1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mman.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/smp_lock.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/highmem.h> 36 #include <linux/spinlock.h> 37 #include <linux/key.h> 38 #include <linux/personality.h> 39 #include <linux/binfmts.h> 40 #include <linux/swap.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/proc_fs.h> 46 #include <linux/ptrace.h> 47 #include <linux/mount.h> 48 #include <linux/security.h> 49 #include <linux/syscalls.h> 50 #include <linux/rmap.h> 51 #include <linux/tsacct_kern.h> 52 #include <linux/cn_proc.h> 53 #include <linux/audit.h> 54 55 #include <asm/uaccess.h> 56 #include <asm/mmu_context.h> 57 #include <asm/tlb.h> 58 59 #ifdef CONFIG_KMOD 60 #include <linux/kmod.h> 61 #endif 62 63 #ifdef __alpha__ 64 /* for /sbin/loader handling in search_binary_handler() */ 65 #include <linux/a.out.h> 66 #endif 67 68 int core_uses_pid; 69 char core_pattern[CORENAME_MAX_SIZE] = "core"; 70 int suid_dumpable = 0; 71 72 /* The maximal length of core_pattern is also specified in sysctl.c */ 73 74 static LIST_HEAD(formats); 75 static DEFINE_RWLOCK(binfmt_lock); 76 77 int register_binfmt(struct linux_binfmt * fmt) 78 { 79 if (!fmt) 80 return -EINVAL; 81 write_lock(&binfmt_lock); 82 list_add(&fmt->lh, &formats); 83 write_unlock(&binfmt_lock); 84 return 0; 85 } 86 87 EXPORT_SYMBOL(register_binfmt); 88 89 void unregister_binfmt(struct linux_binfmt * fmt) 90 { 91 write_lock(&binfmt_lock); 92 list_del(&fmt->lh); 93 write_unlock(&binfmt_lock); 94 } 95 96 EXPORT_SYMBOL(unregister_binfmt); 97 98 static inline void put_binfmt(struct linux_binfmt * fmt) 99 { 100 module_put(fmt->module); 101 } 102 103 /* 104 * Note that a shared library must be both readable and executable due to 105 * security reasons. 106 * 107 * Also note that we take the address to load from from the file itself. 108 */ 109 asmlinkage long sys_uselib(const char __user * library) 110 { 111 struct file * file; 112 struct nameidata nd; 113 int error; 114 115 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 116 if (error) 117 goto out; 118 119 error = -EINVAL; 120 if (!S_ISREG(nd.path.dentry->d_inode->i_mode)) 121 goto exit; 122 123 error = vfs_permission(&nd, MAY_READ | MAY_EXEC); 124 if (error) 125 goto exit; 126 127 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE); 128 error = PTR_ERR(file); 129 if (IS_ERR(file)) 130 goto out; 131 132 error = -ENOEXEC; 133 if(file->f_op) { 134 struct linux_binfmt * fmt; 135 136 read_lock(&binfmt_lock); 137 list_for_each_entry(fmt, &formats, lh) { 138 if (!fmt->load_shlib) 139 continue; 140 if (!try_module_get(fmt->module)) 141 continue; 142 read_unlock(&binfmt_lock); 143 error = fmt->load_shlib(file); 144 read_lock(&binfmt_lock); 145 put_binfmt(fmt); 146 if (error != -ENOEXEC) 147 break; 148 } 149 read_unlock(&binfmt_lock); 150 } 151 fput(file); 152 out: 153 return error; 154 exit: 155 release_open_intent(&nd); 156 path_put(&nd.path); 157 goto out; 158 } 159 160 #ifdef CONFIG_MMU 161 162 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 163 int write) 164 { 165 struct page *page; 166 int ret; 167 168 #ifdef CONFIG_STACK_GROWSUP 169 if (write) { 170 ret = expand_stack_downwards(bprm->vma, pos); 171 if (ret < 0) 172 return NULL; 173 } 174 #endif 175 ret = get_user_pages(current, bprm->mm, pos, 176 1, write, 1, &page, NULL); 177 if (ret <= 0) 178 return NULL; 179 180 if (write) { 181 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 182 struct rlimit *rlim; 183 184 /* 185 * We've historically supported up to 32 pages (ARG_MAX) 186 * of argument strings even with small stacks 187 */ 188 if (size <= ARG_MAX) 189 return page; 190 191 /* 192 * Limit to 1/4-th the stack size for the argv+env strings. 193 * This ensures that: 194 * - the remaining binfmt code will not run out of stack space, 195 * - the program will have a reasonable amount of stack left 196 * to work from. 197 */ 198 rlim = current->signal->rlim; 199 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 200 put_page(page); 201 return NULL; 202 } 203 } 204 205 return page; 206 } 207 208 static void put_arg_page(struct page *page) 209 { 210 put_page(page); 211 } 212 213 static void free_arg_page(struct linux_binprm *bprm, int i) 214 { 215 } 216 217 static void free_arg_pages(struct linux_binprm *bprm) 218 { 219 } 220 221 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 222 struct page *page) 223 { 224 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 225 } 226 227 static int __bprm_mm_init(struct linux_binprm *bprm) 228 { 229 int err = -ENOMEM; 230 struct vm_area_struct *vma = NULL; 231 struct mm_struct *mm = bprm->mm; 232 233 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 234 if (!vma) 235 goto err; 236 237 down_write(&mm->mmap_sem); 238 vma->vm_mm = mm; 239 240 /* 241 * Place the stack at the largest stack address the architecture 242 * supports. Later, we'll move this to an appropriate place. We don't 243 * use STACK_TOP because that can depend on attributes which aren't 244 * configured yet. 245 */ 246 vma->vm_end = STACK_TOP_MAX; 247 vma->vm_start = vma->vm_end - PAGE_SIZE; 248 249 vma->vm_flags = VM_STACK_FLAGS; 250 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 251 err = insert_vm_struct(mm, vma); 252 if (err) { 253 up_write(&mm->mmap_sem); 254 goto err; 255 } 256 257 mm->stack_vm = mm->total_vm = 1; 258 up_write(&mm->mmap_sem); 259 260 bprm->p = vma->vm_end - sizeof(void *); 261 262 return 0; 263 264 err: 265 if (vma) { 266 bprm->vma = NULL; 267 kmem_cache_free(vm_area_cachep, vma); 268 } 269 270 return err; 271 } 272 273 static bool valid_arg_len(struct linux_binprm *bprm, long len) 274 { 275 return len <= MAX_ARG_STRLEN; 276 } 277 278 #else 279 280 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 281 int write) 282 { 283 struct page *page; 284 285 page = bprm->page[pos / PAGE_SIZE]; 286 if (!page && write) { 287 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 288 if (!page) 289 return NULL; 290 bprm->page[pos / PAGE_SIZE] = page; 291 } 292 293 return page; 294 } 295 296 static void put_arg_page(struct page *page) 297 { 298 } 299 300 static void free_arg_page(struct linux_binprm *bprm, int i) 301 { 302 if (bprm->page[i]) { 303 __free_page(bprm->page[i]); 304 bprm->page[i] = NULL; 305 } 306 } 307 308 static void free_arg_pages(struct linux_binprm *bprm) 309 { 310 int i; 311 312 for (i = 0; i < MAX_ARG_PAGES; i++) 313 free_arg_page(bprm, i); 314 } 315 316 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 317 struct page *page) 318 { 319 } 320 321 static int __bprm_mm_init(struct linux_binprm *bprm) 322 { 323 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 324 return 0; 325 } 326 327 static bool valid_arg_len(struct linux_binprm *bprm, long len) 328 { 329 return len <= bprm->p; 330 } 331 332 #endif /* CONFIG_MMU */ 333 334 /* 335 * Create a new mm_struct and populate it with a temporary stack 336 * vm_area_struct. We don't have enough context at this point to set the stack 337 * flags, permissions, and offset, so we use temporary values. We'll update 338 * them later in setup_arg_pages(). 339 */ 340 int bprm_mm_init(struct linux_binprm *bprm) 341 { 342 int err; 343 struct mm_struct *mm = NULL; 344 345 bprm->mm = mm = mm_alloc(); 346 err = -ENOMEM; 347 if (!mm) 348 goto err; 349 350 err = init_new_context(current, mm); 351 if (err) 352 goto err; 353 354 err = __bprm_mm_init(bprm); 355 if (err) 356 goto err; 357 358 return 0; 359 360 err: 361 if (mm) { 362 bprm->mm = NULL; 363 mmdrop(mm); 364 } 365 366 return err; 367 } 368 369 /* 370 * count() counts the number of strings in array ARGV. 371 */ 372 static int count(char __user * __user * argv, int max) 373 { 374 int i = 0; 375 376 if (argv != NULL) { 377 for (;;) { 378 char __user * p; 379 380 if (get_user(p, argv)) 381 return -EFAULT; 382 if (!p) 383 break; 384 argv++; 385 if(++i > max) 386 return -E2BIG; 387 cond_resched(); 388 } 389 } 390 return i; 391 } 392 393 /* 394 * 'copy_strings()' copies argument/environment strings from the old 395 * processes's memory to the new process's stack. The call to get_user_pages() 396 * ensures the destination page is created and not swapped out. 397 */ 398 static int copy_strings(int argc, char __user * __user * argv, 399 struct linux_binprm *bprm) 400 { 401 struct page *kmapped_page = NULL; 402 char *kaddr = NULL; 403 unsigned long kpos = 0; 404 int ret; 405 406 while (argc-- > 0) { 407 char __user *str; 408 int len; 409 unsigned long pos; 410 411 if (get_user(str, argv+argc) || 412 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 413 ret = -EFAULT; 414 goto out; 415 } 416 417 if (!valid_arg_len(bprm, len)) { 418 ret = -E2BIG; 419 goto out; 420 } 421 422 /* We're going to work our way backwords. */ 423 pos = bprm->p; 424 str += len; 425 bprm->p -= len; 426 427 while (len > 0) { 428 int offset, bytes_to_copy; 429 430 offset = pos % PAGE_SIZE; 431 if (offset == 0) 432 offset = PAGE_SIZE; 433 434 bytes_to_copy = offset; 435 if (bytes_to_copy > len) 436 bytes_to_copy = len; 437 438 offset -= bytes_to_copy; 439 pos -= bytes_to_copy; 440 str -= bytes_to_copy; 441 len -= bytes_to_copy; 442 443 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 444 struct page *page; 445 446 page = get_arg_page(bprm, pos, 1); 447 if (!page) { 448 ret = -E2BIG; 449 goto out; 450 } 451 452 if (kmapped_page) { 453 flush_kernel_dcache_page(kmapped_page); 454 kunmap(kmapped_page); 455 put_arg_page(kmapped_page); 456 } 457 kmapped_page = page; 458 kaddr = kmap(kmapped_page); 459 kpos = pos & PAGE_MASK; 460 flush_arg_page(bprm, kpos, kmapped_page); 461 } 462 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 463 ret = -EFAULT; 464 goto out; 465 } 466 } 467 } 468 ret = 0; 469 out: 470 if (kmapped_page) { 471 flush_kernel_dcache_page(kmapped_page); 472 kunmap(kmapped_page); 473 put_arg_page(kmapped_page); 474 } 475 return ret; 476 } 477 478 /* 479 * Like copy_strings, but get argv and its values from kernel memory. 480 */ 481 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 482 { 483 int r; 484 mm_segment_t oldfs = get_fs(); 485 set_fs(KERNEL_DS); 486 r = copy_strings(argc, (char __user * __user *)argv, bprm); 487 set_fs(oldfs); 488 return r; 489 } 490 EXPORT_SYMBOL(copy_strings_kernel); 491 492 #ifdef CONFIG_MMU 493 494 /* 495 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 496 * the binfmt code determines where the new stack should reside, we shift it to 497 * its final location. The process proceeds as follows: 498 * 499 * 1) Use shift to calculate the new vma endpoints. 500 * 2) Extend vma to cover both the old and new ranges. This ensures the 501 * arguments passed to subsequent functions are consistent. 502 * 3) Move vma's page tables to the new range. 503 * 4) Free up any cleared pgd range. 504 * 5) Shrink the vma to cover only the new range. 505 */ 506 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 507 { 508 struct mm_struct *mm = vma->vm_mm; 509 unsigned long old_start = vma->vm_start; 510 unsigned long old_end = vma->vm_end; 511 unsigned long length = old_end - old_start; 512 unsigned long new_start = old_start - shift; 513 unsigned long new_end = old_end - shift; 514 struct mmu_gather *tlb; 515 516 BUG_ON(new_start > new_end); 517 518 /* 519 * ensure there are no vmas between where we want to go 520 * and where we are 521 */ 522 if (vma != find_vma(mm, new_start)) 523 return -EFAULT; 524 525 /* 526 * cover the whole range: [new_start, old_end) 527 */ 528 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 529 530 /* 531 * move the page tables downwards, on failure we rely on 532 * process cleanup to remove whatever mess we made. 533 */ 534 if (length != move_page_tables(vma, old_start, 535 vma, new_start, length)) 536 return -ENOMEM; 537 538 lru_add_drain(); 539 tlb = tlb_gather_mmu(mm, 0); 540 if (new_end > old_start) { 541 /* 542 * when the old and new regions overlap clear from new_end. 543 */ 544 free_pgd_range(tlb, new_end, old_end, new_end, 545 vma->vm_next ? vma->vm_next->vm_start : 0); 546 } else { 547 /* 548 * otherwise, clean from old_start; this is done to not touch 549 * the address space in [new_end, old_start) some architectures 550 * have constraints on va-space that make this illegal (IA64) - 551 * for the others its just a little faster. 552 */ 553 free_pgd_range(tlb, old_start, old_end, new_end, 554 vma->vm_next ? vma->vm_next->vm_start : 0); 555 } 556 tlb_finish_mmu(tlb, new_end, old_end); 557 558 /* 559 * shrink the vma to just the new range. 560 */ 561 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 562 563 return 0; 564 } 565 566 #define EXTRA_STACK_VM_PAGES 20 /* random */ 567 568 /* 569 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 570 * the stack is optionally relocated, and some extra space is added. 571 */ 572 int setup_arg_pages(struct linux_binprm *bprm, 573 unsigned long stack_top, 574 int executable_stack) 575 { 576 unsigned long ret; 577 unsigned long stack_shift; 578 struct mm_struct *mm = current->mm; 579 struct vm_area_struct *vma = bprm->vma; 580 struct vm_area_struct *prev = NULL; 581 unsigned long vm_flags; 582 unsigned long stack_base; 583 584 #ifdef CONFIG_STACK_GROWSUP 585 /* Limit stack size to 1GB */ 586 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 587 if (stack_base > (1 << 30)) 588 stack_base = 1 << 30; 589 590 /* Make sure we didn't let the argument array grow too large. */ 591 if (vma->vm_end - vma->vm_start > stack_base) 592 return -ENOMEM; 593 594 stack_base = PAGE_ALIGN(stack_top - stack_base); 595 596 stack_shift = vma->vm_start - stack_base; 597 mm->arg_start = bprm->p - stack_shift; 598 bprm->p = vma->vm_end - stack_shift; 599 #else 600 stack_top = arch_align_stack(stack_top); 601 stack_top = PAGE_ALIGN(stack_top); 602 stack_shift = vma->vm_end - stack_top; 603 604 bprm->p -= stack_shift; 605 mm->arg_start = bprm->p; 606 #endif 607 608 if (bprm->loader) 609 bprm->loader -= stack_shift; 610 bprm->exec -= stack_shift; 611 612 down_write(&mm->mmap_sem); 613 vm_flags = VM_STACK_FLAGS; 614 615 /* 616 * Adjust stack execute permissions; explicitly enable for 617 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 618 * (arch default) otherwise. 619 */ 620 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 621 vm_flags |= VM_EXEC; 622 else if (executable_stack == EXSTACK_DISABLE_X) 623 vm_flags &= ~VM_EXEC; 624 vm_flags |= mm->def_flags; 625 626 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 627 vm_flags); 628 if (ret) 629 goto out_unlock; 630 BUG_ON(prev != vma); 631 632 /* Move stack pages down in memory. */ 633 if (stack_shift) { 634 ret = shift_arg_pages(vma, stack_shift); 635 if (ret) { 636 up_write(&mm->mmap_sem); 637 return ret; 638 } 639 } 640 641 #ifdef CONFIG_STACK_GROWSUP 642 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 643 #else 644 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 645 #endif 646 ret = expand_stack(vma, stack_base); 647 if (ret) 648 ret = -EFAULT; 649 650 out_unlock: 651 up_write(&mm->mmap_sem); 652 return 0; 653 } 654 EXPORT_SYMBOL(setup_arg_pages); 655 656 #endif /* CONFIG_MMU */ 657 658 struct file *open_exec(const char *name) 659 { 660 struct nameidata nd; 661 int err; 662 struct file *file; 663 664 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 665 file = ERR_PTR(err); 666 667 if (!err) { 668 struct inode *inode = nd.path.dentry->d_inode; 669 file = ERR_PTR(-EACCES); 670 if (S_ISREG(inode->i_mode)) { 671 int err = vfs_permission(&nd, MAY_EXEC); 672 file = ERR_PTR(err); 673 if (!err) { 674 file = nameidata_to_filp(&nd, 675 O_RDONLY|O_LARGEFILE); 676 if (!IS_ERR(file)) { 677 err = deny_write_access(file); 678 if (err) { 679 fput(file); 680 file = ERR_PTR(err); 681 } 682 } 683 out: 684 return file; 685 } 686 } 687 release_open_intent(&nd); 688 path_put(&nd.path); 689 } 690 goto out; 691 } 692 693 EXPORT_SYMBOL(open_exec); 694 695 int kernel_read(struct file *file, unsigned long offset, 696 char *addr, unsigned long count) 697 { 698 mm_segment_t old_fs; 699 loff_t pos = offset; 700 int result; 701 702 old_fs = get_fs(); 703 set_fs(get_ds()); 704 /* The cast to a user pointer is valid due to the set_fs() */ 705 result = vfs_read(file, (void __user *)addr, count, &pos); 706 set_fs(old_fs); 707 return result; 708 } 709 710 EXPORT_SYMBOL(kernel_read); 711 712 static int exec_mmap(struct mm_struct *mm) 713 { 714 struct task_struct *tsk; 715 struct mm_struct * old_mm, *active_mm; 716 717 /* Notify parent that we're no longer interested in the old VM */ 718 tsk = current; 719 old_mm = current->mm; 720 mm_release(tsk, old_mm); 721 722 if (old_mm) { 723 /* 724 * Make sure that if there is a core dump in progress 725 * for the old mm, we get out and die instead of going 726 * through with the exec. We must hold mmap_sem around 727 * checking core_waiters and changing tsk->mm. The 728 * core-inducing thread will increment core_waiters for 729 * each thread whose ->mm == old_mm. 730 */ 731 down_read(&old_mm->mmap_sem); 732 if (unlikely(old_mm->core_waiters)) { 733 up_read(&old_mm->mmap_sem); 734 return -EINTR; 735 } 736 } 737 task_lock(tsk); 738 active_mm = tsk->active_mm; 739 tsk->mm = mm; 740 tsk->active_mm = mm; 741 activate_mm(active_mm, mm); 742 task_unlock(tsk); 743 mm_update_next_owner(old_mm); 744 arch_pick_mmap_layout(mm); 745 if (old_mm) { 746 up_read(&old_mm->mmap_sem); 747 BUG_ON(active_mm != old_mm); 748 mmput(old_mm); 749 return 0; 750 } 751 mmdrop(active_mm); 752 return 0; 753 } 754 755 /* 756 * This function makes sure the current process has its own signal table, 757 * so that flush_signal_handlers can later reset the handlers without 758 * disturbing other processes. (Other processes might share the signal 759 * table via the CLONE_SIGHAND option to clone().) 760 */ 761 static int de_thread(struct task_struct *tsk) 762 { 763 struct signal_struct *sig = tsk->signal; 764 struct sighand_struct *oldsighand = tsk->sighand; 765 spinlock_t *lock = &oldsighand->siglock; 766 struct task_struct *leader = NULL; 767 int count; 768 769 if (thread_group_empty(tsk)) 770 goto no_thread_group; 771 772 /* 773 * Kill all other threads in the thread group. 774 */ 775 spin_lock_irq(lock); 776 if (signal_group_exit(sig)) { 777 /* 778 * Another group action in progress, just 779 * return so that the signal is processed. 780 */ 781 spin_unlock_irq(lock); 782 return -EAGAIN; 783 } 784 sig->group_exit_task = tsk; 785 zap_other_threads(tsk); 786 787 /* Account for the thread group leader hanging around: */ 788 count = thread_group_leader(tsk) ? 1 : 2; 789 sig->notify_count = count; 790 while (atomic_read(&sig->count) > count) { 791 __set_current_state(TASK_UNINTERRUPTIBLE); 792 spin_unlock_irq(lock); 793 schedule(); 794 spin_lock_irq(lock); 795 } 796 spin_unlock_irq(lock); 797 798 /* 799 * At this point all other threads have exited, all we have to 800 * do is to wait for the thread group leader to become inactive, 801 * and to assume its PID: 802 */ 803 if (!thread_group_leader(tsk)) { 804 leader = tsk->group_leader; 805 806 sig->notify_count = -1; /* for exit_notify() */ 807 for (;;) { 808 write_lock_irq(&tasklist_lock); 809 if (likely(leader->exit_state)) 810 break; 811 __set_current_state(TASK_UNINTERRUPTIBLE); 812 write_unlock_irq(&tasklist_lock); 813 schedule(); 814 } 815 816 if (unlikely(task_child_reaper(tsk) == leader)) 817 task_active_pid_ns(tsk)->child_reaper = tsk; 818 /* 819 * The only record we have of the real-time age of a 820 * process, regardless of execs it's done, is start_time. 821 * All the past CPU time is accumulated in signal_struct 822 * from sister threads now dead. But in this non-leader 823 * exec, nothing survives from the original leader thread, 824 * whose birth marks the true age of this process now. 825 * When we take on its identity by switching to its PID, we 826 * also take its birthdate (always earlier than our own). 827 */ 828 tsk->start_time = leader->start_time; 829 830 BUG_ON(!same_thread_group(leader, tsk)); 831 BUG_ON(has_group_leader_pid(tsk)); 832 /* 833 * An exec() starts a new thread group with the 834 * TGID of the previous thread group. Rehash the 835 * two threads with a switched PID, and release 836 * the former thread group leader: 837 */ 838 839 /* Become a process group leader with the old leader's pid. 840 * The old leader becomes a thread of the this thread group. 841 * Note: The old leader also uses this pid until release_task 842 * is called. Odd but simple and correct. 843 */ 844 detach_pid(tsk, PIDTYPE_PID); 845 tsk->pid = leader->pid; 846 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 847 transfer_pid(leader, tsk, PIDTYPE_PGID); 848 transfer_pid(leader, tsk, PIDTYPE_SID); 849 list_replace_rcu(&leader->tasks, &tsk->tasks); 850 851 tsk->group_leader = tsk; 852 leader->group_leader = tsk; 853 854 tsk->exit_signal = SIGCHLD; 855 856 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 857 leader->exit_state = EXIT_DEAD; 858 859 write_unlock_irq(&tasklist_lock); 860 } 861 862 sig->group_exit_task = NULL; 863 sig->notify_count = 0; 864 865 no_thread_group: 866 exit_itimers(sig); 867 flush_itimer_signals(); 868 if (leader) 869 release_task(leader); 870 871 if (atomic_read(&oldsighand->count) != 1) { 872 struct sighand_struct *newsighand; 873 /* 874 * This ->sighand is shared with the CLONE_SIGHAND 875 * but not CLONE_THREAD task, switch to the new one. 876 */ 877 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 878 if (!newsighand) 879 return -ENOMEM; 880 881 atomic_set(&newsighand->count, 1); 882 memcpy(newsighand->action, oldsighand->action, 883 sizeof(newsighand->action)); 884 885 write_lock_irq(&tasklist_lock); 886 spin_lock(&oldsighand->siglock); 887 rcu_assign_pointer(tsk->sighand, newsighand); 888 spin_unlock(&oldsighand->siglock); 889 write_unlock_irq(&tasklist_lock); 890 891 __cleanup_sighand(oldsighand); 892 } 893 894 BUG_ON(!thread_group_leader(tsk)); 895 return 0; 896 } 897 898 /* 899 * These functions flushes out all traces of the currently running executable 900 * so that a new one can be started 901 */ 902 static void flush_old_files(struct files_struct * files) 903 { 904 long j = -1; 905 struct fdtable *fdt; 906 907 spin_lock(&files->file_lock); 908 for (;;) { 909 unsigned long set, i; 910 911 j++; 912 i = j * __NFDBITS; 913 fdt = files_fdtable(files); 914 if (i >= fdt->max_fds) 915 break; 916 set = fdt->close_on_exec->fds_bits[j]; 917 if (!set) 918 continue; 919 fdt->close_on_exec->fds_bits[j] = 0; 920 spin_unlock(&files->file_lock); 921 for ( ; set ; i++,set >>= 1) { 922 if (set & 1) { 923 sys_close(i); 924 } 925 } 926 spin_lock(&files->file_lock); 927 928 } 929 spin_unlock(&files->file_lock); 930 } 931 932 char *get_task_comm(char *buf, struct task_struct *tsk) 933 { 934 /* buf must be at least sizeof(tsk->comm) in size */ 935 task_lock(tsk); 936 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 937 task_unlock(tsk); 938 return buf; 939 } 940 941 void set_task_comm(struct task_struct *tsk, char *buf) 942 { 943 task_lock(tsk); 944 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 945 task_unlock(tsk); 946 } 947 948 int flush_old_exec(struct linux_binprm * bprm) 949 { 950 char * name; 951 int i, ch, retval; 952 char tcomm[sizeof(current->comm)]; 953 954 /* 955 * Make sure we have a private signal table and that 956 * we are unassociated from the previous thread group. 957 */ 958 retval = de_thread(current); 959 if (retval) 960 goto out; 961 962 set_mm_exe_file(bprm->mm, bprm->file); 963 964 /* 965 * Release all of the old mmap stuff 966 */ 967 retval = exec_mmap(bprm->mm); 968 if (retval) 969 goto out; 970 971 bprm->mm = NULL; /* We're using it now */ 972 973 /* This is the point of no return */ 974 current->sas_ss_sp = current->sas_ss_size = 0; 975 976 if (current->euid == current->uid && current->egid == current->gid) 977 set_dumpable(current->mm, 1); 978 else 979 set_dumpable(current->mm, suid_dumpable); 980 981 name = bprm->filename; 982 983 /* Copies the binary name from after last slash */ 984 for (i=0; (ch = *(name++)) != '\0';) { 985 if (ch == '/') 986 i = 0; /* overwrite what we wrote */ 987 else 988 if (i < (sizeof(tcomm) - 1)) 989 tcomm[i++] = ch; 990 } 991 tcomm[i] = '\0'; 992 set_task_comm(current, tcomm); 993 994 current->flags &= ~PF_RANDOMIZE; 995 flush_thread(); 996 997 /* Set the new mm task size. We have to do that late because it may 998 * depend on TIF_32BIT which is only updated in flush_thread() on 999 * some architectures like powerpc 1000 */ 1001 current->mm->task_size = TASK_SIZE; 1002 1003 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) { 1004 suid_keys(current); 1005 set_dumpable(current->mm, suid_dumpable); 1006 current->pdeath_signal = 0; 1007 } else if (file_permission(bprm->file, MAY_READ) || 1008 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 1009 suid_keys(current); 1010 set_dumpable(current->mm, suid_dumpable); 1011 } 1012 1013 /* An exec changes our domain. We are no longer part of the thread 1014 group */ 1015 1016 current->self_exec_id++; 1017 1018 flush_signal_handlers(current, 0); 1019 flush_old_files(current->files); 1020 1021 return 0; 1022 1023 out: 1024 return retval; 1025 } 1026 1027 EXPORT_SYMBOL(flush_old_exec); 1028 1029 /* 1030 * Fill the binprm structure from the inode. 1031 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1032 */ 1033 int prepare_binprm(struct linux_binprm *bprm) 1034 { 1035 int mode; 1036 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1037 int retval; 1038 1039 mode = inode->i_mode; 1040 if (bprm->file->f_op == NULL) 1041 return -EACCES; 1042 1043 bprm->e_uid = current->euid; 1044 bprm->e_gid = current->egid; 1045 1046 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1047 /* Set-uid? */ 1048 if (mode & S_ISUID) { 1049 current->personality &= ~PER_CLEAR_ON_SETID; 1050 bprm->e_uid = inode->i_uid; 1051 } 1052 1053 /* Set-gid? */ 1054 /* 1055 * If setgid is set but no group execute bit then this 1056 * is a candidate for mandatory locking, not a setgid 1057 * executable. 1058 */ 1059 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1060 current->personality &= ~PER_CLEAR_ON_SETID; 1061 bprm->e_gid = inode->i_gid; 1062 } 1063 } 1064 1065 /* fill in binprm security blob */ 1066 retval = security_bprm_set(bprm); 1067 if (retval) 1068 return retval; 1069 1070 memset(bprm->buf,0,BINPRM_BUF_SIZE); 1071 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 1072 } 1073 1074 EXPORT_SYMBOL(prepare_binprm); 1075 1076 static int unsafe_exec(struct task_struct *p) 1077 { 1078 int unsafe = 0; 1079 if (p->ptrace & PT_PTRACED) { 1080 if (p->ptrace & PT_PTRACE_CAP) 1081 unsafe |= LSM_UNSAFE_PTRACE_CAP; 1082 else 1083 unsafe |= LSM_UNSAFE_PTRACE; 1084 } 1085 if (atomic_read(&p->fs->count) > 1 || 1086 atomic_read(&p->files->count) > 1 || 1087 atomic_read(&p->sighand->count) > 1) 1088 unsafe |= LSM_UNSAFE_SHARE; 1089 1090 return unsafe; 1091 } 1092 1093 void compute_creds(struct linux_binprm *bprm) 1094 { 1095 int unsafe; 1096 1097 if (bprm->e_uid != current->uid) { 1098 suid_keys(current); 1099 current->pdeath_signal = 0; 1100 } 1101 exec_keys(current); 1102 1103 task_lock(current); 1104 unsafe = unsafe_exec(current); 1105 security_bprm_apply_creds(bprm, unsafe); 1106 task_unlock(current); 1107 security_bprm_post_apply_creds(bprm); 1108 } 1109 EXPORT_SYMBOL(compute_creds); 1110 1111 /* 1112 * Arguments are '\0' separated strings found at the location bprm->p 1113 * points to; chop off the first by relocating brpm->p to right after 1114 * the first '\0' encountered. 1115 */ 1116 int remove_arg_zero(struct linux_binprm *bprm) 1117 { 1118 int ret = 0; 1119 unsigned long offset; 1120 char *kaddr; 1121 struct page *page; 1122 1123 if (!bprm->argc) 1124 return 0; 1125 1126 do { 1127 offset = bprm->p & ~PAGE_MASK; 1128 page = get_arg_page(bprm, bprm->p, 0); 1129 if (!page) { 1130 ret = -EFAULT; 1131 goto out; 1132 } 1133 kaddr = kmap_atomic(page, KM_USER0); 1134 1135 for (; offset < PAGE_SIZE && kaddr[offset]; 1136 offset++, bprm->p++) 1137 ; 1138 1139 kunmap_atomic(kaddr, KM_USER0); 1140 put_arg_page(page); 1141 1142 if (offset == PAGE_SIZE) 1143 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1144 } while (offset == PAGE_SIZE); 1145 1146 bprm->p++; 1147 bprm->argc--; 1148 ret = 0; 1149 1150 out: 1151 return ret; 1152 } 1153 EXPORT_SYMBOL(remove_arg_zero); 1154 1155 /* 1156 * cycle the list of binary formats handler, until one recognizes the image 1157 */ 1158 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1159 { 1160 int try,retval; 1161 struct linux_binfmt *fmt; 1162 #ifdef __alpha__ 1163 /* handle /sbin/loader.. */ 1164 { 1165 struct exec * eh = (struct exec *) bprm->buf; 1166 1167 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1168 (eh->fh.f_flags & 0x3000) == 0x3000) 1169 { 1170 struct file * file; 1171 unsigned long loader; 1172 1173 allow_write_access(bprm->file); 1174 fput(bprm->file); 1175 bprm->file = NULL; 1176 1177 loader = bprm->vma->vm_end - sizeof(void *); 1178 1179 file = open_exec("/sbin/loader"); 1180 retval = PTR_ERR(file); 1181 if (IS_ERR(file)) 1182 return retval; 1183 1184 /* Remember if the application is TASO. */ 1185 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1186 1187 bprm->file = file; 1188 bprm->loader = loader; 1189 retval = prepare_binprm(bprm); 1190 if (retval<0) 1191 return retval; 1192 /* should call search_binary_handler recursively here, 1193 but it does not matter */ 1194 } 1195 } 1196 #endif 1197 retval = security_bprm_check(bprm); 1198 if (retval) 1199 return retval; 1200 1201 /* kernel module loader fixup */ 1202 /* so we don't try to load run modprobe in kernel space. */ 1203 set_fs(USER_DS); 1204 1205 retval = audit_bprm(bprm); 1206 if (retval) 1207 return retval; 1208 1209 retval = -ENOENT; 1210 for (try=0; try<2; try++) { 1211 read_lock(&binfmt_lock); 1212 list_for_each_entry(fmt, &formats, lh) { 1213 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1214 if (!fn) 1215 continue; 1216 if (!try_module_get(fmt->module)) 1217 continue; 1218 read_unlock(&binfmt_lock); 1219 retval = fn(bprm, regs); 1220 if (retval >= 0) { 1221 put_binfmt(fmt); 1222 allow_write_access(bprm->file); 1223 if (bprm->file) 1224 fput(bprm->file); 1225 bprm->file = NULL; 1226 current->did_exec = 1; 1227 proc_exec_connector(current); 1228 return retval; 1229 } 1230 read_lock(&binfmt_lock); 1231 put_binfmt(fmt); 1232 if (retval != -ENOEXEC || bprm->mm == NULL) 1233 break; 1234 if (!bprm->file) { 1235 read_unlock(&binfmt_lock); 1236 return retval; 1237 } 1238 } 1239 read_unlock(&binfmt_lock); 1240 if (retval != -ENOEXEC || bprm->mm == NULL) { 1241 break; 1242 #ifdef CONFIG_KMOD 1243 }else{ 1244 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1245 if (printable(bprm->buf[0]) && 1246 printable(bprm->buf[1]) && 1247 printable(bprm->buf[2]) && 1248 printable(bprm->buf[3])) 1249 break; /* -ENOEXEC */ 1250 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1251 #endif 1252 } 1253 } 1254 return retval; 1255 } 1256 1257 EXPORT_SYMBOL(search_binary_handler); 1258 1259 void free_bprm(struct linux_binprm *bprm) 1260 { 1261 free_arg_pages(bprm); 1262 kfree(bprm); 1263 } 1264 1265 /* 1266 * sys_execve() executes a new program. 1267 */ 1268 int do_execve(char * filename, 1269 char __user *__user *argv, 1270 char __user *__user *envp, 1271 struct pt_regs * regs) 1272 { 1273 struct linux_binprm *bprm; 1274 struct file *file; 1275 struct files_struct *displaced; 1276 int retval; 1277 1278 retval = unshare_files(&displaced); 1279 if (retval) 1280 goto out_ret; 1281 1282 retval = -ENOMEM; 1283 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1284 if (!bprm) 1285 goto out_files; 1286 1287 file = open_exec(filename); 1288 retval = PTR_ERR(file); 1289 if (IS_ERR(file)) 1290 goto out_kfree; 1291 1292 sched_exec(); 1293 1294 bprm->file = file; 1295 bprm->filename = filename; 1296 bprm->interp = filename; 1297 1298 retval = bprm_mm_init(bprm); 1299 if (retval) 1300 goto out_file; 1301 1302 bprm->argc = count(argv, MAX_ARG_STRINGS); 1303 if ((retval = bprm->argc) < 0) 1304 goto out_mm; 1305 1306 bprm->envc = count(envp, MAX_ARG_STRINGS); 1307 if ((retval = bprm->envc) < 0) 1308 goto out_mm; 1309 1310 retval = security_bprm_alloc(bprm); 1311 if (retval) 1312 goto out; 1313 1314 retval = prepare_binprm(bprm); 1315 if (retval < 0) 1316 goto out; 1317 1318 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1319 if (retval < 0) 1320 goto out; 1321 1322 bprm->exec = bprm->p; 1323 retval = copy_strings(bprm->envc, envp, bprm); 1324 if (retval < 0) 1325 goto out; 1326 1327 retval = copy_strings(bprm->argc, argv, bprm); 1328 if (retval < 0) 1329 goto out; 1330 1331 retval = search_binary_handler(bprm,regs); 1332 if (retval >= 0) { 1333 /* execve success */ 1334 security_bprm_free(bprm); 1335 acct_update_integrals(current); 1336 free_bprm(bprm); 1337 if (displaced) 1338 put_files_struct(displaced); 1339 return retval; 1340 } 1341 1342 out: 1343 if (bprm->security) 1344 security_bprm_free(bprm); 1345 1346 out_mm: 1347 if (bprm->mm) 1348 mmput (bprm->mm); 1349 1350 out_file: 1351 if (bprm->file) { 1352 allow_write_access(bprm->file); 1353 fput(bprm->file); 1354 } 1355 out_kfree: 1356 free_bprm(bprm); 1357 1358 out_files: 1359 if (displaced) 1360 reset_files_struct(displaced); 1361 out_ret: 1362 return retval; 1363 } 1364 1365 int set_binfmt(struct linux_binfmt *new) 1366 { 1367 struct linux_binfmt *old = current->binfmt; 1368 1369 if (new) { 1370 if (!try_module_get(new->module)) 1371 return -1; 1372 } 1373 current->binfmt = new; 1374 if (old) 1375 module_put(old->module); 1376 return 0; 1377 } 1378 1379 EXPORT_SYMBOL(set_binfmt); 1380 1381 /* format_corename will inspect the pattern parameter, and output a 1382 * name into corename, which must have space for at least 1383 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1384 */ 1385 static int format_corename(char *corename, const char *pattern, long signr) 1386 { 1387 const char *pat_ptr = pattern; 1388 char *out_ptr = corename; 1389 char *const out_end = corename + CORENAME_MAX_SIZE; 1390 int rc; 1391 int pid_in_pattern = 0; 1392 int ispipe = 0; 1393 1394 if (*pattern == '|') 1395 ispipe = 1; 1396 1397 /* Repeat as long as we have more pattern to process and more output 1398 space */ 1399 while (*pat_ptr) { 1400 if (*pat_ptr != '%') { 1401 if (out_ptr == out_end) 1402 goto out; 1403 *out_ptr++ = *pat_ptr++; 1404 } else { 1405 switch (*++pat_ptr) { 1406 case 0: 1407 goto out; 1408 /* Double percent, output one percent */ 1409 case '%': 1410 if (out_ptr == out_end) 1411 goto out; 1412 *out_ptr++ = '%'; 1413 break; 1414 /* pid */ 1415 case 'p': 1416 pid_in_pattern = 1; 1417 rc = snprintf(out_ptr, out_end - out_ptr, 1418 "%d", task_tgid_vnr(current)); 1419 if (rc > out_end - out_ptr) 1420 goto out; 1421 out_ptr += rc; 1422 break; 1423 /* uid */ 1424 case 'u': 1425 rc = snprintf(out_ptr, out_end - out_ptr, 1426 "%d", current->uid); 1427 if (rc > out_end - out_ptr) 1428 goto out; 1429 out_ptr += rc; 1430 break; 1431 /* gid */ 1432 case 'g': 1433 rc = snprintf(out_ptr, out_end - out_ptr, 1434 "%d", current->gid); 1435 if (rc > out_end - out_ptr) 1436 goto out; 1437 out_ptr += rc; 1438 break; 1439 /* signal that caused the coredump */ 1440 case 's': 1441 rc = snprintf(out_ptr, out_end - out_ptr, 1442 "%ld", signr); 1443 if (rc > out_end - out_ptr) 1444 goto out; 1445 out_ptr += rc; 1446 break; 1447 /* UNIX time of coredump */ 1448 case 't': { 1449 struct timeval tv; 1450 do_gettimeofday(&tv); 1451 rc = snprintf(out_ptr, out_end - out_ptr, 1452 "%lu", tv.tv_sec); 1453 if (rc > out_end - out_ptr) 1454 goto out; 1455 out_ptr += rc; 1456 break; 1457 } 1458 /* hostname */ 1459 case 'h': 1460 down_read(&uts_sem); 1461 rc = snprintf(out_ptr, out_end - out_ptr, 1462 "%s", utsname()->nodename); 1463 up_read(&uts_sem); 1464 if (rc > out_end - out_ptr) 1465 goto out; 1466 out_ptr += rc; 1467 break; 1468 /* executable */ 1469 case 'e': 1470 rc = snprintf(out_ptr, out_end - out_ptr, 1471 "%s", current->comm); 1472 if (rc > out_end - out_ptr) 1473 goto out; 1474 out_ptr += rc; 1475 break; 1476 /* core limit size */ 1477 case 'c': 1478 rc = snprintf(out_ptr, out_end - out_ptr, 1479 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); 1480 if (rc > out_end - out_ptr) 1481 goto out; 1482 out_ptr += rc; 1483 break; 1484 default: 1485 break; 1486 } 1487 ++pat_ptr; 1488 } 1489 } 1490 /* Backward compatibility with core_uses_pid: 1491 * 1492 * If core_pattern does not include a %p (as is the default) 1493 * and core_uses_pid is set, then .%pid will be appended to 1494 * the filename. Do not do this for piped commands. */ 1495 if (!ispipe && !pid_in_pattern 1496 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) { 1497 rc = snprintf(out_ptr, out_end - out_ptr, 1498 ".%d", task_tgid_vnr(current)); 1499 if (rc > out_end - out_ptr) 1500 goto out; 1501 out_ptr += rc; 1502 } 1503 out: 1504 *out_ptr = 0; 1505 return ispipe; 1506 } 1507 1508 static void zap_process(struct task_struct *start) 1509 { 1510 struct task_struct *t; 1511 1512 start->signal->flags = SIGNAL_GROUP_EXIT; 1513 start->signal->group_stop_count = 0; 1514 1515 t = start; 1516 do { 1517 if (t != current && t->mm) { 1518 t->mm->core_waiters++; 1519 sigaddset(&t->pending.signal, SIGKILL); 1520 signal_wake_up(t, 1); 1521 } 1522 } while ((t = next_thread(t)) != start); 1523 } 1524 1525 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1526 int exit_code) 1527 { 1528 struct task_struct *g, *p; 1529 unsigned long flags; 1530 int err = -EAGAIN; 1531 1532 spin_lock_irq(&tsk->sighand->siglock); 1533 if (!signal_group_exit(tsk->signal)) { 1534 tsk->signal->group_exit_code = exit_code; 1535 zap_process(tsk); 1536 err = 0; 1537 } 1538 spin_unlock_irq(&tsk->sighand->siglock); 1539 if (err) 1540 return err; 1541 1542 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1) 1543 goto done; 1544 1545 rcu_read_lock(); 1546 for_each_process(g) { 1547 if (g == tsk->group_leader) 1548 continue; 1549 1550 p = g; 1551 do { 1552 if (p->mm) { 1553 if (p->mm == mm) { 1554 /* 1555 * p->sighand can't disappear, but 1556 * may be changed by de_thread() 1557 */ 1558 lock_task_sighand(p, &flags); 1559 zap_process(p); 1560 unlock_task_sighand(p, &flags); 1561 } 1562 break; 1563 } 1564 } while ((p = next_thread(p)) != g); 1565 } 1566 rcu_read_unlock(); 1567 done: 1568 return mm->core_waiters; 1569 } 1570 1571 static int coredump_wait(int exit_code) 1572 { 1573 struct task_struct *tsk = current; 1574 struct mm_struct *mm = tsk->mm; 1575 struct completion startup_done; 1576 struct completion *vfork_done; 1577 int core_waiters; 1578 1579 init_completion(&mm->core_done); 1580 init_completion(&startup_done); 1581 mm->core_startup_done = &startup_done; 1582 1583 core_waiters = zap_threads(tsk, mm, exit_code); 1584 up_write(&mm->mmap_sem); 1585 1586 if (unlikely(core_waiters < 0)) 1587 goto fail; 1588 1589 /* 1590 * Make sure nobody is waiting for us to release the VM, 1591 * otherwise we can deadlock when we wait on each other 1592 */ 1593 vfork_done = tsk->vfork_done; 1594 if (vfork_done) { 1595 tsk->vfork_done = NULL; 1596 complete(vfork_done); 1597 } 1598 1599 if (core_waiters) 1600 wait_for_completion(&startup_done); 1601 fail: 1602 BUG_ON(mm->core_waiters); 1603 return core_waiters; 1604 } 1605 1606 /* 1607 * set_dumpable converts traditional three-value dumpable to two flags and 1608 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1609 * these bits are not changed atomically. So get_dumpable can observe the 1610 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1611 * return either old dumpable or new one by paying attention to the order of 1612 * modifying the bits. 1613 * 1614 * dumpable | mm->flags (binary) 1615 * old new | initial interim final 1616 * ---------+----------------------- 1617 * 0 1 | 00 01 01 1618 * 0 2 | 00 10(*) 11 1619 * 1 0 | 01 00 00 1620 * 1 2 | 01 11 11 1621 * 2 0 | 11 10(*) 00 1622 * 2 1 | 11 11 01 1623 * 1624 * (*) get_dumpable regards interim value of 10 as 11. 1625 */ 1626 void set_dumpable(struct mm_struct *mm, int value) 1627 { 1628 switch (value) { 1629 case 0: 1630 clear_bit(MMF_DUMPABLE, &mm->flags); 1631 smp_wmb(); 1632 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1633 break; 1634 case 1: 1635 set_bit(MMF_DUMPABLE, &mm->flags); 1636 smp_wmb(); 1637 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1638 break; 1639 case 2: 1640 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1641 smp_wmb(); 1642 set_bit(MMF_DUMPABLE, &mm->flags); 1643 break; 1644 } 1645 } 1646 1647 int get_dumpable(struct mm_struct *mm) 1648 { 1649 int ret; 1650 1651 ret = mm->flags & 0x3; 1652 return (ret >= 2) ? 2 : ret; 1653 } 1654 1655 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1656 { 1657 char corename[CORENAME_MAX_SIZE + 1]; 1658 struct mm_struct *mm = current->mm; 1659 struct linux_binfmt * binfmt; 1660 struct inode * inode; 1661 struct file * file; 1662 int retval = 0; 1663 int fsuid = current->fsuid; 1664 int flag = 0; 1665 int ispipe = 0; 1666 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; 1667 char **helper_argv = NULL; 1668 int helper_argc = 0; 1669 char *delimit; 1670 1671 audit_core_dumps(signr); 1672 1673 binfmt = current->binfmt; 1674 if (!binfmt || !binfmt->core_dump) 1675 goto fail; 1676 down_write(&mm->mmap_sem); 1677 /* 1678 * If another thread got here first, or we are not dumpable, bail out. 1679 */ 1680 if (mm->core_waiters || !get_dumpable(mm)) { 1681 up_write(&mm->mmap_sem); 1682 goto fail; 1683 } 1684 1685 /* 1686 * We cannot trust fsuid as being the "true" uid of the 1687 * process nor do we know its entire history. We only know it 1688 * was tainted so we dump it as root in mode 2. 1689 */ 1690 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1691 flag = O_EXCL; /* Stop rewrite attacks */ 1692 current->fsuid = 0; /* Dump root private */ 1693 } 1694 1695 retval = coredump_wait(exit_code); 1696 if (retval < 0) 1697 goto fail; 1698 1699 /* 1700 * Clear any false indication of pending signals that might 1701 * be seen by the filesystem code called to write the core file. 1702 */ 1703 clear_thread_flag(TIF_SIGPENDING); 1704 1705 /* 1706 * lock_kernel() because format_corename() is controlled by sysctl, which 1707 * uses lock_kernel() 1708 */ 1709 lock_kernel(); 1710 ispipe = format_corename(corename, core_pattern, signr); 1711 unlock_kernel(); 1712 /* 1713 * Don't bother to check the RLIMIT_CORE value if core_pattern points 1714 * to a pipe. Since we're not writing directly to the filesystem 1715 * RLIMIT_CORE doesn't really apply, as no actual core file will be 1716 * created unless the pipe reader choses to write out the core file 1717 * at which point file size limits and permissions will be imposed 1718 * as it does with any other process 1719 */ 1720 if ((!ispipe) && (core_limit < binfmt->min_coredump)) 1721 goto fail_unlock; 1722 1723 if (ispipe) { 1724 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); 1725 /* Terminate the string before the first option */ 1726 delimit = strchr(corename, ' '); 1727 if (delimit) 1728 *delimit = '\0'; 1729 delimit = strrchr(helper_argv[0], '/'); 1730 if (delimit) 1731 delimit++; 1732 else 1733 delimit = helper_argv[0]; 1734 if (!strcmp(delimit, current->comm)) { 1735 printk(KERN_NOTICE "Recursive core dump detected, " 1736 "aborting\n"); 1737 goto fail_unlock; 1738 } 1739 1740 core_limit = RLIM_INFINITY; 1741 1742 /* SIGPIPE can happen, but it's just never processed */ 1743 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL, 1744 &file)) { 1745 printk(KERN_INFO "Core dump to %s pipe failed\n", 1746 corename); 1747 goto fail_unlock; 1748 } 1749 } else 1750 file = filp_open(corename, 1751 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1752 0600); 1753 if (IS_ERR(file)) 1754 goto fail_unlock; 1755 inode = file->f_path.dentry->d_inode; 1756 if (inode->i_nlink > 1) 1757 goto close_fail; /* multiple links - don't dump */ 1758 if (!ispipe && d_unhashed(file->f_path.dentry)) 1759 goto close_fail; 1760 1761 /* AK: actually i see no reason to not allow this for named pipes etc., 1762 but keep the previous behaviour for now. */ 1763 if (!ispipe && !S_ISREG(inode->i_mode)) 1764 goto close_fail; 1765 /* 1766 * Dont allow local users get cute and trick others to coredump 1767 * into their pre-created files: 1768 */ 1769 if (inode->i_uid != current->fsuid) 1770 goto close_fail; 1771 if (!file->f_op) 1772 goto close_fail; 1773 if (!file->f_op->write) 1774 goto close_fail; 1775 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1776 goto close_fail; 1777 1778 retval = binfmt->core_dump(signr, regs, file, core_limit); 1779 1780 if (retval) 1781 current->signal->group_exit_code |= 0x80; 1782 close_fail: 1783 filp_close(file, NULL); 1784 fail_unlock: 1785 if (helper_argv) 1786 argv_free(helper_argv); 1787 1788 current->fsuid = fsuid; 1789 complete_all(&mm->core_done); 1790 fail: 1791 return retval; 1792 } 1793