xref: /openbmc/linux/fs/exec.c (revision 5bd8e16d)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 
63 #include <trace/events/task.h>
64 #include "internal.h"
65 #include "coredump.h"
66 
67 #include <trace/events/sched.h>
68 
69 int suid_dumpable = 0;
70 
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73 
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 	BUG_ON(!fmt);
77 	if (WARN_ON(!fmt->load_binary))
78 		return;
79 	write_lock(&binfmt_lock);
80 	insert ? list_add(&fmt->lh, &formats) :
81 		 list_add_tail(&fmt->lh, &formats);
82 	write_unlock(&binfmt_lock);
83 }
84 
85 EXPORT_SYMBOL(__register_binfmt);
86 
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89 	write_lock(&binfmt_lock);
90 	list_del(&fmt->lh);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(unregister_binfmt);
95 
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98 	module_put(fmt->module);
99 }
100 
101 /*
102  * Note that a shared library must be both readable and executable due to
103  * security reasons.
104  *
105  * Also note that we take the address to load from from the file itself.
106  */
107 SYSCALL_DEFINE1(uselib, const char __user *, library)
108 {
109 	struct file *file;
110 	struct filename *tmp = getname(library);
111 	int error = PTR_ERR(tmp);
112 	static const struct open_flags uselib_flags = {
113 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
114 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
115 		.intent = LOOKUP_OPEN,
116 		.lookup_flags = LOOKUP_FOLLOW,
117 	};
118 
119 	if (IS_ERR(tmp))
120 		goto out;
121 
122 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
123 	putname(tmp);
124 	error = PTR_ERR(file);
125 	if (IS_ERR(file))
126 		goto out;
127 
128 	error = -EINVAL;
129 	if (!S_ISREG(file_inode(file)->i_mode))
130 		goto exit;
131 
132 	error = -EACCES;
133 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
134 		goto exit;
135 
136 	fsnotify_open(file);
137 
138 	error = -ENOEXEC;
139 	if(file->f_op) {
140 		struct linux_binfmt * fmt;
141 
142 		read_lock(&binfmt_lock);
143 		list_for_each_entry(fmt, &formats, lh) {
144 			if (!fmt->load_shlib)
145 				continue;
146 			if (!try_module_get(fmt->module))
147 				continue;
148 			read_unlock(&binfmt_lock);
149 			error = fmt->load_shlib(file);
150 			read_lock(&binfmt_lock);
151 			put_binfmt(fmt);
152 			if (error != -ENOEXEC)
153 				break;
154 		}
155 		read_unlock(&binfmt_lock);
156 	}
157 exit:
158 	fput(file);
159 out:
160   	return error;
161 }
162 
163 #ifdef CONFIG_MMU
164 /*
165  * The nascent bprm->mm is not visible until exec_mmap() but it can
166  * use a lot of memory, account these pages in current->mm temporary
167  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168  * change the counter back via acct_arg_size(0).
169  */
170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
171 {
172 	struct mm_struct *mm = current->mm;
173 	long diff = (long)(pages - bprm->vma_pages);
174 
175 	if (!mm || !diff)
176 		return;
177 
178 	bprm->vma_pages = pages;
179 	add_mm_counter(mm, MM_ANONPAGES, diff);
180 }
181 
182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
183 		int write)
184 {
185 	struct page *page;
186 	int ret;
187 
188 #ifdef CONFIG_STACK_GROWSUP
189 	if (write) {
190 		ret = expand_downwards(bprm->vma, pos);
191 		if (ret < 0)
192 			return NULL;
193 	}
194 #endif
195 	ret = get_user_pages(current, bprm->mm, pos,
196 			1, write, 1, &page, NULL);
197 	if (ret <= 0)
198 		return NULL;
199 
200 	if (write) {
201 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202 		struct rlimit *rlim;
203 
204 		acct_arg_size(bprm, size / PAGE_SIZE);
205 
206 		/*
207 		 * We've historically supported up to 32 pages (ARG_MAX)
208 		 * of argument strings even with small stacks
209 		 */
210 		if (size <= ARG_MAX)
211 			return page;
212 
213 		/*
214 		 * Limit to 1/4-th the stack size for the argv+env strings.
215 		 * This ensures that:
216 		 *  - the remaining binfmt code will not run out of stack space,
217 		 *  - the program will have a reasonable amount of stack left
218 		 *    to work from.
219 		 */
220 		rlim = current->signal->rlim;
221 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
222 			put_page(page);
223 			return NULL;
224 		}
225 	}
226 
227 	return page;
228 }
229 
230 static void put_arg_page(struct page *page)
231 {
232 	put_page(page);
233 }
234 
235 static void free_arg_page(struct linux_binprm *bprm, int i)
236 {
237 }
238 
239 static void free_arg_pages(struct linux_binprm *bprm)
240 {
241 }
242 
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244 		struct page *page)
245 {
246 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 }
248 
249 static int __bprm_mm_init(struct linux_binprm *bprm)
250 {
251 	int err;
252 	struct vm_area_struct *vma = NULL;
253 	struct mm_struct *mm = bprm->mm;
254 
255 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
256 	if (!vma)
257 		return -ENOMEM;
258 
259 	down_write(&mm->mmap_sem);
260 	vma->vm_mm = mm;
261 
262 	/*
263 	 * Place the stack at the largest stack address the architecture
264 	 * supports. Later, we'll move this to an appropriate place. We don't
265 	 * use STACK_TOP because that can depend on attributes which aren't
266 	 * configured yet.
267 	 */
268 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269 	vma->vm_end = STACK_TOP_MAX;
270 	vma->vm_start = vma->vm_end - PAGE_SIZE;
271 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273 	INIT_LIST_HEAD(&vma->anon_vma_chain);
274 
275 	err = insert_vm_struct(mm, vma);
276 	if (err)
277 		goto err;
278 
279 	mm->stack_vm = mm->total_vm = 1;
280 	up_write(&mm->mmap_sem);
281 	bprm->p = vma->vm_end - sizeof(void *);
282 	return 0;
283 err:
284 	up_write(&mm->mmap_sem);
285 	bprm->vma = NULL;
286 	kmem_cache_free(vm_area_cachep, vma);
287 	return err;
288 }
289 
290 static bool valid_arg_len(struct linux_binprm *bprm, long len)
291 {
292 	return len <= MAX_ARG_STRLEN;
293 }
294 
295 #else
296 
297 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
298 {
299 }
300 
301 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
302 		int write)
303 {
304 	struct page *page;
305 
306 	page = bprm->page[pos / PAGE_SIZE];
307 	if (!page && write) {
308 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
309 		if (!page)
310 			return NULL;
311 		bprm->page[pos / PAGE_SIZE] = page;
312 	}
313 
314 	return page;
315 }
316 
317 static void put_arg_page(struct page *page)
318 {
319 }
320 
321 static void free_arg_page(struct linux_binprm *bprm, int i)
322 {
323 	if (bprm->page[i]) {
324 		__free_page(bprm->page[i]);
325 		bprm->page[i] = NULL;
326 	}
327 }
328 
329 static void free_arg_pages(struct linux_binprm *bprm)
330 {
331 	int i;
332 
333 	for (i = 0; i < MAX_ARG_PAGES; i++)
334 		free_arg_page(bprm, i);
335 }
336 
337 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
338 		struct page *page)
339 {
340 }
341 
342 static int __bprm_mm_init(struct linux_binprm *bprm)
343 {
344 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
345 	return 0;
346 }
347 
348 static bool valid_arg_len(struct linux_binprm *bprm, long len)
349 {
350 	return len <= bprm->p;
351 }
352 
353 #endif /* CONFIG_MMU */
354 
355 /*
356  * Create a new mm_struct and populate it with a temporary stack
357  * vm_area_struct.  We don't have enough context at this point to set the stack
358  * flags, permissions, and offset, so we use temporary values.  We'll update
359  * them later in setup_arg_pages().
360  */
361 static int bprm_mm_init(struct linux_binprm *bprm)
362 {
363 	int err;
364 	struct mm_struct *mm = NULL;
365 
366 	bprm->mm = mm = mm_alloc();
367 	err = -ENOMEM;
368 	if (!mm)
369 		goto err;
370 
371 	err = init_new_context(current, mm);
372 	if (err)
373 		goto err;
374 
375 	err = __bprm_mm_init(bprm);
376 	if (err)
377 		goto err;
378 
379 	return 0;
380 
381 err:
382 	if (mm) {
383 		bprm->mm = NULL;
384 		mmdrop(mm);
385 	}
386 
387 	return err;
388 }
389 
390 struct user_arg_ptr {
391 #ifdef CONFIG_COMPAT
392 	bool is_compat;
393 #endif
394 	union {
395 		const char __user *const __user *native;
396 #ifdef CONFIG_COMPAT
397 		const compat_uptr_t __user *compat;
398 #endif
399 	} ptr;
400 };
401 
402 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
403 {
404 	const char __user *native;
405 
406 #ifdef CONFIG_COMPAT
407 	if (unlikely(argv.is_compat)) {
408 		compat_uptr_t compat;
409 
410 		if (get_user(compat, argv.ptr.compat + nr))
411 			return ERR_PTR(-EFAULT);
412 
413 		return compat_ptr(compat);
414 	}
415 #endif
416 
417 	if (get_user(native, argv.ptr.native + nr))
418 		return ERR_PTR(-EFAULT);
419 
420 	return native;
421 }
422 
423 /*
424  * count() counts the number of strings in array ARGV.
425  */
426 static int count(struct user_arg_ptr argv, int max)
427 {
428 	int i = 0;
429 
430 	if (argv.ptr.native != NULL) {
431 		for (;;) {
432 			const char __user *p = get_user_arg_ptr(argv, i);
433 
434 			if (!p)
435 				break;
436 
437 			if (IS_ERR(p))
438 				return -EFAULT;
439 
440 			if (i >= max)
441 				return -E2BIG;
442 			++i;
443 
444 			if (fatal_signal_pending(current))
445 				return -ERESTARTNOHAND;
446 			cond_resched();
447 		}
448 	}
449 	return i;
450 }
451 
452 /*
453  * 'copy_strings()' copies argument/environment strings from the old
454  * processes's memory to the new process's stack.  The call to get_user_pages()
455  * ensures the destination page is created and not swapped out.
456  */
457 static int copy_strings(int argc, struct user_arg_ptr argv,
458 			struct linux_binprm *bprm)
459 {
460 	struct page *kmapped_page = NULL;
461 	char *kaddr = NULL;
462 	unsigned long kpos = 0;
463 	int ret;
464 
465 	while (argc-- > 0) {
466 		const char __user *str;
467 		int len;
468 		unsigned long pos;
469 
470 		ret = -EFAULT;
471 		str = get_user_arg_ptr(argv, argc);
472 		if (IS_ERR(str))
473 			goto out;
474 
475 		len = strnlen_user(str, MAX_ARG_STRLEN);
476 		if (!len)
477 			goto out;
478 
479 		ret = -E2BIG;
480 		if (!valid_arg_len(bprm, len))
481 			goto out;
482 
483 		/* We're going to work our way backwords. */
484 		pos = bprm->p;
485 		str += len;
486 		bprm->p -= len;
487 
488 		while (len > 0) {
489 			int offset, bytes_to_copy;
490 
491 			if (fatal_signal_pending(current)) {
492 				ret = -ERESTARTNOHAND;
493 				goto out;
494 			}
495 			cond_resched();
496 
497 			offset = pos % PAGE_SIZE;
498 			if (offset == 0)
499 				offset = PAGE_SIZE;
500 
501 			bytes_to_copy = offset;
502 			if (bytes_to_copy > len)
503 				bytes_to_copy = len;
504 
505 			offset -= bytes_to_copy;
506 			pos -= bytes_to_copy;
507 			str -= bytes_to_copy;
508 			len -= bytes_to_copy;
509 
510 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
511 				struct page *page;
512 
513 				page = get_arg_page(bprm, pos, 1);
514 				if (!page) {
515 					ret = -E2BIG;
516 					goto out;
517 				}
518 
519 				if (kmapped_page) {
520 					flush_kernel_dcache_page(kmapped_page);
521 					kunmap(kmapped_page);
522 					put_arg_page(kmapped_page);
523 				}
524 				kmapped_page = page;
525 				kaddr = kmap(kmapped_page);
526 				kpos = pos & PAGE_MASK;
527 				flush_arg_page(bprm, kpos, kmapped_page);
528 			}
529 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
530 				ret = -EFAULT;
531 				goto out;
532 			}
533 		}
534 	}
535 	ret = 0;
536 out:
537 	if (kmapped_page) {
538 		flush_kernel_dcache_page(kmapped_page);
539 		kunmap(kmapped_page);
540 		put_arg_page(kmapped_page);
541 	}
542 	return ret;
543 }
544 
545 /*
546  * Like copy_strings, but get argv and its values from kernel memory.
547  */
548 int copy_strings_kernel(int argc, const char *const *__argv,
549 			struct linux_binprm *bprm)
550 {
551 	int r;
552 	mm_segment_t oldfs = get_fs();
553 	struct user_arg_ptr argv = {
554 		.ptr.native = (const char __user *const  __user *)__argv,
555 	};
556 
557 	set_fs(KERNEL_DS);
558 	r = copy_strings(argc, argv, bprm);
559 	set_fs(oldfs);
560 
561 	return r;
562 }
563 EXPORT_SYMBOL(copy_strings_kernel);
564 
565 #ifdef CONFIG_MMU
566 
567 /*
568  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
569  * the binfmt code determines where the new stack should reside, we shift it to
570  * its final location.  The process proceeds as follows:
571  *
572  * 1) Use shift to calculate the new vma endpoints.
573  * 2) Extend vma to cover both the old and new ranges.  This ensures the
574  *    arguments passed to subsequent functions are consistent.
575  * 3) Move vma's page tables to the new range.
576  * 4) Free up any cleared pgd range.
577  * 5) Shrink the vma to cover only the new range.
578  */
579 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
580 {
581 	struct mm_struct *mm = vma->vm_mm;
582 	unsigned long old_start = vma->vm_start;
583 	unsigned long old_end = vma->vm_end;
584 	unsigned long length = old_end - old_start;
585 	unsigned long new_start = old_start - shift;
586 	unsigned long new_end = old_end - shift;
587 	struct mmu_gather tlb;
588 
589 	BUG_ON(new_start > new_end);
590 
591 	/*
592 	 * ensure there are no vmas between where we want to go
593 	 * and where we are
594 	 */
595 	if (vma != find_vma(mm, new_start))
596 		return -EFAULT;
597 
598 	/*
599 	 * cover the whole range: [new_start, old_end)
600 	 */
601 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
602 		return -ENOMEM;
603 
604 	/*
605 	 * move the page tables downwards, on failure we rely on
606 	 * process cleanup to remove whatever mess we made.
607 	 */
608 	if (length != move_page_tables(vma, old_start,
609 				       vma, new_start, length, false))
610 		return -ENOMEM;
611 
612 	lru_add_drain();
613 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
614 	if (new_end > old_start) {
615 		/*
616 		 * when the old and new regions overlap clear from new_end.
617 		 */
618 		free_pgd_range(&tlb, new_end, old_end, new_end,
619 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
620 	} else {
621 		/*
622 		 * otherwise, clean from old_start; this is done to not touch
623 		 * the address space in [new_end, old_start) some architectures
624 		 * have constraints on va-space that make this illegal (IA64) -
625 		 * for the others its just a little faster.
626 		 */
627 		free_pgd_range(&tlb, old_start, old_end, new_end,
628 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
629 	}
630 	tlb_finish_mmu(&tlb, old_start, old_end);
631 
632 	/*
633 	 * Shrink the vma to just the new range.  Always succeeds.
634 	 */
635 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
636 
637 	return 0;
638 }
639 
640 /*
641  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
642  * the stack is optionally relocated, and some extra space is added.
643  */
644 int setup_arg_pages(struct linux_binprm *bprm,
645 		    unsigned long stack_top,
646 		    int executable_stack)
647 {
648 	unsigned long ret;
649 	unsigned long stack_shift;
650 	struct mm_struct *mm = current->mm;
651 	struct vm_area_struct *vma = bprm->vma;
652 	struct vm_area_struct *prev = NULL;
653 	unsigned long vm_flags;
654 	unsigned long stack_base;
655 	unsigned long stack_size;
656 	unsigned long stack_expand;
657 	unsigned long rlim_stack;
658 
659 #ifdef CONFIG_STACK_GROWSUP
660 	/* Limit stack size to 1GB */
661 	stack_base = rlimit_max(RLIMIT_STACK);
662 	if (stack_base > (1 << 30))
663 		stack_base = 1 << 30;
664 
665 	/* Make sure we didn't let the argument array grow too large. */
666 	if (vma->vm_end - vma->vm_start > stack_base)
667 		return -ENOMEM;
668 
669 	stack_base = PAGE_ALIGN(stack_top - stack_base);
670 
671 	stack_shift = vma->vm_start - stack_base;
672 	mm->arg_start = bprm->p - stack_shift;
673 	bprm->p = vma->vm_end - stack_shift;
674 #else
675 	stack_top = arch_align_stack(stack_top);
676 	stack_top = PAGE_ALIGN(stack_top);
677 
678 	if (unlikely(stack_top < mmap_min_addr) ||
679 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
680 		return -ENOMEM;
681 
682 	stack_shift = vma->vm_end - stack_top;
683 
684 	bprm->p -= stack_shift;
685 	mm->arg_start = bprm->p;
686 #endif
687 
688 	if (bprm->loader)
689 		bprm->loader -= stack_shift;
690 	bprm->exec -= stack_shift;
691 
692 	down_write(&mm->mmap_sem);
693 	vm_flags = VM_STACK_FLAGS;
694 
695 	/*
696 	 * Adjust stack execute permissions; explicitly enable for
697 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
698 	 * (arch default) otherwise.
699 	 */
700 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
701 		vm_flags |= VM_EXEC;
702 	else if (executable_stack == EXSTACK_DISABLE_X)
703 		vm_flags &= ~VM_EXEC;
704 	vm_flags |= mm->def_flags;
705 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
706 
707 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
708 			vm_flags);
709 	if (ret)
710 		goto out_unlock;
711 	BUG_ON(prev != vma);
712 
713 	/* Move stack pages down in memory. */
714 	if (stack_shift) {
715 		ret = shift_arg_pages(vma, stack_shift);
716 		if (ret)
717 			goto out_unlock;
718 	}
719 
720 	/* mprotect_fixup is overkill to remove the temporary stack flags */
721 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
722 
723 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
724 	stack_size = vma->vm_end - vma->vm_start;
725 	/*
726 	 * Align this down to a page boundary as expand_stack
727 	 * will align it up.
728 	 */
729 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
730 #ifdef CONFIG_STACK_GROWSUP
731 	if (stack_size + stack_expand > rlim_stack)
732 		stack_base = vma->vm_start + rlim_stack;
733 	else
734 		stack_base = vma->vm_end + stack_expand;
735 #else
736 	if (stack_size + stack_expand > rlim_stack)
737 		stack_base = vma->vm_end - rlim_stack;
738 	else
739 		stack_base = vma->vm_start - stack_expand;
740 #endif
741 	current->mm->start_stack = bprm->p;
742 	ret = expand_stack(vma, stack_base);
743 	if (ret)
744 		ret = -EFAULT;
745 
746 out_unlock:
747 	up_write(&mm->mmap_sem);
748 	return ret;
749 }
750 EXPORT_SYMBOL(setup_arg_pages);
751 
752 #endif /* CONFIG_MMU */
753 
754 struct file *open_exec(const char *name)
755 {
756 	struct file *file;
757 	int err;
758 	struct filename tmp = { .name = name };
759 	static const struct open_flags open_exec_flags = {
760 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
761 		.acc_mode = MAY_EXEC | MAY_OPEN,
762 		.intent = LOOKUP_OPEN,
763 		.lookup_flags = LOOKUP_FOLLOW,
764 	};
765 
766 	file = do_filp_open(AT_FDCWD, &tmp, &open_exec_flags);
767 	if (IS_ERR(file))
768 		goto out;
769 
770 	err = -EACCES;
771 	if (!S_ISREG(file_inode(file)->i_mode))
772 		goto exit;
773 
774 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
775 		goto exit;
776 
777 	fsnotify_open(file);
778 
779 	err = deny_write_access(file);
780 	if (err)
781 		goto exit;
782 
783 out:
784 	return file;
785 
786 exit:
787 	fput(file);
788 	return ERR_PTR(err);
789 }
790 EXPORT_SYMBOL(open_exec);
791 
792 int kernel_read(struct file *file, loff_t offset,
793 		char *addr, unsigned long count)
794 {
795 	mm_segment_t old_fs;
796 	loff_t pos = offset;
797 	int result;
798 
799 	old_fs = get_fs();
800 	set_fs(get_ds());
801 	/* The cast to a user pointer is valid due to the set_fs() */
802 	result = vfs_read(file, (void __user *)addr, count, &pos);
803 	set_fs(old_fs);
804 	return result;
805 }
806 
807 EXPORT_SYMBOL(kernel_read);
808 
809 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
810 {
811 	ssize_t res = file->f_op->read(file, (void __user *)addr, len, &pos);
812 	if (res > 0)
813 		flush_icache_range(addr, addr + len);
814 	return res;
815 }
816 EXPORT_SYMBOL(read_code);
817 
818 static int exec_mmap(struct mm_struct *mm)
819 {
820 	struct task_struct *tsk;
821 	struct mm_struct * old_mm, *active_mm;
822 
823 	/* Notify parent that we're no longer interested in the old VM */
824 	tsk = current;
825 	old_mm = current->mm;
826 	mm_release(tsk, old_mm);
827 
828 	if (old_mm) {
829 		sync_mm_rss(old_mm);
830 		/*
831 		 * Make sure that if there is a core dump in progress
832 		 * for the old mm, we get out and die instead of going
833 		 * through with the exec.  We must hold mmap_sem around
834 		 * checking core_state and changing tsk->mm.
835 		 */
836 		down_read(&old_mm->mmap_sem);
837 		if (unlikely(old_mm->core_state)) {
838 			up_read(&old_mm->mmap_sem);
839 			return -EINTR;
840 		}
841 	}
842 	task_lock(tsk);
843 	active_mm = tsk->active_mm;
844 	tsk->mm = mm;
845 	tsk->active_mm = mm;
846 	activate_mm(active_mm, mm);
847 	task_unlock(tsk);
848 	arch_pick_mmap_layout(mm);
849 	if (old_mm) {
850 		up_read(&old_mm->mmap_sem);
851 		BUG_ON(active_mm != old_mm);
852 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
853 		mm_update_next_owner(old_mm);
854 		mmput(old_mm);
855 		return 0;
856 	}
857 	mmdrop(active_mm);
858 	return 0;
859 }
860 
861 /*
862  * This function makes sure the current process has its own signal table,
863  * so that flush_signal_handlers can later reset the handlers without
864  * disturbing other processes.  (Other processes might share the signal
865  * table via the CLONE_SIGHAND option to clone().)
866  */
867 static int de_thread(struct task_struct *tsk)
868 {
869 	struct signal_struct *sig = tsk->signal;
870 	struct sighand_struct *oldsighand = tsk->sighand;
871 	spinlock_t *lock = &oldsighand->siglock;
872 
873 	if (thread_group_empty(tsk))
874 		goto no_thread_group;
875 
876 	/*
877 	 * Kill all other threads in the thread group.
878 	 */
879 	spin_lock_irq(lock);
880 	if (signal_group_exit(sig)) {
881 		/*
882 		 * Another group action in progress, just
883 		 * return so that the signal is processed.
884 		 */
885 		spin_unlock_irq(lock);
886 		return -EAGAIN;
887 	}
888 
889 	sig->group_exit_task = tsk;
890 	sig->notify_count = zap_other_threads(tsk);
891 	if (!thread_group_leader(tsk))
892 		sig->notify_count--;
893 
894 	while (sig->notify_count) {
895 		__set_current_state(TASK_KILLABLE);
896 		spin_unlock_irq(lock);
897 		schedule();
898 		if (unlikely(__fatal_signal_pending(tsk)))
899 			goto killed;
900 		spin_lock_irq(lock);
901 	}
902 	spin_unlock_irq(lock);
903 
904 	/*
905 	 * At this point all other threads have exited, all we have to
906 	 * do is to wait for the thread group leader to become inactive,
907 	 * and to assume its PID:
908 	 */
909 	if (!thread_group_leader(tsk)) {
910 		struct task_struct *leader = tsk->group_leader;
911 
912 		sig->notify_count = -1;	/* for exit_notify() */
913 		for (;;) {
914 			threadgroup_change_begin(tsk);
915 			write_lock_irq(&tasklist_lock);
916 			if (likely(leader->exit_state))
917 				break;
918 			__set_current_state(TASK_KILLABLE);
919 			write_unlock_irq(&tasklist_lock);
920 			threadgroup_change_end(tsk);
921 			schedule();
922 			if (unlikely(__fatal_signal_pending(tsk)))
923 				goto killed;
924 		}
925 
926 		/*
927 		 * The only record we have of the real-time age of a
928 		 * process, regardless of execs it's done, is start_time.
929 		 * All the past CPU time is accumulated in signal_struct
930 		 * from sister threads now dead.  But in this non-leader
931 		 * exec, nothing survives from the original leader thread,
932 		 * whose birth marks the true age of this process now.
933 		 * When we take on its identity by switching to its PID, we
934 		 * also take its birthdate (always earlier than our own).
935 		 */
936 		tsk->start_time = leader->start_time;
937 		tsk->real_start_time = leader->real_start_time;
938 
939 		BUG_ON(!same_thread_group(leader, tsk));
940 		BUG_ON(has_group_leader_pid(tsk));
941 		/*
942 		 * An exec() starts a new thread group with the
943 		 * TGID of the previous thread group. Rehash the
944 		 * two threads with a switched PID, and release
945 		 * the former thread group leader:
946 		 */
947 
948 		/* Become a process group leader with the old leader's pid.
949 		 * The old leader becomes a thread of the this thread group.
950 		 * Note: The old leader also uses this pid until release_task
951 		 *       is called.  Odd but simple and correct.
952 		 */
953 		tsk->pid = leader->pid;
954 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
955 		transfer_pid(leader, tsk, PIDTYPE_PGID);
956 		transfer_pid(leader, tsk, PIDTYPE_SID);
957 
958 		list_replace_rcu(&leader->tasks, &tsk->tasks);
959 		list_replace_init(&leader->sibling, &tsk->sibling);
960 
961 		tsk->group_leader = tsk;
962 		leader->group_leader = tsk;
963 
964 		tsk->exit_signal = SIGCHLD;
965 		leader->exit_signal = -1;
966 
967 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
968 		leader->exit_state = EXIT_DEAD;
969 
970 		/*
971 		 * We are going to release_task()->ptrace_unlink() silently,
972 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
973 		 * the tracer wont't block again waiting for this thread.
974 		 */
975 		if (unlikely(leader->ptrace))
976 			__wake_up_parent(leader, leader->parent);
977 		write_unlock_irq(&tasklist_lock);
978 		threadgroup_change_end(tsk);
979 
980 		release_task(leader);
981 	}
982 
983 	sig->group_exit_task = NULL;
984 	sig->notify_count = 0;
985 
986 no_thread_group:
987 	/* we have changed execution domain */
988 	tsk->exit_signal = SIGCHLD;
989 
990 	exit_itimers(sig);
991 	flush_itimer_signals();
992 
993 	if (atomic_read(&oldsighand->count) != 1) {
994 		struct sighand_struct *newsighand;
995 		/*
996 		 * This ->sighand is shared with the CLONE_SIGHAND
997 		 * but not CLONE_THREAD task, switch to the new one.
998 		 */
999 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1000 		if (!newsighand)
1001 			return -ENOMEM;
1002 
1003 		atomic_set(&newsighand->count, 1);
1004 		memcpy(newsighand->action, oldsighand->action,
1005 		       sizeof(newsighand->action));
1006 
1007 		write_lock_irq(&tasklist_lock);
1008 		spin_lock(&oldsighand->siglock);
1009 		rcu_assign_pointer(tsk->sighand, newsighand);
1010 		spin_unlock(&oldsighand->siglock);
1011 		write_unlock_irq(&tasklist_lock);
1012 
1013 		__cleanup_sighand(oldsighand);
1014 	}
1015 
1016 	BUG_ON(!thread_group_leader(tsk));
1017 	return 0;
1018 
1019 killed:
1020 	/* protects against exit_notify() and __exit_signal() */
1021 	read_lock(&tasklist_lock);
1022 	sig->group_exit_task = NULL;
1023 	sig->notify_count = 0;
1024 	read_unlock(&tasklist_lock);
1025 	return -EAGAIN;
1026 }
1027 
1028 char *get_task_comm(char *buf, struct task_struct *tsk)
1029 {
1030 	/* buf must be at least sizeof(tsk->comm) in size */
1031 	task_lock(tsk);
1032 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1033 	task_unlock(tsk);
1034 	return buf;
1035 }
1036 EXPORT_SYMBOL_GPL(get_task_comm);
1037 
1038 /*
1039  * These functions flushes out all traces of the currently running executable
1040  * so that a new one can be started
1041  */
1042 
1043 void set_task_comm(struct task_struct *tsk, char *buf)
1044 {
1045 	task_lock(tsk);
1046 	trace_task_rename(tsk, buf);
1047 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1048 	task_unlock(tsk);
1049 	perf_event_comm(tsk);
1050 }
1051 
1052 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1053 {
1054 	int i, ch;
1055 
1056 	/* Copies the binary name from after last slash */
1057 	for (i = 0; (ch = *(fn++)) != '\0';) {
1058 		if (ch == '/')
1059 			i = 0; /* overwrite what we wrote */
1060 		else
1061 			if (i < len - 1)
1062 				tcomm[i++] = ch;
1063 	}
1064 	tcomm[i] = '\0';
1065 }
1066 
1067 int flush_old_exec(struct linux_binprm * bprm)
1068 {
1069 	int retval;
1070 
1071 	/*
1072 	 * Make sure we have a private signal table and that
1073 	 * we are unassociated from the previous thread group.
1074 	 */
1075 	retval = de_thread(current);
1076 	if (retval)
1077 		goto out;
1078 
1079 	set_mm_exe_file(bprm->mm, bprm->file);
1080 
1081 	filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1082 	/*
1083 	 * Release all of the old mmap stuff
1084 	 */
1085 	acct_arg_size(bprm, 0);
1086 	retval = exec_mmap(bprm->mm);
1087 	if (retval)
1088 		goto out;
1089 
1090 	bprm->mm = NULL;		/* We're using it now */
1091 
1092 	set_fs(USER_DS);
1093 	current->flags &=
1094 		~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | PF_NOFREEZE);
1095 	flush_thread();
1096 	current->personality &= ~bprm->per_clear;
1097 
1098 	return 0;
1099 
1100 out:
1101 	return retval;
1102 }
1103 EXPORT_SYMBOL(flush_old_exec);
1104 
1105 void would_dump(struct linux_binprm *bprm, struct file *file)
1106 {
1107 	if (inode_permission(file_inode(file), MAY_READ) < 0)
1108 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1109 }
1110 EXPORT_SYMBOL(would_dump);
1111 
1112 void setup_new_exec(struct linux_binprm * bprm)
1113 {
1114 	arch_pick_mmap_layout(current->mm);
1115 
1116 	/* This is the point of no return */
1117 	current->sas_ss_sp = current->sas_ss_size = 0;
1118 
1119 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1120 		set_dumpable(current->mm, SUID_DUMP_USER);
1121 	else
1122 		set_dumpable(current->mm, suid_dumpable);
1123 
1124 	set_task_comm(current, bprm->tcomm);
1125 
1126 	/* Set the new mm task size. We have to do that late because it may
1127 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1128 	 * some architectures like powerpc
1129 	 */
1130 	current->mm->task_size = TASK_SIZE;
1131 
1132 	/* install the new credentials */
1133 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1134 	    !gid_eq(bprm->cred->gid, current_egid())) {
1135 		current->pdeath_signal = 0;
1136 	} else {
1137 		would_dump(bprm, bprm->file);
1138 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1139 			set_dumpable(current->mm, suid_dumpable);
1140 	}
1141 
1142 	/* An exec changes our domain. We are no longer part of the thread
1143 	   group */
1144 
1145 	current->self_exec_id++;
1146 
1147 	flush_signal_handlers(current, 0);
1148 	do_close_on_exec(current->files);
1149 }
1150 EXPORT_SYMBOL(setup_new_exec);
1151 
1152 /*
1153  * Prepare credentials and lock ->cred_guard_mutex.
1154  * install_exec_creds() commits the new creds and drops the lock.
1155  * Or, if exec fails before, free_bprm() should release ->cred and
1156  * and unlock.
1157  */
1158 int prepare_bprm_creds(struct linux_binprm *bprm)
1159 {
1160 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1161 		return -ERESTARTNOINTR;
1162 
1163 	bprm->cred = prepare_exec_creds();
1164 	if (likely(bprm->cred))
1165 		return 0;
1166 
1167 	mutex_unlock(&current->signal->cred_guard_mutex);
1168 	return -ENOMEM;
1169 }
1170 
1171 void free_bprm(struct linux_binprm *bprm)
1172 {
1173 	free_arg_pages(bprm);
1174 	if (bprm->cred) {
1175 		mutex_unlock(&current->signal->cred_guard_mutex);
1176 		abort_creds(bprm->cred);
1177 	}
1178 	/* If a binfmt changed the interp, free it. */
1179 	if (bprm->interp != bprm->filename)
1180 		kfree(bprm->interp);
1181 	kfree(bprm);
1182 }
1183 
1184 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1185 {
1186 	/* If a binfmt changed the interp, free it first. */
1187 	if (bprm->interp != bprm->filename)
1188 		kfree(bprm->interp);
1189 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1190 	if (!bprm->interp)
1191 		return -ENOMEM;
1192 	return 0;
1193 }
1194 EXPORT_SYMBOL(bprm_change_interp);
1195 
1196 /*
1197  * install the new credentials for this executable
1198  */
1199 void install_exec_creds(struct linux_binprm *bprm)
1200 {
1201 	security_bprm_committing_creds(bprm);
1202 
1203 	commit_creds(bprm->cred);
1204 	bprm->cred = NULL;
1205 
1206 	/*
1207 	 * Disable monitoring for regular users
1208 	 * when executing setuid binaries. Must
1209 	 * wait until new credentials are committed
1210 	 * by commit_creds() above
1211 	 */
1212 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1213 		perf_event_exit_task(current);
1214 	/*
1215 	 * cred_guard_mutex must be held at least to this point to prevent
1216 	 * ptrace_attach() from altering our determination of the task's
1217 	 * credentials; any time after this it may be unlocked.
1218 	 */
1219 	security_bprm_committed_creds(bprm);
1220 	mutex_unlock(&current->signal->cred_guard_mutex);
1221 }
1222 EXPORT_SYMBOL(install_exec_creds);
1223 
1224 /*
1225  * determine how safe it is to execute the proposed program
1226  * - the caller must hold ->cred_guard_mutex to protect against
1227  *   PTRACE_ATTACH
1228  */
1229 static int check_unsafe_exec(struct linux_binprm *bprm)
1230 {
1231 	struct task_struct *p = current, *t;
1232 	unsigned n_fs;
1233 	int res = 0;
1234 
1235 	if (p->ptrace) {
1236 		if (p->ptrace & PT_PTRACE_CAP)
1237 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1238 		else
1239 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1240 	}
1241 
1242 	/*
1243 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1244 	 * mess up.
1245 	 */
1246 	if (current->no_new_privs)
1247 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1248 
1249 	n_fs = 1;
1250 	spin_lock(&p->fs->lock);
1251 	rcu_read_lock();
1252 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1253 		if (t->fs == p->fs)
1254 			n_fs++;
1255 	}
1256 	rcu_read_unlock();
1257 
1258 	if (p->fs->users > n_fs) {
1259 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1260 	} else {
1261 		res = -EAGAIN;
1262 		if (!p->fs->in_exec) {
1263 			p->fs->in_exec = 1;
1264 			res = 1;
1265 		}
1266 	}
1267 	spin_unlock(&p->fs->lock);
1268 
1269 	return res;
1270 }
1271 
1272 /*
1273  * Fill the binprm structure from the inode.
1274  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1275  *
1276  * This may be called multiple times for binary chains (scripts for example).
1277  */
1278 int prepare_binprm(struct linux_binprm *bprm)
1279 {
1280 	umode_t mode;
1281 	struct inode * inode = file_inode(bprm->file);
1282 	int retval;
1283 
1284 	mode = inode->i_mode;
1285 	if (bprm->file->f_op == NULL)
1286 		return -EACCES;
1287 
1288 	/* clear any previous set[ug]id data from a previous binary */
1289 	bprm->cred->euid = current_euid();
1290 	bprm->cred->egid = current_egid();
1291 
1292 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1293 	    !current->no_new_privs &&
1294 	    kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1295 	    kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1296 		/* Set-uid? */
1297 		if (mode & S_ISUID) {
1298 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1299 			bprm->cred->euid = inode->i_uid;
1300 		}
1301 
1302 		/* Set-gid? */
1303 		/*
1304 		 * If setgid is set but no group execute bit then this
1305 		 * is a candidate for mandatory locking, not a setgid
1306 		 * executable.
1307 		 */
1308 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1309 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1310 			bprm->cred->egid = inode->i_gid;
1311 		}
1312 	}
1313 
1314 	/* fill in binprm security blob */
1315 	retval = security_bprm_set_creds(bprm);
1316 	if (retval)
1317 		return retval;
1318 	bprm->cred_prepared = 1;
1319 
1320 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1321 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1322 }
1323 
1324 EXPORT_SYMBOL(prepare_binprm);
1325 
1326 /*
1327  * Arguments are '\0' separated strings found at the location bprm->p
1328  * points to; chop off the first by relocating brpm->p to right after
1329  * the first '\0' encountered.
1330  */
1331 int remove_arg_zero(struct linux_binprm *bprm)
1332 {
1333 	int ret = 0;
1334 	unsigned long offset;
1335 	char *kaddr;
1336 	struct page *page;
1337 
1338 	if (!bprm->argc)
1339 		return 0;
1340 
1341 	do {
1342 		offset = bprm->p & ~PAGE_MASK;
1343 		page = get_arg_page(bprm, bprm->p, 0);
1344 		if (!page) {
1345 			ret = -EFAULT;
1346 			goto out;
1347 		}
1348 		kaddr = kmap_atomic(page);
1349 
1350 		for (; offset < PAGE_SIZE && kaddr[offset];
1351 				offset++, bprm->p++)
1352 			;
1353 
1354 		kunmap_atomic(kaddr);
1355 		put_arg_page(page);
1356 
1357 		if (offset == PAGE_SIZE)
1358 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1359 	} while (offset == PAGE_SIZE);
1360 
1361 	bprm->p++;
1362 	bprm->argc--;
1363 	ret = 0;
1364 
1365 out:
1366 	return ret;
1367 }
1368 EXPORT_SYMBOL(remove_arg_zero);
1369 
1370 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1371 /*
1372  * cycle the list of binary formats handler, until one recognizes the image
1373  */
1374 int search_binary_handler(struct linux_binprm *bprm)
1375 {
1376 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1377 	struct linux_binfmt *fmt;
1378 	int retval;
1379 
1380 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1381 	if (bprm->recursion_depth > 5)
1382 		return -ELOOP;
1383 
1384 	retval = security_bprm_check(bprm);
1385 	if (retval)
1386 		return retval;
1387 
1388 	retval = audit_bprm(bprm);
1389 	if (retval)
1390 		return retval;
1391 
1392 	retval = -ENOENT;
1393  retry:
1394 	read_lock(&binfmt_lock);
1395 	list_for_each_entry(fmt, &formats, lh) {
1396 		if (!try_module_get(fmt->module))
1397 			continue;
1398 		read_unlock(&binfmt_lock);
1399 		bprm->recursion_depth++;
1400 		retval = fmt->load_binary(bprm);
1401 		bprm->recursion_depth--;
1402 		if (retval >= 0 || retval != -ENOEXEC ||
1403 		    bprm->mm == NULL || bprm->file == NULL) {
1404 			put_binfmt(fmt);
1405 			return retval;
1406 		}
1407 		read_lock(&binfmt_lock);
1408 		put_binfmt(fmt);
1409 	}
1410 	read_unlock(&binfmt_lock);
1411 
1412 	if (need_retry && retval == -ENOEXEC) {
1413 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1414 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1415 			return retval;
1416 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1417 			return retval;
1418 		need_retry = false;
1419 		goto retry;
1420 	}
1421 
1422 	return retval;
1423 }
1424 EXPORT_SYMBOL(search_binary_handler);
1425 
1426 static int exec_binprm(struct linux_binprm *bprm)
1427 {
1428 	pid_t old_pid, old_vpid;
1429 	int ret;
1430 
1431 	/* Need to fetch pid before load_binary changes it */
1432 	old_pid = current->pid;
1433 	rcu_read_lock();
1434 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1435 	rcu_read_unlock();
1436 
1437 	ret = search_binary_handler(bprm);
1438 	if (ret >= 0) {
1439 		trace_sched_process_exec(current, old_pid, bprm);
1440 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1441 		current->did_exec = 1;
1442 		proc_exec_connector(current);
1443 
1444 		if (bprm->file) {
1445 			allow_write_access(bprm->file);
1446 			fput(bprm->file);
1447 			bprm->file = NULL; /* to catch use-after-free */
1448 		}
1449 	}
1450 
1451 	return ret;
1452 }
1453 
1454 /*
1455  * sys_execve() executes a new program.
1456  */
1457 static int do_execve_common(const char *filename,
1458 				struct user_arg_ptr argv,
1459 				struct user_arg_ptr envp)
1460 {
1461 	struct linux_binprm *bprm;
1462 	struct file *file;
1463 	struct files_struct *displaced;
1464 	bool clear_in_exec;
1465 	int retval;
1466 
1467 	/*
1468 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1469 	 * set*uid() to execve() because too many poorly written programs
1470 	 * don't check setuid() return code.  Here we additionally recheck
1471 	 * whether NPROC limit is still exceeded.
1472 	 */
1473 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1474 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1475 		retval = -EAGAIN;
1476 		goto out_ret;
1477 	}
1478 
1479 	/* We're below the limit (still or again), so we don't want to make
1480 	 * further execve() calls fail. */
1481 	current->flags &= ~PF_NPROC_EXCEEDED;
1482 
1483 	retval = unshare_files(&displaced);
1484 	if (retval)
1485 		goto out_ret;
1486 
1487 	retval = -ENOMEM;
1488 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1489 	if (!bprm)
1490 		goto out_files;
1491 
1492 	retval = prepare_bprm_creds(bprm);
1493 	if (retval)
1494 		goto out_free;
1495 
1496 	retval = check_unsafe_exec(bprm);
1497 	if (retval < 0)
1498 		goto out_free;
1499 	clear_in_exec = retval;
1500 	current->in_execve = 1;
1501 
1502 	file = open_exec(filename);
1503 	retval = PTR_ERR(file);
1504 	if (IS_ERR(file))
1505 		goto out_unmark;
1506 
1507 	sched_exec();
1508 
1509 	bprm->file = file;
1510 	bprm->filename = filename;
1511 	bprm->interp = filename;
1512 
1513 	retval = bprm_mm_init(bprm);
1514 	if (retval)
1515 		goto out_file;
1516 
1517 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1518 	if ((retval = bprm->argc) < 0)
1519 		goto out;
1520 
1521 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1522 	if ((retval = bprm->envc) < 0)
1523 		goto out;
1524 
1525 	retval = prepare_binprm(bprm);
1526 	if (retval < 0)
1527 		goto out;
1528 
1529 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1530 	if (retval < 0)
1531 		goto out;
1532 
1533 	bprm->exec = bprm->p;
1534 	retval = copy_strings(bprm->envc, envp, bprm);
1535 	if (retval < 0)
1536 		goto out;
1537 
1538 	retval = copy_strings(bprm->argc, argv, bprm);
1539 	if (retval < 0)
1540 		goto out;
1541 
1542 	retval = exec_binprm(bprm);
1543 	if (retval < 0)
1544 		goto out;
1545 
1546 	/* execve succeeded */
1547 	current->fs->in_exec = 0;
1548 	current->in_execve = 0;
1549 	acct_update_integrals(current);
1550 	free_bprm(bprm);
1551 	if (displaced)
1552 		put_files_struct(displaced);
1553 	return retval;
1554 
1555 out:
1556 	if (bprm->mm) {
1557 		acct_arg_size(bprm, 0);
1558 		mmput(bprm->mm);
1559 	}
1560 
1561 out_file:
1562 	if (bprm->file) {
1563 		allow_write_access(bprm->file);
1564 		fput(bprm->file);
1565 	}
1566 
1567 out_unmark:
1568 	if (clear_in_exec)
1569 		current->fs->in_exec = 0;
1570 	current->in_execve = 0;
1571 
1572 out_free:
1573 	free_bprm(bprm);
1574 
1575 out_files:
1576 	if (displaced)
1577 		reset_files_struct(displaced);
1578 out_ret:
1579 	return retval;
1580 }
1581 
1582 int do_execve(const char *filename,
1583 	const char __user *const __user *__argv,
1584 	const char __user *const __user *__envp)
1585 {
1586 	struct user_arg_ptr argv = { .ptr.native = __argv };
1587 	struct user_arg_ptr envp = { .ptr.native = __envp };
1588 	return do_execve_common(filename, argv, envp);
1589 }
1590 
1591 #ifdef CONFIG_COMPAT
1592 static int compat_do_execve(const char *filename,
1593 	const compat_uptr_t __user *__argv,
1594 	const compat_uptr_t __user *__envp)
1595 {
1596 	struct user_arg_ptr argv = {
1597 		.is_compat = true,
1598 		.ptr.compat = __argv,
1599 	};
1600 	struct user_arg_ptr envp = {
1601 		.is_compat = true,
1602 		.ptr.compat = __envp,
1603 	};
1604 	return do_execve_common(filename, argv, envp);
1605 }
1606 #endif
1607 
1608 void set_binfmt(struct linux_binfmt *new)
1609 {
1610 	struct mm_struct *mm = current->mm;
1611 
1612 	if (mm->binfmt)
1613 		module_put(mm->binfmt->module);
1614 
1615 	mm->binfmt = new;
1616 	if (new)
1617 		__module_get(new->module);
1618 }
1619 
1620 EXPORT_SYMBOL(set_binfmt);
1621 
1622 /*
1623  * set_dumpable converts traditional three-value dumpable to two flags and
1624  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1625  * these bits are not changed atomically.  So get_dumpable can observe the
1626  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1627  * return either old dumpable or new one by paying attention to the order of
1628  * modifying the bits.
1629  *
1630  * dumpable |   mm->flags (binary)
1631  * old  new | initial interim  final
1632  * ---------+-----------------------
1633  *  0    1  |   00      01      01
1634  *  0    2  |   00      10(*)   11
1635  *  1    0  |   01      00      00
1636  *  1    2  |   01      11      11
1637  *  2    0  |   11      10(*)   00
1638  *  2    1  |   11      11      01
1639  *
1640  * (*) get_dumpable regards interim value of 10 as 11.
1641  */
1642 void set_dumpable(struct mm_struct *mm, int value)
1643 {
1644 	switch (value) {
1645 	case SUID_DUMP_DISABLE:
1646 		clear_bit(MMF_DUMPABLE, &mm->flags);
1647 		smp_wmb();
1648 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1649 		break;
1650 	case SUID_DUMP_USER:
1651 		set_bit(MMF_DUMPABLE, &mm->flags);
1652 		smp_wmb();
1653 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1654 		break;
1655 	case SUID_DUMP_ROOT:
1656 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1657 		smp_wmb();
1658 		set_bit(MMF_DUMPABLE, &mm->flags);
1659 		break;
1660 	}
1661 }
1662 
1663 int __get_dumpable(unsigned long mm_flags)
1664 {
1665 	int ret;
1666 
1667 	ret = mm_flags & MMF_DUMPABLE_MASK;
1668 	return (ret > SUID_DUMP_USER) ? SUID_DUMP_ROOT : ret;
1669 }
1670 
1671 int get_dumpable(struct mm_struct *mm)
1672 {
1673 	return __get_dumpable(mm->flags);
1674 }
1675 
1676 SYSCALL_DEFINE3(execve,
1677 		const char __user *, filename,
1678 		const char __user *const __user *, argv,
1679 		const char __user *const __user *, envp)
1680 {
1681 	struct filename *path = getname(filename);
1682 	int error = PTR_ERR(path);
1683 	if (!IS_ERR(path)) {
1684 		error = do_execve(path->name, argv, envp);
1685 		putname(path);
1686 	}
1687 	return error;
1688 }
1689 #ifdef CONFIG_COMPAT
1690 asmlinkage long compat_sys_execve(const char __user * filename,
1691 	const compat_uptr_t __user * argv,
1692 	const compat_uptr_t __user * envp)
1693 {
1694 	struct filename *path = getname(filename);
1695 	int error = PTR_ERR(path);
1696 	if (!IS_ERR(path)) {
1697 		error = compat_do_execve(path->name, argv, envp);
1698 		putname(path);
1699 	}
1700 	return error;
1701 }
1702 #endif
1703