1489 		goto out_unmark;
1490 
1491 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1492 	if ((retval = bprm->argc) < 0)
1493 		goto out;
1494 
1495 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1496 	if ((retval = bprm->envc) < 0)
1497 		goto out;
1498 
1499 	retval = prepare_binprm(bprm);
1500 	if (retval < 0)
1501 		goto out;
1502 
1503 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1504 	if (retval < 0)
1505 		goto out;
1506 
1507 	bprm->exec = bprm->p;
1508 	retval = copy_strings(bprm->envc, envp, bprm);
1509 	if (retval < 0)
1510 		goto out;
1511 
1512 	retval = copy_strings(bprm->argc, argv, bprm);
1513 	if (retval < 0)
1514 		goto out;
1515 
1516 	retval = exec_binprm(bprm);
1517 	if (retval < 0)
1518 		goto out;
1519 
1520 	/* execve succeeded */
1521 	current->fs->in_exec = 0;
1522 	current->in_execve = 0;
1523 	acct_update_integrals(current);
1524 	task_numa_free(current);
1525 	free_bprm(bprm);
1526 	if (displaced)
1527 		put_files_struct(displaced);
1528 	return retval;
1529 
1530 out:
1531 	if (bprm->mm) {
1532 		acct_arg_size(bprm, 0);
1533 		mmput(bprm->mm);
1534 	}
1535 
1536 out_unmark:
1537 	current->fs->in_exec = 0;
1538 	current->in_execve = 0;
1539 
1540 out_free:
1541 	free_bprm(bprm);
1542 
1543 out_files:
1544 	if (displaced)
1545 		reset_files_struct(displaced);
1546 out_ret:
1547 	return retval;
1548 }
1549 
1550 int do_execve(const char *filename,
1551 	const char __user *const __user *__argv,
1552 	const char __user *const __user *__envp)
1553 {
1554 	struct user_arg_ptr argv = { .ptr.native = __argv };
1555 	struct user_arg_ptr envp = { .ptr.native = __envp };
1556 	return do_execve_common(filename, argv, envp);
1557 }
1558 
1559 #ifdef CONFIG_COMPAT
1560 static int compat_do_execve(const char *filename,
1561 	const compat_uptr_t __user *__argv,
1562 	const compat_uptr_t __user *__envp)
1563 {
1564 	struct user_arg_ptr argv = {
1565 		.is_compat = true,
1566 		.ptr.compat = __argv,
1567 	};
1568 	struct user_arg_ptr envp = {
1569 		.is_compat = true,
1570 		.ptr.compat = __envp,
1571 	};
1572 	return do_execve_common(filename, argv, envp);
1573 }
1574 #endif
1575 
1576 void set_binfmt(struct linux_binfmt *new)
1577 {
1578 	struct mm_struct *mm = current->mm;
1579 
1580 	if (mm->binfmt)
1581 		module_put(mm->binfmt->module);
1582 
1583 	mm->binfmt = new;
1584 	if (new)
1585 		__module_get(new->module);
1586 }
1587 EXPORT_SYMBOL(set_binfmt);
1588 
1589 /*
1590  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1591  */
1592 void set_dumpable(struct mm_struct *mm, int value)
1593 {
1594 	unsigned long old, new;
1595 
1596 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1597 		return;
1598 
1599 	do {
1600 		old = ACCESS_ONCE(mm->flags);
1601 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1602 	} while (cmpxchg(&mm->flags, old, new) != old);
1603 }
1604 
1605 SYSCALL_DEFINE3(execve,
1606 		const char __user *, filename,
1607 		const char __user *const __user *, argv,
1608 		const char __user *const __user *, envp)
1609 {
1610 	struct filename *path = getname(filename);
1611 	int error = PTR_ERR(path);
1612 	if (!IS_ERR(path)) {
1613 		error = do_execve(path->name, argv, envp);
1614 		putname(path);
1615 	}
1616 	return error;
1617 }
1618 #ifdef CONFIG_COMPAT
1619 asmlinkage long compat_sys_execve(const char __user * filename,
1620 	const compat_uptr_t __user * argv,
1621 	const compat_uptr_t __user * envp)
1622 {
1623 	struct filename *path = getname(filename);
1624 	int error = PTR_ERR(path);
1625 	if (!IS_ERR(path)) {
1626 		error = compat_do_execve(path->name, argv, envp);
1627 		putname(path);
1628 	}
1629 	return error;
1630 }
1631 #endif
1632