xref: /openbmc/linux/fs/exec.c (revision 4d2804b7)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69 
70 #include <trace/events/task.h>
71 #include "internal.h"
72 
73 #include <trace/events/sched.h>
74 
75 int suid_dumpable = 0;
76 
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79 
80 void __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82 	BUG_ON(!fmt);
83 	if (WARN_ON(!fmt->load_binary))
84 		return;
85 	write_lock(&binfmt_lock);
86 	insert ? list_add(&fmt->lh, &formats) :
87 		 list_add_tail(&fmt->lh, &formats);
88 	write_unlock(&binfmt_lock);
89 }
90 
91 EXPORT_SYMBOL(__register_binfmt);
92 
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 	write_lock(&binfmt_lock);
96 	list_del(&fmt->lh);
97 	write_unlock(&binfmt_lock);
98 }
99 
100 EXPORT_SYMBOL(unregister_binfmt);
101 
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104 	module_put(fmt->module);
105 }
106 
107 bool path_noexec(const struct path *path)
108 {
109 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
111 }
112 
113 #ifdef CONFIG_USELIB
114 /*
115  * Note that a shared library must be both readable and executable due to
116  * security reasons.
117  *
118  * Also note that we take the address to load from from the file itself.
119  */
120 SYSCALL_DEFINE1(uselib, const char __user *, library)
121 {
122 	struct linux_binfmt *fmt;
123 	struct file *file;
124 	struct filename *tmp = getname(library);
125 	int error = PTR_ERR(tmp);
126 	static const struct open_flags uselib_flags = {
127 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128 		.acc_mode = MAY_READ | MAY_EXEC,
129 		.intent = LOOKUP_OPEN,
130 		.lookup_flags = LOOKUP_FOLLOW,
131 	};
132 
133 	if (IS_ERR(tmp))
134 		goto out;
135 
136 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137 	putname(tmp);
138 	error = PTR_ERR(file);
139 	if (IS_ERR(file))
140 		goto out;
141 
142 	error = -EINVAL;
143 	if (!S_ISREG(file_inode(file)->i_mode))
144 		goto exit;
145 
146 	error = -EACCES;
147 	if (path_noexec(&file->f_path))
148 		goto exit;
149 
150 	fsnotify_open(file);
151 
152 	error = -ENOEXEC;
153 
154 	read_lock(&binfmt_lock);
155 	list_for_each_entry(fmt, &formats, lh) {
156 		if (!fmt->load_shlib)
157 			continue;
158 		if (!try_module_get(fmt->module))
159 			continue;
160 		read_unlock(&binfmt_lock);
161 		error = fmt->load_shlib(file);
162 		read_lock(&binfmt_lock);
163 		put_binfmt(fmt);
164 		if (error != -ENOEXEC)
165 			break;
166 	}
167 	read_unlock(&binfmt_lock);
168 exit:
169 	fput(file);
170 out:
171   	return error;
172 }
173 #endif /* #ifdef CONFIG_USELIB */
174 
175 #ifdef CONFIG_MMU
176 /*
177  * The nascent bprm->mm is not visible until exec_mmap() but it can
178  * use a lot of memory, account these pages in current->mm temporary
179  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180  * change the counter back via acct_arg_size(0).
181  */
182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
183 {
184 	struct mm_struct *mm = current->mm;
185 	long diff = (long)(pages - bprm->vma_pages);
186 
187 	if (!mm || !diff)
188 		return;
189 
190 	bprm->vma_pages = pages;
191 	add_mm_counter(mm, MM_ANONPAGES, diff);
192 }
193 
194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195 		int write)
196 {
197 	struct page *page;
198 	int ret;
199 	unsigned int gup_flags = FOLL_FORCE;
200 
201 #ifdef CONFIG_STACK_GROWSUP
202 	if (write) {
203 		ret = expand_downwards(bprm->vma, pos);
204 		if (ret < 0)
205 			return NULL;
206 	}
207 #endif
208 
209 	if (write)
210 		gup_flags |= FOLL_WRITE;
211 
212 	/*
213 	 * We are doing an exec().  'current' is the process
214 	 * doing the exec and bprm->mm is the new process's mm.
215 	 */
216 	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217 			&page, NULL, NULL);
218 	if (ret <= 0)
219 		return NULL;
220 
221 	if (write) {
222 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
223 		unsigned long ptr_size;
224 		struct rlimit *rlim;
225 
226 		/*
227 		 * Since the stack will hold pointers to the strings, we
228 		 * must account for them as well.
229 		 *
230 		 * The size calculation is the entire vma while each arg page is
231 		 * built, so each time we get here it's calculating how far it
232 		 * is currently (rather than each call being just the newly
233 		 * added size from the arg page).  As a result, we need to
234 		 * always add the entire size of the pointers, so that on the
235 		 * last call to get_arg_page() we'll actually have the entire
236 		 * correct size.
237 		 */
238 		ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
239 		if (ptr_size > ULONG_MAX - size)
240 			goto fail;
241 		size += ptr_size;
242 
243 		acct_arg_size(bprm, size / PAGE_SIZE);
244 
245 		/*
246 		 * We've historically supported up to 32 pages (ARG_MAX)
247 		 * of argument strings even with small stacks
248 		 */
249 		if (size <= ARG_MAX)
250 			return page;
251 
252 		/*
253 		 * Limit to 1/4-th the stack size for the argv+env strings.
254 		 * This ensures that:
255 		 *  - the remaining binfmt code will not run out of stack space,
256 		 *  - the program will have a reasonable amount of stack left
257 		 *    to work from.
258 		 */
259 		rlim = current->signal->rlim;
260 		if (size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4)
261 			goto fail;
262 	}
263 
264 	return page;
265 
266 fail:
267 	put_page(page);
268 	return NULL;
269 }
270 
271 static void put_arg_page(struct page *page)
272 {
273 	put_page(page);
274 }
275 
276 static void free_arg_pages(struct linux_binprm *bprm)
277 {
278 }
279 
280 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
281 		struct page *page)
282 {
283 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
284 }
285 
286 static int __bprm_mm_init(struct linux_binprm *bprm)
287 {
288 	int err;
289 	struct vm_area_struct *vma = NULL;
290 	struct mm_struct *mm = bprm->mm;
291 
292 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
293 	if (!vma)
294 		return -ENOMEM;
295 
296 	if (down_write_killable(&mm->mmap_sem)) {
297 		err = -EINTR;
298 		goto err_free;
299 	}
300 	vma->vm_mm = mm;
301 
302 	/*
303 	 * Place the stack at the largest stack address the architecture
304 	 * supports. Later, we'll move this to an appropriate place. We don't
305 	 * use STACK_TOP because that can depend on attributes which aren't
306 	 * configured yet.
307 	 */
308 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
309 	vma->vm_end = STACK_TOP_MAX;
310 	vma->vm_start = vma->vm_end - PAGE_SIZE;
311 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
312 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
313 	INIT_LIST_HEAD(&vma->anon_vma_chain);
314 
315 	err = insert_vm_struct(mm, vma);
316 	if (err)
317 		goto err;
318 
319 	mm->stack_vm = mm->total_vm = 1;
320 	arch_bprm_mm_init(mm, vma);
321 	up_write(&mm->mmap_sem);
322 	bprm->p = vma->vm_end - sizeof(void *);
323 	return 0;
324 err:
325 	up_write(&mm->mmap_sem);
326 err_free:
327 	bprm->vma = NULL;
328 	kmem_cache_free(vm_area_cachep, vma);
329 	return err;
330 }
331 
332 static bool valid_arg_len(struct linux_binprm *bprm, long len)
333 {
334 	return len <= MAX_ARG_STRLEN;
335 }
336 
337 #else
338 
339 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
340 {
341 }
342 
343 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
344 		int write)
345 {
346 	struct page *page;
347 
348 	page = bprm->page[pos / PAGE_SIZE];
349 	if (!page && write) {
350 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
351 		if (!page)
352 			return NULL;
353 		bprm->page[pos / PAGE_SIZE] = page;
354 	}
355 
356 	return page;
357 }
358 
359 static void put_arg_page(struct page *page)
360 {
361 }
362 
363 static void free_arg_page(struct linux_binprm *bprm, int i)
364 {
365 	if (bprm->page[i]) {
366 		__free_page(bprm->page[i]);
367 		bprm->page[i] = NULL;
368 	}
369 }
370 
371 static void free_arg_pages(struct linux_binprm *bprm)
372 {
373 	int i;
374 
375 	for (i = 0; i < MAX_ARG_PAGES; i++)
376 		free_arg_page(bprm, i);
377 }
378 
379 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
380 		struct page *page)
381 {
382 }
383 
384 static int __bprm_mm_init(struct linux_binprm *bprm)
385 {
386 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
387 	return 0;
388 }
389 
390 static bool valid_arg_len(struct linux_binprm *bprm, long len)
391 {
392 	return len <= bprm->p;
393 }
394 
395 #endif /* CONFIG_MMU */
396 
397 /*
398  * Create a new mm_struct and populate it with a temporary stack
399  * vm_area_struct.  We don't have enough context at this point to set the stack
400  * flags, permissions, and offset, so we use temporary values.  We'll update
401  * them later in setup_arg_pages().
402  */
403 static int bprm_mm_init(struct linux_binprm *bprm)
404 {
405 	int err;
406 	struct mm_struct *mm = NULL;
407 
408 	bprm->mm = mm = mm_alloc();
409 	err = -ENOMEM;
410 	if (!mm)
411 		goto err;
412 
413 	err = __bprm_mm_init(bprm);
414 	if (err)
415 		goto err;
416 
417 	return 0;
418 
419 err:
420 	if (mm) {
421 		bprm->mm = NULL;
422 		mmdrop(mm);
423 	}
424 
425 	return err;
426 }
427 
428 struct user_arg_ptr {
429 #ifdef CONFIG_COMPAT
430 	bool is_compat;
431 #endif
432 	union {
433 		const char __user *const __user *native;
434 #ifdef CONFIG_COMPAT
435 		const compat_uptr_t __user *compat;
436 #endif
437 	} ptr;
438 };
439 
440 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
441 {
442 	const char __user *native;
443 
444 #ifdef CONFIG_COMPAT
445 	if (unlikely(argv.is_compat)) {
446 		compat_uptr_t compat;
447 
448 		if (get_user(compat, argv.ptr.compat + nr))
449 			return ERR_PTR(-EFAULT);
450 
451 		return compat_ptr(compat);
452 	}
453 #endif
454 
455 	if (get_user(native, argv.ptr.native + nr))
456 		return ERR_PTR(-EFAULT);
457 
458 	return native;
459 }
460 
461 /*
462  * count() counts the number of strings in array ARGV.
463  */
464 static int count(struct user_arg_ptr argv, int max)
465 {
466 	int i = 0;
467 
468 	if (argv.ptr.native != NULL) {
469 		for (;;) {
470 			const char __user *p = get_user_arg_ptr(argv, i);
471 
472 			if (!p)
473 				break;
474 
475 			if (IS_ERR(p))
476 				return -EFAULT;
477 
478 			if (i >= max)
479 				return -E2BIG;
480 			++i;
481 
482 			if (fatal_signal_pending(current))
483 				return -ERESTARTNOHAND;
484 			cond_resched();
485 		}
486 	}
487 	return i;
488 }
489 
490 /*
491  * 'copy_strings()' copies argument/environment strings from the old
492  * processes's memory to the new process's stack.  The call to get_user_pages()
493  * ensures the destination page is created and not swapped out.
494  */
495 static int copy_strings(int argc, struct user_arg_ptr argv,
496 			struct linux_binprm *bprm)
497 {
498 	struct page *kmapped_page = NULL;
499 	char *kaddr = NULL;
500 	unsigned long kpos = 0;
501 	int ret;
502 
503 	while (argc-- > 0) {
504 		const char __user *str;
505 		int len;
506 		unsigned long pos;
507 
508 		ret = -EFAULT;
509 		str = get_user_arg_ptr(argv, argc);
510 		if (IS_ERR(str))
511 			goto out;
512 
513 		len = strnlen_user(str, MAX_ARG_STRLEN);
514 		if (!len)
515 			goto out;
516 
517 		ret = -E2BIG;
518 		if (!valid_arg_len(bprm, len))
519 			goto out;
520 
521 		/* We're going to work our way backwords. */
522 		pos = bprm->p;
523 		str += len;
524 		bprm->p -= len;
525 
526 		while (len > 0) {
527 			int offset, bytes_to_copy;
528 
529 			if (fatal_signal_pending(current)) {
530 				ret = -ERESTARTNOHAND;
531 				goto out;
532 			}
533 			cond_resched();
534 
535 			offset = pos % PAGE_SIZE;
536 			if (offset == 0)
537 				offset = PAGE_SIZE;
538 
539 			bytes_to_copy = offset;
540 			if (bytes_to_copy > len)
541 				bytes_to_copy = len;
542 
543 			offset -= bytes_to_copy;
544 			pos -= bytes_to_copy;
545 			str -= bytes_to_copy;
546 			len -= bytes_to_copy;
547 
548 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
549 				struct page *page;
550 
551 				page = get_arg_page(bprm, pos, 1);
552 				if (!page) {
553 					ret = -E2BIG;
554 					goto out;
555 				}
556 
557 				if (kmapped_page) {
558 					flush_kernel_dcache_page(kmapped_page);
559 					kunmap(kmapped_page);
560 					put_arg_page(kmapped_page);
561 				}
562 				kmapped_page = page;
563 				kaddr = kmap(kmapped_page);
564 				kpos = pos & PAGE_MASK;
565 				flush_arg_page(bprm, kpos, kmapped_page);
566 			}
567 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
568 				ret = -EFAULT;
569 				goto out;
570 			}
571 		}
572 	}
573 	ret = 0;
574 out:
575 	if (kmapped_page) {
576 		flush_kernel_dcache_page(kmapped_page);
577 		kunmap(kmapped_page);
578 		put_arg_page(kmapped_page);
579 	}
580 	return ret;
581 }
582 
583 /*
584  * Like copy_strings, but get argv and its values from kernel memory.
585  */
586 int copy_strings_kernel(int argc, const char *const *__argv,
587 			struct linux_binprm *bprm)
588 {
589 	int r;
590 	mm_segment_t oldfs = get_fs();
591 	struct user_arg_ptr argv = {
592 		.ptr.native = (const char __user *const  __user *)__argv,
593 	};
594 
595 	set_fs(KERNEL_DS);
596 	r = copy_strings(argc, argv, bprm);
597 	set_fs(oldfs);
598 
599 	return r;
600 }
601 EXPORT_SYMBOL(copy_strings_kernel);
602 
603 #ifdef CONFIG_MMU
604 
605 /*
606  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
607  * the binfmt code determines where the new stack should reside, we shift it to
608  * its final location.  The process proceeds as follows:
609  *
610  * 1) Use shift to calculate the new vma endpoints.
611  * 2) Extend vma to cover both the old and new ranges.  This ensures the
612  *    arguments passed to subsequent functions are consistent.
613  * 3) Move vma's page tables to the new range.
614  * 4) Free up any cleared pgd range.
615  * 5) Shrink the vma to cover only the new range.
616  */
617 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
618 {
619 	struct mm_struct *mm = vma->vm_mm;
620 	unsigned long old_start = vma->vm_start;
621 	unsigned long old_end = vma->vm_end;
622 	unsigned long length = old_end - old_start;
623 	unsigned long new_start = old_start - shift;
624 	unsigned long new_end = old_end - shift;
625 	struct mmu_gather tlb;
626 
627 	BUG_ON(new_start > new_end);
628 
629 	/*
630 	 * ensure there are no vmas between where we want to go
631 	 * and where we are
632 	 */
633 	if (vma != find_vma(mm, new_start))
634 		return -EFAULT;
635 
636 	/*
637 	 * cover the whole range: [new_start, old_end)
638 	 */
639 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
640 		return -ENOMEM;
641 
642 	/*
643 	 * move the page tables downwards, on failure we rely on
644 	 * process cleanup to remove whatever mess we made.
645 	 */
646 	if (length != move_page_tables(vma, old_start,
647 				       vma, new_start, length, false))
648 		return -ENOMEM;
649 
650 	lru_add_drain();
651 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
652 	if (new_end > old_start) {
653 		/*
654 		 * when the old and new regions overlap clear from new_end.
655 		 */
656 		free_pgd_range(&tlb, new_end, old_end, new_end,
657 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
658 	} else {
659 		/*
660 		 * otherwise, clean from old_start; this is done to not touch
661 		 * the address space in [new_end, old_start) some architectures
662 		 * have constraints on va-space that make this illegal (IA64) -
663 		 * for the others its just a little faster.
664 		 */
665 		free_pgd_range(&tlb, old_start, old_end, new_end,
666 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
667 	}
668 	tlb_finish_mmu(&tlb, old_start, old_end);
669 
670 	/*
671 	 * Shrink the vma to just the new range.  Always succeeds.
672 	 */
673 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
674 
675 	return 0;
676 }
677 
678 /*
679  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
680  * the stack is optionally relocated, and some extra space is added.
681  */
682 int setup_arg_pages(struct linux_binprm *bprm,
683 		    unsigned long stack_top,
684 		    int executable_stack)
685 {
686 	unsigned long ret;
687 	unsigned long stack_shift;
688 	struct mm_struct *mm = current->mm;
689 	struct vm_area_struct *vma = bprm->vma;
690 	struct vm_area_struct *prev = NULL;
691 	unsigned long vm_flags;
692 	unsigned long stack_base;
693 	unsigned long stack_size;
694 	unsigned long stack_expand;
695 	unsigned long rlim_stack;
696 
697 #ifdef CONFIG_STACK_GROWSUP
698 	/* Limit stack size */
699 	stack_base = rlimit_max(RLIMIT_STACK);
700 	if (stack_base > STACK_SIZE_MAX)
701 		stack_base = STACK_SIZE_MAX;
702 
703 	/* Add space for stack randomization. */
704 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
705 
706 	/* Make sure we didn't let the argument array grow too large. */
707 	if (vma->vm_end - vma->vm_start > stack_base)
708 		return -ENOMEM;
709 
710 	stack_base = PAGE_ALIGN(stack_top - stack_base);
711 
712 	stack_shift = vma->vm_start - stack_base;
713 	mm->arg_start = bprm->p - stack_shift;
714 	bprm->p = vma->vm_end - stack_shift;
715 #else
716 	stack_top = arch_align_stack(stack_top);
717 	stack_top = PAGE_ALIGN(stack_top);
718 
719 	if (unlikely(stack_top < mmap_min_addr) ||
720 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
721 		return -ENOMEM;
722 
723 	stack_shift = vma->vm_end - stack_top;
724 
725 	bprm->p -= stack_shift;
726 	mm->arg_start = bprm->p;
727 #endif
728 
729 	if (bprm->loader)
730 		bprm->loader -= stack_shift;
731 	bprm->exec -= stack_shift;
732 
733 	if (down_write_killable(&mm->mmap_sem))
734 		return -EINTR;
735 
736 	vm_flags = VM_STACK_FLAGS;
737 
738 	/*
739 	 * Adjust stack execute permissions; explicitly enable for
740 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
741 	 * (arch default) otherwise.
742 	 */
743 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
744 		vm_flags |= VM_EXEC;
745 	else if (executable_stack == EXSTACK_DISABLE_X)
746 		vm_flags &= ~VM_EXEC;
747 	vm_flags |= mm->def_flags;
748 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
749 
750 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
751 			vm_flags);
752 	if (ret)
753 		goto out_unlock;
754 	BUG_ON(prev != vma);
755 
756 	/* Move stack pages down in memory. */
757 	if (stack_shift) {
758 		ret = shift_arg_pages(vma, stack_shift);
759 		if (ret)
760 			goto out_unlock;
761 	}
762 
763 	/* mprotect_fixup is overkill to remove the temporary stack flags */
764 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
765 
766 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
767 	stack_size = vma->vm_end - vma->vm_start;
768 	/*
769 	 * Align this down to a page boundary as expand_stack
770 	 * will align it up.
771 	 */
772 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
773 #ifdef CONFIG_STACK_GROWSUP
774 	if (stack_size + stack_expand > rlim_stack)
775 		stack_base = vma->vm_start + rlim_stack;
776 	else
777 		stack_base = vma->vm_end + stack_expand;
778 #else
779 	if (stack_size + stack_expand > rlim_stack)
780 		stack_base = vma->vm_end - rlim_stack;
781 	else
782 		stack_base = vma->vm_start - stack_expand;
783 #endif
784 	current->mm->start_stack = bprm->p;
785 	ret = expand_stack(vma, stack_base);
786 	if (ret)
787 		ret = -EFAULT;
788 
789 out_unlock:
790 	up_write(&mm->mmap_sem);
791 	return ret;
792 }
793 EXPORT_SYMBOL(setup_arg_pages);
794 
795 #else
796 
797 /*
798  * Transfer the program arguments and environment from the holding pages
799  * onto the stack. The provided stack pointer is adjusted accordingly.
800  */
801 int transfer_args_to_stack(struct linux_binprm *bprm,
802 			   unsigned long *sp_location)
803 {
804 	unsigned long index, stop, sp;
805 	int ret = 0;
806 
807 	stop = bprm->p >> PAGE_SHIFT;
808 	sp = *sp_location;
809 
810 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
811 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
812 		char *src = kmap(bprm->page[index]) + offset;
813 		sp -= PAGE_SIZE - offset;
814 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
815 			ret = -EFAULT;
816 		kunmap(bprm->page[index]);
817 		if (ret)
818 			goto out;
819 	}
820 
821 	*sp_location = sp;
822 
823 out:
824 	return ret;
825 }
826 EXPORT_SYMBOL(transfer_args_to_stack);
827 
828 #endif /* CONFIG_MMU */
829 
830 static struct file *do_open_execat(int fd, struct filename *name, int flags)
831 {
832 	struct file *file;
833 	int err;
834 	struct open_flags open_exec_flags = {
835 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
836 		.acc_mode = MAY_EXEC,
837 		.intent = LOOKUP_OPEN,
838 		.lookup_flags = LOOKUP_FOLLOW,
839 	};
840 
841 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
842 		return ERR_PTR(-EINVAL);
843 	if (flags & AT_SYMLINK_NOFOLLOW)
844 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
845 	if (flags & AT_EMPTY_PATH)
846 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
847 
848 	file = do_filp_open(fd, name, &open_exec_flags);
849 	if (IS_ERR(file))
850 		goto out;
851 
852 	err = -EACCES;
853 	if (!S_ISREG(file_inode(file)->i_mode))
854 		goto exit;
855 
856 	if (path_noexec(&file->f_path))
857 		goto exit;
858 
859 	err = deny_write_access(file);
860 	if (err)
861 		goto exit;
862 
863 	if (name->name[0] != '\0')
864 		fsnotify_open(file);
865 
866 out:
867 	return file;
868 
869 exit:
870 	fput(file);
871 	return ERR_PTR(err);
872 }
873 
874 struct file *open_exec(const char *name)
875 {
876 	struct filename *filename = getname_kernel(name);
877 	struct file *f = ERR_CAST(filename);
878 
879 	if (!IS_ERR(filename)) {
880 		f = do_open_execat(AT_FDCWD, filename, 0);
881 		putname(filename);
882 	}
883 	return f;
884 }
885 EXPORT_SYMBOL(open_exec);
886 
887 int kernel_read(struct file *file, loff_t offset,
888 		char *addr, unsigned long count)
889 {
890 	mm_segment_t old_fs;
891 	loff_t pos = offset;
892 	int result;
893 
894 	old_fs = get_fs();
895 	set_fs(get_ds());
896 	/* The cast to a user pointer is valid due to the set_fs() */
897 	result = vfs_read(file, (void __user *)addr, count, &pos);
898 	set_fs(old_fs);
899 	return result;
900 }
901 
902 EXPORT_SYMBOL(kernel_read);
903 
904 int kernel_read_file(struct file *file, void **buf, loff_t *size,
905 		     loff_t max_size, enum kernel_read_file_id id)
906 {
907 	loff_t i_size, pos;
908 	ssize_t bytes = 0;
909 	int ret;
910 
911 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
912 		return -EINVAL;
913 
914 	ret = security_kernel_read_file(file, id);
915 	if (ret)
916 		return ret;
917 
918 	ret = deny_write_access(file);
919 	if (ret)
920 		return ret;
921 
922 	i_size = i_size_read(file_inode(file));
923 	if (max_size > 0 && i_size > max_size) {
924 		ret = -EFBIG;
925 		goto out;
926 	}
927 	if (i_size <= 0) {
928 		ret = -EINVAL;
929 		goto out;
930 	}
931 
932 	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
933 		*buf = vmalloc(i_size);
934 	if (!*buf) {
935 		ret = -ENOMEM;
936 		goto out;
937 	}
938 
939 	pos = 0;
940 	while (pos < i_size) {
941 		bytes = kernel_read(file, pos, (char *)(*buf) + pos,
942 				    i_size - pos);
943 		if (bytes < 0) {
944 			ret = bytes;
945 			goto out;
946 		}
947 
948 		if (bytes == 0)
949 			break;
950 		pos += bytes;
951 	}
952 
953 	if (pos != i_size) {
954 		ret = -EIO;
955 		goto out_free;
956 	}
957 
958 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
959 	if (!ret)
960 		*size = pos;
961 
962 out_free:
963 	if (ret < 0) {
964 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
965 			vfree(*buf);
966 			*buf = NULL;
967 		}
968 	}
969 
970 out:
971 	allow_write_access(file);
972 	return ret;
973 }
974 EXPORT_SYMBOL_GPL(kernel_read_file);
975 
976 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
977 			       loff_t max_size, enum kernel_read_file_id id)
978 {
979 	struct file *file;
980 	int ret;
981 
982 	if (!path || !*path)
983 		return -EINVAL;
984 
985 	file = filp_open(path, O_RDONLY, 0);
986 	if (IS_ERR(file))
987 		return PTR_ERR(file);
988 
989 	ret = kernel_read_file(file, buf, size, max_size, id);
990 	fput(file);
991 	return ret;
992 }
993 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
994 
995 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
996 			     enum kernel_read_file_id id)
997 {
998 	struct fd f = fdget(fd);
999 	int ret = -EBADF;
1000 
1001 	if (!f.file)
1002 		goto out;
1003 
1004 	ret = kernel_read_file(f.file, buf, size, max_size, id);
1005 out:
1006 	fdput(f);
1007 	return ret;
1008 }
1009 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1010 
1011 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1012 {
1013 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1014 	if (res > 0)
1015 		flush_icache_range(addr, addr + len);
1016 	return res;
1017 }
1018 EXPORT_SYMBOL(read_code);
1019 
1020 static int exec_mmap(struct mm_struct *mm)
1021 {
1022 	struct task_struct *tsk;
1023 	struct mm_struct *old_mm, *active_mm;
1024 
1025 	/* Notify parent that we're no longer interested in the old VM */
1026 	tsk = current;
1027 	old_mm = current->mm;
1028 	mm_release(tsk, old_mm);
1029 
1030 	if (old_mm) {
1031 		sync_mm_rss(old_mm);
1032 		/*
1033 		 * Make sure that if there is a core dump in progress
1034 		 * for the old mm, we get out and die instead of going
1035 		 * through with the exec.  We must hold mmap_sem around
1036 		 * checking core_state and changing tsk->mm.
1037 		 */
1038 		down_read(&old_mm->mmap_sem);
1039 		if (unlikely(old_mm->core_state)) {
1040 			up_read(&old_mm->mmap_sem);
1041 			return -EINTR;
1042 		}
1043 	}
1044 	task_lock(tsk);
1045 	active_mm = tsk->active_mm;
1046 	tsk->mm = mm;
1047 	tsk->active_mm = mm;
1048 	activate_mm(active_mm, mm);
1049 	tsk->mm->vmacache_seqnum = 0;
1050 	vmacache_flush(tsk);
1051 	task_unlock(tsk);
1052 	if (old_mm) {
1053 		up_read(&old_mm->mmap_sem);
1054 		BUG_ON(active_mm != old_mm);
1055 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1056 		mm_update_next_owner(old_mm);
1057 		mmput(old_mm);
1058 		return 0;
1059 	}
1060 	mmdrop(active_mm);
1061 	return 0;
1062 }
1063 
1064 /*
1065  * This function makes sure the current process has its own signal table,
1066  * so that flush_signal_handlers can later reset the handlers without
1067  * disturbing other processes.  (Other processes might share the signal
1068  * table via the CLONE_SIGHAND option to clone().)
1069  */
1070 static int de_thread(struct task_struct *tsk)
1071 {
1072 	struct signal_struct *sig = tsk->signal;
1073 	struct sighand_struct *oldsighand = tsk->sighand;
1074 	spinlock_t *lock = &oldsighand->siglock;
1075 
1076 	if (thread_group_empty(tsk))
1077 		goto no_thread_group;
1078 
1079 	/*
1080 	 * Kill all other threads in the thread group.
1081 	 */
1082 	spin_lock_irq(lock);
1083 	if (signal_group_exit(sig)) {
1084 		/*
1085 		 * Another group action in progress, just
1086 		 * return so that the signal is processed.
1087 		 */
1088 		spin_unlock_irq(lock);
1089 		return -EAGAIN;
1090 	}
1091 
1092 	sig->group_exit_task = tsk;
1093 	sig->notify_count = zap_other_threads(tsk);
1094 	if (!thread_group_leader(tsk))
1095 		sig->notify_count--;
1096 
1097 	while (sig->notify_count) {
1098 		__set_current_state(TASK_KILLABLE);
1099 		spin_unlock_irq(lock);
1100 		schedule();
1101 		if (unlikely(__fatal_signal_pending(tsk)))
1102 			goto killed;
1103 		spin_lock_irq(lock);
1104 	}
1105 	spin_unlock_irq(lock);
1106 
1107 	/*
1108 	 * At this point all other threads have exited, all we have to
1109 	 * do is to wait for the thread group leader to become inactive,
1110 	 * and to assume its PID:
1111 	 */
1112 	if (!thread_group_leader(tsk)) {
1113 		struct task_struct *leader = tsk->group_leader;
1114 
1115 		for (;;) {
1116 			cgroup_threadgroup_change_begin(tsk);
1117 			write_lock_irq(&tasklist_lock);
1118 			/*
1119 			 * Do this under tasklist_lock to ensure that
1120 			 * exit_notify() can't miss ->group_exit_task
1121 			 */
1122 			sig->notify_count = -1;
1123 			if (likely(leader->exit_state))
1124 				break;
1125 			__set_current_state(TASK_KILLABLE);
1126 			write_unlock_irq(&tasklist_lock);
1127 			cgroup_threadgroup_change_end(tsk);
1128 			schedule();
1129 			if (unlikely(__fatal_signal_pending(tsk)))
1130 				goto killed;
1131 		}
1132 
1133 		/*
1134 		 * The only record we have of the real-time age of a
1135 		 * process, regardless of execs it's done, is start_time.
1136 		 * All the past CPU time is accumulated in signal_struct
1137 		 * from sister threads now dead.  But in this non-leader
1138 		 * exec, nothing survives from the original leader thread,
1139 		 * whose birth marks the true age of this process now.
1140 		 * When we take on its identity by switching to its PID, we
1141 		 * also take its birthdate (always earlier than our own).
1142 		 */
1143 		tsk->start_time = leader->start_time;
1144 		tsk->real_start_time = leader->real_start_time;
1145 
1146 		BUG_ON(!same_thread_group(leader, tsk));
1147 		BUG_ON(has_group_leader_pid(tsk));
1148 		/*
1149 		 * An exec() starts a new thread group with the
1150 		 * TGID of the previous thread group. Rehash the
1151 		 * two threads with a switched PID, and release
1152 		 * the former thread group leader:
1153 		 */
1154 
1155 		/* Become a process group leader with the old leader's pid.
1156 		 * The old leader becomes a thread of the this thread group.
1157 		 * Note: The old leader also uses this pid until release_task
1158 		 *       is called.  Odd but simple and correct.
1159 		 */
1160 		tsk->pid = leader->pid;
1161 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1162 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1163 		transfer_pid(leader, tsk, PIDTYPE_SID);
1164 
1165 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1166 		list_replace_init(&leader->sibling, &tsk->sibling);
1167 
1168 		tsk->group_leader = tsk;
1169 		leader->group_leader = tsk;
1170 
1171 		tsk->exit_signal = SIGCHLD;
1172 		leader->exit_signal = -1;
1173 
1174 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1175 		leader->exit_state = EXIT_DEAD;
1176 
1177 		/*
1178 		 * We are going to release_task()->ptrace_unlink() silently,
1179 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1180 		 * the tracer wont't block again waiting for this thread.
1181 		 */
1182 		if (unlikely(leader->ptrace))
1183 			__wake_up_parent(leader, leader->parent);
1184 		write_unlock_irq(&tasklist_lock);
1185 		cgroup_threadgroup_change_end(tsk);
1186 
1187 		release_task(leader);
1188 	}
1189 
1190 	sig->group_exit_task = NULL;
1191 	sig->notify_count = 0;
1192 
1193 no_thread_group:
1194 	/* we have changed execution domain */
1195 	tsk->exit_signal = SIGCHLD;
1196 
1197 #ifdef CONFIG_POSIX_TIMERS
1198 	exit_itimers(sig);
1199 	flush_itimer_signals();
1200 #endif
1201 
1202 	if (atomic_read(&oldsighand->count) != 1) {
1203 		struct sighand_struct *newsighand;
1204 		/*
1205 		 * This ->sighand is shared with the CLONE_SIGHAND
1206 		 * but not CLONE_THREAD task, switch to the new one.
1207 		 */
1208 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1209 		if (!newsighand)
1210 			return -ENOMEM;
1211 
1212 		atomic_set(&newsighand->count, 1);
1213 		memcpy(newsighand->action, oldsighand->action,
1214 		       sizeof(newsighand->action));
1215 
1216 		write_lock_irq(&tasklist_lock);
1217 		spin_lock(&oldsighand->siglock);
1218 		rcu_assign_pointer(tsk->sighand, newsighand);
1219 		spin_unlock(&oldsighand->siglock);
1220 		write_unlock_irq(&tasklist_lock);
1221 
1222 		__cleanup_sighand(oldsighand);
1223 	}
1224 
1225 	BUG_ON(!thread_group_leader(tsk));
1226 	return 0;
1227 
1228 killed:
1229 	/* protects against exit_notify() and __exit_signal() */
1230 	read_lock(&tasklist_lock);
1231 	sig->group_exit_task = NULL;
1232 	sig->notify_count = 0;
1233 	read_unlock(&tasklist_lock);
1234 	return -EAGAIN;
1235 }
1236 
1237 char *get_task_comm(char *buf, struct task_struct *tsk)
1238 {
1239 	/* buf must be at least sizeof(tsk->comm) in size */
1240 	task_lock(tsk);
1241 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1242 	task_unlock(tsk);
1243 	return buf;
1244 }
1245 EXPORT_SYMBOL_GPL(get_task_comm);
1246 
1247 /*
1248  * These functions flushes out all traces of the currently running executable
1249  * so that a new one can be started
1250  */
1251 
1252 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1253 {
1254 	task_lock(tsk);
1255 	trace_task_rename(tsk, buf);
1256 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1257 	task_unlock(tsk);
1258 	perf_event_comm(tsk, exec);
1259 }
1260 
1261 int flush_old_exec(struct linux_binprm * bprm)
1262 {
1263 	int retval;
1264 
1265 	/*
1266 	 * Make sure we have a private signal table and that
1267 	 * we are unassociated from the previous thread group.
1268 	 */
1269 	retval = de_thread(current);
1270 	if (retval)
1271 		goto out;
1272 
1273 	/*
1274 	 * Must be called _before_ exec_mmap() as bprm->mm is
1275 	 * not visibile until then. This also enables the update
1276 	 * to be lockless.
1277 	 */
1278 	set_mm_exe_file(bprm->mm, bprm->file);
1279 
1280 	/*
1281 	 * Release all of the old mmap stuff
1282 	 */
1283 	acct_arg_size(bprm, 0);
1284 	retval = exec_mmap(bprm->mm);
1285 	if (retval)
1286 		goto out;
1287 
1288 	bprm->mm = NULL;		/* We're using it now */
1289 
1290 	set_fs(USER_DS);
1291 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1292 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1293 	flush_thread();
1294 	current->personality &= ~bprm->per_clear;
1295 
1296 	/*
1297 	 * We have to apply CLOEXEC before we change whether the process is
1298 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1299 	 * trying to access the should-be-closed file descriptors of a process
1300 	 * undergoing exec(2).
1301 	 */
1302 	do_close_on_exec(current->files);
1303 	return 0;
1304 
1305 out:
1306 	return retval;
1307 }
1308 EXPORT_SYMBOL(flush_old_exec);
1309 
1310 void would_dump(struct linux_binprm *bprm, struct file *file)
1311 {
1312 	struct inode *inode = file_inode(file);
1313 	if (inode_permission(inode, MAY_READ) < 0) {
1314 		struct user_namespace *old, *user_ns;
1315 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1316 
1317 		/* Ensure mm->user_ns contains the executable */
1318 		user_ns = old = bprm->mm->user_ns;
1319 		while ((user_ns != &init_user_ns) &&
1320 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1321 			user_ns = user_ns->parent;
1322 
1323 		if (old != user_ns) {
1324 			bprm->mm->user_ns = get_user_ns(user_ns);
1325 			put_user_ns(old);
1326 		}
1327 	}
1328 }
1329 EXPORT_SYMBOL(would_dump);
1330 
1331 void setup_new_exec(struct linux_binprm * bprm)
1332 {
1333 	arch_pick_mmap_layout(current->mm);
1334 
1335 	/* This is the point of no return */
1336 	current->sas_ss_sp = current->sas_ss_size = 0;
1337 
1338 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1339 		set_dumpable(current->mm, SUID_DUMP_USER);
1340 	else
1341 		set_dumpable(current->mm, suid_dumpable);
1342 
1343 	arch_setup_new_exec();
1344 	perf_event_exec();
1345 	__set_task_comm(current, kbasename(bprm->filename), true);
1346 
1347 	/* Set the new mm task size. We have to do that late because it may
1348 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1349 	 * some architectures like powerpc
1350 	 */
1351 	current->mm->task_size = TASK_SIZE;
1352 
1353 	/* install the new credentials */
1354 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1355 	    !gid_eq(bprm->cred->gid, current_egid())) {
1356 		current->pdeath_signal = 0;
1357 	} else {
1358 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1359 			set_dumpable(current->mm, suid_dumpable);
1360 	}
1361 
1362 	/* An exec changes our domain. We are no longer part of the thread
1363 	   group */
1364 	current->self_exec_id++;
1365 	flush_signal_handlers(current, 0);
1366 }
1367 EXPORT_SYMBOL(setup_new_exec);
1368 
1369 /*
1370  * Prepare credentials and lock ->cred_guard_mutex.
1371  * install_exec_creds() commits the new creds and drops the lock.
1372  * Or, if exec fails before, free_bprm() should release ->cred and
1373  * and unlock.
1374  */
1375 int prepare_bprm_creds(struct linux_binprm *bprm)
1376 {
1377 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1378 		return -ERESTARTNOINTR;
1379 
1380 	bprm->cred = prepare_exec_creds();
1381 	if (likely(bprm->cred))
1382 		return 0;
1383 
1384 	mutex_unlock(&current->signal->cred_guard_mutex);
1385 	return -ENOMEM;
1386 }
1387 
1388 static void free_bprm(struct linux_binprm *bprm)
1389 {
1390 	free_arg_pages(bprm);
1391 	if (bprm->cred) {
1392 		mutex_unlock(&current->signal->cred_guard_mutex);
1393 		abort_creds(bprm->cred);
1394 	}
1395 	if (bprm->file) {
1396 		allow_write_access(bprm->file);
1397 		fput(bprm->file);
1398 	}
1399 	/* If a binfmt changed the interp, free it. */
1400 	if (bprm->interp != bprm->filename)
1401 		kfree(bprm->interp);
1402 	kfree(bprm);
1403 }
1404 
1405 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1406 {
1407 	/* If a binfmt changed the interp, free it first. */
1408 	if (bprm->interp != bprm->filename)
1409 		kfree(bprm->interp);
1410 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1411 	if (!bprm->interp)
1412 		return -ENOMEM;
1413 	return 0;
1414 }
1415 EXPORT_SYMBOL(bprm_change_interp);
1416 
1417 /*
1418  * install the new credentials for this executable
1419  */
1420 void install_exec_creds(struct linux_binprm *bprm)
1421 {
1422 	security_bprm_committing_creds(bprm);
1423 
1424 	commit_creds(bprm->cred);
1425 	bprm->cred = NULL;
1426 
1427 	/*
1428 	 * Disable monitoring for regular users
1429 	 * when executing setuid binaries. Must
1430 	 * wait until new credentials are committed
1431 	 * by commit_creds() above
1432 	 */
1433 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1434 		perf_event_exit_task(current);
1435 	/*
1436 	 * cred_guard_mutex must be held at least to this point to prevent
1437 	 * ptrace_attach() from altering our determination of the task's
1438 	 * credentials; any time after this it may be unlocked.
1439 	 */
1440 	security_bprm_committed_creds(bprm);
1441 	mutex_unlock(&current->signal->cred_guard_mutex);
1442 }
1443 EXPORT_SYMBOL(install_exec_creds);
1444 
1445 /*
1446  * determine how safe it is to execute the proposed program
1447  * - the caller must hold ->cred_guard_mutex to protect against
1448  *   PTRACE_ATTACH or seccomp thread-sync
1449  */
1450 static void check_unsafe_exec(struct linux_binprm *bprm)
1451 {
1452 	struct task_struct *p = current, *t;
1453 	unsigned n_fs;
1454 
1455 	if (p->ptrace)
1456 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1457 
1458 	/*
1459 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1460 	 * mess up.
1461 	 */
1462 	if (task_no_new_privs(current))
1463 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1464 
1465 	t = p;
1466 	n_fs = 1;
1467 	spin_lock(&p->fs->lock);
1468 	rcu_read_lock();
1469 	while_each_thread(p, t) {
1470 		if (t->fs == p->fs)
1471 			n_fs++;
1472 	}
1473 	rcu_read_unlock();
1474 
1475 	if (p->fs->users > n_fs)
1476 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1477 	else
1478 		p->fs->in_exec = 1;
1479 	spin_unlock(&p->fs->lock);
1480 }
1481 
1482 static void bprm_fill_uid(struct linux_binprm *bprm)
1483 {
1484 	struct inode *inode;
1485 	unsigned int mode;
1486 	kuid_t uid;
1487 	kgid_t gid;
1488 
1489 	/*
1490 	 * Since this can be called multiple times (via prepare_binprm),
1491 	 * we must clear any previous work done when setting set[ug]id
1492 	 * bits from any earlier bprm->file uses (for example when run
1493 	 * first for a setuid script then again for its interpreter).
1494 	 */
1495 	bprm->cred->euid = current_euid();
1496 	bprm->cred->egid = current_egid();
1497 
1498 	if (!mnt_may_suid(bprm->file->f_path.mnt))
1499 		return;
1500 
1501 	if (task_no_new_privs(current))
1502 		return;
1503 
1504 	inode = bprm->file->f_path.dentry->d_inode;
1505 	mode = READ_ONCE(inode->i_mode);
1506 	if (!(mode & (S_ISUID|S_ISGID)))
1507 		return;
1508 
1509 	/* Be careful if suid/sgid is set */
1510 	inode_lock(inode);
1511 
1512 	/* reload atomically mode/uid/gid now that lock held */
1513 	mode = inode->i_mode;
1514 	uid = inode->i_uid;
1515 	gid = inode->i_gid;
1516 	inode_unlock(inode);
1517 
1518 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1519 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1520 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1521 		return;
1522 
1523 	if (mode & S_ISUID) {
1524 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1525 		bprm->cred->euid = uid;
1526 	}
1527 
1528 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1529 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1530 		bprm->cred->egid = gid;
1531 	}
1532 }
1533 
1534 /*
1535  * Fill the binprm structure from the inode.
1536  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1537  *
1538  * This may be called multiple times for binary chains (scripts for example).
1539  */
1540 int prepare_binprm(struct linux_binprm *bprm)
1541 {
1542 	int retval;
1543 
1544 	bprm_fill_uid(bprm);
1545 
1546 	/* fill in binprm security blob */
1547 	retval = security_bprm_set_creds(bprm);
1548 	if (retval)
1549 		return retval;
1550 	bprm->cred_prepared = 1;
1551 
1552 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1553 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1554 }
1555 
1556 EXPORT_SYMBOL(prepare_binprm);
1557 
1558 /*
1559  * Arguments are '\0' separated strings found at the location bprm->p
1560  * points to; chop off the first by relocating brpm->p to right after
1561  * the first '\0' encountered.
1562  */
1563 int remove_arg_zero(struct linux_binprm *bprm)
1564 {
1565 	int ret = 0;
1566 	unsigned long offset;
1567 	char *kaddr;
1568 	struct page *page;
1569 
1570 	if (!bprm->argc)
1571 		return 0;
1572 
1573 	do {
1574 		offset = bprm->p & ~PAGE_MASK;
1575 		page = get_arg_page(bprm, bprm->p, 0);
1576 		if (!page) {
1577 			ret = -EFAULT;
1578 			goto out;
1579 		}
1580 		kaddr = kmap_atomic(page);
1581 
1582 		for (; offset < PAGE_SIZE && kaddr[offset];
1583 				offset++, bprm->p++)
1584 			;
1585 
1586 		kunmap_atomic(kaddr);
1587 		put_arg_page(page);
1588 	} while (offset == PAGE_SIZE);
1589 
1590 	bprm->p++;
1591 	bprm->argc--;
1592 	ret = 0;
1593 
1594 out:
1595 	return ret;
1596 }
1597 EXPORT_SYMBOL(remove_arg_zero);
1598 
1599 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1600 /*
1601  * cycle the list of binary formats handler, until one recognizes the image
1602  */
1603 int search_binary_handler(struct linux_binprm *bprm)
1604 {
1605 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1606 	struct linux_binfmt *fmt;
1607 	int retval;
1608 
1609 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1610 	if (bprm->recursion_depth > 5)
1611 		return -ELOOP;
1612 
1613 	retval = security_bprm_check(bprm);
1614 	if (retval)
1615 		return retval;
1616 
1617 	retval = -ENOENT;
1618  retry:
1619 	read_lock(&binfmt_lock);
1620 	list_for_each_entry(fmt, &formats, lh) {
1621 		if (!try_module_get(fmt->module))
1622 			continue;
1623 		read_unlock(&binfmt_lock);
1624 		bprm->recursion_depth++;
1625 		retval = fmt->load_binary(bprm);
1626 		read_lock(&binfmt_lock);
1627 		put_binfmt(fmt);
1628 		bprm->recursion_depth--;
1629 		if (retval < 0 && !bprm->mm) {
1630 			/* we got to flush_old_exec() and failed after it */
1631 			read_unlock(&binfmt_lock);
1632 			force_sigsegv(SIGSEGV, current);
1633 			return retval;
1634 		}
1635 		if (retval != -ENOEXEC || !bprm->file) {
1636 			read_unlock(&binfmt_lock);
1637 			return retval;
1638 		}
1639 	}
1640 	read_unlock(&binfmt_lock);
1641 
1642 	if (need_retry) {
1643 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1644 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1645 			return retval;
1646 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1647 			return retval;
1648 		need_retry = false;
1649 		goto retry;
1650 	}
1651 
1652 	return retval;
1653 }
1654 EXPORT_SYMBOL(search_binary_handler);
1655 
1656 static int exec_binprm(struct linux_binprm *bprm)
1657 {
1658 	pid_t old_pid, old_vpid;
1659 	int ret;
1660 
1661 	/* Need to fetch pid before load_binary changes it */
1662 	old_pid = current->pid;
1663 	rcu_read_lock();
1664 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1665 	rcu_read_unlock();
1666 
1667 	ret = search_binary_handler(bprm);
1668 	if (ret >= 0) {
1669 		audit_bprm(bprm);
1670 		trace_sched_process_exec(current, old_pid, bprm);
1671 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1672 		proc_exec_connector(current);
1673 	}
1674 
1675 	return ret;
1676 }
1677 
1678 /*
1679  * sys_execve() executes a new program.
1680  */
1681 static int do_execveat_common(int fd, struct filename *filename,
1682 			      struct user_arg_ptr argv,
1683 			      struct user_arg_ptr envp,
1684 			      int flags)
1685 {
1686 	char *pathbuf = NULL;
1687 	struct linux_binprm *bprm;
1688 	struct file *file;
1689 	struct files_struct *displaced;
1690 	int retval;
1691 
1692 	if (IS_ERR(filename))
1693 		return PTR_ERR(filename);
1694 
1695 	/*
1696 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1697 	 * set*uid() to execve() because too many poorly written programs
1698 	 * don't check setuid() return code.  Here we additionally recheck
1699 	 * whether NPROC limit is still exceeded.
1700 	 */
1701 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1702 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1703 		retval = -EAGAIN;
1704 		goto out_ret;
1705 	}
1706 
1707 	/* We're below the limit (still or again), so we don't want to make
1708 	 * further execve() calls fail. */
1709 	current->flags &= ~PF_NPROC_EXCEEDED;
1710 
1711 	retval = unshare_files(&displaced);
1712 	if (retval)
1713 		goto out_ret;
1714 
1715 	retval = -ENOMEM;
1716 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1717 	if (!bprm)
1718 		goto out_files;
1719 
1720 	retval = prepare_bprm_creds(bprm);
1721 	if (retval)
1722 		goto out_free;
1723 
1724 	check_unsafe_exec(bprm);
1725 	current->in_execve = 1;
1726 
1727 	file = do_open_execat(fd, filename, flags);
1728 	retval = PTR_ERR(file);
1729 	if (IS_ERR(file))
1730 		goto out_unmark;
1731 
1732 	sched_exec();
1733 
1734 	bprm->file = file;
1735 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1736 		bprm->filename = filename->name;
1737 	} else {
1738 		if (filename->name[0] == '\0')
1739 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1740 		else
1741 			pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1742 					    fd, filename->name);
1743 		if (!pathbuf) {
1744 			retval = -ENOMEM;
1745 			goto out_unmark;
1746 		}
1747 		/*
1748 		 * Record that a name derived from an O_CLOEXEC fd will be
1749 		 * inaccessible after exec. Relies on having exclusive access to
1750 		 * current->files (due to unshare_files above).
1751 		 */
1752 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1753 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1754 		bprm->filename = pathbuf;
1755 	}
1756 	bprm->interp = bprm->filename;
1757 
1758 	retval = bprm_mm_init(bprm);
1759 	if (retval)
1760 		goto out_unmark;
1761 
1762 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1763 	if ((retval = bprm->argc) < 0)
1764 		goto out;
1765 
1766 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1767 	if ((retval = bprm->envc) < 0)
1768 		goto out;
1769 
1770 	retval = prepare_binprm(bprm);
1771 	if (retval < 0)
1772 		goto out;
1773 
1774 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1775 	if (retval < 0)
1776 		goto out;
1777 
1778 	bprm->exec = bprm->p;
1779 	retval = copy_strings(bprm->envc, envp, bprm);
1780 	if (retval < 0)
1781 		goto out;
1782 
1783 	retval = copy_strings(bprm->argc, argv, bprm);
1784 	if (retval < 0)
1785 		goto out;
1786 
1787 	would_dump(bprm, bprm->file);
1788 
1789 	retval = exec_binprm(bprm);
1790 	if (retval < 0)
1791 		goto out;
1792 
1793 	/* execve succeeded */
1794 	current->fs->in_exec = 0;
1795 	current->in_execve = 0;
1796 	acct_update_integrals(current);
1797 	task_numa_free(current);
1798 	free_bprm(bprm);
1799 	kfree(pathbuf);
1800 	putname(filename);
1801 	if (displaced)
1802 		put_files_struct(displaced);
1803 	return retval;
1804 
1805 out:
1806 	if (bprm->mm) {
1807 		acct_arg_size(bprm, 0);
1808 		mmput(bprm->mm);
1809 	}
1810 
1811 out_unmark:
1812 	current->fs->in_exec = 0;
1813 	current->in_execve = 0;
1814 
1815 out_free:
1816 	free_bprm(bprm);
1817 	kfree(pathbuf);
1818 
1819 out_files:
1820 	if (displaced)
1821 		reset_files_struct(displaced);
1822 out_ret:
1823 	putname(filename);
1824 	return retval;
1825 }
1826 
1827 int do_execve(struct filename *filename,
1828 	const char __user *const __user *__argv,
1829 	const char __user *const __user *__envp)
1830 {
1831 	struct user_arg_ptr argv = { .ptr.native = __argv };
1832 	struct user_arg_ptr envp = { .ptr.native = __envp };
1833 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1834 }
1835 
1836 int do_execveat(int fd, struct filename *filename,
1837 		const char __user *const __user *__argv,
1838 		const char __user *const __user *__envp,
1839 		int flags)
1840 {
1841 	struct user_arg_ptr argv = { .ptr.native = __argv };
1842 	struct user_arg_ptr envp = { .ptr.native = __envp };
1843 
1844 	return do_execveat_common(fd, filename, argv, envp, flags);
1845 }
1846 
1847 #ifdef CONFIG_COMPAT
1848 static int compat_do_execve(struct filename *filename,
1849 	const compat_uptr_t __user *__argv,
1850 	const compat_uptr_t __user *__envp)
1851 {
1852 	struct user_arg_ptr argv = {
1853 		.is_compat = true,
1854 		.ptr.compat = __argv,
1855 	};
1856 	struct user_arg_ptr envp = {
1857 		.is_compat = true,
1858 		.ptr.compat = __envp,
1859 	};
1860 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1861 }
1862 
1863 static int compat_do_execveat(int fd, struct filename *filename,
1864 			      const compat_uptr_t __user *__argv,
1865 			      const compat_uptr_t __user *__envp,
1866 			      int flags)
1867 {
1868 	struct user_arg_ptr argv = {
1869 		.is_compat = true,
1870 		.ptr.compat = __argv,
1871 	};
1872 	struct user_arg_ptr envp = {
1873 		.is_compat = true,
1874 		.ptr.compat = __envp,
1875 	};
1876 	return do_execveat_common(fd, filename, argv, envp, flags);
1877 }
1878 #endif
1879 
1880 void set_binfmt(struct linux_binfmt *new)
1881 {
1882 	struct mm_struct *mm = current->mm;
1883 
1884 	if (mm->binfmt)
1885 		module_put(mm->binfmt->module);
1886 
1887 	mm->binfmt = new;
1888 	if (new)
1889 		__module_get(new->module);
1890 }
1891 EXPORT_SYMBOL(set_binfmt);
1892 
1893 /*
1894  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1895  */
1896 void set_dumpable(struct mm_struct *mm, int value)
1897 {
1898 	unsigned long old, new;
1899 
1900 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1901 		return;
1902 
1903 	do {
1904 		old = ACCESS_ONCE(mm->flags);
1905 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1906 	} while (cmpxchg(&mm->flags, old, new) != old);
1907 }
1908 
1909 SYSCALL_DEFINE3(execve,
1910 		const char __user *, filename,
1911 		const char __user *const __user *, argv,
1912 		const char __user *const __user *, envp)
1913 {
1914 	return do_execve(getname(filename), argv, envp);
1915 }
1916 
1917 SYSCALL_DEFINE5(execveat,
1918 		int, fd, const char __user *, filename,
1919 		const char __user *const __user *, argv,
1920 		const char __user *const __user *, envp,
1921 		int, flags)
1922 {
1923 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1924 
1925 	return do_execveat(fd,
1926 			   getname_flags(filename, lookup_flags, NULL),
1927 			   argv, envp, flags);
1928 }
1929 
1930 #ifdef CONFIG_COMPAT
1931 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1932 	const compat_uptr_t __user *, argv,
1933 	const compat_uptr_t __user *, envp)
1934 {
1935 	return compat_do_execve(getname(filename), argv, envp);
1936 }
1937 
1938 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1939 		       const char __user *, filename,
1940 		       const compat_uptr_t __user *, argv,
1941 		       const compat_uptr_t __user *, envp,
1942 		       int,  flags)
1943 {
1944 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1945 
1946 	return compat_do_execveat(fd,
1947 				  getname_flags(filename, lookup_flags, NULL),
1948 				  argv, envp, flags);
1949 }
1950 #endif
1951