xref: /openbmc/linux/fs/exec.c (revision 5a0e3ad6)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56 #include <linux/fs_struct.h>
57 #include <linux/pipe_fs_i.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
63 
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
68 
69 /* The maximal length of core_pattern is also specified in sysctl.c */
70 
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73 
74 int __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 	if (!fmt)
77 		return -EINVAL;
78 	write_lock(&binfmt_lock);
79 	insert ? list_add(&fmt->lh, &formats) :
80 		 list_add_tail(&fmt->lh, &formats);
81 	write_unlock(&binfmt_lock);
82 	return 0;
83 }
84 
85 EXPORT_SYMBOL(__register_binfmt);
86 
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89 	write_lock(&binfmt_lock);
90 	list_del(&fmt->lh);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(unregister_binfmt);
95 
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98 	module_put(fmt->module);
99 }
100 
101 /*
102  * Note that a shared library must be both readable and executable due to
103  * security reasons.
104  *
105  * Also note that we take the address to load from from the file itself.
106  */
107 SYSCALL_DEFINE1(uselib, const char __user *, library)
108 {
109 	struct file *file;
110 	char *tmp = getname(library);
111 	int error = PTR_ERR(tmp);
112 
113 	if (IS_ERR(tmp))
114 		goto out;
115 
116 	file = do_filp_open(AT_FDCWD, tmp,
117 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
118 				MAY_READ | MAY_EXEC | MAY_OPEN);
119 	putname(tmp);
120 	error = PTR_ERR(file);
121 	if (IS_ERR(file))
122 		goto out;
123 
124 	error = -EINVAL;
125 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
126 		goto exit;
127 
128 	error = -EACCES;
129 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
130 		goto exit;
131 
132 	fsnotify_open(file->f_path.dentry);
133 
134 	error = -ENOEXEC;
135 	if(file->f_op) {
136 		struct linux_binfmt * fmt;
137 
138 		read_lock(&binfmt_lock);
139 		list_for_each_entry(fmt, &formats, lh) {
140 			if (!fmt->load_shlib)
141 				continue;
142 			if (!try_module_get(fmt->module))
143 				continue;
144 			read_unlock(&binfmt_lock);
145 			error = fmt->load_shlib(file);
146 			read_lock(&binfmt_lock);
147 			put_binfmt(fmt);
148 			if (error != -ENOEXEC)
149 				break;
150 		}
151 		read_unlock(&binfmt_lock);
152 	}
153 exit:
154 	fput(file);
155 out:
156   	return error;
157 }
158 
159 #ifdef CONFIG_MMU
160 
161 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
162 		int write)
163 {
164 	struct page *page;
165 	int ret;
166 
167 #ifdef CONFIG_STACK_GROWSUP
168 	if (write) {
169 		ret = expand_stack_downwards(bprm->vma, pos);
170 		if (ret < 0)
171 			return NULL;
172 	}
173 #endif
174 	ret = get_user_pages(current, bprm->mm, pos,
175 			1, write, 1, &page, NULL);
176 	if (ret <= 0)
177 		return NULL;
178 
179 	if (write) {
180 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
181 		struct rlimit *rlim;
182 
183 		/*
184 		 * We've historically supported up to 32 pages (ARG_MAX)
185 		 * of argument strings even with small stacks
186 		 */
187 		if (size <= ARG_MAX)
188 			return page;
189 
190 		/*
191 		 * Limit to 1/4-th the stack size for the argv+env strings.
192 		 * This ensures that:
193 		 *  - the remaining binfmt code will not run out of stack space,
194 		 *  - the program will have a reasonable amount of stack left
195 		 *    to work from.
196 		 */
197 		rlim = current->signal->rlim;
198 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
199 			put_page(page);
200 			return NULL;
201 		}
202 	}
203 
204 	return page;
205 }
206 
207 static void put_arg_page(struct page *page)
208 {
209 	put_page(page);
210 }
211 
212 static void free_arg_page(struct linux_binprm *bprm, int i)
213 {
214 }
215 
216 static void free_arg_pages(struct linux_binprm *bprm)
217 {
218 }
219 
220 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
221 		struct page *page)
222 {
223 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
224 }
225 
226 static int __bprm_mm_init(struct linux_binprm *bprm)
227 {
228 	int err;
229 	struct vm_area_struct *vma = NULL;
230 	struct mm_struct *mm = bprm->mm;
231 
232 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
233 	if (!vma)
234 		return -ENOMEM;
235 
236 	down_write(&mm->mmap_sem);
237 	vma->vm_mm = mm;
238 
239 	/*
240 	 * Place the stack at the largest stack address the architecture
241 	 * supports. Later, we'll move this to an appropriate place. We don't
242 	 * use STACK_TOP because that can depend on attributes which aren't
243 	 * configured yet.
244 	 */
245 	vma->vm_end = STACK_TOP_MAX;
246 	vma->vm_start = vma->vm_end - PAGE_SIZE;
247 	vma->vm_flags = VM_STACK_FLAGS;
248 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
249 	INIT_LIST_HEAD(&vma->anon_vma_chain);
250 	err = insert_vm_struct(mm, vma);
251 	if (err)
252 		goto err;
253 
254 	mm->stack_vm = mm->total_vm = 1;
255 	up_write(&mm->mmap_sem);
256 	bprm->p = vma->vm_end - sizeof(void *);
257 	return 0;
258 err:
259 	up_write(&mm->mmap_sem);
260 	bprm->vma = NULL;
261 	kmem_cache_free(vm_area_cachep, vma);
262 	return err;
263 }
264 
265 static bool valid_arg_len(struct linux_binprm *bprm, long len)
266 {
267 	return len <= MAX_ARG_STRLEN;
268 }
269 
270 #else
271 
272 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
273 		int write)
274 {
275 	struct page *page;
276 
277 	page = bprm->page[pos / PAGE_SIZE];
278 	if (!page && write) {
279 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
280 		if (!page)
281 			return NULL;
282 		bprm->page[pos / PAGE_SIZE] = page;
283 	}
284 
285 	return page;
286 }
287 
288 static void put_arg_page(struct page *page)
289 {
290 }
291 
292 static void free_arg_page(struct linux_binprm *bprm, int i)
293 {
294 	if (bprm->page[i]) {
295 		__free_page(bprm->page[i]);
296 		bprm->page[i] = NULL;
297 	}
298 }
299 
300 static void free_arg_pages(struct linux_binprm *bprm)
301 {
302 	int i;
303 
304 	for (i = 0; i < MAX_ARG_PAGES; i++)
305 		free_arg_page(bprm, i);
306 }
307 
308 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 		struct page *page)
310 {
311 }
312 
313 static int __bprm_mm_init(struct linux_binprm *bprm)
314 {
315 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
316 	return 0;
317 }
318 
319 static bool valid_arg_len(struct linux_binprm *bprm, long len)
320 {
321 	return len <= bprm->p;
322 }
323 
324 #endif /* CONFIG_MMU */
325 
326 /*
327  * Create a new mm_struct and populate it with a temporary stack
328  * vm_area_struct.  We don't have enough context at this point to set the stack
329  * flags, permissions, and offset, so we use temporary values.  We'll update
330  * them later in setup_arg_pages().
331  */
332 int bprm_mm_init(struct linux_binprm *bprm)
333 {
334 	int err;
335 	struct mm_struct *mm = NULL;
336 
337 	bprm->mm = mm = mm_alloc();
338 	err = -ENOMEM;
339 	if (!mm)
340 		goto err;
341 
342 	err = init_new_context(current, mm);
343 	if (err)
344 		goto err;
345 
346 	err = __bprm_mm_init(bprm);
347 	if (err)
348 		goto err;
349 
350 	return 0;
351 
352 err:
353 	if (mm) {
354 		bprm->mm = NULL;
355 		mmdrop(mm);
356 	}
357 
358 	return err;
359 }
360 
361 /*
362  * count() counts the number of strings in array ARGV.
363  */
364 static int count(char __user * __user * argv, int max)
365 {
366 	int i = 0;
367 
368 	if (argv != NULL) {
369 		for (;;) {
370 			char __user * p;
371 
372 			if (get_user(p, argv))
373 				return -EFAULT;
374 			if (!p)
375 				break;
376 			argv++;
377 			if (i++ >= max)
378 				return -E2BIG;
379 			cond_resched();
380 		}
381 	}
382 	return i;
383 }
384 
385 /*
386  * 'copy_strings()' copies argument/environment strings from the old
387  * processes's memory to the new process's stack.  The call to get_user_pages()
388  * ensures the destination page is created and not swapped out.
389  */
390 static int copy_strings(int argc, char __user * __user * argv,
391 			struct linux_binprm *bprm)
392 {
393 	struct page *kmapped_page = NULL;
394 	char *kaddr = NULL;
395 	unsigned long kpos = 0;
396 	int ret;
397 
398 	while (argc-- > 0) {
399 		char __user *str;
400 		int len;
401 		unsigned long pos;
402 
403 		if (get_user(str, argv+argc) ||
404 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
405 			ret = -EFAULT;
406 			goto out;
407 		}
408 
409 		if (!valid_arg_len(bprm, len)) {
410 			ret = -E2BIG;
411 			goto out;
412 		}
413 
414 		/* We're going to work our way backwords. */
415 		pos = bprm->p;
416 		str += len;
417 		bprm->p -= len;
418 
419 		while (len > 0) {
420 			int offset, bytes_to_copy;
421 
422 			offset = pos % PAGE_SIZE;
423 			if (offset == 0)
424 				offset = PAGE_SIZE;
425 
426 			bytes_to_copy = offset;
427 			if (bytes_to_copy > len)
428 				bytes_to_copy = len;
429 
430 			offset -= bytes_to_copy;
431 			pos -= bytes_to_copy;
432 			str -= bytes_to_copy;
433 			len -= bytes_to_copy;
434 
435 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
436 				struct page *page;
437 
438 				page = get_arg_page(bprm, pos, 1);
439 				if (!page) {
440 					ret = -E2BIG;
441 					goto out;
442 				}
443 
444 				if (kmapped_page) {
445 					flush_kernel_dcache_page(kmapped_page);
446 					kunmap(kmapped_page);
447 					put_arg_page(kmapped_page);
448 				}
449 				kmapped_page = page;
450 				kaddr = kmap(kmapped_page);
451 				kpos = pos & PAGE_MASK;
452 				flush_arg_page(bprm, kpos, kmapped_page);
453 			}
454 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
455 				ret = -EFAULT;
456 				goto out;
457 			}
458 		}
459 	}
460 	ret = 0;
461 out:
462 	if (kmapped_page) {
463 		flush_kernel_dcache_page(kmapped_page);
464 		kunmap(kmapped_page);
465 		put_arg_page(kmapped_page);
466 	}
467 	return ret;
468 }
469 
470 /*
471  * Like copy_strings, but get argv and its values from kernel memory.
472  */
473 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
474 {
475 	int r;
476 	mm_segment_t oldfs = get_fs();
477 	set_fs(KERNEL_DS);
478 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
479 	set_fs(oldfs);
480 	return r;
481 }
482 EXPORT_SYMBOL(copy_strings_kernel);
483 
484 #ifdef CONFIG_MMU
485 
486 /*
487  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
488  * the binfmt code determines where the new stack should reside, we shift it to
489  * its final location.  The process proceeds as follows:
490  *
491  * 1) Use shift to calculate the new vma endpoints.
492  * 2) Extend vma to cover both the old and new ranges.  This ensures the
493  *    arguments passed to subsequent functions are consistent.
494  * 3) Move vma's page tables to the new range.
495  * 4) Free up any cleared pgd range.
496  * 5) Shrink the vma to cover only the new range.
497  */
498 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
499 {
500 	struct mm_struct *mm = vma->vm_mm;
501 	unsigned long old_start = vma->vm_start;
502 	unsigned long old_end = vma->vm_end;
503 	unsigned long length = old_end - old_start;
504 	unsigned long new_start = old_start - shift;
505 	unsigned long new_end = old_end - shift;
506 	struct mmu_gather *tlb;
507 
508 	BUG_ON(new_start > new_end);
509 
510 	/*
511 	 * ensure there are no vmas between where we want to go
512 	 * and where we are
513 	 */
514 	if (vma != find_vma(mm, new_start))
515 		return -EFAULT;
516 
517 	/*
518 	 * cover the whole range: [new_start, old_end)
519 	 */
520 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
521 		return -ENOMEM;
522 
523 	/*
524 	 * move the page tables downwards, on failure we rely on
525 	 * process cleanup to remove whatever mess we made.
526 	 */
527 	if (length != move_page_tables(vma, old_start,
528 				       vma, new_start, length))
529 		return -ENOMEM;
530 
531 	lru_add_drain();
532 	tlb = tlb_gather_mmu(mm, 0);
533 	if (new_end > old_start) {
534 		/*
535 		 * when the old and new regions overlap clear from new_end.
536 		 */
537 		free_pgd_range(tlb, new_end, old_end, new_end,
538 			vma->vm_next ? vma->vm_next->vm_start : 0);
539 	} else {
540 		/*
541 		 * otherwise, clean from old_start; this is done to not touch
542 		 * the address space in [new_end, old_start) some architectures
543 		 * have constraints on va-space that make this illegal (IA64) -
544 		 * for the others its just a little faster.
545 		 */
546 		free_pgd_range(tlb, old_start, old_end, new_end,
547 			vma->vm_next ? vma->vm_next->vm_start : 0);
548 	}
549 	tlb_finish_mmu(tlb, new_end, old_end);
550 
551 	/*
552 	 * Shrink the vma to just the new range.  Always succeeds.
553 	 */
554 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
555 
556 	return 0;
557 }
558 
559 /*
560  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
561  * the stack is optionally relocated, and some extra space is added.
562  */
563 int setup_arg_pages(struct linux_binprm *bprm,
564 		    unsigned long stack_top,
565 		    int executable_stack)
566 {
567 	unsigned long ret;
568 	unsigned long stack_shift;
569 	struct mm_struct *mm = current->mm;
570 	struct vm_area_struct *vma = bprm->vma;
571 	struct vm_area_struct *prev = NULL;
572 	unsigned long vm_flags;
573 	unsigned long stack_base;
574 	unsigned long stack_size;
575 	unsigned long stack_expand;
576 	unsigned long rlim_stack;
577 
578 #ifdef CONFIG_STACK_GROWSUP
579 	/* Limit stack size to 1GB */
580 	stack_base = rlimit_max(RLIMIT_STACK);
581 	if (stack_base > (1 << 30))
582 		stack_base = 1 << 30;
583 
584 	/* Make sure we didn't let the argument array grow too large. */
585 	if (vma->vm_end - vma->vm_start > stack_base)
586 		return -ENOMEM;
587 
588 	stack_base = PAGE_ALIGN(stack_top - stack_base);
589 
590 	stack_shift = vma->vm_start - stack_base;
591 	mm->arg_start = bprm->p - stack_shift;
592 	bprm->p = vma->vm_end - stack_shift;
593 #else
594 	stack_top = arch_align_stack(stack_top);
595 	stack_top = PAGE_ALIGN(stack_top);
596 	stack_shift = vma->vm_end - stack_top;
597 
598 	bprm->p -= stack_shift;
599 	mm->arg_start = bprm->p;
600 #endif
601 
602 	if (bprm->loader)
603 		bprm->loader -= stack_shift;
604 	bprm->exec -= stack_shift;
605 
606 	down_write(&mm->mmap_sem);
607 	vm_flags = VM_STACK_FLAGS;
608 
609 	/*
610 	 * Adjust stack execute permissions; explicitly enable for
611 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
612 	 * (arch default) otherwise.
613 	 */
614 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
615 		vm_flags |= VM_EXEC;
616 	else if (executable_stack == EXSTACK_DISABLE_X)
617 		vm_flags &= ~VM_EXEC;
618 	vm_flags |= mm->def_flags;
619 
620 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
621 			vm_flags);
622 	if (ret)
623 		goto out_unlock;
624 	BUG_ON(prev != vma);
625 
626 	/* Move stack pages down in memory. */
627 	if (stack_shift) {
628 		ret = shift_arg_pages(vma, stack_shift);
629 		if (ret)
630 			goto out_unlock;
631 	}
632 
633 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
634 	stack_size = vma->vm_end - vma->vm_start;
635 	/*
636 	 * Align this down to a page boundary as expand_stack
637 	 * will align it up.
638 	 */
639 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
640 #ifdef CONFIG_STACK_GROWSUP
641 	if (stack_size + stack_expand > rlim_stack)
642 		stack_base = vma->vm_start + rlim_stack;
643 	else
644 		stack_base = vma->vm_end + stack_expand;
645 #else
646 	if (stack_size + stack_expand > rlim_stack)
647 		stack_base = vma->vm_end - rlim_stack;
648 	else
649 		stack_base = vma->vm_start - stack_expand;
650 #endif
651 	ret = expand_stack(vma, stack_base);
652 	if (ret)
653 		ret = -EFAULT;
654 
655 out_unlock:
656 	up_write(&mm->mmap_sem);
657 	return ret;
658 }
659 EXPORT_SYMBOL(setup_arg_pages);
660 
661 #endif /* CONFIG_MMU */
662 
663 struct file *open_exec(const char *name)
664 {
665 	struct file *file;
666 	int err;
667 
668 	file = do_filp_open(AT_FDCWD, name,
669 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
670 				MAY_EXEC | MAY_OPEN);
671 	if (IS_ERR(file))
672 		goto out;
673 
674 	err = -EACCES;
675 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
676 		goto exit;
677 
678 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
679 		goto exit;
680 
681 	fsnotify_open(file->f_path.dentry);
682 
683 	err = deny_write_access(file);
684 	if (err)
685 		goto exit;
686 
687 out:
688 	return file;
689 
690 exit:
691 	fput(file);
692 	return ERR_PTR(err);
693 }
694 EXPORT_SYMBOL(open_exec);
695 
696 int kernel_read(struct file *file, loff_t offset,
697 		char *addr, unsigned long count)
698 {
699 	mm_segment_t old_fs;
700 	loff_t pos = offset;
701 	int result;
702 
703 	old_fs = get_fs();
704 	set_fs(get_ds());
705 	/* The cast to a user pointer is valid due to the set_fs() */
706 	result = vfs_read(file, (void __user *)addr, count, &pos);
707 	set_fs(old_fs);
708 	return result;
709 }
710 
711 EXPORT_SYMBOL(kernel_read);
712 
713 static int exec_mmap(struct mm_struct *mm)
714 {
715 	struct task_struct *tsk;
716 	struct mm_struct * old_mm, *active_mm;
717 
718 	/* Notify parent that we're no longer interested in the old VM */
719 	tsk = current;
720 	old_mm = current->mm;
721 	sync_mm_rss(tsk, old_mm);
722 	mm_release(tsk, old_mm);
723 
724 	if (old_mm) {
725 		/*
726 		 * Make sure that if there is a core dump in progress
727 		 * for the old mm, we get out and die instead of going
728 		 * through with the exec.  We must hold mmap_sem around
729 		 * checking core_state and changing tsk->mm.
730 		 */
731 		down_read(&old_mm->mmap_sem);
732 		if (unlikely(old_mm->core_state)) {
733 			up_read(&old_mm->mmap_sem);
734 			return -EINTR;
735 		}
736 	}
737 	task_lock(tsk);
738 	active_mm = tsk->active_mm;
739 	tsk->mm = mm;
740 	tsk->active_mm = mm;
741 	activate_mm(active_mm, mm);
742 	task_unlock(tsk);
743 	arch_pick_mmap_layout(mm);
744 	if (old_mm) {
745 		up_read(&old_mm->mmap_sem);
746 		BUG_ON(active_mm != old_mm);
747 		mm_update_next_owner(old_mm);
748 		mmput(old_mm);
749 		return 0;
750 	}
751 	mmdrop(active_mm);
752 	return 0;
753 }
754 
755 /*
756  * This function makes sure the current process has its own signal table,
757  * so that flush_signal_handlers can later reset the handlers without
758  * disturbing other processes.  (Other processes might share the signal
759  * table via the CLONE_SIGHAND option to clone().)
760  */
761 static int de_thread(struct task_struct *tsk)
762 {
763 	struct signal_struct *sig = tsk->signal;
764 	struct sighand_struct *oldsighand = tsk->sighand;
765 	spinlock_t *lock = &oldsighand->siglock;
766 	int count;
767 
768 	if (thread_group_empty(tsk))
769 		goto no_thread_group;
770 
771 	/*
772 	 * Kill all other threads in the thread group.
773 	 */
774 	spin_lock_irq(lock);
775 	if (signal_group_exit(sig)) {
776 		/*
777 		 * Another group action in progress, just
778 		 * return so that the signal is processed.
779 		 */
780 		spin_unlock_irq(lock);
781 		return -EAGAIN;
782 	}
783 	sig->group_exit_task = tsk;
784 	zap_other_threads(tsk);
785 
786 	/* Account for the thread group leader hanging around: */
787 	count = thread_group_leader(tsk) ? 1 : 2;
788 	sig->notify_count = count;
789 	while (atomic_read(&sig->count) > count) {
790 		__set_current_state(TASK_UNINTERRUPTIBLE);
791 		spin_unlock_irq(lock);
792 		schedule();
793 		spin_lock_irq(lock);
794 	}
795 	spin_unlock_irq(lock);
796 
797 	/*
798 	 * At this point all other threads have exited, all we have to
799 	 * do is to wait for the thread group leader to become inactive,
800 	 * and to assume its PID:
801 	 */
802 	if (!thread_group_leader(tsk)) {
803 		struct task_struct *leader = tsk->group_leader;
804 
805 		sig->notify_count = -1;	/* for exit_notify() */
806 		for (;;) {
807 			write_lock_irq(&tasklist_lock);
808 			if (likely(leader->exit_state))
809 				break;
810 			__set_current_state(TASK_UNINTERRUPTIBLE);
811 			write_unlock_irq(&tasklist_lock);
812 			schedule();
813 		}
814 
815 		/*
816 		 * The only record we have of the real-time age of a
817 		 * process, regardless of execs it's done, is start_time.
818 		 * All the past CPU time is accumulated in signal_struct
819 		 * from sister threads now dead.  But in this non-leader
820 		 * exec, nothing survives from the original leader thread,
821 		 * whose birth marks the true age of this process now.
822 		 * When we take on its identity by switching to its PID, we
823 		 * also take its birthdate (always earlier than our own).
824 		 */
825 		tsk->start_time = leader->start_time;
826 
827 		BUG_ON(!same_thread_group(leader, tsk));
828 		BUG_ON(has_group_leader_pid(tsk));
829 		/*
830 		 * An exec() starts a new thread group with the
831 		 * TGID of the previous thread group. Rehash the
832 		 * two threads with a switched PID, and release
833 		 * the former thread group leader:
834 		 */
835 
836 		/* Become a process group leader with the old leader's pid.
837 		 * The old leader becomes a thread of the this thread group.
838 		 * Note: The old leader also uses this pid until release_task
839 		 *       is called.  Odd but simple and correct.
840 		 */
841 		detach_pid(tsk, PIDTYPE_PID);
842 		tsk->pid = leader->pid;
843 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
844 		transfer_pid(leader, tsk, PIDTYPE_PGID);
845 		transfer_pid(leader, tsk, PIDTYPE_SID);
846 
847 		list_replace_rcu(&leader->tasks, &tsk->tasks);
848 		list_replace_init(&leader->sibling, &tsk->sibling);
849 
850 		tsk->group_leader = tsk;
851 		leader->group_leader = tsk;
852 
853 		tsk->exit_signal = SIGCHLD;
854 
855 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
856 		leader->exit_state = EXIT_DEAD;
857 		write_unlock_irq(&tasklist_lock);
858 
859 		release_task(leader);
860 	}
861 
862 	sig->group_exit_task = NULL;
863 	sig->notify_count = 0;
864 
865 no_thread_group:
866 	if (current->mm)
867 		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
868 
869 	exit_itimers(sig);
870 	flush_itimer_signals();
871 
872 	if (atomic_read(&oldsighand->count) != 1) {
873 		struct sighand_struct *newsighand;
874 		/*
875 		 * This ->sighand is shared with the CLONE_SIGHAND
876 		 * but not CLONE_THREAD task, switch to the new one.
877 		 */
878 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
879 		if (!newsighand)
880 			return -ENOMEM;
881 
882 		atomic_set(&newsighand->count, 1);
883 		memcpy(newsighand->action, oldsighand->action,
884 		       sizeof(newsighand->action));
885 
886 		write_lock_irq(&tasklist_lock);
887 		spin_lock(&oldsighand->siglock);
888 		rcu_assign_pointer(tsk->sighand, newsighand);
889 		spin_unlock(&oldsighand->siglock);
890 		write_unlock_irq(&tasklist_lock);
891 
892 		__cleanup_sighand(oldsighand);
893 	}
894 
895 	BUG_ON(!thread_group_leader(tsk));
896 	return 0;
897 }
898 
899 /*
900  * These functions flushes out all traces of the currently running executable
901  * so that a new one can be started
902  */
903 static void flush_old_files(struct files_struct * files)
904 {
905 	long j = -1;
906 	struct fdtable *fdt;
907 
908 	spin_lock(&files->file_lock);
909 	for (;;) {
910 		unsigned long set, i;
911 
912 		j++;
913 		i = j * __NFDBITS;
914 		fdt = files_fdtable(files);
915 		if (i >= fdt->max_fds)
916 			break;
917 		set = fdt->close_on_exec->fds_bits[j];
918 		if (!set)
919 			continue;
920 		fdt->close_on_exec->fds_bits[j] = 0;
921 		spin_unlock(&files->file_lock);
922 		for ( ; set ; i++,set >>= 1) {
923 			if (set & 1) {
924 				sys_close(i);
925 			}
926 		}
927 		spin_lock(&files->file_lock);
928 
929 	}
930 	spin_unlock(&files->file_lock);
931 }
932 
933 char *get_task_comm(char *buf, struct task_struct *tsk)
934 {
935 	/* buf must be at least sizeof(tsk->comm) in size */
936 	task_lock(tsk);
937 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
938 	task_unlock(tsk);
939 	return buf;
940 }
941 
942 void set_task_comm(struct task_struct *tsk, char *buf)
943 {
944 	task_lock(tsk);
945 
946 	/*
947 	 * Threads may access current->comm without holding
948 	 * the task lock, so write the string carefully.
949 	 * Readers without a lock may see incomplete new
950 	 * names but are safe from non-terminating string reads.
951 	 */
952 	memset(tsk->comm, 0, TASK_COMM_LEN);
953 	wmb();
954 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
955 	task_unlock(tsk);
956 	perf_event_comm(tsk);
957 }
958 
959 int flush_old_exec(struct linux_binprm * bprm)
960 {
961 	int retval;
962 
963 	/*
964 	 * Make sure we have a private signal table and that
965 	 * we are unassociated from the previous thread group.
966 	 */
967 	retval = de_thread(current);
968 	if (retval)
969 		goto out;
970 
971 	set_mm_exe_file(bprm->mm, bprm->file);
972 
973 	/*
974 	 * Release all of the old mmap stuff
975 	 */
976 	retval = exec_mmap(bprm->mm);
977 	if (retval)
978 		goto out;
979 
980 	bprm->mm = NULL;		/* We're using it now */
981 
982 	current->flags &= ~PF_RANDOMIZE;
983 	flush_thread();
984 	current->personality &= ~bprm->per_clear;
985 
986 	return 0;
987 
988 out:
989 	return retval;
990 }
991 EXPORT_SYMBOL(flush_old_exec);
992 
993 void setup_new_exec(struct linux_binprm * bprm)
994 {
995 	int i, ch;
996 	char * name;
997 	char tcomm[sizeof(current->comm)];
998 
999 	arch_pick_mmap_layout(current->mm);
1000 
1001 	/* This is the point of no return */
1002 	current->sas_ss_sp = current->sas_ss_size = 0;
1003 
1004 	if (current_euid() == current_uid() && current_egid() == current_gid())
1005 		set_dumpable(current->mm, 1);
1006 	else
1007 		set_dumpable(current->mm, suid_dumpable);
1008 
1009 	name = bprm->filename;
1010 
1011 	/* Copies the binary name from after last slash */
1012 	for (i=0; (ch = *(name++)) != '\0';) {
1013 		if (ch == '/')
1014 			i = 0; /* overwrite what we wrote */
1015 		else
1016 			if (i < (sizeof(tcomm) - 1))
1017 				tcomm[i++] = ch;
1018 	}
1019 	tcomm[i] = '\0';
1020 	set_task_comm(current, tcomm);
1021 
1022 	/* Set the new mm task size. We have to do that late because it may
1023 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1024 	 * some architectures like powerpc
1025 	 */
1026 	current->mm->task_size = TASK_SIZE;
1027 
1028 	/* install the new credentials */
1029 	if (bprm->cred->uid != current_euid() ||
1030 	    bprm->cred->gid != current_egid()) {
1031 		current->pdeath_signal = 0;
1032 	} else if (file_permission(bprm->file, MAY_READ) ||
1033 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1034 		set_dumpable(current->mm, suid_dumpable);
1035 	}
1036 
1037 	/*
1038 	 * Flush performance counters when crossing a
1039 	 * security domain:
1040 	 */
1041 	if (!get_dumpable(current->mm))
1042 		perf_event_exit_task(current);
1043 
1044 	/* An exec changes our domain. We are no longer part of the thread
1045 	   group */
1046 
1047 	current->self_exec_id++;
1048 
1049 	flush_signal_handlers(current, 0);
1050 	flush_old_files(current->files);
1051 }
1052 EXPORT_SYMBOL(setup_new_exec);
1053 
1054 /*
1055  * Prepare credentials and lock ->cred_guard_mutex.
1056  * install_exec_creds() commits the new creds and drops the lock.
1057  * Or, if exec fails before, free_bprm() should release ->cred and
1058  * and unlock.
1059  */
1060 int prepare_bprm_creds(struct linux_binprm *bprm)
1061 {
1062 	if (mutex_lock_interruptible(&current->cred_guard_mutex))
1063 		return -ERESTARTNOINTR;
1064 
1065 	bprm->cred = prepare_exec_creds();
1066 	if (likely(bprm->cred))
1067 		return 0;
1068 
1069 	mutex_unlock(&current->cred_guard_mutex);
1070 	return -ENOMEM;
1071 }
1072 
1073 void free_bprm(struct linux_binprm *bprm)
1074 {
1075 	free_arg_pages(bprm);
1076 	if (bprm->cred) {
1077 		mutex_unlock(&current->cred_guard_mutex);
1078 		abort_creds(bprm->cred);
1079 	}
1080 	kfree(bprm);
1081 }
1082 
1083 /*
1084  * install the new credentials for this executable
1085  */
1086 void install_exec_creds(struct linux_binprm *bprm)
1087 {
1088 	security_bprm_committing_creds(bprm);
1089 
1090 	commit_creds(bprm->cred);
1091 	bprm->cred = NULL;
1092 	/*
1093 	 * cred_guard_mutex must be held at least to this point to prevent
1094 	 * ptrace_attach() from altering our determination of the task's
1095 	 * credentials; any time after this it may be unlocked.
1096 	 */
1097 	security_bprm_committed_creds(bprm);
1098 	mutex_unlock(&current->cred_guard_mutex);
1099 }
1100 EXPORT_SYMBOL(install_exec_creds);
1101 
1102 /*
1103  * determine how safe it is to execute the proposed program
1104  * - the caller must hold current->cred_guard_mutex to protect against
1105  *   PTRACE_ATTACH
1106  */
1107 int check_unsafe_exec(struct linux_binprm *bprm)
1108 {
1109 	struct task_struct *p = current, *t;
1110 	unsigned n_fs;
1111 	int res = 0;
1112 
1113 	bprm->unsafe = tracehook_unsafe_exec(p);
1114 
1115 	n_fs = 1;
1116 	write_lock(&p->fs->lock);
1117 	rcu_read_lock();
1118 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1119 		if (t->fs == p->fs)
1120 			n_fs++;
1121 	}
1122 	rcu_read_unlock();
1123 
1124 	if (p->fs->users > n_fs) {
1125 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1126 	} else {
1127 		res = -EAGAIN;
1128 		if (!p->fs->in_exec) {
1129 			p->fs->in_exec = 1;
1130 			res = 1;
1131 		}
1132 	}
1133 	write_unlock(&p->fs->lock);
1134 
1135 	return res;
1136 }
1137 
1138 /*
1139  * Fill the binprm structure from the inode.
1140  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1141  *
1142  * This may be called multiple times for binary chains (scripts for example).
1143  */
1144 int prepare_binprm(struct linux_binprm *bprm)
1145 {
1146 	umode_t mode;
1147 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1148 	int retval;
1149 
1150 	mode = inode->i_mode;
1151 	if (bprm->file->f_op == NULL)
1152 		return -EACCES;
1153 
1154 	/* clear any previous set[ug]id data from a previous binary */
1155 	bprm->cred->euid = current_euid();
1156 	bprm->cred->egid = current_egid();
1157 
1158 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1159 		/* Set-uid? */
1160 		if (mode & S_ISUID) {
1161 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1162 			bprm->cred->euid = inode->i_uid;
1163 		}
1164 
1165 		/* Set-gid? */
1166 		/*
1167 		 * If setgid is set but no group execute bit then this
1168 		 * is a candidate for mandatory locking, not a setgid
1169 		 * executable.
1170 		 */
1171 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1172 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1173 			bprm->cred->egid = inode->i_gid;
1174 		}
1175 	}
1176 
1177 	/* fill in binprm security blob */
1178 	retval = security_bprm_set_creds(bprm);
1179 	if (retval)
1180 		return retval;
1181 	bprm->cred_prepared = 1;
1182 
1183 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1184 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1185 }
1186 
1187 EXPORT_SYMBOL(prepare_binprm);
1188 
1189 /*
1190  * Arguments are '\0' separated strings found at the location bprm->p
1191  * points to; chop off the first by relocating brpm->p to right after
1192  * the first '\0' encountered.
1193  */
1194 int remove_arg_zero(struct linux_binprm *bprm)
1195 {
1196 	int ret = 0;
1197 	unsigned long offset;
1198 	char *kaddr;
1199 	struct page *page;
1200 
1201 	if (!bprm->argc)
1202 		return 0;
1203 
1204 	do {
1205 		offset = bprm->p & ~PAGE_MASK;
1206 		page = get_arg_page(bprm, bprm->p, 0);
1207 		if (!page) {
1208 			ret = -EFAULT;
1209 			goto out;
1210 		}
1211 		kaddr = kmap_atomic(page, KM_USER0);
1212 
1213 		for (; offset < PAGE_SIZE && kaddr[offset];
1214 				offset++, bprm->p++)
1215 			;
1216 
1217 		kunmap_atomic(kaddr, KM_USER0);
1218 		put_arg_page(page);
1219 
1220 		if (offset == PAGE_SIZE)
1221 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1222 	} while (offset == PAGE_SIZE);
1223 
1224 	bprm->p++;
1225 	bprm->argc--;
1226 	ret = 0;
1227 
1228 out:
1229 	return ret;
1230 }
1231 EXPORT_SYMBOL(remove_arg_zero);
1232 
1233 /*
1234  * cycle the list of binary formats handler, until one recognizes the image
1235  */
1236 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1237 {
1238 	unsigned int depth = bprm->recursion_depth;
1239 	int try,retval;
1240 	struct linux_binfmt *fmt;
1241 
1242 	retval = security_bprm_check(bprm);
1243 	if (retval)
1244 		return retval;
1245 
1246 	/* kernel module loader fixup */
1247 	/* so we don't try to load run modprobe in kernel space. */
1248 	set_fs(USER_DS);
1249 
1250 	retval = audit_bprm(bprm);
1251 	if (retval)
1252 		return retval;
1253 
1254 	retval = -ENOENT;
1255 	for (try=0; try<2; try++) {
1256 		read_lock(&binfmt_lock);
1257 		list_for_each_entry(fmt, &formats, lh) {
1258 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1259 			if (!fn)
1260 				continue;
1261 			if (!try_module_get(fmt->module))
1262 				continue;
1263 			read_unlock(&binfmt_lock);
1264 			retval = fn(bprm, regs);
1265 			/*
1266 			 * Restore the depth counter to its starting value
1267 			 * in this call, so we don't have to rely on every
1268 			 * load_binary function to restore it on return.
1269 			 */
1270 			bprm->recursion_depth = depth;
1271 			if (retval >= 0) {
1272 				if (depth == 0)
1273 					tracehook_report_exec(fmt, bprm, regs);
1274 				put_binfmt(fmt);
1275 				allow_write_access(bprm->file);
1276 				if (bprm->file)
1277 					fput(bprm->file);
1278 				bprm->file = NULL;
1279 				current->did_exec = 1;
1280 				proc_exec_connector(current);
1281 				return retval;
1282 			}
1283 			read_lock(&binfmt_lock);
1284 			put_binfmt(fmt);
1285 			if (retval != -ENOEXEC || bprm->mm == NULL)
1286 				break;
1287 			if (!bprm->file) {
1288 				read_unlock(&binfmt_lock);
1289 				return retval;
1290 			}
1291 		}
1292 		read_unlock(&binfmt_lock);
1293 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1294 			break;
1295 #ifdef CONFIG_MODULES
1296 		} else {
1297 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1298 			if (printable(bprm->buf[0]) &&
1299 			    printable(bprm->buf[1]) &&
1300 			    printable(bprm->buf[2]) &&
1301 			    printable(bprm->buf[3]))
1302 				break; /* -ENOEXEC */
1303 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1304 #endif
1305 		}
1306 	}
1307 	return retval;
1308 }
1309 
1310 EXPORT_SYMBOL(search_binary_handler);
1311 
1312 /*
1313  * sys_execve() executes a new program.
1314  */
1315 int do_execve(char * filename,
1316 	char __user *__user *argv,
1317 	char __user *__user *envp,
1318 	struct pt_regs * regs)
1319 {
1320 	struct linux_binprm *bprm;
1321 	struct file *file;
1322 	struct files_struct *displaced;
1323 	bool clear_in_exec;
1324 	int retval;
1325 
1326 	retval = unshare_files(&displaced);
1327 	if (retval)
1328 		goto out_ret;
1329 
1330 	retval = -ENOMEM;
1331 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1332 	if (!bprm)
1333 		goto out_files;
1334 
1335 	retval = prepare_bprm_creds(bprm);
1336 	if (retval)
1337 		goto out_free;
1338 
1339 	retval = check_unsafe_exec(bprm);
1340 	if (retval < 0)
1341 		goto out_free;
1342 	clear_in_exec = retval;
1343 	current->in_execve = 1;
1344 
1345 	file = open_exec(filename);
1346 	retval = PTR_ERR(file);
1347 	if (IS_ERR(file))
1348 		goto out_unmark;
1349 
1350 	sched_exec();
1351 
1352 	bprm->file = file;
1353 	bprm->filename = filename;
1354 	bprm->interp = filename;
1355 
1356 	retval = bprm_mm_init(bprm);
1357 	if (retval)
1358 		goto out_file;
1359 
1360 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1361 	if ((retval = bprm->argc) < 0)
1362 		goto out;
1363 
1364 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1365 	if ((retval = bprm->envc) < 0)
1366 		goto out;
1367 
1368 	retval = prepare_binprm(bprm);
1369 	if (retval < 0)
1370 		goto out;
1371 
1372 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1373 	if (retval < 0)
1374 		goto out;
1375 
1376 	bprm->exec = bprm->p;
1377 	retval = copy_strings(bprm->envc, envp, bprm);
1378 	if (retval < 0)
1379 		goto out;
1380 
1381 	retval = copy_strings(bprm->argc, argv, bprm);
1382 	if (retval < 0)
1383 		goto out;
1384 
1385 	current->flags &= ~PF_KTHREAD;
1386 	retval = search_binary_handler(bprm,regs);
1387 	if (retval < 0)
1388 		goto out;
1389 
1390 	current->stack_start = current->mm->start_stack;
1391 
1392 	/* execve succeeded */
1393 	current->fs->in_exec = 0;
1394 	current->in_execve = 0;
1395 	acct_update_integrals(current);
1396 	free_bprm(bprm);
1397 	if (displaced)
1398 		put_files_struct(displaced);
1399 	return retval;
1400 
1401 out:
1402 	if (bprm->mm)
1403 		mmput (bprm->mm);
1404 
1405 out_file:
1406 	if (bprm->file) {
1407 		allow_write_access(bprm->file);
1408 		fput(bprm->file);
1409 	}
1410 
1411 out_unmark:
1412 	if (clear_in_exec)
1413 		current->fs->in_exec = 0;
1414 	current->in_execve = 0;
1415 
1416 out_free:
1417 	free_bprm(bprm);
1418 
1419 out_files:
1420 	if (displaced)
1421 		reset_files_struct(displaced);
1422 out_ret:
1423 	return retval;
1424 }
1425 
1426 void set_binfmt(struct linux_binfmt *new)
1427 {
1428 	struct mm_struct *mm = current->mm;
1429 
1430 	if (mm->binfmt)
1431 		module_put(mm->binfmt->module);
1432 
1433 	mm->binfmt = new;
1434 	if (new)
1435 		__module_get(new->module);
1436 }
1437 
1438 EXPORT_SYMBOL(set_binfmt);
1439 
1440 /* format_corename will inspect the pattern parameter, and output a
1441  * name into corename, which must have space for at least
1442  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1443  */
1444 static int format_corename(char *corename, long signr)
1445 {
1446 	const struct cred *cred = current_cred();
1447 	const char *pat_ptr = core_pattern;
1448 	int ispipe = (*pat_ptr == '|');
1449 	char *out_ptr = corename;
1450 	char *const out_end = corename + CORENAME_MAX_SIZE;
1451 	int rc;
1452 	int pid_in_pattern = 0;
1453 
1454 	/* Repeat as long as we have more pattern to process and more output
1455 	   space */
1456 	while (*pat_ptr) {
1457 		if (*pat_ptr != '%') {
1458 			if (out_ptr == out_end)
1459 				goto out;
1460 			*out_ptr++ = *pat_ptr++;
1461 		} else {
1462 			switch (*++pat_ptr) {
1463 			case 0:
1464 				goto out;
1465 			/* Double percent, output one percent */
1466 			case '%':
1467 				if (out_ptr == out_end)
1468 					goto out;
1469 				*out_ptr++ = '%';
1470 				break;
1471 			/* pid */
1472 			case 'p':
1473 				pid_in_pattern = 1;
1474 				rc = snprintf(out_ptr, out_end - out_ptr,
1475 					      "%d", task_tgid_vnr(current));
1476 				if (rc > out_end - out_ptr)
1477 					goto out;
1478 				out_ptr += rc;
1479 				break;
1480 			/* uid */
1481 			case 'u':
1482 				rc = snprintf(out_ptr, out_end - out_ptr,
1483 					      "%d", cred->uid);
1484 				if (rc > out_end - out_ptr)
1485 					goto out;
1486 				out_ptr += rc;
1487 				break;
1488 			/* gid */
1489 			case 'g':
1490 				rc = snprintf(out_ptr, out_end - out_ptr,
1491 					      "%d", cred->gid);
1492 				if (rc > out_end - out_ptr)
1493 					goto out;
1494 				out_ptr += rc;
1495 				break;
1496 			/* signal that caused the coredump */
1497 			case 's':
1498 				rc = snprintf(out_ptr, out_end - out_ptr,
1499 					      "%ld", signr);
1500 				if (rc > out_end - out_ptr)
1501 					goto out;
1502 				out_ptr += rc;
1503 				break;
1504 			/* UNIX time of coredump */
1505 			case 't': {
1506 				struct timeval tv;
1507 				do_gettimeofday(&tv);
1508 				rc = snprintf(out_ptr, out_end - out_ptr,
1509 					      "%lu", tv.tv_sec);
1510 				if (rc > out_end - out_ptr)
1511 					goto out;
1512 				out_ptr += rc;
1513 				break;
1514 			}
1515 			/* hostname */
1516 			case 'h':
1517 				down_read(&uts_sem);
1518 				rc = snprintf(out_ptr, out_end - out_ptr,
1519 					      "%s", utsname()->nodename);
1520 				up_read(&uts_sem);
1521 				if (rc > out_end - out_ptr)
1522 					goto out;
1523 				out_ptr += rc;
1524 				break;
1525 			/* executable */
1526 			case 'e':
1527 				rc = snprintf(out_ptr, out_end - out_ptr,
1528 					      "%s", current->comm);
1529 				if (rc > out_end - out_ptr)
1530 					goto out;
1531 				out_ptr += rc;
1532 				break;
1533 			/* core limit size */
1534 			case 'c':
1535 				rc = snprintf(out_ptr, out_end - out_ptr,
1536 					      "%lu", rlimit(RLIMIT_CORE));
1537 				if (rc > out_end - out_ptr)
1538 					goto out;
1539 				out_ptr += rc;
1540 				break;
1541 			default:
1542 				break;
1543 			}
1544 			++pat_ptr;
1545 		}
1546 	}
1547 	/* Backward compatibility with core_uses_pid:
1548 	 *
1549 	 * If core_pattern does not include a %p (as is the default)
1550 	 * and core_uses_pid is set, then .%pid will be appended to
1551 	 * the filename. Do not do this for piped commands. */
1552 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1553 		rc = snprintf(out_ptr, out_end - out_ptr,
1554 			      ".%d", task_tgid_vnr(current));
1555 		if (rc > out_end - out_ptr)
1556 			goto out;
1557 		out_ptr += rc;
1558 	}
1559 out:
1560 	*out_ptr = 0;
1561 	return ispipe;
1562 }
1563 
1564 static int zap_process(struct task_struct *start, int exit_code)
1565 {
1566 	struct task_struct *t;
1567 	int nr = 0;
1568 
1569 	start->signal->flags = SIGNAL_GROUP_EXIT;
1570 	start->signal->group_exit_code = exit_code;
1571 	start->signal->group_stop_count = 0;
1572 
1573 	t = start;
1574 	do {
1575 		if (t != current && t->mm) {
1576 			sigaddset(&t->pending.signal, SIGKILL);
1577 			signal_wake_up(t, 1);
1578 			nr++;
1579 		}
1580 	} while_each_thread(start, t);
1581 
1582 	return nr;
1583 }
1584 
1585 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1586 				struct core_state *core_state, int exit_code)
1587 {
1588 	struct task_struct *g, *p;
1589 	unsigned long flags;
1590 	int nr = -EAGAIN;
1591 
1592 	spin_lock_irq(&tsk->sighand->siglock);
1593 	if (!signal_group_exit(tsk->signal)) {
1594 		mm->core_state = core_state;
1595 		nr = zap_process(tsk, exit_code);
1596 	}
1597 	spin_unlock_irq(&tsk->sighand->siglock);
1598 	if (unlikely(nr < 0))
1599 		return nr;
1600 
1601 	if (atomic_read(&mm->mm_users) == nr + 1)
1602 		goto done;
1603 	/*
1604 	 * We should find and kill all tasks which use this mm, and we should
1605 	 * count them correctly into ->nr_threads. We don't take tasklist
1606 	 * lock, but this is safe wrt:
1607 	 *
1608 	 * fork:
1609 	 *	None of sub-threads can fork after zap_process(leader). All
1610 	 *	processes which were created before this point should be
1611 	 *	visible to zap_threads() because copy_process() adds the new
1612 	 *	process to the tail of init_task.tasks list, and lock/unlock
1613 	 *	of ->siglock provides a memory barrier.
1614 	 *
1615 	 * do_exit:
1616 	 *	The caller holds mm->mmap_sem. This means that the task which
1617 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1618 	 *	its ->mm.
1619 	 *
1620 	 * de_thread:
1621 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1622 	 *	we must see either old or new leader, this does not matter.
1623 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1624 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1625 	 *	it can't fail.
1626 	 *
1627 	 *	Note also that "g" can be the old leader with ->mm == NULL
1628 	 *	and already unhashed and thus removed from ->thread_group.
1629 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1630 	 *	clear the ->next pointer, we will find the new leader via
1631 	 *	next_thread().
1632 	 */
1633 	rcu_read_lock();
1634 	for_each_process(g) {
1635 		if (g == tsk->group_leader)
1636 			continue;
1637 		if (g->flags & PF_KTHREAD)
1638 			continue;
1639 		p = g;
1640 		do {
1641 			if (p->mm) {
1642 				if (unlikely(p->mm == mm)) {
1643 					lock_task_sighand(p, &flags);
1644 					nr += zap_process(p, exit_code);
1645 					unlock_task_sighand(p, &flags);
1646 				}
1647 				break;
1648 			}
1649 		} while_each_thread(g, p);
1650 	}
1651 	rcu_read_unlock();
1652 done:
1653 	atomic_set(&core_state->nr_threads, nr);
1654 	return nr;
1655 }
1656 
1657 static int coredump_wait(int exit_code, struct core_state *core_state)
1658 {
1659 	struct task_struct *tsk = current;
1660 	struct mm_struct *mm = tsk->mm;
1661 	struct completion *vfork_done;
1662 	int core_waiters;
1663 
1664 	init_completion(&core_state->startup);
1665 	core_state->dumper.task = tsk;
1666 	core_state->dumper.next = NULL;
1667 	core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1668 	up_write(&mm->mmap_sem);
1669 
1670 	if (unlikely(core_waiters < 0))
1671 		goto fail;
1672 
1673 	/*
1674 	 * Make sure nobody is waiting for us to release the VM,
1675 	 * otherwise we can deadlock when we wait on each other
1676 	 */
1677 	vfork_done = tsk->vfork_done;
1678 	if (vfork_done) {
1679 		tsk->vfork_done = NULL;
1680 		complete(vfork_done);
1681 	}
1682 
1683 	if (core_waiters)
1684 		wait_for_completion(&core_state->startup);
1685 fail:
1686 	return core_waiters;
1687 }
1688 
1689 static void coredump_finish(struct mm_struct *mm)
1690 {
1691 	struct core_thread *curr, *next;
1692 	struct task_struct *task;
1693 
1694 	next = mm->core_state->dumper.next;
1695 	while ((curr = next) != NULL) {
1696 		next = curr->next;
1697 		task = curr->task;
1698 		/*
1699 		 * see exit_mm(), curr->task must not see
1700 		 * ->task == NULL before we read ->next.
1701 		 */
1702 		smp_mb();
1703 		curr->task = NULL;
1704 		wake_up_process(task);
1705 	}
1706 
1707 	mm->core_state = NULL;
1708 }
1709 
1710 /*
1711  * set_dumpable converts traditional three-value dumpable to two flags and
1712  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1713  * these bits are not changed atomically.  So get_dumpable can observe the
1714  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1715  * return either old dumpable or new one by paying attention to the order of
1716  * modifying the bits.
1717  *
1718  * dumpable |   mm->flags (binary)
1719  * old  new | initial interim  final
1720  * ---------+-----------------------
1721  *  0    1  |   00      01      01
1722  *  0    2  |   00      10(*)   11
1723  *  1    0  |   01      00      00
1724  *  1    2  |   01      11      11
1725  *  2    0  |   11      10(*)   00
1726  *  2    1  |   11      11      01
1727  *
1728  * (*) get_dumpable regards interim value of 10 as 11.
1729  */
1730 void set_dumpable(struct mm_struct *mm, int value)
1731 {
1732 	switch (value) {
1733 	case 0:
1734 		clear_bit(MMF_DUMPABLE, &mm->flags);
1735 		smp_wmb();
1736 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1737 		break;
1738 	case 1:
1739 		set_bit(MMF_DUMPABLE, &mm->flags);
1740 		smp_wmb();
1741 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1742 		break;
1743 	case 2:
1744 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1745 		smp_wmb();
1746 		set_bit(MMF_DUMPABLE, &mm->flags);
1747 		break;
1748 	}
1749 }
1750 
1751 static int __get_dumpable(unsigned long mm_flags)
1752 {
1753 	int ret;
1754 
1755 	ret = mm_flags & MMF_DUMPABLE_MASK;
1756 	return (ret >= 2) ? 2 : ret;
1757 }
1758 
1759 int get_dumpable(struct mm_struct *mm)
1760 {
1761 	return __get_dumpable(mm->flags);
1762 }
1763 
1764 static void wait_for_dump_helpers(struct file *file)
1765 {
1766 	struct pipe_inode_info *pipe;
1767 
1768 	pipe = file->f_path.dentry->d_inode->i_pipe;
1769 
1770 	pipe_lock(pipe);
1771 	pipe->readers++;
1772 	pipe->writers--;
1773 
1774 	while ((pipe->readers > 1) && (!signal_pending(current))) {
1775 		wake_up_interruptible_sync(&pipe->wait);
1776 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1777 		pipe_wait(pipe);
1778 	}
1779 
1780 	pipe->readers--;
1781 	pipe->writers++;
1782 	pipe_unlock(pipe);
1783 
1784 }
1785 
1786 
1787 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1788 {
1789 	struct core_state core_state;
1790 	char corename[CORENAME_MAX_SIZE + 1];
1791 	struct mm_struct *mm = current->mm;
1792 	struct linux_binfmt * binfmt;
1793 	struct inode * inode;
1794 	const struct cred *old_cred;
1795 	struct cred *cred;
1796 	int retval = 0;
1797 	int flag = 0;
1798 	int ispipe = 0;
1799 	char **helper_argv = NULL;
1800 	int helper_argc = 0;
1801 	int dump_count = 0;
1802 	static atomic_t core_dump_count = ATOMIC_INIT(0);
1803 	struct coredump_params cprm = {
1804 		.signr = signr,
1805 		.regs = regs,
1806 		.limit = rlimit(RLIMIT_CORE),
1807 		/*
1808 		 * We must use the same mm->flags while dumping core to avoid
1809 		 * inconsistency of bit flags, since this flag is not protected
1810 		 * by any locks.
1811 		 */
1812 		.mm_flags = mm->flags,
1813 	};
1814 
1815 	audit_core_dumps(signr);
1816 
1817 	binfmt = mm->binfmt;
1818 	if (!binfmt || !binfmt->core_dump)
1819 		goto fail;
1820 
1821 	cred = prepare_creds();
1822 	if (!cred) {
1823 		retval = -ENOMEM;
1824 		goto fail;
1825 	}
1826 
1827 	down_write(&mm->mmap_sem);
1828 	/*
1829 	 * If another thread got here first, or we are not dumpable, bail out.
1830 	 */
1831 	if (mm->core_state || !__get_dumpable(cprm.mm_flags)) {
1832 		up_write(&mm->mmap_sem);
1833 		put_cred(cred);
1834 		goto fail;
1835 	}
1836 
1837 	/*
1838 	 *	We cannot trust fsuid as being the "true" uid of the
1839 	 *	process nor do we know its entire history. We only know it
1840 	 *	was tainted so we dump it as root in mode 2.
1841 	 */
1842 	if (__get_dumpable(cprm.mm_flags) == 2) {
1843 		/* Setuid core dump mode */
1844 		flag = O_EXCL;		/* Stop rewrite attacks */
1845 		cred->fsuid = 0;	/* Dump root private */
1846 	}
1847 
1848 	retval = coredump_wait(exit_code, &core_state);
1849 	if (retval < 0) {
1850 		put_cred(cred);
1851 		goto fail;
1852 	}
1853 
1854 	old_cred = override_creds(cred);
1855 
1856 	/*
1857 	 * Clear any false indication of pending signals that might
1858 	 * be seen by the filesystem code called to write the core file.
1859 	 */
1860 	clear_thread_flag(TIF_SIGPENDING);
1861 
1862 	/*
1863 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1864 	 * uses lock_kernel()
1865 	 */
1866  	lock_kernel();
1867 	ispipe = format_corename(corename, signr);
1868 	unlock_kernel();
1869 
1870 	if ((!ispipe) && (cprm.limit < binfmt->min_coredump))
1871 		goto fail_unlock;
1872 
1873  	if (ispipe) {
1874 		if (cprm.limit == 0) {
1875 			/*
1876 			 * Normally core limits are irrelevant to pipes, since
1877 			 * we're not writing to the file system, but we use
1878 			 * cprm.limit of 0 here as a speacial value. Any
1879 			 * non-zero limit gets set to RLIM_INFINITY below, but
1880 			 * a limit of 0 skips the dump.  This is a consistent
1881 			 * way to catch recursive crashes.  We can still crash
1882 			 * if the core_pattern binary sets RLIM_CORE =  !0
1883 			 * but it runs as root, and can do lots of stupid things
1884 			 * Note that we use task_tgid_vnr here to grab the pid
1885 			 * of the process group leader.  That way we get the
1886 			 * right pid if a thread in a multi-threaded
1887 			 * core_pattern process dies.
1888 			 */
1889 			printk(KERN_WARNING
1890 				"Process %d(%s) has RLIMIT_CORE set to 0\n",
1891 				task_tgid_vnr(current), current->comm);
1892 			printk(KERN_WARNING "Aborting core\n");
1893 			goto fail_unlock;
1894 		}
1895 
1896 		dump_count = atomic_inc_return(&core_dump_count);
1897 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1898 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1899 			       task_tgid_vnr(current), current->comm);
1900 			printk(KERN_WARNING "Skipping core dump\n");
1901 			goto fail_dropcount;
1902 		}
1903 
1904 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1905 		if (!helper_argv) {
1906 			printk(KERN_WARNING "%s failed to allocate memory\n",
1907 			       __func__);
1908 			goto fail_dropcount;
1909 		}
1910 
1911 		cprm.limit = RLIM_INFINITY;
1912 
1913 		/* SIGPIPE can happen, but it's just never processed */
1914 		if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
1915 				&cprm.file)) {
1916  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1917 			       corename);
1918 			goto fail_dropcount;
1919  		}
1920  	} else
1921 		cprm.file = filp_open(corename,
1922 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1923 				 0600);
1924 	if (IS_ERR(cprm.file))
1925 		goto fail_dropcount;
1926 	inode = cprm.file->f_path.dentry->d_inode;
1927 	if (inode->i_nlink > 1)
1928 		goto close_fail;	/* multiple links - don't dump */
1929 	if (!ispipe && d_unhashed(cprm.file->f_path.dentry))
1930 		goto close_fail;
1931 
1932 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1933 	   but keep the previous behaviour for now. */
1934 	if (!ispipe && !S_ISREG(inode->i_mode))
1935 		goto close_fail;
1936 	/*
1937 	 * Dont allow local users get cute and trick others to coredump
1938 	 * into their pre-created files:
1939 	 * Note, this is not relevant for pipes
1940 	 */
1941 	if (!ispipe && (inode->i_uid != current_fsuid()))
1942 		goto close_fail;
1943 	if (!cprm.file->f_op)
1944 		goto close_fail;
1945 	if (!cprm.file->f_op->write)
1946 		goto close_fail;
1947 	if (!ispipe &&
1948 	    do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file) != 0)
1949 		goto close_fail;
1950 
1951 	retval = binfmt->core_dump(&cprm);
1952 
1953 	if (retval)
1954 		current->signal->group_exit_code |= 0x80;
1955 close_fail:
1956 	if (ispipe && core_pipe_limit)
1957 		wait_for_dump_helpers(cprm.file);
1958 	filp_close(cprm.file, NULL);
1959 fail_dropcount:
1960 	if (dump_count)
1961 		atomic_dec(&core_dump_count);
1962 fail_unlock:
1963 	if (helper_argv)
1964 		argv_free(helper_argv);
1965 
1966 	revert_creds(old_cred);
1967 	put_cred(cred);
1968 	coredump_finish(mm);
1969 fail:
1970 	return;
1971 }
1972