1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/swap.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/perf_event.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/proc_fs.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/tsacct_kern.h> 50 #include <linux/cn_proc.h> 51 #include <linux/audit.h> 52 #include <linux/tracehook.h> 53 #include <linux/kmod.h> 54 #include <linux/fsnotify.h> 55 #include <linux/fs_struct.h> 56 #include <linux/pipe_fs_i.h> 57 #include <linux/oom.h> 58 59 #include <asm/uaccess.h> 60 #include <asm/mmu_context.h> 61 #include <asm/tlb.h> 62 #include "internal.h" 63 64 int core_uses_pid; 65 char core_pattern[CORENAME_MAX_SIZE] = "core"; 66 unsigned int core_pipe_limit; 67 int suid_dumpable = 0; 68 69 struct core_name { 70 char *corename; 71 int used, size; 72 }; 73 static atomic_t call_count = ATOMIC_INIT(1); 74 75 /* The maximal length of core_pattern is also specified in sysctl.c */ 76 77 static LIST_HEAD(formats); 78 static DEFINE_RWLOCK(binfmt_lock); 79 80 int __register_binfmt(struct linux_binfmt * fmt, int insert) 81 { 82 if (!fmt) 83 return -EINVAL; 84 write_lock(&binfmt_lock); 85 insert ? list_add(&fmt->lh, &formats) : 86 list_add_tail(&fmt->lh, &formats); 87 write_unlock(&binfmt_lock); 88 return 0; 89 } 90 91 EXPORT_SYMBOL(__register_binfmt); 92 93 void unregister_binfmt(struct linux_binfmt * fmt) 94 { 95 write_lock(&binfmt_lock); 96 list_del(&fmt->lh); 97 write_unlock(&binfmt_lock); 98 } 99 100 EXPORT_SYMBOL(unregister_binfmt); 101 102 static inline void put_binfmt(struct linux_binfmt * fmt) 103 { 104 module_put(fmt->module); 105 } 106 107 /* 108 * Note that a shared library must be both readable and executable due to 109 * security reasons. 110 * 111 * Also note that we take the address to load from from the file itself. 112 */ 113 SYSCALL_DEFINE1(uselib, const char __user *, library) 114 { 115 struct file *file; 116 char *tmp = getname(library); 117 int error = PTR_ERR(tmp); 118 static const struct open_flags uselib_flags = { 119 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 120 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN, 121 .intent = LOOKUP_OPEN 122 }; 123 124 if (IS_ERR(tmp)) 125 goto out; 126 127 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW); 128 putname(tmp); 129 error = PTR_ERR(file); 130 if (IS_ERR(file)) 131 goto out; 132 133 error = -EINVAL; 134 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 135 goto exit; 136 137 error = -EACCES; 138 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 139 goto exit; 140 141 fsnotify_open(file); 142 143 error = -ENOEXEC; 144 if(file->f_op) { 145 struct linux_binfmt * fmt; 146 147 read_lock(&binfmt_lock); 148 list_for_each_entry(fmt, &formats, lh) { 149 if (!fmt->load_shlib) 150 continue; 151 if (!try_module_get(fmt->module)) 152 continue; 153 read_unlock(&binfmt_lock); 154 error = fmt->load_shlib(file); 155 read_lock(&binfmt_lock); 156 put_binfmt(fmt); 157 if (error != -ENOEXEC) 158 break; 159 } 160 read_unlock(&binfmt_lock); 161 } 162 exit: 163 fput(file); 164 out: 165 return error; 166 } 167 168 #ifdef CONFIG_MMU 169 170 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 171 { 172 struct mm_struct *mm = current->mm; 173 long diff = (long)(pages - bprm->vma_pages); 174 175 if (!mm || !diff) 176 return; 177 178 bprm->vma_pages = pages; 179 180 #ifdef SPLIT_RSS_COUNTING 181 add_mm_counter(mm, MM_ANONPAGES, diff); 182 #else 183 spin_lock(&mm->page_table_lock); 184 add_mm_counter(mm, MM_ANONPAGES, diff); 185 spin_unlock(&mm->page_table_lock); 186 #endif 187 } 188 189 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 190 int write) 191 { 192 struct page *page; 193 int ret; 194 195 #ifdef CONFIG_STACK_GROWSUP 196 if (write) { 197 ret = expand_stack_downwards(bprm->vma, pos); 198 if (ret < 0) 199 return NULL; 200 } 201 #endif 202 ret = get_user_pages(current, bprm->mm, pos, 203 1, write, 1, &page, NULL); 204 if (ret <= 0) 205 return NULL; 206 207 if (write) { 208 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 209 struct rlimit *rlim; 210 211 acct_arg_size(bprm, size / PAGE_SIZE); 212 213 /* 214 * We've historically supported up to 32 pages (ARG_MAX) 215 * of argument strings even with small stacks 216 */ 217 if (size <= ARG_MAX) 218 return page; 219 220 /* 221 * Limit to 1/4-th the stack size for the argv+env strings. 222 * This ensures that: 223 * - the remaining binfmt code will not run out of stack space, 224 * - the program will have a reasonable amount of stack left 225 * to work from. 226 */ 227 rlim = current->signal->rlim; 228 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 229 put_page(page); 230 return NULL; 231 } 232 } 233 234 return page; 235 } 236 237 static void put_arg_page(struct page *page) 238 { 239 put_page(page); 240 } 241 242 static void free_arg_page(struct linux_binprm *bprm, int i) 243 { 244 } 245 246 static void free_arg_pages(struct linux_binprm *bprm) 247 { 248 } 249 250 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 251 struct page *page) 252 { 253 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 254 } 255 256 static int __bprm_mm_init(struct linux_binprm *bprm) 257 { 258 int err; 259 struct vm_area_struct *vma = NULL; 260 struct mm_struct *mm = bprm->mm; 261 262 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 263 if (!vma) 264 return -ENOMEM; 265 266 down_write(&mm->mmap_sem); 267 vma->vm_mm = mm; 268 269 /* 270 * Place the stack at the largest stack address the architecture 271 * supports. Later, we'll move this to an appropriate place. We don't 272 * use STACK_TOP because that can depend on attributes which aren't 273 * configured yet. 274 */ 275 BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 276 vma->vm_end = STACK_TOP_MAX; 277 vma->vm_start = vma->vm_end - PAGE_SIZE; 278 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 279 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 280 INIT_LIST_HEAD(&vma->anon_vma_chain); 281 282 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1); 283 if (err) 284 goto err; 285 286 err = insert_vm_struct(mm, vma); 287 if (err) 288 goto err; 289 290 mm->stack_vm = mm->total_vm = 1; 291 up_write(&mm->mmap_sem); 292 bprm->p = vma->vm_end - sizeof(void *); 293 return 0; 294 err: 295 up_write(&mm->mmap_sem); 296 bprm->vma = NULL; 297 kmem_cache_free(vm_area_cachep, vma); 298 return err; 299 } 300 301 static bool valid_arg_len(struct linux_binprm *bprm, long len) 302 { 303 return len <= MAX_ARG_STRLEN; 304 } 305 306 #else 307 308 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 309 { 310 } 311 312 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 313 int write) 314 { 315 struct page *page; 316 317 page = bprm->page[pos / PAGE_SIZE]; 318 if (!page && write) { 319 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 320 if (!page) 321 return NULL; 322 bprm->page[pos / PAGE_SIZE] = page; 323 } 324 325 return page; 326 } 327 328 static void put_arg_page(struct page *page) 329 { 330 } 331 332 static void free_arg_page(struct linux_binprm *bprm, int i) 333 { 334 if (bprm->page[i]) { 335 __free_page(bprm->page[i]); 336 bprm->page[i] = NULL; 337 } 338 } 339 340 static void free_arg_pages(struct linux_binprm *bprm) 341 { 342 int i; 343 344 for (i = 0; i < MAX_ARG_PAGES; i++) 345 free_arg_page(bprm, i); 346 } 347 348 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 349 struct page *page) 350 { 351 } 352 353 static int __bprm_mm_init(struct linux_binprm *bprm) 354 { 355 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 356 return 0; 357 } 358 359 static bool valid_arg_len(struct linux_binprm *bprm, long len) 360 { 361 return len <= bprm->p; 362 } 363 364 #endif /* CONFIG_MMU */ 365 366 /* 367 * Create a new mm_struct and populate it with a temporary stack 368 * vm_area_struct. We don't have enough context at this point to set the stack 369 * flags, permissions, and offset, so we use temporary values. We'll update 370 * them later in setup_arg_pages(). 371 */ 372 int bprm_mm_init(struct linux_binprm *bprm) 373 { 374 int err; 375 struct mm_struct *mm = NULL; 376 377 bprm->mm = mm = mm_alloc(); 378 err = -ENOMEM; 379 if (!mm) 380 goto err; 381 382 err = init_new_context(current, mm); 383 if (err) 384 goto err; 385 386 err = __bprm_mm_init(bprm); 387 if (err) 388 goto err; 389 390 return 0; 391 392 err: 393 if (mm) { 394 bprm->mm = NULL; 395 mmdrop(mm); 396 } 397 398 return err; 399 } 400 401 /* 402 * count() counts the number of strings in array ARGV. 403 */ 404 static int count(const char __user * const __user * argv, int max) 405 { 406 int i = 0; 407 408 if (argv != NULL) { 409 for (;;) { 410 const char __user * p; 411 412 if (get_user(p, argv)) 413 return -EFAULT; 414 if (!p) 415 break; 416 argv++; 417 if (i++ >= max) 418 return -E2BIG; 419 420 if (fatal_signal_pending(current)) 421 return -ERESTARTNOHAND; 422 cond_resched(); 423 } 424 } 425 return i; 426 } 427 428 /* 429 * 'copy_strings()' copies argument/environment strings from the old 430 * processes's memory to the new process's stack. The call to get_user_pages() 431 * ensures the destination page is created and not swapped out. 432 */ 433 static int copy_strings(int argc, const char __user *const __user *argv, 434 struct linux_binprm *bprm) 435 { 436 struct page *kmapped_page = NULL; 437 char *kaddr = NULL; 438 unsigned long kpos = 0; 439 int ret; 440 441 while (argc-- > 0) { 442 const char __user *str; 443 int len; 444 unsigned long pos; 445 446 if (get_user(str, argv+argc) || 447 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 448 ret = -EFAULT; 449 goto out; 450 } 451 452 if (!valid_arg_len(bprm, len)) { 453 ret = -E2BIG; 454 goto out; 455 } 456 457 /* We're going to work our way backwords. */ 458 pos = bprm->p; 459 str += len; 460 bprm->p -= len; 461 462 while (len > 0) { 463 int offset, bytes_to_copy; 464 465 if (fatal_signal_pending(current)) { 466 ret = -ERESTARTNOHAND; 467 goto out; 468 } 469 cond_resched(); 470 471 offset = pos % PAGE_SIZE; 472 if (offset == 0) 473 offset = PAGE_SIZE; 474 475 bytes_to_copy = offset; 476 if (bytes_to_copy > len) 477 bytes_to_copy = len; 478 479 offset -= bytes_to_copy; 480 pos -= bytes_to_copy; 481 str -= bytes_to_copy; 482 len -= bytes_to_copy; 483 484 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 485 struct page *page; 486 487 page = get_arg_page(bprm, pos, 1); 488 if (!page) { 489 ret = -E2BIG; 490 goto out; 491 } 492 493 if (kmapped_page) { 494 flush_kernel_dcache_page(kmapped_page); 495 kunmap(kmapped_page); 496 put_arg_page(kmapped_page); 497 } 498 kmapped_page = page; 499 kaddr = kmap(kmapped_page); 500 kpos = pos & PAGE_MASK; 501 flush_arg_page(bprm, kpos, kmapped_page); 502 } 503 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 504 ret = -EFAULT; 505 goto out; 506 } 507 } 508 } 509 ret = 0; 510 out: 511 if (kmapped_page) { 512 flush_kernel_dcache_page(kmapped_page); 513 kunmap(kmapped_page); 514 put_arg_page(kmapped_page); 515 } 516 return ret; 517 } 518 519 /* 520 * Like copy_strings, but get argv and its values from kernel memory. 521 */ 522 int copy_strings_kernel(int argc, const char *const *argv, 523 struct linux_binprm *bprm) 524 { 525 int r; 526 mm_segment_t oldfs = get_fs(); 527 set_fs(KERNEL_DS); 528 r = copy_strings(argc, (const char __user *const __user *)argv, bprm); 529 set_fs(oldfs); 530 return r; 531 } 532 EXPORT_SYMBOL(copy_strings_kernel); 533 534 #ifdef CONFIG_MMU 535 536 /* 537 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 538 * the binfmt code determines where the new stack should reside, we shift it to 539 * its final location. The process proceeds as follows: 540 * 541 * 1) Use shift to calculate the new vma endpoints. 542 * 2) Extend vma to cover both the old and new ranges. This ensures the 543 * arguments passed to subsequent functions are consistent. 544 * 3) Move vma's page tables to the new range. 545 * 4) Free up any cleared pgd range. 546 * 5) Shrink the vma to cover only the new range. 547 */ 548 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 549 { 550 struct mm_struct *mm = vma->vm_mm; 551 unsigned long old_start = vma->vm_start; 552 unsigned long old_end = vma->vm_end; 553 unsigned long length = old_end - old_start; 554 unsigned long new_start = old_start - shift; 555 unsigned long new_end = old_end - shift; 556 struct mmu_gather *tlb; 557 558 BUG_ON(new_start > new_end); 559 560 /* 561 * ensure there are no vmas between where we want to go 562 * and where we are 563 */ 564 if (vma != find_vma(mm, new_start)) 565 return -EFAULT; 566 567 /* 568 * cover the whole range: [new_start, old_end) 569 */ 570 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 571 return -ENOMEM; 572 573 /* 574 * move the page tables downwards, on failure we rely on 575 * process cleanup to remove whatever mess we made. 576 */ 577 if (length != move_page_tables(vma, old_start, 578 vma, new_start, length)) 579 return -ENOMEM; 580 581 lru_add_drain(); 582 tlb = tlb_gather_mmu(mm, 0); 583 if (new_end > old_start) { 584 /* 585 * when the old and new regions overlap clear from new_end. 586 */ 587 free_pgd_range(tlb, new_end, old_end, new_end, 588 vma->vm_next ? vma->vm_next->vm_start : 0); 589 } else { 590 /* 591 * otherwise, clean from old_start; this is done to not touch 592 * the address space in [new_end, old_start) some architectures 593 * have constraints on va-space that make this illegal (IA64) - 594 * for the others its just a little faster. 595 */ 596 free_pgd_range(tlb, old_start, old_end, new_end, 597 vma->vm_next ? vma->vm_next->vm_start : 0); 598 } 599 tlb_finish_mmu(tlb, new_end, old_end); 600 601 /* 602 * Shrink the vma to just the new range. Always succeeds. 603 */ 604 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 605 606 return 0; 607 } 608 609 /* 610 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 611 * the stack is optionally relocated, and some extra space is added. 612 */ 613 int setup_arg_pages(struct linux_binprm *bprm, 614 unsigned long stack_top, 615 int executable_stack) 616 { 617 unsigned long ret; 618 unsigned long stack_shift; 619 struct mm_struct *mm = current->mm; 620 struct vm_area_struct *vma = bprm->vma; 621 struct vm_area_struct *prev = NULL; 622 unsigned long vm_flags; 623 unsigned long stack_base; 624 unsigned long stack_size; 625 unsigned long stack_expand; 626 unsigned long rlim_stack; 627 628 #ifdef CONFIG_STACK_GROWSUP 629 /* Limit stack size to 1GB */ 630 stack_base = rlimit_max(RLIMIT_STACK); 631 if (stack_base > (1 << 30)) 632 stack_base = 1 << 30; 633 634 /* Make sure we didn't let the argument array grow too large. */ 635 if (vma->vm_end - vma->vm_start > stack_base) 636 return -ENOMEM; 637 638 stack_base = PAGE_ALIGN(stack_top - stack_base); 639 640 stack_shift = vma->vm_start - stack_base; 641 mm->arg_start = bprm->p - stack_shift; 642 bprm->p = vma->vm_end - stack_shift; 643 #else 644 stack_top = arch_align_stack(stack_top); 645 stack_top = PAGE_ALIGN(stack_top); 646 647 if (unlikely(stack_top < mmap_min_addr) || 648 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 649 return -ENOMEM; 650 651 stack_shift = vma->vm_end - stack_top; 652 653 bprm->p -= stack_shift; 654 mm->arg_start = bprm->p; 655 #endif 656 657 if (bprm->loader) 658 bprm->loader -= stack_shift; 659 bprm->exec -= stack_shift; 660 661 down_write(&mm->mmap_sem); 662 vm_flags = VM_STACK_FLAGS; 663 664 /* 665 * Adjust stack execute permissions; explicitly enable for 666 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 667 * (arch default) otherwise. 668 */ 669 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 670 vm_flags |= VM_EXEC; 671 else if (executable_stack == EXSTACK_DISABLE_X) 672 vm_flags &= ~VM_EXEC; 673 vm_flags |= mm->def_flags; 674 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 675 676 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 677 vm_flags); 678 if (ret) 679 goto out_unlock; 680 BUG_ON(prev != vma); 681 682 /* Move stack pages down in memory. */ 683 if (stack_shift) { 684 ret = shift_arg_pages(vma, stack_shift); 685 if (ret) 686 goto out_unlock; 687 } 688 689 /* mprotect_fixup is overkill to remove the temporary stack flags */ 690 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 691 692 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 693 stack_size = vma->vm_end - vma->vm_start; 694 /* 695 * Align this down to a page boundary as expand_stack 696 * will align it up. 697 */ 698 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 699 #ifdef CONFIG_STACK_GROWSUP 700 if (stack_size + stack_expand > rlim_stack) 701 stack_base = vma->vm_start + rlim_stack; 702 else 703 stack_base = vma->vm_end + stack_expand; 704 #else 705 if (stack_size + stack_expand > rlim_stack) 706 stack_base = vma->vm_end - rlim_stack; 707 else 708 stack_base = vma->vm_start - stack_expand; 709 #endif 710 current->mm->start_stack = bprm->p; 711 ret = expand_stack(vma, stack_base); 712 if (ret) 713 ret = -EFAULT; 714 715 out_unlock: 716 up_write(&mm->mmap_sem); 717 return ret; 718 } 719 EXPORT_SYMBOL(setup_arg_pages); 720 721 #endif /* CONFIG_MMU */ 722 723 struct file *open_exec(const char *name) 724 { 725 struct file *file; 726 int err; 727 static const struct open_flags open_exec_flags = { 728 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 729 .acc_mode = MAY_EXEC | MAY_OPEN, 730 .intent = LOOKUP_OPEN 731 }; 732 733 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW); 734 if (IS_ERR(file)) 735 goto out; 736 737 err = -EACCES; 738 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 739 goto exit; 740 741 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 742 goto exit; 743 744 fsnotify_open(file); 745 746 err = deny_write_access(file); 747 if (err) 748 goto exit; 749 750 out: 751 return file; 752 753 exit: 754 fput(file); 755 return ERR_PTR(err); 756 } 757 EXPORT_SYMBOL(open_exec); 758 759 int kernel_read(struct file *file, loff_t offset, 760 char *addr, unsigned long count) 761 { 762 mm_segment_t old_fs; 763 loff_t pos = offset; 764 int result; 765 766 old_fs = get_fs(); 767 set_fs(get_ds()); 768 /* The cast to a user pointer is valid due to the set_fs() */ 769 result = vfs_read(file, (void __user *)addr, count, &pos); 770 set_fs(old_fs); 771 return result; 772 } 773 774 EXPORT_SYMBOL(kernel_read); 775 776 static int exec_mmap(struct mm_struct *mm) 777 { 778 struct task_struct *tsk; 779 struct mm_struct * old_mm, *active_mm; 780 781 /* Notify parent that we're no longer interested in the old VM */ 782 tsk = current; 783 old_mm = current->mm; 784 sync_mm_rss(tsk, old_mm); 785 mm_release(tsk, old_mm); 786 787 if (old_mm) { 788 /* 789 * Make sure that if there is a core dump in progress 790 * for the old mm, we get out and die instead of going 791 * through with the exec. We must hold mmap_sem around 792 * checking core_state and changing tsk->mm. 793 */ 794 down_read(&old_mm->mmap_sem); 795 if (unlikely(old_mm->core_state)) { 796 up_read(&old_mm->mmap_sem); 797 return -EINTR; 798 } 799 } 800 task_lock(tsk); 801 active_mm = tsk->active_mm; 802 tsk->mm = mm; 803 tsk->active_mm = mm; 804 activate_mm(active_mm, mm); 805 if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) { 806 atomic_dec(&old_mm->oom_disable_count); 807 atomic_inc(&tsk->mm->oom_disable_count); 808 } 809 task_unlock(tsk); 810 arch_pick_mmap_layout(mm); 811 if (old_mm) { 812 up_read(&old_mm->mmap_sem); 813 BUG_ON(active_mm != old_mm); 814 mm_update_next_owner(old_mm); 815 mmput(old_mm); 816 return 0; 817 } 818 mmdrop(active_mm); 819 return 0; 820 } 821 822 /* 823 * This function makes sure the current process has its own signal table, 824 * so that flush_signal_handlers can later reset the handlers without 825 * disturbing other processes. (Other processes might share the signal 826 * table via the CLONE_SIGHAND option to clone().) 827 */ 828 static int de_thread(struct task_struct *tsk) 829 { 830 struct signal_struct *sig = tsk->signal; 831 struct sighand_struct *oldsighand = tsk->sighand; 832 spinlock_t *lock = &oldsighand->siglock; 833 834 if (thread_group_empty(tsk)) 835 goto no_thread_group; 836 837 /* 838 * Kill all other threads in the thread group. 839 */ 840 spin_lock_irq(lock); 841 if (signal_group_exit(sig)) { 842 /* 843 * Another group action in progress, just 844 * return so that the signal is processed. 845 */ 846 spin_unlock_irq(lock); 847 return -EAGAIN; 848 } 849 850 sig->group_exit_task = tsk; 851 sig->notify_count = zap_other_threads(tsk); 852 if (!thread_group_leader(tsk)) 853 sig->notify_count--; 854 855 while (sig->notify_count) { 856 __set_current_state(TASK_UNINTERRUPTIBLE); 857 spin_unlock_irq(lock); 858 schedule(); 859 spin_lock_irq(lock); 860 } 861 spin_unlock_irq(lock); 862 863 /* 864 * At this point all other threads have exited, all we have to 865 * do is to wait for the thread group leader to become inactive, 866 * and to assume its PID: 867 */ 868 if (!thread_group_leader(tsk)) { 869 struct task_struct *leader = tsk->group_leader; 870 871 sig->notify_count = -1; /* for exit_notify() */ 872 for (;;) { 873 write_lock_irq(&tasklist_lock); 874 if (likely(leader->exit_state)) 875 break; 876 __set_current_state(TASK_UNINTERRUPTIBLE); 877 write_unlock_irq(&tasklist_lock); 878 schedule(); 879 } 880 881 /* 882 * The only record we have of the real-time age of a 883 * process, regardless of execs it's done, is start_time. 884 * All the past CPU time is accumulated in signal_struct 885 * from sister threads now dead. But in this non-leader 886 * exec, nothing survives from the original leader thread, 887 * whose birth marks the true age of this process now. 888 * When we take on its identity by switching to its PID, we 889 * also take its birthdate (always earlier than our own). 890 */ 891 tsk->start_time = leader->start_time; 892 893 BUG_ON(!same_thread_group(leader, tsk)); 894 BUG_ON(has_group_leader_pid(tsk)); 895 /* 896 * An exec() starts a new thread group with the 897 * TGID of the previous thread group. Rehash the 898 * two threads with a switched PID, and release 899 * the former thread group leader: 900 */ 901 902 /* Become a process group leader with the old leader's pid. 903 * The old leader becomes a thread of the this thread group. 904 * Note: The old leader also uses this pid until release_task 905 * is called. Odd but simple and correct. 906 */ 907 detach_pid(tsk, PIDTYPE_PID); 908 tsk->pid = leader->pid; 909 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 910 transfer_pid(leader, tsk, PIDTYPE_PGID); 911 transfer_pid(leader, tsk, PIDTYPE_SID); 912 913 list_replace_rcu(&leader->tasks, &tsk->tasks); 914 list_replace_init(&leader->sibling, &tsk->sibling); 915 916 tsk->group_leader = tsk; 917 leader->group_leader = tsk; 918 919 tsk->exit_signal = SIGCHLD; 920 921 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 922 leader->exit_state = EXIT_DEAD; 923 write_unlock_irq(&tasklist_lock); 924 925 release_task(leader); 926 } 927 928 sig->group_exit_task = NULL; 929 sig->notify_count = 0; 930 931 no_thread_group: 932 if (current->mm) 933 setmax_mm_hiwater_rss(&sig->maxrss, current->mm); 934 935 exit_itimers(sig); 936 flush_itimer_signals(); 937 938 if (atomic_read(&oldsighand->count) != 1) { 939 struct sighand_struct *newsighand; 940 /* 941 * This ->sighand is shared with the CLONE_SIGHAND 942 * but not CLONE_THREAD task, switch to the new one. 943 */ 944 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 945 if (!newsighand) 946 return -ENOMEM; 947 948 atomic_set(&newsighand->count, 1); 949 memcpy(newsighand->action, oldsighand->action, 950 sizeof(newsighand->action)); 951 952 write_lock_irq(&tasklist_lock); 953 spin_lock(&oldsighand->siglock); 954 rcu_assign_pointer(tsk->sighand, newsighand); 955 spin_unlock(&oldsighand->siglock); 956 write_unlock_irq(&tasklist_lock); 957 958 __cleanup_sighand(oldsighand); 959 } 960 961 BUG_ON(!thread_group_leader(tsk)); 962 return 0; 963 } 964 965 /* 966 * These functions flushes out all traces of the currently running executable 967 * so that a new one can be started 968 */ 969 static void flush_old_files(struct files_struct * files) 970 { 971 long j = -1; 972 struct fdtable *fdt; 973 974 spin_lock(&files->file_lock); 975 for (;;) { 976 unsigned long set, i; 977 978 j++; 979 i = j * __NFDBITS; 980 fdt = files_fdtable(files); 981 if (i >= fdt->max_fds) 982 break; 983 set = fdt->close_on_exec->fds_bits[j]; 984 if (!set) 985 continue; 986 fdt->close_on_exec->fds_bits[j] = 0; 987 spin_unlock(&files->file_lock); 988 for ( ; set ; i++,set >>= 1) { 989 if (set & 1) { 990 sys_close(i); 991 } 992 } 993 spin_lock(&files->file_lock); 994 995 } 996 spin_unlock(&files->file_lock); 997 } 998 999 char *get_task_comm(char *buf, struct task_struct *tsk) 1000 { 1001 /* buf must be at least sizeof(tsk->comm) in size */ 1002 task_lock(tsk); 1003 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1004 task_unlock(tsk); 1005 return buf; 1006 } 1007 1008 void set_task_comm(struct task_struct *tsk, char *buf) 1009 { 1010 task_lock(tsk); 1011 1012 /* 1013 * Threads may access current->comm without holding 1014 * the task lock, so write the string carefully. 1015 * Readers without a lock may see incomplete new 1016 * names but are safe from non-terminating string reads. 1017 */ 1018 memset(tsk->comm, 0, TASK_COMM_LEN); 1019 wmb(); 1020 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1021 task_unlock(tsk); 1022 perf_event_comm(tsk); 1023 } 1024 1025 int flush_old_exec(struct linux_binprm * bprm) 1026 { 1027 int retval; 1028 1029 /* 1030 * Make sure we have a private signal table and that 1031 * we are unassociated from the previous thread group. 1032 */ 1033 retval = de_thread(current); 1034 if (retval) 1035 goto out; 1036 1037 set_mm_exe_file(bprm->mm, bprm->file); 1038 1039 /* 1040 * Release all of the old mmap stuff 1041 */ 1042 acct_arg_size(bprm, 0); 1043 retval = exec_mmap(bprm->mm); 1044 if (retval) 1045 goto out; 1046 1047 bprm->mm = NULL; /* We're using it now */ 1048 1049 current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD); 1050 flush_thread(); 1051 current->personality &= ~bprm->per_clear; 1052 1053 return 0; 1054 1055 out: 1056 return retval; 1057 } 1058 EXPORT_SYMBOL(flush_old_exec); 1059 1060 void setup_new_exec(struct linux_binprm * bprm) 1061 { 1062 int i, ch; 1063 const char *name; 1064 char tcomm[sizeof(current->comm)]; 1065 1066 arch_pick_mmap_layout(current->mm); 1067 1068 /* This is the point of no return */ 1069 current->sas_ss_sp = current->sas_ss_size = 0; 1070 1071 if (current_euid() == current_uid() && current_egid() == current_gid()) 1072 set_dumpable(current->mm, 1); 1073 else 1074 set_dumpable(current->mm, suid_dumpable); 1075 1076 name = bprm->filename; 1077 1078 /* Copies the binary name from after last slash */ 1079 for (i=0; (ch = *(name++)) != '\0';) { 1080 if (ch == '/') 1081 i = 0; /* overwrite what we wrote */ 1082 else 1083 if (i < (sizeof(tcomm) - 1)) 1084 tcomm[i++] = ch; 1085 } 1086 tcomm[i] = '\0'; 1087 set_task_comm(current, tcomm); 1088 1089 /* Set the new mm task size. We have to do that late because it may 1090 * depend on TIF_32BIT which is only updated in flush_thread() on 1091 * some architectures like powerpc 1092 */ 1093 current->mm->task_size = TASK_SIZE; 1094 1095 /* install the new credentials */ 1096 if (bprm->cred->uid != current_euid() || 1097 bprm->cred->gid != current_egid()) { 1098 current->pdeath_signal = 0; 1099 } else if (file_permission(bprm->file, MAY_READ) || 1100 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) { 1101 set_dumpable(current->mm, suid_dumpable); 1102 } 1103 1104 /* 1105 * Flush performance counters when crossing a 1106 * security domain: 1107 */ 1108 if (!get_dumpable(current->mm)) 1109 perf_event_exit_task(current); 1110 1111 /* An exec changes our domain. We are no longer part of the thread 1112 group */ 1113 1114 current->self_exec_id++; 1115 1116 flush_signal_handlers(current, 0); 1117 flush_old_files(current->files); 1118 } 1119 EXPORT_SYMBOL(setup_new_exec); 1120 1121 /* 1122 * Prepare credentials and lock ->cred_guard_mutex. 1123 * install_exec_creds() commits the new creds and drops the lock. 1124 * Or, if exec fails before, free_bprm() should release ->cred and 1125 * and unlock. 1126 */ 1127 int prepare_bprm_creds(struct linux_binprm *bprm) 1128 { 1129 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1130 return -ERESTARTNOINTR; 1131 1132 bprm->cred = prepare_exec_creds(); 1133 if (likely(bprm->cred)) 1134 return 0; 1135 1136 mutex_unlock(¤t->signal->cred_guard_mutex); 1137 return -ENOMEM; 1138 } 1139 1140 void free_bprm(struct linux_binprm *bprm) 1141 { 1142 free_arg_pages(bprm); 1143 if (bprm->cred) { 1144 mutex_unlock(¤t->signal->cred_guard_mutex); 1145 abort_creds(bprm->cred); 1146 } 1147 kfree(bprm); 1148 } 1149 1150 /* 1151 * install the new credentials for this executable 1152 */ 1153 void install_exec_creds(struct linux_binprm *bprm) 1154 { 1155 security_bprm_committing_creds(bprm); 1156 1157 commit_creds(bprm->cred); 1158 bprm->cred = NULL; 1159 /* 1160 * cred_guard_mutex must be held at least to this point to prevent 1161 * ptrace_attach() from altering our determination of the task's 1162 * credentials; any time after this it may be unlocked. 1163 */ 1164 security_bprm_committed_creds(bprm); 1165 mutex_unlock(¤t->signal->cred_guard_mutex); 1166 } 1167 EXPORT_SYMBOL(install_exec_creds); 1168 1169 /* 1170 * determine how safe it is to execute the proposed program 1171 * - the caller must hold ->cred_guard_mutex to protect against 1172 * PTRACE_ATTACH 1173 */ 1174 int check_unsafe_exec(struct linux_binprm *bprm) 1175 { 1176 struct task_struct *p = current, *t; 1177 unsigned n_fs; 1178 int res = 0; 1179 1180 bprm->unsafe = tracehook_unsafe_exec(p); 1181 1182 n_fs = 1; 1183 spin_lock(&p->fs->lock); 1184 rcu_read_lock(); 1185 for (t = next_thread(p); t != p; t = next_thread(t)) { 1186 if (t->fs == p->fs) 1187 n_fs++; 1188 } 1189 rcu_read_unlock(); 1190 1191 if (p->fs->users > n_fs) { 1192 bprm->unsafe |= LSM_UNSAFE_SHARE; 1193 } else { 1194 res = -EAGAIN; 1195 if (!p->fs->in_exec) { 1196 p->fs->in_exec = 1; 1197 res = 1; 1198 } 1199 } 1200 spin_unlock(&p->fs->lock); 1201 1202 return res; 1203 } 1204 1205 /* 1206 * Fill the binprm structure from the inode. 1207 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1208 * 1209 * This may be called multiple times for binary chains (scripts for example). 1210 */ 1211 int prepare_binprm(struct linux_binprm *bprm) 1212 { 1213 umode_t mode; 1214 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1215 int retval; 1216 1217 mode = inode->i_mode; 1218 if (bprm->file->f_op == NULL) 1219 return -EACCES; 1220 1221 /* clear any previous set[ug]id data from a previous binary */ 1222 bprm->cred->euid = current_euid(); 1223 bprm->cred->egid = current_egid(); 1224 1225 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1226 /* Set-uid? */ 1227 if (mode & S_ISUID) { 1228 bprm->per_clear |= PER_CLEAR_ON_SETID; 1229 bprm->cred->euid = inode->i_uid; 1230 } 1231 1232 /* Set-gid? */ 1233 /* 1234 * If setgid is set but no group execute bit then this 1235 * is a candidate for mandatory locking, not a setgid 1236 * executable. 1237 */ 1238 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1239 bprm->per_clear |= PER_CLEAR_ON_SETID; 1240 bprm->cred->egid = inode->i_gid; 1241 } 1242 } 1243 1244 /* fill in binprm security blob */ 1245 retval = security_bprm_set_creds(bprm); 1246 if (retval) 1247 return retval; 1248 bprm->cred_prepared = 1; 1249 1250 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1251 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1252 } 1253 1254 EXPORT_SYMBOL(prepare_binprm); 1255 1256 /* 1257 * Arguments are '\0' separated strings found at the location bprm->p 1258 * points to; chop off the first by relocating brpm->p to right after 1259 * the first '\0' encountered. 1260 */ 1261 int remove_arg_zero(struct linux_binprm *bprm) 1262 { 1263 int ret = 0; 1264 unsigned long offset; 1265 char *kaddr; 1266 struct page *page; 1267 1268 if (!bprm->argc) 1269 return 0; 1270 1271 do { 1272 offset = bprm->p & ~PAGE_MASK; 1273 page = get_arg_page(bprm, bprm->p, 0); 1274 if (!page) { 1275 ret = -EFAULT; 1276 goto out; 1277 } 1278 kaddr = kmap_atomic(page, KM_USER0); 1279 1280 for (; offset < PAGE_SIZE && kaddr[offset]; 1281 offset++, bprm->p++) 1282 ; 1283 1284 kunmap_atomic(kaddr, KM_USER0); 1285 put_arg_page(page); 1286 1287 if (offset == PAGE_SIZE) 1288 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1289 } while (offset == PAGE_SIZE); 1290 1291 bprm->p++; 1292 bprm->argc--; 1293 ret = 0; 1294 1295 out: 1296 return ret; 1297 } 1298 EXPORT_SYMBOL(remove_arg_zero); 1299 1300 /* 1301 * cycle the list of binary formats handler, until one recognizes the image 1302 */ 1303 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1304 { 1305 unsigned int depth = bprm->recursion_depth; 1306 int try,retval; 1307 struct linux_binfmt *fmt; 1308 1309 retval = security_bprm_check(bprm); 1310 if (retval) 1311 return retval; 1312 1313 /* kernel module loader fixup */ 1314 /* so we don't try to load run modprobe in kernel space. */ 1315 set_fs(USER_DS); 1316 1317 retval = audit_bprm(bprm); 1318 if (retval) 1319 return retval; 1320 1321 retval = -ENOENT; 1322 for (try=0; try<2; try++) { 1323 read_lock(&binfmt_lock); 1324 list_for_each_entry(fmt, &formats, lh) { 1325 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1326 if (!fn) 1327 continue; 1328 if (!try_module_get(fmt->module)) 1329 continue; 1330 read_unlock(&binfmt_lock); 1331 retval = fn(bprm, regs); 1332 /* 1333 * Restore the depth counter to its starting value 1334 * in this call, so we don't have to rely on every 1335 * load_binary function to restore it on return. 1336 */ 1337 bprm->recursion_depth = depth; 1338 if (retval >= 0) { 1339 if (depth == 0) 1340 tracehook_report_exec(fmt, bprm, regs); 1341 put_binfmt(fmt); 1342 allow_write_access(bprm->file); 1343 if (bprm->file) 1344 fput(bprm->file); 1345 bprm->file = NULL; 1346 current->did_exec = 1; 1347 proc_exec_connector(current); 1348 return retval; 1349 } 1350 read_lock(&binfmt_lock); 1351 put_binfmt(fmt); 1352 if (retval != -ENOEXEC || bprm->mm == NULL) 1353 break; 1354 if (!bprm->file) { 1355 read_unlock(&binfmt_lock); 1356 return retval; 1357 } 1358 } 1359 read_unlock(&binfmt_lock); 1360 if (retval != -ENOEXEC || bprm->mm == NULL) { 1361 break; 1362 #ifdef CONFIG_MODULES 1363 } else { 1364 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1365 if (printable(bprm->buf[0]) && 1366 printable(bprm->buf[1]) && 1367 printable(bprm->buf[2]) && 1368 printable(bprm->buf[3])) 1369 break; /* -ENOEXEC */ 1370 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1371 #endif 1372 } 1373 } 1374 return retval; 1375 } 1376 1377 EXPORT_SYMBOL(search_binary_handler); 1378 1379 /* 1380 * sys_execve() executes a new program. 1381 */ 1382 int do_execve(const char * filename, 1383 const char __user *const __user *argv, 1384 const char __user *const __user *envp, 1385 struct pt_regs * regs) 1386 { 1387 struct linux_binprm *bprm; 1388 struct file *file; 1389 struct files_struct *displaced; 1390 bool clear_in_exec; 1391 int retval; 1392 1393 retval = unshare_files(&displaced); 1394 if (retval) 1395 goto out_ret; 1396 1397 retval = -ENOMEM; 1398 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1399 if (!bprm) 1400 goto out_files; 1401 1402 retval = prepare_bprm_creds(bprm); 1403 if (retval) 1404 goto out_free; 1405 1406 retval = check_unsafe_exec(bprm); 1407 if (retval < 0) 1408 goto out_free; 1409 clear_in_exec = retval; 1410 current->in_execve = 1; 1411 1412 file = open_exec(filename); 1413 retval = PTR_ERR(file); 1414 if (IS_ERR(file)) 1415 goto out_unmark; 1416 1417 sched_exec(); 1418 1419 bprm->file = file; 1420 bprm->filename = filename; 1421 bprm->interp = filename; 1422 1423 retval = bprm_mm_init(bprm); 1424 if (retval) 1425 goto out_file; 1426 1427 bprm->argc = count(argv, MAX_ARG_STRINGS); 1428 if ((retval = bprm->argc) < 0) 1429 goto out; 1430 1431 bprm->envc = count(envp, MAX_ARG_STRINGS); 1432 if ((retval = bprm->envc) < 0) 1433 goto out; 1434 1435 retval = prepare_binprm(bprm); 1436 if (retval < 0) 1437 goto out; 1438 1439 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1440 if (retval < 0) 1441 goto out; 1442 1443 bprm->exec = bprm->p; 1444 retval = copy_strings(bprm->envc, envp, bprm); 1445 if (retval < 0) 1446 goto out; 1447 1448 retval = copy_strings(bprm->argc, argv, bprm); 1449 if (retval < 0) 1450 goto out; 1451 1452 retval = search_binary_handler(bprm,regs); 1453 if (retval < 0) 1454 goto out; 1455 1456 /* execve succeeded */ 1457 current->fs->in_exec = 0; 1458 current->in_execve = 0; 1459 acct_update_integrals(current); 1460 free_bprm(bprm); 1461 if (displaced) 1462 put_files_struct(displaced); 1463 return retval; 1464 1465 out: 1466 if (bprm->mm) { 1467 acct_arg_size(bprm, 0); 1468 mmput(bprm->mm); 1469 } 1470 1471 out_file: 1472 if (bprm->file) { 1473 allow_write_access(bprm->file); 1474 fput(bprm->file); 1475 } 1476 1477 out_unmark: 1478 if (clear_in_exec) 1479 current->fs->in_exec = 0; 1480 current->in_execve = 0; 1481 1482 out_free: 1483 free_bprm(bprm); 1484 1485 out_files: 1486 if (displaced) 1487 reset_files_struct(displaced); 1488 out_ret: 1489 return retval; 1490 } 1491 1492 void set_binfmt(struct linux_binfmt *new) 1493 { 1494 struct mm_struct *mm = current->mm; 1495 1496 if (mm->binfmt) 1497 module_put(mm->binfmt->module); 1498 1499 mm->binfmt = new; 1500 if (new) 1501 __module_get(new->module); 1502 } 1503 1504 EXPORT_SYMBOL(set_binfmt); 1505 1506 static int expand_corename(struct core_name *cn) 1507 { 1508 char *old_corename = cn->corename; 1509 1510 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count); 1511 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL); 1512 1513 if (!cn->corename) { 1514 kfree(old_corename); 1515 return -ENOMEM; 1516 } 1517 1518 return 0; 1519 } 1520 1521 static int cn_printf(struct core_name *cn, const char *fmt, ...) 1522 { 1523 char *cur; 1524 int need; 1525 int ret; 1526 va_list arg; 1527 1528 va_start(arg, fmt); 1529 need = vsnprintf(NULL, 0, fmt, arg); 1530 va_end(arg); 1531 1532 if (likely(need < cn->size - cn->used - 1)) 1533 goto out_printf; 1534 1535 ret = expand_corename(cn); 1536 if (ret) 1537 goto expand_fail; 1538 1539 out_printf: 1540 cur = cn->corename + cn->used; 1541 va_start(arg, fmt); 1542 vsnprintf(cur, need + 1, fmt, arg); 1543 va_end(arg); 1544 cn->used += need; 1545 return 0; 1546 1547 expand_fail: 1548 return ret; 1549 } 1550 1551 /* format_corename will inspect the pattern parameter, and output a 1552 * name into corename, which must have space for at least 1553 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1554 */ 1555 static int format_corename(struct core_name *cn, long signr) 1556 { 1557 const struct cred *cred = current_cred(); 1558 const char *pat_ptr = core_pattern; 1559 int ispipe = (*pat_ptr == '|'); 1560 int pid_in_pattern = 0; 1561 int err = 0; 1562 1563 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count); 1564 cn->corename = kmalloc(cn->size, GFP_KERNEL); 1565 cn->used = 0; 1566 1567 if (!cn->corename) 1568 return -ENOMEM; 1569 1570 /* Repeat as long as we have more pattern to process and more output 1571 space */ 1572 while (*pat_ptr) { 1573 if (*pat_ptr != '%') { 1574 if (*pat_ptr == 0) 1575 goto out; 1576 err = cn_printf(cn, "%c", *pat_ptr++); 1577 } else { 1578 switch (*++pat_ptr) { 1579 /* single % at the end, drop that */ 1580 case 0: 1581 goto out; 1582 /* Double percent, output one percent */ 1583 case '%': 1584 err = cn_printf(cn, "%c", '%'); 1585 break; 1586 /* pid */ 1587 case 'p': 1588 pid_in_pattern = 1; 1589 err = cn_printf(cn, "%d", 1590 task_tgid_vnr(current)); 1591 break; 1592 /* uid */ 1593 case 'u': 1594 err = cn_printf(cn, "%d", cred->uid); 1595 break; 1596 /* gid */ 1597 case 'g': 1598 err = cn_printf(cn, "%d", cred->gid); 1599 break; 1600 /* signal that caused the coredump */ 1601 case 's': 1602 err = cn_printf(cn, "%ld", signr); 1603 break; 1604 /* UNIX time of coredump */ 1605 case 't': { 1606 struct timeval tv; 1607 do_gettimeofday(&tv); 1608 err = cn_printf(cn, "%lu", tv.tv_sec); 1609 break; 1610 } 1611 /* hostname */ 1612 case 'h': 1613 down_read(&uts_sem); 1614 err = cn_printf(cn, "%s", 1615 utsname()->nodename); 1616 up_read(&uts_sem); 1617 break; 1618 /* executable */ 1619 case 'e': 1620 err = cn_printf(cn, "%s", current->comm); 1621 break; 1622 /* core limit size */ 1623 case 'c': 1624 err = cn_printf(cn, "%lu", 1625 rlimit(RLIMIT_CORE)); 1626 break; 1627 default: 1628 break; 1629 } 1630 ++pat_ptr; 1631 } 1632 1633 if (err) 1634 return err; 1635 } 1636 1637 /* Backward compatibility with core_uses_pid: 1638 * 1639 * If core_pattern does not include a %p (as is the default) 1640 * and core_uses_pid is set, then .%pid will be appended to 1641 * the filename. Do not do this for piped commands. */ 1642 if (!ispipe && !pid_in_pattern && core_uses_pid) { 1643 err = cn_printf(cn, ".%d", task_tgid_vnr(current)); 1644 if (err) 1645 return err; 1646 } 1647 out: 1648 return ispipe; 1649 } 1650 1651 static int zap_process(struct task_struct *start, int exit_code) 1652 { 1653 struct task_struct *t; 1654 int nr = 0; 1655 1656 start->signal->flags = SIGNAL_GROUP_EXIT; 1657 start->signal->group_exit_code = exit_code; 1658 start->signal->group_stop_count = 0; 1659 1660 t = start; 1661 do { 1662 if (t != current && t->mm) { 1663 sigaddset(&t->pending.signal, SIGKILL); 1664 signal_wake_up(t, 1); 1665 nr++; 1666 } 1667 } while_each_thread(start, t); 1668 1669 return nr; 1670 } 1671 1672 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1673 struct core_state *core_state, int exit_code) 1674 { 1675 struct task_struct *g, *p; 1676 unsigned long flags; 1677 int nr = -EAGAIN; 1678 1679 spin_lock_irq(&tsk->sighand->siglock); 1680 if (!signal_group_exit(tsk->signal)) { 1681 mm->core_state = core_state; 1682 nr = zap_process(tsk, exit_code); 1683 } 1684 spin_unlock_irq(&tsk->sighand->siglock); 1685 if (unlikely(nr < 0)) 1686 return nr; 1687 1688 if (atomic_read(&mm->mm_users) == nr + 1) 1689 goto done; 1690 /* 1691 * We should find and kill all tasks which use this mm, and we should 1692 * count them correctly into ->nr_threads. We don't take tasklist 1693 * lock, but this is safe wrt: 1694 * 1695 * fork: 1696 * None of sub-threads can fork after zap_process(leader). All 1697 * processes which were created before this point should be 1698 * visible to zap_threads() because copy_process() adds the new 1699 * process to the tail of init_task.tasks list, and lock/unlock 1700 * of ->siglock provides a memory barrier. 1701 * 1702 * do_exit: 1703 * The caller holds mm->mmap_sem. This means that the task which 1704 * uses this mm can't pass exit_mm(), so it can't exit or clear 1705 * its ->mm. 1706 * 1707 * de_thread: 1708 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 1709 * we must see either old or new leader, this does not matter. 1710 * However, it can change p->sighand, so lock_task_sighand(p) 1711 * must be used. Since p->mm != NULL and we hold ->mmap_sem 1712 * it can't fail. 1713 * 1714 * Note also that "g" can be the old leader with ->mm == NULL 1715 * and already unhashed and thus removed from ->thread_group. 1716 * This is OK, __unhash_process()->list_del_rcu() does not 1717 * clear the ->next pointer, we will find the new leader via 1718 * next_thread(). 1719 */ 1720 rcu_read_lock(); 1721 for_each_process(g) { 1722 if (g == tsk->group_leader) 1723 continue; 1724 if (g->flags & PF_KTHREAD) 1725 continue; 1726 p = g; 1727 do { 1728 if (p->mm) { 1729 if (unlikely(p->mm == mm)) { 1730 lock_task_sighand(p, &flags); 1731 nr += zap_process(p, exit_code); 1732 unlock_task_sighand(p, &flags); 1733 } 1734 break; 1735 } 1736 } while_each_thread(g, p); 1737 } 1738 rcu_read_unlock(); 1739 done: 1740 atomic_set(&core_state->nr_threads, nr); 1741 return nr; 1742 } 1743 1744 static int coredump_wait(int exit_code, struct core_state *core_state) 1745 { 1746 struct task_struct *tsk = current; 1747 struct mm_struct *mm = tsk->mm; 1748 struct completion *vfork_done; 1749 int core_waiters = -EBUSY; 1750 1751 init_completion(&core_state->startup); 1752 core_state->dumper.task = tsk; 1753 core_state->dumper.next = NULL; 1754 1755 down_write(&mm->mmap_sem); 1756 if (!mm->core_state) 1757 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 1758 up_write(&mm->mmap_sem); 1759 1760 if (unlikely(core_waiters < 0)) 1761 goto fail; 1762 1763 /* 1764 * Make sure nobody is waiting for us to release the VM, 1765 * otherwise we can deadlock when we wait on each other 1766 */ 1767 vfork_done = tsk->vfork_done; 1768 if (vfork_done) { 1769 tsk->vfork_done = NULL; 1770 complete(vfork_done); 1771 } 1772 1773 if (core_waiters) 1774 wait_for_completion(&core_state->startup); 1775 fail: 1776 return core_waiters; 1777 } 1778 1779 static void coredump_finish(struct mm_struct *mm) 1780 { 1781 struct core_thread *curr, *next; 1782 struct task_struct *task; 1783 1784 next = mm->core_state->dumper.next; 1785 while ((curr = next) != NULL) { 1786 next = curr->next; 1787 task = curr->task; 1788 /* 1789 * see exit_mm(), curr->task must not see 1790 * ->task == NULL before we read ->next. 1791 */ 1792 smp_mb(); 1793 curr->task = NULL; 1794 wake_up_process(task); 1795 } 1796 1797 mm->core_state = NULL; 1798 } 1799 1800 /* 1801 * set_dumpable converts traditional three-value dumpable to two flags and 1802 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1803 * these bits are not changed atomically. So get_dumpable can observe the 1804 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1805 * return either old dumpable or new one by paying attention to the order of 1806 * modifying the bits. 1807 * 1808 * dumpable | mm->flags (binary) 1809 * old new | initial interim final 1810 * ---------+----------------------- 1811 * 0 1 | 00 01 01 1812 * 0 2 | 00 10(*) 11 1813 * 1 0 | 01 00 00 1814 * 1 2 | 01 11 11 1815 * 2 0 | 11 10(*) 00 1816 * 2 1 | 11 11 01 1817 * 1818 * (*) get_dumpable regards interim value of 10 as 11. 1819 */ 1820 void set_dumpable(struct mm_struct *mm, int value) 1821 { 1822 switch (value) { 1823 case 0: 1824 clear_bit(MMF_DUMPABLE, &mm->flags); 1825 smp_wmb(); 1826 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1827 break; 1828 case 1: 1829 set_bit(MMF_DUMPABLE, &mm->flags); 1830 smp_wmb(); 1831 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1832 break; 1833 case 2: 1834 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1835 smp_wmb(); 1836 set_bit(MMF_DUMPABLE, &mm->flags); 1837 break; 1838 } 1839 } 1840 1841 static int __get_dumpable(unsigned long mm_flags) 1842 { 1843 int ret; 1844 1845 ret = mm_flags & MMF_DUMPABLE_MASK; 1846 return (ret >= 2) ? 2 : ret; 1847 } 1848 1849 int get_dumpable(struct mm_struct *mm) 1850 { 1851 return __get_dumpable(mm->flags); 1852 } 1853 1854 static void wait_for_dump_helpers(struct file *file) 1855 { 1856 struct pipe_inode_info *pipe; 1857 1858 pipe = file->f_path.dentry->d_inode->i_pipe; 1859 1860 pipe_lock(pipe); 1861 pipe->readers++; 1862 pipe->writers--; 1863 1864 while ((pipe->readers > 1) && (!signal_pending(current))) { 1865 wake_up_interruptible_sync(&pipe->wait); 1866 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 1867 pipe_wait(pipe); 1868 } 1869 1870 pipe->readers--; 1871 pipe->writers++; 1872 pipe_unlock(pipe); 1873 1874 } 1875 1876 1877 /* 1878 * umh_pipe_setup 1879 * helper function to customize the process used 1880 * to collect the core in userspace. Specifically 1881 * it sets up a pipe and installs it as fd 0 (stdin) 1882 * for the process. Returns 0 on success, or 1883 * PTR_ERR on failure. 1884 * Note that it also sets the core limit to 1. This 1885 * is a special value that we use to trap recursive 1886 * core dumps 1887 */ 1888 static int umh_pipe_setup(struct subprocess_info *info) 1889 { 1890 struct file *rp, *wp; 1891 struct fdtable *fdt; 1892 struct coredump_params *cp = (struct coredump_params *)info->data; 1893 struct files_struct *cf = current->files; 1894 1895 wp = create_write_pipe(0); 1896 if (IS_ERR(wp)) 1897 return PTR_ERR(wp); 1898 1899 rp = create_read_pipe(wp, 0); 1900 if (IS_ERR(rp)) { 1901 free_write_pipe(wp); 1902 return PTR_ERR(rp); 1903 } 1904 1905 cp->file = wp; 1906 1907 sys_close(0); 1908 fd_install(0, rp); 1909 spin_lock(&cf->file_lock); 1910 fdt = files_fdtable(cf); 1911 FD_SET(0, fdt->open_fds); 1912 FD_CLR(0, fdt->close_on_exec); 1913 spin_unlock(&cf->file_lock); 1914 1915 /* and disallow core files too */ 1916 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; 1917 1918 return 0; 1919 } 1920 1921 void do_coredump(long signr, int exit_code, struct pt_regs *regs) 1922 { 1923 struct core_state core_state; 1924 struct core_name cn; 1925 struct mm_struct *mm = current->mm; 1926 struct linux_binfmt * binfmt; 1927 const struct cred *old_cred; 1928 struct cred *cred; 1929 int retval = 0; 1930 int flag = 0; 1931 int ispipe; 1932 static atomic_t core_dump_count = ATOMIC_INIT(0); 1933 struct coredump_params cprm = { 1934 .signr = signr, 1935 .regs = regs, 1936 .limit = rlimit(RLIMIT_CORE), 1937 /* 1938 * We must use the same mm->flags while dumping core to avoid 1939 * inconsistency of bit flags, since this flag is not protected 1940 * by any locks. 1941 */ 1942 .mm_flags = mm->flags, 1943 }; 1944 1945 audit_core_dumps(signr); 1946 1947 binfmt = mm->binfmt; 1948 if (!binfmt || !binfmt->core_dump) 1949 goto fail; 1950 if (!__get_dumpable(cprm.mm_flags)) 1951 goto fail; 1952 1953 cred = prepare_creds(); 1954 if (!cred) 1955 goto fail; 1956 /* 1957 * We cannot trust fsuid as being the "true" uid of the 1958 * process nor do we know its entire history. We only know it 1959 * was tainted so we dump it as root in mode 2. 1960 */ 1961 if (__get_dumpable(cprm.mm_flags) == 2) { 1962 /* Setuid core dump mode */ 1963 flag = O_EXCL; /* Stop rewrite attacks */ 1964 cred->fsuid = 0; /* Dump root private */ 1965 } 1966 1967 retval = coredump_wait(exit_code, &core_state); 1968 if (retval < 0) 1969 goto fail_creds; 1970 1971 old_cred = override_creds(cred); 1972 1973 /* 1974 * Clear any false indication of pending signals that might 1975 * be seen by the filesystem code called to write the core file. 1976 */ 1977 clear_thread_flag(TIF_SIGPENDING); 1978 1979 ispipe = format_corename(&cn, signr); 1980 1981 if (ispipe == -ENOMEM) { 1982 printk(KERN_WARNING "format_corename failed\n"); 1983 printk(KERN_WARNING "Aborting core\n"); 1984 goto fail_corename; 1985 } 1986 1987 if (ispipe) { 1988 int dump_count; 1989 char **helper_argv; 1990 1991 if (cprm.limit == 1) { 1992 /* 1993 * Normally core limits are irrelevant to pipes, since 1994 * we're not writing to the file system, but we use 1995 * cprm.limit of 1 here as a speacial value. Any 1996 * non-1 limit gets set to RLIM_INFINITY below, but 1997 * a limit of 0 skips the dump. This is a consistent 1998 * way to catch recursive crashes. We can still crash 1999 * if the core_pattern binary sets RLIM_CORE = !1 2000 * but it runs as root, and can do lots of stupid things 2001 * Note that we use task_tgid_vnr here to grab the pid 2002 * of the process group leader. That way we get the 2003 * right pid if a thread in a multi-threaded 2004 * core_pattern process dies. 2005 */ 2006 printk(KERN_WARNING 2007 "Process %d(%s) has RLIMIT_CORE set to 1\n", 2008 task_tgid_vnr(current), current->comm); 2009 printk(KERN_WARNING "Aborting core\n"); 2010 goto fail_unlock; 2011 } 2012 cprm.limit = RLIM_INFINITY; 2013 2014 dump_count = atomic_inc_return(&core_dump_count); 2015 if (core_pipe_limit && (core_pipe_limit < dump_count)) { 2016 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", 2017 task_tgid_vnr(current), current->comm); 2018 printk(KERN_WARNING "Skipping core dump\n"); 2019 goto fail_dropcount; 2020 } 2021 2022 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL); 2023 if (!helper_argv) { 2024 printk(KERN_WARNING "%s failed to allocate memory\n", 2025 __func__); 2026 goto fail_dropcount; 2027 } 2028 2029 retval = call_usermodehelper_fns(helper_argv[0], helper_argv, 2030 NULL, UMH_WAIT_EXEC, umh_pipe_setup, 2031 NULL, &cprm); 2032 argv_free(helper_argv); 2033 if (retval) { 2034 printk(KERN_INFO "Core dump to %s pipe failed\n", 2035 cn.corename); 2036 goto close_fail; 2037 } 2038 } else { 2039 struct inode *inode; 2040 2041 if (cprm.limit < binfmt->min_coredump) 2042 goto fail_unlock; 2043 2044 cprm.file = filp_open(cn.corename, 2045 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 2046 0600); 2047 if (IS_ERR(cprm.file)) 2048 goto fail_unlock; 2049 2050 inode = cprm.file->f_path.dentry->d_inode; 2051 if (inode->i_nlink > 1) 2052 goto close_fail; 2053 if (d_unhashed(cprm.file->f_path.dentry)) 2054 goto close_fail; 2055 /* 2056 * AK: actually i see no reason to not allow this for named 2057 * pipes etc, but keep the previous behaviour for now. 2058 */ 2059 if (!S_ISREG(inode->i_mode)) 2060 goto close_fail; 2061 /* 2062 * Dont allow local users get cute and trick others to coredump 2063 * into their pre-created files. 2064 */ 2065 if (inode->i_uid != current_fsuid()) 2066 goto close_fail; 2067 if (!cprm.file->f_op || !cprm.file->f_op->write) 2068 goto close_fail; 2069 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) 2070 goto close_fail; 2071 } 2072 2073 retval = binfmt->core_dump(&cprm); 2074 if (retval) 2075 current->signal->group_exit_code |= 0x80; 2076 2077 if (ispipe && core_pipe_limit) 2078 wait_for_dump_helpers(cprm.file); 2079 close_fail: 2080 if (cprm.file) 2081 filp_close(cprm.file, NULL); 2082 fail_dropcount: 2083 if (ispipe) 2084 atomic_dec(&core_dump_count); 2085 fail_unlock: 2086 kfree(cn.corename); 2087 fail_corename: 2088 coredump_finish(mm); 2089 revert_creds(old_cred); 2090 fail_creds: 2091 put_cred(cred); 2092 fail: 2093 return; 2094 } 2095 2096 /* 2097 * Core dumping helper functions. These are the only things you should 2098 * do on a core-file: use only these functions to write out all the 2099 * necessary info. 2100 */ 2101 int dump_write(struct file *file, const void *addr, int nr) 2102 { 2103 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr; 2104 } 2105 EXPORT_SYMBOL(dump_write); 2106 2107 int dump_seek(struct file *file, loff_t off) 2108 { 2109 int ret = 1; 2110 2111 if (file->f_op->llseek && file->f_op->llseek != no_llseek) { 2112 if (file->f_op->llseek(file, off, SEEK_CUR) < 0) 2113 return 0; 2114 } else { 2115 char *buf = (char *)get_zeroed_page(GFP_KERNEL); 2116 2117 if (!buf) 2118 return 0; 2119 while (off > 0) { 2120 unsigned long n = off; 2121 2122 if (n > PAGE_SIZE) 2123 n = PAGE_SIZE; 2124 if (!dump_write(file, buf, n)) { 2125 ret = 0; 2126 break; 2127 } 2128 off -= n; 2129 } 2130 free_page((unsigned long)buf); 2131 } 2132 return ret; 2133 } 2134 EXPORT_SYMBOL(dump_seek); 2135