xref: /openbmc/linux/fs/exec.c (revision 545e4006)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mman.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/rmap.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
54 
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
57 #include <asm/tlb.h>
58 
59 #ifdef CONFIG_KMOD
60 #include <linux/kmod.h>
61 #endif
62 
63 #ifdef __alpha__
64 /* for /sbin/loader handling in search_binary_handler() */
65 #include <linux/a.out.h>
66 #endif
67 
68 int core_uses_pid;
69 char core_pattern[CORENAME_MAX_SIZE] = "core";
70 int suid_dumpable = 0;
71 
72 /* The maximal length of core_pattern is also specified in sysctl.c */
73 
74 static LIST_HEAD(formats);
75 static DEFINE_RWLOCK(binfmt_lock);
76 
77 int register_binfmt(struct linux_binfmt * fmt)
78 {
79 	if (!fmt)
80 		return -EINVAL;
81 	write_lock(&binfmt_lock);
82 	list_add(&fmt->lh, &formats);
83 	write_unlock(&binfmt_lock);
84 	return 0;
85 }
86 
87 EXPORT_SYMBOL(register_binfmt);
88 
89 void unregister_binfmt(struct linux_binfmt * fmt)
90 {
91 	write_lock(&binfmt_lock);
92 	list_del(&fmt->lh);
93 	write_unlock(&binfmt_lock);
94 }
95 
96 EXPORT_SYMBOL(unregister_binfmt);
97 
98 static inline void put_binfmt(struct linux_binfmt * fmt)
99 {
100 	module_put(fmt->module);
101 }
102 
103 /*
104  * Note that a shared library must be both readable and executable due to
105  * security reasons.
106  *
107  * Also note that we take the address to load from from the file itself.
108  */
109 asmlinkage long sys_uselib(const char __user * library)
110 {
111 	struct file * file;
112 	struct nameidata nd;
113 	int error;
114 
115 	error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
116 	if (error)
117 		goto out;
118 
119 	error = -EINVAL;
120 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
121 		goto exit;
122 
123 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
124 	if (error)
125 		goto exit;
126 
127 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
128 	error = PTR_ERR(file);
129 	if (IS_ERR(file))
130 		goto out;
131 
132 	error = -ENOEXEC;
133 	if(file->f_op) {
134 		struct linux_binfmt * fmt;
135 
136 		read_lock(&binfmt_lock);
137 		list_for_each_entry(fmt, &formats, lh) {
138 			if (!fmt->load_shlib)
139 				continue;
140 			if (!try_module_get(fmt->module))
141 				continue;
142 			read_unlock(&binfmt_lock);
143 			error = fmt->load_shlib(file);
144 			read_lock(&binfmt_lock);
145 			put_binfmt(fmt);
146 			if (error != -ENOEXEC)
147 				break;
148 		}
149 		read_unlock(&binfmt_lock);
150 	}
151 	fput(file);
152 out:
153   	return error;
154 exit:
155 	release_open_intent(&nd);
156 	path_put(&nd.path);
157 	goto out;
158 }
159 
160 #ifdef CONFIG_MMU
161 
162 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
163 		int write)
164 {
165 	struct page *page;
166 	int ret;
167 
168 #ifdef CONFIG_STACK_GROWSUP
169 	if (write) {
170 		ret = expand_stack_downwards(bprm->vma, pos);
171 		if (ret < 0)
172 			return NULL;
173 	}
174 #endif
175 	ret = get_user_pages(current, bprm->mm, pos,
176 			1, write, 1, &page, NULL);
177 	if (ret <= 0)
178 		return NULL;
179 
180 	if (write) {
181 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
182 		struct rlimit *rlim;
183 
184 		/*
185 		 * We've historically supported up to 32 pages (ARG_MAX)
186 		 * of argument strings even with small stacks
187 		 */
188 		if (size <= ARG_MAX)
189 			return page;
190 
191 		/*
192 		 * Limit to 1/4-th the stack size for the argv+env strings.
193 		 * This ensures that:
194 		 *  - the remaining binfmt code will not run out of stack space,
195 		 *  - the program will have a reasonable amount of stack left
196 		 *    to work from.
197 		 */
198 		rlim = current->signal->rlim;
199 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
200 			put_page(page);
201 			return NULL;
202 		}
203 	}
204 
205 	return page;
206 }
207 
208 static void put_arg_page(struct page *page)
209 {
210 	put_page(page);
211 }
212 
213 static void free_arg_page(struct linux_binprm *bprm, int i)
214 {
215 }
216 
217 static void free_arg_pages(struct linux_binprm *bprm)
218 {
219 }
220 
221 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
222 		struct page *page)
223 {
224 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
225 }
226 
227 static int __bprm_mm_init(struct linux_binprm *bprm)
228 {
229 	int err = -ENOMEM;
230 	struct vm_area_struct *vma = NULL;
231 	struct mm_struct *mm = bprm->mm;
232 
233 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
234 	if (!vma)
235 		goto err;
236 
237 	down_write(&mm->mmap_sem);
238 	vma->vm_mm = mm;
239 
240 	/*
241 	 * Place the stack at the largest stack address the architecture
242 	 * supports. Later, we'll move this to an appropriate place. We don't
243 	 * use STACK_TOP because that can depend on attributes which aren't
244 	 * configured yet.
245 	 */
246 	vma->vm_end = STACK_TOP_MAX;
247 	vma->vm_start = vma->vm_end - PAGE_SIZE;
248 
249 	vma->vm_flags = VM_STACK_FLAGS;
250 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
251 	err = insert_vm_struct(mm, vma);
252 	if (err) {
253 		up_write(&mm->mmap_sem);
254 		goto err;
255 	}
256 
257 	mm->stack_vm = mm->total_vm = 1;
258 	up_write(&mm->mmap_sem);
259 
260 	bprm->p = vma->vm_end - sizeof(void *);
261 
262 	return 0;
263 
264 err:
265 	if (vma) {
266 		bprm->vma = NULL;
267 		kmem_cache_free(vm_area_cachep, vma);
268 	}
269 
270 	return err;
271 }
272 
273 static bool valid_arg_len(struct linux_binprm *bprm, long len)
274 {
275 	return len <= MAX_ARG_STRLEN;
276 }
277 
278 #else
279 
280 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
281 		int write)
282 {
283 	struct page *page;
284 
285 	page = bprm->page[pos / PAGE_SIZE];
286 	if (!page && write) {
287 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
288 		if (!page)
289 			return NULL;
290 		bprm->page[pos / PAGE_SIZE] = page;
291 	}
292 
293 	return page;
294 }
295 
296 static void put_arg_page(struct page *page)
297 {
298 }
299 
300 static void free_arg_page(struct linux_binprm *bprm, int i)
301 {
302 	if (bprm->page[i]) {
303 		__free_page(bprm->page[i]);
304 		bprm->page[i] = NULL;
305 	}
306 }
307 
308 static void free_arg_pages(struct linux_binprm *bprm)
309 {
310 	int i;
311 
312 	for (i = 0; i < MAX_ARG_PAGES; i++)
313 		free_arg_page(bprm, i);
314 }
315 
316 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
317 		struct page *page)
318 {
319 }
320 
321 static int __bprm_mm_init(struct linux_binprm *bprm)
322 {
323 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
324 	return 0;
325 }
326 
327 static bool valid_arg_len(struct linux_binprm *bprm, long len)
328 {
329 	return len <= bprm->p;
330 }
331 
332 #endif /* CONFIG_MMU */
333 
334 /*
335  * Create a new mm_struct and populate it with a temporary stack
336  * vm_area_struct.  We don't have enough context at this point to set the stack
337  * flags, permissions, and offset, so we use temporary values.  We'll update
338  * them later in setup_arg_pages().
339  */
340 int bprm_mm_init(struct linux_binprm *bprm)
341 {
342 	int err;
343 	struct mm_struct *mm = NULL;
344 
345 	bprm->mm = mm = mm_alloc();
346 	err = -ENOMEM;
347 	if (!mm)
348 		goto err;
349 
350 	err = init_new_context(current, mm);
351 	if (err)
352 		goto err;
353 
354 	err = __bprm_mm_init(bprm);
355 	if (err)
356 		goto err;
357 
358 	return 0;
359 
360 err:
361 	if (mm) {
362 		bprm->mm = NULL;
363 		mmdrop(mm);
364 	}
365 
366 	return err;
367 }
368 
369 /*
370  * count() counts the number of strings in array ARGV.
371  */
372 static int count(char __user * __user * argv, int max)
373 {
374 	int i = 0;
375 
376 	if (argv != NULL) {
377 		for (;;) {
378 			char __user * p;
379 
380 			if (get_user(p, argv))
381 				return -EFAULT;
382 			if (!p)
383 				break;
384 			argv++;
385 			if(++i > max)
386 				return -E2BIG;
387 			cond_resched();
388 		}
389 	}
390 	return i;
391 }
392 
393 /*
394  * 'copy_strings()' copies argument/environment strings from the old
395  * processes's memory to the new process's stack.  The call to get_user_pages()
396  * ensures the destination page is created and not swapped out.
397  */
398 static int copy_strings(int argc, char __user * __user * argv,
399 			struct linux_binprm *bprm)
400 {
401 	struct page *kmapped_page = NULL;
402 	char *kaddr = NULL;
403 	unsigned long kpos = 0;
404 	int ret;
405 
406 	while (argc-- > 0) {
407 		char __user *str;
408 		int len;
409 		unsigned long pos;
410 
411 		if (get_user(str, argv+argc) ||
412 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
413 			ret = -EFAULT;
414 			goto out;
415 		}
416 
417 		if (!valid_arg_len(bprm, len)) {
418 			ret = -E2BIG;
419 			goto out;
420 		}
421 
422 		/* We're going to work our way backwords. */
423 		pos = bprm->p;
424 		str += len;
425 		bprm->p -= len;
426 
427 		while (len > 0) {
428 			int offset, bytes_to_copy;
429 
430 			offset = pos % PAGE_SIZE;
431 			if (offset == 0)
432 				offset = PAGE_SIZE;
433 
434 			bytes_to_copy = offset;
435 			if (bytes_to_copy > len)
436 				bytes_to_copy = len;
437 
438 			offset -= bytes_to_copy;
439 			pos -= bytes_to_copy;
440 			str -= bytes_to_copy;
441 			len -= bytes_to_copy;
442 
443 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
444 				struct page *page;
445 
446 				page = get_arg_page(bprm, pos, 1);
447 				if (!page) {
448 					ret = -E2BIG;
449 					goto out;
450 				}
451 
452 				if (kmapped_page) {
453 					flush_kernel_dcache_page(kmapped_page);
454 					kunmap(kmapped_page);
455 					put_arg_page(kmapped_page);
456 				}
457 				kmapped_page = page;
458 				kaddr = kmap(kmapped_page);
459 				kpos = pos & PAGE_MASK;
460 				flush_arg_page(bprm, kpos, kmapped_page);
461 			}
462 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
463 				ret = -EFAULT;
464 				goto out;
465 			}
466 		}
467 	}
468 	ret = 0;
469 out:
470 	if (kmapped_page) {
471 		flush_kernel_dcache_page(kmapped_page);
472 		kunmap(kmapped_page);
473 		put_arg_page(kmapped_page);
474 	}
475 	return ret;
476 }
477 
478 /*
479  * Like copy_strings, but get argv and its values from kernel memory.
480  */
481 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
482 {
483 	int r;
484 	mm_segment_t oldfs = get_fs();
485 	set_fs(KERNEL_DS);
486 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
487 	set_fs(oldfs);
488 	return r;
489 }
490 EXPORT_SYMBOL(copy_strings_kernel);
491 
492 #ifdef CONFIG_MMU
493 
494 /*
495  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
496  * the binfmt code determines where the new stack should reside, we shift it to
497  * its final location.  The process proceeds as follows:
498  *
499  * 1) Use shift to calculate the new vma endpoints.
500  * 2) Extend vma to cover both the old and new ranges.  This ensures the
501  *    arguments passed to subsequent functions are consistent.
502  * 3) Move vma's page tables to the new range.
503  * 4) Free up any cleared pgd range.
504  * 5) Shrink the vma to cover only the new range.
505  */
506 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
507 {
508 	struct mm_struct *mm = vma->vm_mm;
509 	unsigned long old_start = vma->vm_start;
510 	unsigned long old_end = vma->vm_end;
511 	unsigned long length = old_end - old_start;
512 	unsigned long new_start = old_start - shift;
513 	unsigned long new_end = old_end - shift;
514 	struct mmu_gather *tlb;
515 
516 	BUG_ON(new_start > new_end);
517 
518 	/*
519 	 * ensure there are no vmas between where we want to go
520 	 * and where we are
521 	 */
522 	if (vma != find_vma(mm, new_start))
523 		return -EFAULT;
524 
525 	/*
526 	 * cover the whole range: [new_start, old_end)
527 	 */
528 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
529 
530 	/*
531 	 * move the page tables downwards, on failure we rely on
532 	 * process cleanup to remove whatever mess we made.
533 	 */
534 	if (length != move_page_tables(vma, old_start,
535 				       vma, new_start, length))
536 		return -ENOMEM;
537 
538 	lru_add_drain();
539 	tlb = tlb_gather_mmu(mm, 0);
540 	if (new_end > old_start) {
541 		/*
542 		 * when the old and new regions overlap clear from new_end.
543 		 */
544 		free_pgd_range(tlb, new_end, old_end, new_end,
545 			vma->vm_next ? vma->vm_next->vm_start : 0);
546 	} else {
547 		/*
548 		 * otherwise, clean from old_start; this is done to not touch
549 		 * the address space in [new_end, old_start) some architectures
550 		 * have constraints on va-space that make this illegal (IA64) -
551 		 * for the others its just a little faster.
552 		 */
553 		free_pgd_range(tlb, old_start, old_end, new_end,
554 			vma->vm_next ? vma->vm_next->vm_start : 0);
555 	}
556 	tlb_finish_mmu(tlb, new_end, old_end);
557 
558 	/*
559 	 * shrink the vma to just the new range.
560 	 */
561 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
562 
563 	return 0;
564 }
565 
566 #define EXTRA_STACK_VM_PAGES	20	/* random */
567 
568 /*
569  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
570  * the stack is optionally relocated, and some extra space is added.
571  */
572 int setup_arg_pages(struct linux_binprm *bprm,
573 		    unsigned long stack_top,
574 		    int executable_stack)
575 {
576 	unsigned long ret;
577 	unsigned long stack_shift;
578 	struct mm_struct *mm = current->mm;
579 	struct vm_area_struct *vma = bprm->vma;
580 	struct vm_area_struct *prev = NULL;
581 	unsigned long vm_flags;
582 	unsigned long stack_base;
583 
584 #ifdef CONFIG_STACK_GROWSUP
585 	/* Limit stack size to 1GB */
586 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
587 	if (stack_base > (1 << 30))
588 		stack_base = 1 << 30;
589 
590 	/* Make sure we didn't let the argument array grow too large. */
591 	if (vma->vm_end - vma->vm_start > stack_base)
592 		return -ENOMEM;
593 
594 	stack_base = PAGE_ALIGN(stack_top - stack_base);
595 
596 	stack_shift = vma->vm_start - stack_base;
597 	mm->arg_start = bprm->p - stack_shift;
598 	bprm->p = vma->vm_end - stack_shift;
599 #else
600 	stack_top = arch_align_stack(stack_top);
601 	stack_top = PAGE_ALIGN(stack_top);
602 	stack_shift = vma->vm_end - stack_top;
603 
604 	bprm->p -= stack_shift;
605 	mm->arg_start = bprm->p;
606 #endif
607 
608 	if (bprm->loader)
609 		bprm->loader -= stack_shift;
610 	bprm->exec -= stack_shift;
611 
612 	down_write(&mm->mmap_sem);
613 	vm_flags = VM_STACK_FLAGS;
614 
615 	/*
616 	 * Adjust stack execute permissions; explicitly enable for
617 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
618 	 * (arch default) otherwise.
619 	 */
620 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
621 		vm_flags |= VM_EXEC;
622 	else if (executable_stack == EXSTACK_DISABLE_X)
623 		vm_flags &= ~VM_EXEC;
624 	vm_flags |= mm->def_flags;
625 
626 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
627 			vm_flags);
628 	if (ret)
629 		goto out_unlock;
630 	BUG_ON(prev != vma);
631 
632 	/* Move stack pages down in memory. */
633 	if (stack_shift) {
634 		ret = shift_arg_pages(vma, stack_shift);
635 		if (ret) {
636 			up_write(&mm->mmap_sem);
637 			return ret;
638 		}
639 	}
640 
641 #ifdef CONFIG_STACK_GROWSUP
642 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
643 #else
644 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
645 #endif
646 	ret = expand_stack(vma, stack_base);
647 	if (ret)
648 		ret = -EFAULT;
649 
650 out_unlock:
651 	up_write(&mm->mmap_sem);
652 	return 0;
653 }
654 EXPORT_SYMBOL(setup_arg_pages);
655 
656 #endif /* CONFIG_MMU */
657 
658 struct file *open_exec(const char *name)
659 {
660 	struct nameidata nd;
661 	int err;
662 	struct file *file;
663 
664 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
665 	file = ERR_PTR(err);
666 
667 	if (!err) {
668 		struct inode *inode = nd.path.dentry->d_inode;
669 		file = ERR_PTR(-EACCES);
670 		if (S_ISREG(inode->i_mode)) {
671 			int err = vfs_permission(&nd, MAY_EXEC);
672 			file = ERR_PTR(err);
673 			if (!err) {
674 				file = nameidata_to_filp(&nd,
675 							O_RDONLY|O_LARGEFILE);
676 				if (!IS_ERR(file)) {
677 					err = deny_write_access(file);
678 					if (err) {
679 						fput(file);
680 						file = ERR_PTR(err);
681 					}
682 				}
683 out:
684 				return file;
685 			}
686 		}
687 		release_open_intent(&nd);
688 		path_put(&nd.path);
689 	}
690 	goto out;
691 }
692 
693 EXPORT_SYMBOL(open_exec);
694 
695 int kernel_read(struct file *file, unsigned long offset,
696 	char *addr, unsigned long count)
697 {
698 	mm_segment_t old_fs;
699 	loff_t pos = offset;
700 	int result;
701 
702 	old_fs = get_fs();
703 	set_fs(get_ds());
704 	/* The cast to a user pointer is valid due to the set_fs() */
705 	result = vfs_read(file, (void __user *)addr, count, &pos);
706 	set_fs(old_fs);
707 	return result;
708 }
709 
710 EXPORT_SYMBOL(kernel_read);
711 
712 static int exec_mmap(struct mm_struct *mm)
713 {
714 	struct task_struct *tsk;
715 	struct mm_struct * old_mm, *active_mm;
716 
717 	/* Notify parent that we're no longer interested in the old VM */
718 	tsk = current;
719 	old_mm = current->mm;
720 	mm_release(tsk, old_mm);
721 
722 	if (old_mm) {
723 		/*
724 		 * Make sure that if there is a core dump in progress
725 		 * for the old mm, we get out and die instead of going
726 		 * through with the exec.  We must hold mmap_sem around
727 		 * checking core_waiters and changing tsk->mm.  The
728 		 * core-inducing thread will increment core_waiters for
729 		 * each thread whose ->mm == old_mm.
730 		 */
731 		down_read(&old_mm->mmap_sem);
732 		if (unlikely(old_mm->core_waiters)) {
733 			up_read(&old_mm->mmap_sem);
734 			return -EINTR;
735 		}
736 	}
737 	task_lock(tsk);
738 	active_mm = tsk->active_mm;
739 	tsk->mm = mm;
740 	tsk->active_mm = mm;
741 	activate_mm(active_mm, mm);
742 	task_unlock(tsk);
743 	mm_update_next_owner(old_mm);
744 	arch_pick_mmap_layout(mm);
745 	if (old_mm) {
746 		up_read(&old_mm->mmap_sem);
747 		BUG_ON(active_mm != old_mm);
748 		mmput(old_mm);
749 		return 0;
750 	}
751 	mmdrop(active_mm);
752 	return 0;
753 }
754 
755 /*
756  * This function makes sure the current process has its own signal table,
757  * so that flush_signal_handlers can later reset the handlers without
758  * disturbing other processes.  (Other processes might share the signal
759  * table via the CLONE_SIGHAND option to clone().)
760  */
761 static int de_thread(struct task_struct *tsk)
762 {
763 	struct signal_struct *sig = tsk->signal;
764 	struct sighand_struct *oldsighand = tsk->sighand;
765 	spinlock_t *lock = &oldsighand->siglock;
766 	struct task_struct *leader = NULL;
767 	int count;
768 
769 	if (thread_group_empty(tsk))
770 		goto no_thread_group;
771 
772 	/*
773 	 * Kill all other threads in the thread group.
774 	 */
775 	spin_lock_irq(lock);
776 	if (signal_group_exit(sig)) {
777 		/*
778 		 * Another group action in progress, just
779 		 * return so that the signal is processed.
780 		 */
781 		spin_unlock_irq(lock);
782 		return -EAGAIN;
783 	}
784 	sig->group_exit_task = tsk;
785 	zap_other_threads(tsk);
786 
787 	/* Account for the thread group leader hanging around: */
788 	count = thread_group_leader(tsk) ? 1 : 2;
789 	sig->notify_count = count;
790 	while (atomic_read(&sig->count) > count) {
791 		__set_current_state(TASK_UNINTERRUPTIBLE);
792 		spin_unlock_irq(lock);
793 		schedule();
794 		spin_lock_irq(lock);
795 	}
796 	spin_unlock_irq(lock);
797 
798 	/*
799 	 * At this point all other threads have exited, all we have to
800 	 * do is to wait for the thread group leader to become inactive,
801 	 * and to assume its PID:
802 	 */
803 	if (!thread_group_leader(tsk)) {
804 		leader = tsk->group_leader;
805 
806 		sig->notify_count = -1;	/* for exit_notify() */
807 		for (;;) {
808 			write_lock_irq(&tasklist_lock);
809 			if (likely(leader->exit_state))
810 				break;
811 			__set_current_state(TASK_UNINTERRUPTIBLE);
812 			write_unlock_irq(&tasklist_lock);
813 			schedule();
814 		}
815 
816 		if (unlikely(task_child_reaper(tsk) == leader))
817 			task_active_pid_ns(tsk)->child_reaper = tsk;
818 		/*
819 		 * The only record we have of the real-time age of a
820 		 * process, regardless of execs it's done, is start_time.
821 		 * All the past CPU time is accumulated in signal_struct
822 		 * from sister threads now dead.  But in this non-leader
823 		 * exec, nothing survives from the original leader thread,
824 		 * whose birth marks the true age of this process now.
825 		 * When we take on its identity by switching to its PID, we
826 		 * also take its birthdate (always earlier than our own).
827 		 */
828 		tsk->start_time = leader->start_time;
829 
830 		BUG_ON(!same_thread_group(leader, tsk));
831 		BUG_ON(has_group_leader_pid(tsk));
832 		/*
833 		 * An exec() starts a new thread group with the
834 		 * TGID of the previous thread group. Rehash the
835 		 * two threads with a switched PID, and release
836 		 * the former thread group leader:
837 		 */
838 
839 		/* Become a process group leader with the old leader's pid.
840 		 * The old leader becomes a thread of the this thread group.
841 		 * Note: The old leader also uses this pid until release_task
842 		 *       is called.  Odd but simple and correct.
843 		 */
844 		detach_pid(tsk, PIDTYPE_PID);
845 		tsk->pid = leader->pid;
846 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
847 		transfer_pid(leader, tsk, PIDTYPE_PGID);
848 		transfer_pid(leader, tsk, PIDTYPE_SID);
849 		list_replace_rcu(&leader->tasks, &tsk->tasks);
850 
851 		tsk->group_leader = tsk;
852 		leader->group_leader = tsk;
853 
854 		tsk->exit_signal = SIGCHLD;
855 
856 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
857 		leader->exit_state = EXIT_DEAD;
858 
859 		write_unlock_irq(&tasklist_lock);
860 	}
861 
862 	sig->group_exit_task = NULL;
863 	sig->notify_count = 0;
864 
865 no_thread_group:
866 	exit_itimers(sig);
867 	flush_itimer_signals();
868 	if (leader)
869 		release_task(leader);
870 
871 	if (atomic_read(&oldsighand->count) != 1) {
872 		struct sighand_struct *newsighand;
873 		/*
874 		 * This ->sighand is shared with the CLONE_SIGHAND
875 		 * but not CLONE_THREAD task, switch to the new one.
876 		 */
877 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
878 		if (!newsighand)
879 			return -ENOMEM;
880 
881 		atomic_set(&newsighand->count, 1);
882 		memcpy(newsighand->action, oldsighand->action,
883 		       sizeof(newsighand->action));
884 
885 		write_lock_irq(&tasklist_lock);
886 		spin_lock(&oldsighand->siglock);
887 		rcu_assign_pointer(tsk->sighand, newsighand);
888 		spin_unlock(&oldsighand->siglock);
889 		write_unlock_irq(&tasklist_lock);
890 
891 		__cleanup_sighand(oldsighand);
892 	}
893 
894 	BUG_ON(!thread_group_leader(tsk));
895 	return 0;
896 }
897 
898 /*
899  * These functions flushes out all traces of the currently running executable
900  * so that a new one can be started
901  */
902 static void flush_old_files(struct files_struct * files)
903 {
904 	long j = -1;
905 	struct fdtable *fdt;
906 
907 	spin_lock(&files->file_lock);
908 	for (;;) {
909 		unsigned long set, i;
910 
911 		j++;
912 		i = j * __NFDBITS;
913 		fdt = files_fdtable(files);
914 		if (i >= fdt->max_fds)
915 			break;
916 		set = fdt->close_on_exec->fds_bits[j];
917 		if (!set)
918 			continue;
919 		fdt->close_on_exec->fds_bits[j] = 0;
920 		spin_unlock(&files->file_lock);
921 		for ( ; set ; i++,set >>= 1) {
922 			if (set & 1) {
923 				sys_close(i);
924 			}
925 		}
926 		spin_lock(&files->file_lock);
927 
928 	}
929 	spin_unlock(&files->file_lock);
930 }
931 
932 char *get_task_comm(char *buf, struct task_struct *tsk)
933 {
934 	/* buf must be at least sizeof(tsk->comm) in size */
935 	task_lock(tsk);
936 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
937 	task_unlock(tsk);
938 	return buf;
939 }
940 
941 void set_task_comm(struct task_struct *tsk, char *buf)
942 {
943 	task_lock(tsk);
944 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
945 	task_unlock(tsk);
946 }
947 
948 int flush_old_exec(struct linux_binprm * bprm)
949 {
950 	char * name;
951 	int i, ch, retval;
952 	char tcomm[sizeof(current->comm)];
953 
954 	/*
955 	 * Make sure we have a private signal table and that
956 	 * we are unassociated from the previous thread group.
957 	 */
958 	retval = de_thread(current);
959 	if (retval)
960 		goto out;
961 
962 	set_mm_exe_file(bprm->mm, bprm->file);
963 
964 	/*
965 	 * Release all of the old mmap stuff
966 	 */
967 	retval = exec_mmap(bprm->mm);
968 	if (retval)
969 		goto out;
970 
971 	bprm->mm = NULL;		/* We're using it now */
972 
973 	/* This is the point of no return */
974 	current->sas_ss_sp = current->sas_ss_size = 0;
975 
976 	if (current->euid == current->uid && current->egid == current->gid)
977 		set_dumpable(current->mm, 1);
978 	else
979 		set_dumpable(current->mm, suid_dumpable);
980 
981 	name = bprm->filename;
982 
983 	/* Copies the binary name from after last slash */
984 	for (i=0; (ch = *(name++)) != '\0';) {
985 		if (ch == '/')
986 			i = 0; /* overwrite what we wrote */
987 		else
988 			if (i < (sizeof(tcomm) - 1))
989 				tcomm[i++] = ch;
990 	}
991 	tcomm[i] = '\0';
992 	set_task_comm(current, tcomm);
993 
994 	current->flags &= ~PF_RANDOMIZE;
995 	flush_thread();
996 
997 	/* Set the new mm task size. We have to do that late because it may
998 	 * depend on TIF_32BIT which is only updated in flush_thread() on
999 	 * some architectures like powerpc
1000 	 */
1001 	current->mm->task_size = TASK_SIZE;
1002 
1003 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
1004 		suid_keys(current);
1005 		set_dumpable(current->mm, suid_dumpable);
1006 		current->pdeath_signal = 0;
1007 	} else if (file_permission(bprm->file, MAY_READ) ||
1008 			(bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1009 		suid_keys(current);
1010 		set_dumpable(current->mm, suid_dumpable);
1011 	}
1012 
1013 	/* An exec changes our domain. We are no longer part of the thread
1014 	   group */
1015 
1016 	current->self_exec_id++;
1017 
1018 	flush_signal_handlers(current, 0);
1019 	flush_old_files(current->files);
1020 
1021 	return 0;
1022 
1023 out:
1024 	return retval;
1025 }
1026 
1027 EXPORT_SYMBOL(flush_old_exec);
1028 
1029 /*
1030  * Fill the binprm structure from the inode.
1031  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1032  */
1033 int prepare_binprm(struct linux_binprm *bprm)
1034 {
1035 	int mode;
1036 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1037 	int retval;
1038 
1039 	mode = inode->i_mode;
1040 	if (bprm->file->f_op == NULL)
1041 		return -EACCES;
1042 
1043 	bprm->e_uid = current->euid;
1044 	bprm->e_gid = current->egid;
1045 
1046 	if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1047 		/* Set-uid? */
1048 		if (mode & S_ISUID) {
1049 			current->personality &= ~PER_CLEAR_ON_SETID;
1050 			bprm->e_uid = inode->i_uid;
1051 		}
1052 
1053 		/* Set-gid? */
1054 		/*
1055 		 * If setgid is set but no group execute bit then this
1056 		 * is a candidate for mandatory locking, not a setgid
1057 		 * executable.
1058 		 */
1059 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1060 			current->personality &= ~PER_CLEAR_ON_SETID;
1061 			bprm->e_gid = inode->i_gid;
1062 		}
1063 	}
1064 
1065 	/* fill in binprm security blob */
1066 	retval = security_bprm_set(bprm);
1067 	if (retval)
1068 		return retval;
1069 
1070 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
1071 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1072 }
1073 
1074 EXPORT_SYMBOL(prepare_binprm);
1075 
1076 static int unsafe_exec(struct task_struct *p)
1077 {
1078 	int unsafe = 0;
1079 	if (p->ptrace & PT_PTRACED) {
1080 		if (p->ptrace & PT_PTRACE_CAP)
1081 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
1082 		else
1083 			unsafe |= LSM_UNSAFE_PTRACE;
1084 	}
1085 	if (atomic_read(&p->fs->count) > 1 ||
1086 	    atomic_read(&p->files->count) > 1 ||
1087 	    atomic_read(&p->sighand->count) > 1)
1088 		unsafe |= LSM_UNSAFE_SHARE;
1089 
1090 	return unsafe;
1091 }
1092 
1093 void compute_creds(struct linux_binprm *bprm)
1094 {
1095 	int unsafe;
1096 
1097 	if (bprm->e_uid != current->uid) {
1098 		suid_keys(current);
1099 		current->pdeath_signal = 0;
1100 	}
1101 	exec_keys(current);
1102 
1103 	task_lock(current);
1104 	unsafe = unsafe_exec(current);
1105 	security_bprm_apply_creds(bprm, unsafe);
1106 	task_unlock(current);
1107 	security_bprm_post_apply_creds(bprm);
1108 }
1109 EXPORT_SYMBOL(compute_creds);
1110 
1111 /*
1112  * Arguments are '\0' separated strings found at the location bprm->p
1113  * points to; chop off the first by relocating brpm->p to right after
1114  * the first '\0' encountered.
1115  */
1116 int remove_arg_zero(struct linux_binprm *bprm)
1117 {
1118 	int ret = 0;
1119 	unsigned long offset;
1120 	char *kaddr;
1121 	struct page *page;
1122 
1123 	if (!bprm->argc)
1124 		return 0;
1125 
1126 	do {
1127 		offset = bprm->p & ~PAGE_MASK;
1128 		page = get_arg_page(bprm, bprm->p, 0);
1129 		if (!page) {
1130 			ret = -EFAULT;
1131 			goto out;
1132 		}
1133 		kaddr = kmap_atomic(page, KM_USER0);
1134 
1135 		for (; offset < PAGE_SIZE && kaddr[offset];
1136 				offset++, bprm->p++)
1137 			;
1138 
1139 		kunmap_atomic(kaddr, KM_USER0);
1140 		put_arg_page(page);
1141 
1142 		if (offset == PAGE_SIZE)
1143 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1144 	} while (offset == PAGE_SIZE);
1145 
1146 	bprm->p++;
1147 	bprm->argc--;
1148 	ret = 0;
1149 
1150 out:
1151 	return ret;
1152 }
1153 EXPORT_SYMBOL(remove_arg_zero);
1154 
1155 /*
1156  * cycle the list of binary formats handler, until one recognizes the image
1157  */
1158 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1159 {
1160 	int try,retval;
1161 	struct linux_binfmt *fmt;
1162 #ifdef __alpha__
1163 	/* handle /sbin/loader.. */
1164 	{
1165 	    struct exec * eh = (struct exec *) bprm->buf;
1166 
1167 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1168 		(eh->fh.f_flags & 0x3000) == 0x3000)
1169 	    {
1170 		struct file * file;
1171 		unsigned long loader;
1172 
1173 		allow_write_access(bprm->file);
1174 		fput(bprm->file);
1175 		bprm->file = NULL;
1176 
1177 		loader = bprm->vma->vm_end - sizeof(void *);
1178 
1179 		file = open_exec("/sbin/loader");
1180 		retval = PTR_ERR(file);
1181 		if (IS_ERR(file))
1182 			return retval;
1183 
1184 		/* Remember if the application is TASO.  */
1185 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1186 
1187 		bprm->file = file;
1188 		bprm->loader = loader;
1189 		retval = prepare_binprm(bprm);
1190 		if (retval<0)
1191 			return retval;
1192 		/* should call search_binary_handler recursively here,
1193 		   but it does not matter */
1194 	    }
1195 	}
1196 #endif
1197 	retval = security_bprm_check(bprm);
1198 	if (retval)
1199 		return retval;
1200 
1201 	/* kernel module loader fixup */
1202 	/* so we don't try to load run modprobe in kernel space. */
1203 	set_fs(USER_DS);
1204 
1205 	retval = audit_bprm(bprm);
1206 	if (retval)
1207 		return retval;
1208 
1209 	retval = -ENOENT;
1210 	for (try=0; try<2; try++) {
1211 		read_lock(&binfmt_lock);
1212 		list_for_each_entry(fmt, &formats, lh) {
1213 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1214 			if (!fn)
1215 				continue;
1216 			if (!try_module_get(fmt->module))
1217 				continue;
1218 			read_unlock(&binfmt_lock);
1219 			retval = fn(bprm, regs);
1220 			if (retval >= 0) {
1221 				put_binfmt(fmt);
1222 				allow_write_access(bprm->file);
1223 				if (bprm->file)
1224 					fput(bprm->file);
1225 				bprm->file = NULL;
1226 				current->did_exec = 1;
1227 				proc_exec_connector(current);
1228 				return retval;
1229 			}
1230 			read_lock(&binfmt_lock);
1231 			put_binfmt(fmt);
1232 			if (retval != -ENOEXEC || bprm->mm == NULL)
1233 				break;
1234 			if (!bprm->file) {
1235 				read_unlock(&binfmt_lock);
1236 				return retval;
1237 			}
1238 		}
1239 		read_unlock(&binfmt_lock);
1240 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1241 			break;
1242 #ifdef CONFIG_KMOD
1243 		}else{
1244 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1245 			if (printable(bprm->buf[0]) &&
1246 			    printable(bprm->buf[1]) &&
1247 			    printable(bprm->buf[2]) &&
1248 			    printable(bprm->buf[3]))
1249 				break; /* -ENOEXEC */
1250 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1251 #endif
1252 		}
1253 	}
1254 	return retval;
1255 }
1256 
1257 EXPORT_SYMBOL(search_binary_handler);
1258 
1259 void free_bprm(struct linux_binprm *bprm)
1260 {
1261 	free_arg_pages(bprm);
1262 	kfree(bprm);
1263 }
1264 
1265 /*
1266  * sys_execve() executes a new program.
1267  */
1268 int do_execve(char * filename,
1269 	char __user *__user *argv,
1270 	char __user *__user *envp,
1271 	struct pt_regs * regs)
1272 {
1273 	struct linux_binprm *bprm;
1274 	struct file *file;
1275 	struct files_struct *displaced;
1276 	int retval;
1277 
1278 	retval = unshare_files(&displaced);
1279 	if (retval)
1280 		goto out_ret;
1281 
1282 	retval = -ENOMEM;
1283 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1284 	if (!bprm)
1285 		goto out_files;
1286 
1287 	file = open_exec(filename);
1288 	retval = PTR_ERR(file);
1289 	if (IS_ERR(file))
1290 		goto out_kfree;
1291 
1292 	sched_exec();
1293 
1294 	bprm->file = file;
1295 	bprm->filename = filename;
1296 	bprm->interp = filename;
1297 
1298 	retval = bprm_mm_init(bprm);
1299 	if (retval)
1300 		goto out_file;
1301 
1302 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1303 	if ((retval = bprm->argc) < 0)
1304 		goto out_mm;
1305 
1306 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1307 	if ((retval = bprm->envc) < 0)
1308 		goto out_mm;
1309 
1310 	retval = security_bprm_alloc(bprm);
1311 	if (retval)
1312 		goto out;
1313 
1314 	retval = prepare_binprm(bprm);
1315 	if (retval < 0)
1316 		goto out;
1317 
1318 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1319 	if (retval < 0)
1320 		goto out;
1321 
1322 	bprm->exec = bprm->p;
1323 	retval = copy_strings(bprm->envc, envp, bprm);
1324 	if (retval < 0)
1325 		goto out;
1326 
1327 	retval = copy_strings(bprm->argc, argv, bprm);
1328 	if (retval < 0)
1329 		goto out;
1330 
1331 	retval = search_binary_handler(bprm,regs);
1332 	if (retval >= 0) {
1333 		/* execve success */
1334 		security_bprm_free(bprm);
1335 		acct_update_integrals(current);
1336 		free_bprm(bprm);
1337 		if (displaced)
1338 			put_files_struct(displaced);
1339 		return retval;
1340 	}
1341 
1342 out:
1343 	if (bprm->security)
1344 		security_bprm_free(bprm);
1345 
1346 out_mm:
1347 	if (bprm->mm)
1348 		mmput (bprm->mm);
1349 
1350 out_file:
1351 	if (bprm->file) {
1352 		allow_write_access(bprm->file);
1353 		fput(bprm->file);
1354 	}
1355 out_kfree:
1356 	free_bprm(bprm);
1357 
1358 out_files:
1359 	if (displaced)
1360 		reset_files_struct(displaced);
1361 out_ret:
1362 	return retval;
1363 }
1364 
1365 int set_binfmt(struct linux_binfmt *new)
1366 {
1367 	struct linux_binfmt *old = current->binfmt;
1368 
1369 	if (new) {
1370 		if (!try_module_get(new->module))
1371 			return -1;
1372 	}
1373 	current->binfmt = new;
1374 	if (old)
1375 		module_put(old->module);
1376 	return 0;
1377 }
1378 
1379 EXPORT_SYMBOL(set_binfmt);
1380 
1381 /* format_corename will inspect the pattern parameter, and output a
1382  * name into corename, which must have space for at least
1383  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1384  */
1385 static int format_corename(char *corename, const char *pattern, long signr)
1386 {
1387 	const char *pat_ptr = pattern;
1388 	char *out_ptr = corename;
1389 	char *const out_end = corename + CORENAME_MAX_SIZE;
1390 	int rc;
1391 	int pid_in_pattern = 0;
1392 	int ispipe = 0;
1393 
1394 	if (*pattern == '|')
1395 		ispipe = 1;
1396 
1397 	/* Repeat as long as we have more pattern to process and more output
1398 	   space */
1399 	while (*pat_ptr) {
1400 		if (*pat_ptr != '%') {
1401 			if (out_ptr == out_end)
1402 				goto out;
1403 			*out_ptr++ = *pat_ptr++;
1404 		} else {
1405 			switch (*++pat_ptr) {
1406 			case 0:
1407 				goto out;
1408 			/* Double percent, output one percent */
1409 			case '%':
1410 				if (out_ptr == out_end)
1411 					goto out;
1412 				*out_ptr++ = '%';
1413 				break;
1414 			/* pid */
1415 			case 'p':
1416 				pid_in_pattern = 1;
1417 				rc = snprintf(out_ptr, out_end - out_ptr,
1418 					      "%d", task_tgid_vnr(current));
1419 				if (rc > out_end - out_ptr)
1420 					goto out;
1421 				out_ptr += rc;
1422 				break;
1423 			/* uid */
1424 			case 'u':
1425 				rc = snprintf(out_ptr, out_end - out_ptr,
1426 					      "%d", current->uid);
1427 				if (rc > out_end - out_ptr)
1428 					goto out;
1429 				out_ptr += rc;
1430 				break;
1431 			/* gid */
1432 			case 'g':
1433 				rc = snprintf(out_ptr, out_end - out_ptr,
1434 					      "%d", current->gid);
1435 				if (rc > out_end - out_ptr)
1436 					goto out;
1437 				out_ptr += rc;
1438 				break;
1439 			/* signal that caused the coredump */
1440 			case 's':
1441 				rc = snprintf(out_ptr, out_end - out_ptr,
1442 					      "%ld", signr);
1443 				if (rc > out_end - out_ptr)
1444 					goto out;
1445 				out_ptr += rc;
1446 				break;
1447 			/* UNIX time of coredump */
1448 			case 't': {
1449 				struct timeval tv;
1450 				do_gettimeofday(&tv);
1451 				rc = snprintf(out_ptr, out_end - out_ptr,
1452 					      "%lu", tv.tv_sec);
1453 				if (rc > out_end - out_ptr)
1454 					goto out;
1455 				out_ptr += rc;
1456 				break;
1457 			}
1458 			/* hostname */
1459 			case 'h':
1460 				down_read(&uts_sem);
1461 				rc = snprintf(out_ptr, out_end - out_ptr,
1462 					      "%s", utsname()->nodename);
1463 				up_read(&uts_sem);
1464 				if (rc > out_end - out_ptr)
1465 					goto out;
1466 				out_ptr += rc;
1467 				break;
1468 			/* executable */
1469 			case 'e':
1470 				rc = snprintf(out_ptr, out_end - out_ptr,
1471 					      "%s", current->comm);
1472 				if (rc > out_end - out_ptr)
1473 					goto out;
1474 				out_ptr += rc;
1475 				break;
1476 			/* core limit size */
1477 			case 'c':
1478 				rc = snprintf(out_ptr, out_end - out_ptr,
1479 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1480 				if (rc > out_end - out_ptr)
1481 					goto out;
1482 				out_ptr += rc;
1483 				break;
1484 			default:
1485 				break;
1486 			}
1487 			++pat_ptr;
1488 		}
1489 	}
1490 	/* Backward compatibility with core_uses_pid:
1491 	 *
1492 	 * If core_pattern does not include a %p (as is the default)
1493 	 * and core_uses_pid is set, then .%pid will be appended to
1494 	 * the filename. Do not do this for piped commands. */
1495 	if (!ispipe && !pid_in_pattern
1496             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1497 		rc = snprintf(out_ptr, out_end - out_ptr,
1498 			      ".%d", task_tgid_vnr(current));
1499 		if (rc > out_end - out_ptr)
1500 			goto out;
1501 		out_ptr += rc;
1502 	}
1503 out:
1504 	*out_ptr = 0;
1505 	return ispipe;
1506 }
1507 
1508 static void zap_process(struct task_struct *start)
1509 {
1510 	struct task_struct *t;
1511 
1512 	start->signal->flags = SIGNAL_GROUP_EXIT;
1513 	start->signal->group_stop_count = 0;
1514 
1515 	t = start;
1516 	do {
1517 		if (t != current && t->mm) {
1518 			t->mm->core_waiters++;
1519 			sigaddset(&t->pending.signal, SIGKILL);
1520 			signal_wake_up(t, 1);
1521 		}
1522 	} while ((t = next_thread(t)) != start);
1523 }
1524 
1525 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1526 				int exit_code)
1527 {
1528 	struct task_struct *g, *p;
1529 	unsigned long flags;
1530 	int err = -EAGAIN;
1531 
1532 	spin_lock_irq(&tsk->sighand->siglock);
1533 	if (!signal_group_exit(tsk->signal)) {
1534 		tsk->signal->group_exit_code = exit_code;
1535 		zap_process(tsk);
1536 		err = 0;
1537 	}
1538 	spin_unlock_irq(&tsk->sighand->siglock);
1539 	if (err)
1540 		return err;
1541 
1542 	if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1543 		goto done;
1544 
1545 	rcu_read_lock();
1546 	for_each_process(g) {
1547 		if (g == tsk->group_leader)
1548 			continue;
1549 
1550 		p = g;
1551 		do {
1552 			if (p->mm) {
1553 				if (p->mm == mm) {
1554 					/*
1555 					 * p->sighand can't disappear, but
1556 					 * may be changed by de_thread()
1557 					 */
1558 					lock_task_sighand(p, &flags);
1559 					zap_process(p);
1560 					unlock_task_sighand(p, &flags);
1561 				}
1562 				break;
1563 			}
1564 		} while ((p = next_thread(p)) != g);
1565 	}
1566 	rcu_read_unlock();
1567 done:
1568 	return mm->core_waiters;
1569 }
1570 
1571 static int coredump_wait(int exit_code)
1572 {
1573 	struct task_struct *tsk = current;
1574 	struct mm_struct *mm = tsk->mm;
1575 	struct completion startup_done;
1576 	struct completion *vfork_done;
1577 	int core_waiters;
1578 
1579 	init_completion(&mm->core_done);
1580 	init_completion(&startup_done);
1581 	mm->core_startup_done = &startup_done;
1582 
1583 	core_waiters = zap_threads(tsk, mm, exit_code);
1584 	up_write(&mm->mmap_sem);
1585 
1586 	if (unlikely(core_waiters < 0))
1587 		goto fail;
1588 
1589 	/*
1590 	 * Make sure nobody is waiting for us to release the VM,
1591 	 * otherwise we can deadlock when we wait on each other
1592 	 */
1593 	vfork_done = tsk->vfork_done;
1594 	if (vfork_done) {
1595 		tsk->vfork_done = NULL;
1596 		complete(vfork_done);
1597 	}
1598 
1599 	if (core_waiters)
1600 		wait_for_completion(&startup_done);
1601 fail:
1602 	BUG_ON(mm->core_waiters);
1603 	return core_waiters;
1604 }
1605 
1606 /*
1607  * set_dumpable converts traditional three-value dumpable to two flags and
1608  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1609  * these bits are not changed atomically.  So get_dumpable can observe the
1610  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1611  * return either old dumpable or new one by paying attention to the order of
1612  * modifying the bits.
1613  *
1614  * dumpable |   mm->flags (binary)
1615  * old  new | initial interim  final
1616  * ---------+-----------------------
1617  *  0    1  |   00      01      01
1618  *  0    2  |   00      10(*)   11
1619  *  1    0  |   01      00      00
1620  *  1    2  |   01      11      11
1621  *  2    0  |   11      10(*)   00
1622  *  2    1  |   11      11      01
1623  *
1624  * (*) get_dumpable regards interim value of 10 as 11.
1625  */
1626 void set_dumpable(struct mm_struct *mm, int value)
1627 {
1628 	switch (value) {
1629 	case 0:
1630 		clear_bit(MMF_DUMPABLE, &mm->flags);
1631 		smp_wmb();
1632 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1633 		break;
1634 	case 1:
1635 		set_bit(MMF_DUMPABLE, &mm->flags);
1636 		smp_wmb();
1637 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1638 		break;
1639 	case 2:
1640 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1641 		smp_wmb();
1642 		set_bit(MMF_DUMPABLE, &mm->flags);
1643 		break;
1644 	}
1645 }
1646 
1647 int get_dumpable(struct mm_struct *mm)
1648 {
1649 	int ret;
1650 
1651 	ret = mm->flags & 0x3;
1652 	return (ret >= 2) ? 2 : ret;
1653 }
1654 
1655 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1656 {
1657 	char corename[CORENAME_MAX_SIZE + 1];
1658 	struct mm_struct *mm = current->mm;
1659 	struct linux_binfmt * binfmt;
1660 	struct inode * inode;
1661 	struct file * file;
1662 	int retval = 0;
1663 	int fsuid = current->fsuid;
1664 	int flag = 0;
1665 	int ispipe = 0;
1666 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1667 	char **helper_argv = NULL;
1668 	int helper_argc = 0;
1669 	char *delimit;
1670 
1671 	audit_core_dumps(signr);
1672 
1673 	binfmt = current->binfmt;
1674 	if (!binfmt || !binfmt->core_dump)
1675 		goto fail;
1676 	down_write(&mm->mmap_sem);
1677 	/*
1678 	 * If another thread got here first, or we are not dumpable, bail out.
1679 	 */
1680 	if (mm->core_waiters || !get_dumpable(mm)) {
1681 		up_write(&mm->mmap_sem);
1682 		goto fail;
1683 	}
1684 
1685 	/*
1686 	 *	We cannot trust fsuid as being the "true" uid of the
1687 	 *	process nor do we know its entire history. We only know it
1688 	 *	was tainted so we dump it as root in mode 2.
1689 	 */
1690 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1691 		flag = O_EXCL;		/* Stop rewrite attacks */
1692 		current->fsuid = 0;	/* Dump root private */
1693 	}
1694 
1695 	retval = coredump_wait(exit_code);
1696 	if (retval < 0)
1697 		goto fail;
1698 
1699 	/*
1700 	 * Clear any false indication of pending signals that might
1701 	 * be seen by the filesystem code called to write the core file.
1702 	 */
1703 	clear_thread_flag(TIF_SIGPENDING);
1704 
1705 	/*
1706 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1707 	 * uses lock_kernel()
1708 	 */
1709  	lock_kernel();
1710 	ispipe = format_corename(corename, core_pattern, signr);
1711 	unlock_kernel();
1712 	/*
1713 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1714 	 * to a pipe.  Since we're not writing directly to the filesystem
1715 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1716 	 * created unless the pipe reader choses to write out the core file
1717 	 * at which point file size limits and permissions will be imposed
1718 	 * as it does with any other process
1719 	 */
1720 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1721 		goto fail_unlock;
1722 
1723  	if (ispipe) {
1724 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1725 		/* Terminate the string before the first option */
1726 		delimit = strchr(corename, ' ');
1727 		if (delimit)
1728 			*delimit = '\0';
1729 		delimit = strrchr(helper_argv[0], '/');
1730 		if (delimit)
1731 			delimit++;
1732 		else
1733 			delimit = helper_argv[0];
1734 		if (!strcmp(delimit, current->comm)) {
1735 			printk(KERN_NOTICE "Recursive core dump detected, "
1736 					"aborting\n");
1737 			goto fail_unlock;
1738 		}
1739 
1740 		core_limit = RLIM_INFINITY;
1741 
1742 		/* SIGPIPE can happen, but it's just never processed */
1743  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1744 				&file)) {
1745  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1746 			       corename);
1747  			goto fail_unlock;
1748  		}
1749  	} else
1750  		file = filp_open(corename,
1751 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1752 				 0600);
1753 	if (IS_ERR(file))
1754 		goto fail_unlock;
1755 	inode = file->f_path.dentry->d_inode;
1756 	if (inode->i_nlink > 1)
1757 		goto close_fail;	/* multiple links - don't dump */
1758 	if (!ispipe && d_unhashed(file->f_path.dentry))
1759 		goto close_fail;
1760 
1761 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1762 	   but keep the previous behaviour for now. */
1763 	if (!ispipe && !S_ISREG(inode->i_mode))
1764 		goto close_fail;
1765 	/*
1766 	 * Dont allow local users get cute and trick others to coredump
1767 	 * into their pre-created files:
1768 	 */
1769 	if (inode->i_uid != current->fsuid)
1770 		goto close_fail;
1771 	if (!file->f_op)
1772 		goto close_fail;
1773 	if (!file->f_op->write)
1774 		goto close_fail;
1775 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1776 		goto close_fail;
1777 
1778 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1779 
1780 	if (retval)
1781 		current->signal->group_exit_code |= 0x80;
1782 close_fail:
1783 	filp_close(file, NULL);
1784 fail_unlock:
1785 	if (helper_argv)
1786 		argv_free(helper_argv);
1787 
1788 	current->fsuid = fsuid;
1789 	complete_all(&mm->core_done);
1790 fail:
1791 	return retval;
1792 }
1793