xref: /openbmc/linux/fs/exec.c (revision 4bdf0bb7)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/ima.h>
50 #include <linux/syscalls.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
54 #include <linux/tracehook.h>
55 #include <linux/kmod.h>
56 #include <linux/fsnotify.h>
57 #include <linux/fs_struct.h>
58 #include <linux/pipe_fs_i.h>
59 
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63 #include "internal.h"
64 
65 int core_uses_pid;
66 char core_pattern[CORENAME_MAX_SIZE] = "core";
67 unsigned int core_pipe_limit;
68 int suid_dumpable = 0;
69 
70 /* The maximal length of core_pattern is also specified in sysctl.c */
71 
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74 
75 int __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77 	if (!fmt)
78 		return -EINVAL;
79 	write_lock(&binfmt_lock);
80 	insert ? list_add(&fmt->lh, &formats) :
81 		 list_add_tail(&fmt->lh, &formats);
82 	write_unlock(&binfmt_lock);
83 	return 0;
84 }
85 
86 EXPORT_SYMBOL(__register_binfmt);
87 
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90 	write_lock(&binfmt_lock);
91 	list_del(&fmt->lh);
92 	write_unlock(&binfmt_lock);
93 }
94 
95 EXPORT_SYMBOL(unregister_binfmt);
96 
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99 	module_put(fmt->module);
100 }
101 
102 /*
103  * Note that a shared library must be both readable and executable due to
104  * security reasons.
105  *
106  * Also note that we take the address to load from from the file itself.
107  */
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 {
110 	struct file *file;
111 	char *tmp = getname(library);
112 	int error = PTR_ERR(tmp);
113 
114 	if (IS_ERR(tmp))
115 		goto out;
116 
117 	file = do_filp_open(AT_FDCWD, tmp,
118 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
119 				MAY_READ | MAY_EXEC | MAY_OPEN);
120 	putname(tmp);
121 	error = PTR_ERR(file);
122 	if (IS_ERR(file))
123 		goto out;
124 
125 	error = -EINVAL;
126 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
127 		goto exit;
128 
129 	error = -EACCES;
130 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
131 		goto exit;
132 
133 	fsnotify_open(file->f_path.dentry);
134 
135 	error = -ENOEXEC;
136 	if(file->f_op) {
137 		struct linux_binfmt * fmt;
138 
139 		read_lock(&binfmt_lock);
140 		list_for_each_entry(fmt, &formats, lh) {
141 			if (!fmt->load_shlib)
142 				continue;
143 			if (!try_module_get(fmt->module))
144 				continue;
145 			read_unlock(&binfmt_lock);
146 			error = fmt->load_shlib(file);
147 			read_lock(&binfmt_lock);
148 			put_binfmt(fmt);
149 			if (error != -ENOEXEC)
150 				break;
151 		}
152 		read_unlock(&binfmt_lock);
153 	}
154 exit:
155 	fput(file);
156 out:
157   	return error;
158 }
159 
160 #ifdef CONFIG_MMU
161 
162 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
163 		int write)
164 {
165 	struct page *page;
166 	int ret;
167 
168 #ifdef CONFIG_STACK_GROWSUP
169 	if (write) {
170 		ret = expand_stack_downwards(bprm->vma, pos);
171 		if (ret < 0)
172 			return NULL;
173 	}
174 #endif
175 	ret = get_user_pages(current, bprm->mm, pos,
176 			1, write, 1, &page, NULL);
177 	if (ret <= 0)
178 		return NULL;
179 
180 	if (write) {
181 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
182 		struct rlimit *rlim;
183 
184 		/*
185 		 * We've historically supported up to 32 pages (ARG_MAX)
186 		 * of argument strings even with small stacks
187 		 */
188 		if (size <= ARG_MAX)
189 			return page;
190 
191 		/*
192 		 * Limit to 1/4-th the stack size for the argv+env strings.
193 		 * This ensures that:
194 		 *  - the remaining binfmt code will not run out of stack space,
195 		 *  - the program will have a reasonable amount of stack left
196 		 *    to work from.
197 		 */
198 		rlim = current->signal->rlim;
199 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
200 			put_page(page);
201 			return NULL;
202 		}
203 	}
204 
205 	return page;
206 }
207 
208 static void put_arg_page(struct page *page)
209 {
210 	put_page(page);
211 }
212 
213 static void free_arg_page(struct linux_binprm *bprm, int i)
214 {
215 }
216 
217 static void free_arg_pages(struct linux_binprm *bprm)
218 {
219 }
220 
221 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
222 		struct page *page)
223 {
224 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
225 }
226 
227 static int __bprm_mm_init(struct linux_binprm *bprm)
228 {
229 	int err;
230 	struct vm_area_struct *vma = NULL;
231 	struct mm_struct *mm = bprm->mm;
232 
233 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
234 	if (!vma)
235 		return -ENOMEM;
236 
237 	down_write(&mm->mmap_sem);
238 	vma->vm_mm = mm;
239 
240 	/*
241 	 * Place the stack at the largest stack address the architecture
242 	 * supports. Later, we'll move this to an appropriate place. We don't
243 	 * use STACK_TOP because that can depend on attributes which aren't
244 	 * configured yet.
245 	 */
246 	vma->vm_end = STACK_TOP_MAX;
247 	vma->vm_start = vma->vm_end - PAGE_SIZE;
248 	vma->vm_flags = VM_STACK_FLAGS;
249 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
250 	err = insert_vm_struct(mm, vma);
251 	if (err)
252 		goto err;
253 
254 	mm->stack_vm = mm->total_vm = 1;
255 	up_write(&mm->mmap_sem);
256 	bprm->p = vma->vm_end - sizeof(void *);
257 	return 0;
258 err:
259 	up_write(&mm->mmap_sem);
260 	bprm->vma = NULL;
261 	kmem_cache_free(vm_area_cachep, vma);
262 	return err;
263 }
264 
265 static bool valid_arg_len(struct linux_binprm *bprm, long len)
266 {
267 	return len <= MAX_ARG_STRLEN;
268 }
269 
270 #else
271 
272 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
273 		int write)
274 {
275 	struct page *page;
276 
277 	page = bprm->page[pos / PAGE_SIZE];
278 	if (!page && write) {
279 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
280 		if (!page)
281 			return NULL;
282 		bprm->page[pos / PAGE_SIZE] = page;
283 	}
284 
285 	return page;
286 }
287 
288 static void put_arg_page(struct page *page)
289 {
290 }
291 
292 static void free_arg_page(struct linux_binprm *bprm, int i)
293 {
294 	if (bprm->page[i]) {
295 		__free_page(bprm->page[i]);
296 		bprm->page[i] = NULL;
297 	}
298 }
299 
300 static void free_arg_pages(struct linux_binprm *bprm)
301 {
302 	int i;
303 
304 	for (i = 0; i < MAX_ARG_PAGES; i++)
305 		free_arg_page(bprm, i);
306 }
307 
308 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 		struct page *page)
310 {
311 }
312 
313 static int __bprm_mm_init(struct linux_binprm *bprm)
314 {
315 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
316 	return 0;
317 }
318 
319 static bool valid_arg_len(struct linux_binprm *bprm, long len)
320 {
321 	return len <= bprm->p;
322 }
323 
324 #endif /* CONFIG_MMU */
325 
326 /*
327  * Create a new mm_struct and populate it with a temporary stack
328  * vm_area_struct.  We don't have enough context at this point to set the stack
329  * flags, permissions, and offset, so we use temporary values.  We'll update
330  * them later in setup_arg_pages().
331  */
332 int bprm_mm_init(struct linux_binprm *bprm)
333 {
334 	int err;
335 	struct mm_struct *mm = NULL;
336 
337 	bprm->mm = mm = mm_alloc();
338 	err = -ENOMEM;
339 	if (!mm)
340 		goto err;
341 
342 	err = init_new_context(current, mm);
343 	if (err)
344 		goto err;
345 
346 	err = __bprm_mm_init(bprm);
347 	if (err)
348 		goto err;
349 
350 	return 0;
351 
352 err:
353 	if (mm) {
354 		bprm->mm = NULL;
355 		mmdrop(mm);
356 	}
357 
358 	return err;
359 }
360 
361 /*
362  * count() counts the number of strings in array ARGV.
363  */
364 static int count(char __user * __user * argv, int max)
365 {
366 	int i = 0;
367 
368 	if (argv != NULL) {
369 		for (;;) {
370 			char __user * p;
371 
372 			if (get_user(p, argv))
373 				return -EFAULT;
374 			if (!p)
375 				break;
376 			argv++;
377 			if (i++ >= max)
378 				return -E2BIG;
379 			cond_resched();
380 		}
381 	}
382 	return i;
383 }
384 
385 /*
386  * 'copy_strings()' copies argument/environment strings from the old
387  * processes's memory to the new process's stack.  The call to get_user_pages()
388  * ensures the destination page is created and not swapped out.
389  */
390 static int copy_strings(int argc, char __user * __user * argv,
391 			struct linux_binprm *bprm)
392 {
393 	struct page *kmapped_page = NULL;
394 	char *kaddr = NULL;
395 	unsigned long kpos = 0;
396 	int ret;
397 
398 	while (argc-- > 0) {
399 		char __user *str;
400 		int len;
401 		unsigned long pos;
402 
403 		if (get_user(str, argv+argc) ||
404 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
405 			ret = -EFAULT;
406 			goto out;
407 		}
408 
409 		if (!valid_arg_len(bprm, len)) {
410 			ret = -E2BIG;
411 			goto out;
412 		}
413 
414 		/* We're going to work our way backwords. */
415 		pos = bprm->p;
416 		str += len;
417 		bprm->p -= len;
418 
419 		while (len > 0) {
420 			int offset, bytes_to_copy;
421 
422 			offset = pos % PAGE_SIZE;
423 			if (offset == 0)
424 				offset = PAGE_SIZE;
425 
426 			bytes_to_copy = offset;
427 			if (bytes_to_copy > len)
428 				bytes_to_copy = len;
429 
430 			offset -= bytes_to_copy;
431 			pos -= bytes_to_copy;
432 			str -= bytes_to_copy;
433 			len -= bytes_to_copy;
434 
435 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
436 				struct page *page;
437 
438 				page = get_arg_page(bprm, pos, 1);
439 				if (!page) {
440 					ret = -E2BIG;
441 					goto out;
442 				}
443 
444 				if (kmapped_page) {
445 					flush_kernel_dcache_page(kmapped_page);
446 					kunmap(kmapped_page);
447 					put_arg_page(kmapped_page);
448 				}
449 				kmapped_page = page;
450 				kaddr = kmap(kmapped_page);
451 				kpos = pos & PAGE_MASK;
452 				flush_arg_page(bprm, kpos, kmapped_page);
453 			}
454 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
455 				ret = -EFAULT;
456 				goto out;
457 			}
458 		}
459 	}
460 	ret = 0;
461 out:
462 	if (kmapped_page) {
463 		flush_kernel_dcache_page(kmapped_page);
464 		kunmap(kmapped_page);
465 		put_arg_page(kmapped_page);
466 	}
467 	return ret;
468 }
469 
470 /*
471  * Like copy_strings, but get argv and its values from kernel memory.
472  */
473 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
474 {
475 	int r;
476 	mm_segment_t oldfs = get_fs();
477 	set_fs(KERNEL_DS);
478 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
479 	set_fs(oldfs);
480 	return r;
481 }
482 EXPORT_SYMBOL(copy_strings_kernel);
483 
484 #ifdef CONFIG_MMU
485 
486 /*
487  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
488  * the binfmt code determines where the new stack should reside, we shift it to
489  * its final location.  The process proceeds as follows:
490  *
491  * 1) Use shift to calculate the new vma endpoints.
492  * 2) Extend vma to cover both the old and new ranges.  This ensures the
493  *    arguments passed to subsequent functions are consistent.
494  * 3) Move vma's page tables to the new range.
495  * 4) Free up any cleared pgd range.
496  * 5) Shrink the vma to cover only the new range.
497  */
498 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
499 {
500 	struct mm_struct *mm = vma->vm_mm;
501 	unsigned long old_start = vma->vm_start;
502 	unsigned long old_end = vma->vm_end;
503 	unsigned long length = old_end - old_start;
504 	unsigned long new_start = old_start - shift;
505 	unsigned long new_end = old_end - shift;
506 	struct mmu_gather *tlb;
507 
508 	BUG_ON(new_start > new_end);
509 
510 	/*
511 	 * ensure there are no vmas between where we want to go
512 	 * and where we are
513 	 */
514 	if (vma != find_vma(mm, new_start))
515 		return -EFAULT;
516 
517 	/*
518 	 * cover the whole range: [new_start, old_end)
519 	 */
520 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
521 
522 	/*
523 	 * move the page tables downwards, on failure we rely on
524 	 * process cleanup to remove whatever mess we made.
525 	 */
526 	if (length != move_page_tables(vma, old_start,
527 				       vma, new_start, length))
528 		return -ENOMEM;
529 
530 	lru_add_drain();
531 	tlb = tlb_gather_mmu(mm, 0);
532 	if (new_end > old_start) {
533 		/*
534 		 * when the old and new regions overlap clear from new_end.
535 		 */
536 		free_pgd_range(tlb, new_end, old_end, new_end,
537 			vma->vm_next ? vma->vm_next->vm_start : 0);
538 	} else {
539 		/*
540 		 * otherwise, clean from old_start; this is done to not touch
541 		 * the address space in [new_end, old_start) some architectures
542 		 * have constraints on va-space that make this illegal (IA64) -
543 		 * for the others its just a little faster.
544 		 */
545 		free_pgd_range(tlb, old_start, old_end, new_end,
546 			vma->vm_next ? vma->vm_next->vm_start : 0);
547 	}
548 	tlb_finish_mmu(tlb, new_end, old_end);
549 
550 	/*
551 	 * shrink the vma to just the new range.
552 	 */
553 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
554 
555 	return 0;
556 }
557 
558 #define EXTRA_STACK_VM_PAGES	20	/* random */
559 
560 /*
561  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
562  * the stack is optionally relocated, and some extra space is added.
563  */
564 int setup_arg_pages(struct linux_binprm *bprm,
565 		    unsigned long stack_top,
566 		    int executable_stack)
567 {
568 	unsigned long ret;
569 	unsigned long stack_shift;
570 	struct mm_struct *mm = current->mm;
571 	struct vm_area_struct *vma = bprm->vma;
572 	struct vm_area_struct *prev = NULL;
573 	unsigned long vm_flags;
574 	unsigned long stack_base;
575 
576 #ifdef CONFIG_STACK_GROWSUP
577 	/* Limit stack size to 1GB */
578 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
579 	if (stack_base > (1 << 30))
580 		stack_base = 1 << 30;
581 
582 	/* Make sure we didn't let the argument array grow too large. */
583 	if (vma->vm_end - vma->vm_start > stack_base)
584 		return -ENOMEM;
585 
586 	stack_base = PAGE_ALIGN(stack_top - stack_base);
587 
588 	stack_shift = vma->vm_start - stack_base;
589 	mm->arg_start = bprm->p - stack_shift;
590 	bprm->p = vma->vm_end - stack_shift;
591 #else
592 	stack_top = arch_align_stack(stack_top);
593 	stack_top = PAGE_ALIGN(stack_top);
594 	stack_shift = vma->vm_end - stack_top;
595 
596 	bprm->p -= stack_shift;
597 	mm->arg_start = bprm->p;
598 #endif
599 
600 	if (bprm->loader)
601 		bprm->loader -= stack_shift;
602 	bprm->exec -= stack_shift;
603 
604 	down_write(&mm->mmap_sem);
605 	vm_flags = VM_STACK_FLAGS;
606 
607 	/*
608 	 * Adjust stack execute permissions; explicitly enable for
609 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
610 	 * (arch default) otherwise.
611 	 */
612 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
613 		vm_flags |= VM_EXEC;
614 	else if (executable_stack == EXSTACK_DISABLE_X)
615 		vm_flags &= ~VM_EXEC;
616 	vm_flags |= mm->def_flags;
617 
618 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
619 			vm_flags);
620 	if (ret)
621 		goto out_unlock;
622 	BUG_ON(prev != vma);
623 
624 	/* Move stack pages down in memory. */
625 	if (stack_shift) {
626 		ret = shift_arg_pages(vma, stack_shift);
627 		if (ret) {
628 			up_write(&mm->mmap_sem);
629 			return ret;
630 		}
631 	}
632 
633 #ifdef CONFIG_STACK_GROWSUP
634 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
635 #else
636 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
637 #endif
638 	ret = expand_stack(vma, stack_base);
639 	if (ret)
640 		ret = -EFAULT;
641 
642 out_unlock:
643 	up_write(&mm->mmap_sem);
644 	return 0;
645 }
646 EXPORT_SYMBOL(setup_arg_pages);
647 
648 #endif /* CONFIG_MMU */
649 
650 struct file *open_exec(const char *name)
651 {
652 	struct file *file;
653 	int err;
654 
655 	file = do_filp_open(AT_FDCWD, name,
656 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
657 				MAY_EXEC | MAY_OPEN);
658 	if (IS_ERR(file))
659 		goto out;
660 
661 	err = -EACCES;
662 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
663 		goto exit;
664 
665 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
666 		goto exit;
667 
668 	fsnotify_open(file->f_path.dentry);
669 
670 	err = deny_write_access(file);
671 	if (err)
672 		goto exit;
673 
674 out:
675 	return file;
676 
677 exit:
678 	fput(file);
679 	return ERR_PTR(err);
680 }
681 EXPORT_SYMBOL(open_exec);
682 
683 int kernel_read(struct file *file, loff_t offset,
684 		char *addr, unsigned long count)
685 {
686 	mm_segment_t old_fs;
687 	loff_t pos = offset;
688 	int result;
689 
690 	old_fs = get_fs();
691 	set_fs(get_ds());
692 	/* The cast to a user pointer is valid due to the set_fs() */
693 	result = vfs_read(file, (void __user *)addr, count, &pos);
694 	set_fs(old_fs);
695 	return result;
696 }
697 
698 EXPORT_SYMBOL(kernel_read);
699 
700 static int exec_mmap(struct mm_struct *mm)
701 {
702 	struct task_struct *tsk;
703 	struct mm_struct * old_mm, *active_mm;
704 
705 	/* Notify parent that we're no longer interested in the old VM */
706 	tsk = current;
707 	old_mm = current->mm;
708 	mm_release(tsk, old_mm);
709 
710 	if (old_mm) {
711 		/*
712 		 * Make sure that if there is a core dump in progress
713 		 * for the old mm, we get out and die instead of going
714 		 * through with the exec.  We must hold mmap_sem around
715 		 * checking core_state and changing tsk->mm.
716 		 */
717 		down_read(&old_mm->mmap_sem);
718 		if (unlikely(old_mm->core_state)) {
719 			up_read(&old_mm->mmap_sem);
720 			return -EINTR;
721 		}
722 	}
723 	task_lock(tsk);
724 	active_mm = tsk->active_mm;
725 	tsk->mm = mm;
726 	tsk->active_mm = mm;
727 	activate_mm(active_mm, mm);
728 	task_unlock(tsk);
729 	arch_pick_mmap_layout(mm);
730 	if (old_mm) {
731 		up_read(&old_mm->mmap_sem);
732 		BUG_ON(active_mm != old_mm);
733 		mm_update_next_owner(old_mm);
734 		mmput(old_mm);
735 		return 0;
736 	}
737 	mmdrop(active_mm);
738 	return 0;
739 }
740 
741 /*
742  * This function makes sure the current process has its own signal table,
743  * so that flush_signal_handlers can later reset the handlers without
744  * disturbing other processes.  (Other processes might share the signal
745  * table via the CLONE_SIGHAND option to clone().)
746  */
747 static int de_thread(struct task_struct *tsk)
748 {
749 	struct signal_struct *sig = tsk->signal;
750 	struct sighand_struct *oldsighand = tsk->sighand;
751 	spinlock_t *lock = &oldsighand->siglock;
752 	int count;
753 
754 	if (thread_group_empty(tsk))
755 		goto no_thread_group;
756 
757 	/*
758 	 * Kill all other threads in the thread group.
759 	 */
760 	spin_lock_irq(lock);
761 	if (signal_group_exit(sig)) {
762 		/*
763 		 * Another group action in progress, just
764 		 * return so that the signal is processed.
765 		 */
766 		spin_unlock_irq(lock);
767 		return -EAGAIN;
768 	}
769 	sig->group_exit_task = tsk;
770 	zap_other_threads(tsk);
771 
772 	/* Account for the thread group leader hanging around: */
773 	count = thread_group_leader(tsk) ? 1 : 2;
774 	sig->notify_count = count;
775 	while (atomic_read(&sig->count) > count) {
776 		__set_current_state(TASK_UNINTERRUPTIBLE);
777 		spin_unlock_irq(lock);
778 		schedule();
779 		spin_lock_irq(lock);
780 	}
781 	spin_unlock_irq(lock);
782 
783 	/*
784 	 * At this point all other threads have exited, all we have to
785 	 * do is to wait for the thread group leader to become inactive,
786 	 * and to assume its PID:
787 	 */
788 	if (!thread_group_leader(tsk)) {
789 		struct task_struct *leader = tsk->group_leader;
790 
791 		sig->notify_count = -1;	/* for exit_notify() */
792 		for (;;) {
793 			write_lock_irq(&tasklist_lock);
794 			if (likely(leader->exit_state))
795 				break;
796 			__set_current_state(TASK_UNINTERRUPTIBLE);
797 			write_unlock_irq(&tasklist_lock);
798 			schedule();
799 		}
800 
801 		/*
802 		 * The only record we have of the real-time age of a
803 		 * process, regardless of execs it's done, is start_time.
804 		 * All the past CPU time is accumulated in signal_struct
805 		 * from sister threads now dead.  But in this non-leader
806 		 * exec, nothing survives from the original leader thread,
807 		 * whose birth marks the true age of this process now.
808 		 * When we take on its identity by switching to its PID, we
809 		 * also take its birthdate (always earlier than our own).
810 		 */
811 		tsk->start_time = leader->start_time;
812 
813 		BUG_ON(!same_thread_group(leader, tsk));
814 		BUG_ON(has_group_leader_pid(tsk));
815 		/*
816 		 * An exec() starts a new thread group with the
817 		 * TGID of the previous thread group. Rehash the
818 		 * two threads with a switched PID, and release
819 		 * the former thread group leader:
820 		 */
821 
822 		/* Become a process group leader with the old leader's pid.
823 		 * The old leader becomes a thread of the this thread group.
824 		 * Note: The old leader also uses this pid until release_task
825 		 *       is called.  Odd but simple and correct.
826 		 */
827 		detach_pid(tsk, PIDTYPE_PID);
828 		tsk->pid = leader->pid;
829 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
830 		transfer_pid(leader, tsk, PIDTYPE_PGID);
831 		transfer_pid(leader, tsk, PIDTYPE_SID);
832 		list_replace_rcu(&leader->tasks, &tsk->tasks);
833 
834 		tsk->group_leader = tsk;
835 		leader->group_leader = tsk;
836 
837 		tsk->exit_signal = SIGCHLD;
838 
839 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
840 		leader->exit_state = EXIT_DEAD;
841 		write_unlock_irq(&tasklist_lock);
842 
843 		release_task(leader);
844 	}
845 
846 	sig->group_exit_task = NULL;
847 	sig->notify_count = 0;
848 
849 no_thread_group:
850 	if (current->mm)
851 		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
852 
853 	exit_itimers(sig);
854 	flush_itimer_signals();
855 
856 	if (atomic_read(&oldsighand->count) != 1) {
857 		struct sighand_struct *newsighand;
858 		/*
859 		 * This ->sighand is shared with the CLONE_SIGHAND
860 		 * but not CLONE_THREAD task, switch to the new one.
861 		 */
862 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
863 		if (!newsighand)
864 			return -ENOMEM;
865 
866 		atomic_set(&newsighand->count, 1);
867 		memcpy(newsighand->action, oldsighand->action,
868 		       sizeof(newsighand->action));
869 
870 		write_lock_irq(&tasklist_lock);
871 		spin_lock(&oldsighand->siglock);
872 		rcu_assign_pointer(tsk->sighand, newsighand);
873 		spin_unlock(&oldsighand->siglock);
874 		write_unlock_irq(&tasklist_lock);
875 
876 		__cleanup_sighand(oldsighand);
877 	}
878 
879 	BUG_ON(!thread_group_leader(tsk));
880 	return 0;
881 }
882 
883 /*
884  * These functions flushes out all traces of the currently running executable
885  * so that a new one can be started
886  */
887 static void flush_old_files(struct files_struct * files)
888 {
889 	long j = -1;
890 	struct fdtable *fdt;
891 
892 	spin_lock(&files->file_lock);
893 	for (;;) {
894 		unsigned long set, i;
895 
896 		j++;
897 		i = j * __NFDBITS;
898 		fdt = files_fdtable(files);
899 		if (i >= fdt->max_fds)
900 			break;
901 		set = fdt->close_on_exec->fds_bits[j];
902 		if (!set)
903 			continue;
904 		fdt->close_on_exec->fds_bits[j] = 0;
905 		spin_unlock(&files->file_lock);
906 		for ( ; set ; i++,set >>= 1) {
907 			if (set & 1) {
908 				sys_close(i);
909 			}
910 		}
911 		spin_lock(&files->file_lock);
912 
913 	}
914 	spin_unlock(&files->file_lock);
915 }
916 
917 char *get_task_comm(char *buf, struct task_struct *tsk)
918 {
919 	/* buf must be at least sizeof(tsk->comm) in size */
920 	task_lock(tsk);
921 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
922 	task_unlock(tsk);
923 	return buf;
924 }
925 
926 void set_task_comm(struct task_struct *tsk, char *buf)
927 {
928 	task_lock(tsk);
929 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
930 	task_unlock(tsk);
931 	perf_event_comm(tsk);
932 }
933 
934 int flush_old_exec(struct linux_binprm * bprm)
935 {
936 	char * name;
937 	int i, ch, retval;
938 	char tcomm[sizeof(current->comm)];
939 
940 	/*
941 	 * Make sure we have a private signal table and that
942 	 * we are unassociated from the previous thread group.
943 	 */
944 	retval = de_thread(current);
945 	if (retval)
946 		goto out;
947 
948 	set_mm_exe_file(bprm->mm, bprm->file);
949 
950 	/*
951 	 * Release all of the old mmap stuff
952 	 */
953 	retval = exec_mmap(bprm->mm);
954 	if (retval)
955 		goto out;
956 
957 	bprm->mm = NULL;		/* We're using it now */
958 
959 	/* This is the point of no return */
960 	current->sas_ss_sp = current->sas_ss_size = 0;
961 
962 	if (current_euid() == current_uid() && current_egid() == current_gid())
963 		set_dumpable(current->mm, 1);
964 	else
965 		set_dumpable(current->mm, suid_dumpable);
966 
967 	name = bprm->filename;
968 
969 	/* Copies the binary name from after last slash */
970 	for (i=0; (ch = *(name++)) != '\0';) {
971 		if (ch == '/')
972 			i = 0; /* overwrite what we wrote */
973 		else
974 			if (i < (sizeof(tcomm) - 1))
975 				tcomm[i++] = ch;
976 	}
977 	tcomm[i] = '\0';
978 	set_task_comm(current, tcomm);
979 
980 	current->flags &= ~PF_RANDOMIZE;
981 	flush_thread();
982 
983 	/* Set the new mm task size. We have to do that late because it may
984 	 * depend on TIF_32BIT which is only updated in flush_thread() on
985 	 * some architectures like powerpc
986 	 */
987 	current->mm->task_size = TASK_SIZE;
988 
989 	/* install the new credentials */
990 	if (bprm->cred->uid != current_euid() ||
991 	    bprm->cred->gid != current_egid()) {
992 		current->pdeath_signal = 0;
993 	} else if (file_permission(bprm->file, MAY_READ) ||
994 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
995 		set_dumpable(current->mm, suid_dumpable);
996 	}
997 
998 	current->personality &= ~bprm->per_clear;
999 
1000 	/*
1001 	 * Flush performance counters when crossing a
1002 	 * security domain:
1003 	 */
1004 	if (!get_dumpable(current->mm))
1005 		perf_event_exit_task(current);
1006 
1007 	/* An exec changes our domain. We are no longer part of the thread
1008 	   group */
1009 
1010 	current->self_exec_id++;
1011 
1012 	flush_signal_handlers(current, 0);
1013 	flush_old_files(current->files);
1014 
1015 	return 0;
1016 
1017 out:
1018 	return retval;
1019 }
1020 
1021 EXPORT_SYMBOL(flush_old_exec);
1022 
1023 /*
1024  * Prepare credentials and lock ->cred_guard_mutex.
1025  * install_exec_creds() commits the new creds and drops the lock.
1026  * Or, if exec fails before, free_bprm() should release ->cred and
1027  * and unlock.
1028  */
1029 int prepare_bprm_creds(struct linux_binprm *bprm)
1030 {
1031 	if (mutex_lock_interruptible(&current->cred_guard_mutex))
1032 		return -ERESTARTNOINTR;
1033 
1034 	bprm->cred = prepare_exec_creds();
1035 	if (likely(bprm->cred))
1036 		return 0;
1037 
1038 	mutex_unlock(&current->cred_guard_mutex);
1039 	return -ENOMEM;
1040 }
1041 
1042 void free_bprm(struct linux_binprm *bprm)
1043 {
1044 	free_arg_pages(bprm);
1045 	if (bprm->cred) {
1046 		mutex_unlock(&current->cred_guard_mutex);
1047 		abort_creds(bprm->cred);
1048 	}
1049 	kfree(bprm);
1050 }
1051 
1052 /*
1053  * install the new credentials for this executable
1054  */
1055 void install_exec_creds(struct linux_binprm *bprm)
1056 {
1057 	security_bprm_committing_creds(bprm);
1058 
1059 	commit_creds(bprm->cred);
1060 	bprm->cred = NULL;
1061 	/*
1062 	 * cred_guard_mutex must be held at least to this point to prevent
1063 	 * ptrace_attach() from altering our determination of the task's
1064 	 * credentials; any time after this it may be unlocked.
1065 	 */
1066 	security_bprm_committed_creds(bprm);
1067 	mutex_unlock(&current->cred_guard_mutex);
1068 }
1069 EXPORT_SYMBOL(install_exec_creds);
1070 
1071 /*
1072  * determine how safe it is to execute the proposed program
1073  * - the caller must hold current->cred_guard_mutex to protect against
1074  *   PTRACE_ATTACH
1075  */
1076 int check_unsafe_exec(struct linux_binprm *bprm)
1077 {
1078 	struct task_struct *p = current, *t;
1079 	unsigned n_fs;
1080 	int res = 0;
1081 
1082 	bprm->unsafe = tracehook_unsafe_exec(p);
1083 
1084 	n_fs = 1;
1085 	write_lock(&p->fs->lock);
1086 	rcu_read_lock();
1087 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1088 		if (t->fs == p->fs)
1089 			n_fs++;
1090 	}
1091 	rcu_read_unlock();
1092 
1093 	if (p->fs->users > n_fs) {
1094 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1095 	} else {
1096 		res = -EAGAIN;
1097 		if (!p->fs->in_exec) {
1098 			p->fs->in_exec = 1;
1099 			res = 1;
1100 		}
1101 	}
1102 	write_unlock(&p->fs->lock);
1103 
1104 	return res;
1105 }
1106 
1107 /*
1108  * Fill the binprm structure from the inode.
1109  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1110  *
1111  * This may be called multiple times for binary chains (scripts for example).
1112  */
1113 int prepare_binprm(struct linux_binprm *bprm)
1114 {
1115 	umode_t mode;
1116 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1117 	int retval;
1118 
1119 	mode = inode->i_mode;
1120 	if (bprm->file->f_op == NULL)
1121 		return -EACCES;
1122 
1123 	/* clear any previous set[ug]id data from a previous binary */
1124 	bprm->cred->euid = current_euid();
1125 	bprm->cred->egid = current_egid();
1126 
1127 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1128 		/* Set-uid? */
1129 		if (mode & S_ISUID) {
1130 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1131 			bprm->cred->euid = inode->i_uid;
1132 		}
1133 
1134 		/* Set-gid? */
1135 		/*
1136 		 * If setgid is set but no group execute bit then this
1137 		 * is a candidate for mandatory locking, not a setgid
1138 		 * executable.
1139 		 */
1140 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1141 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1142 			bprm->cred->egid = inode->i_gid;
1143 		}
1144 	}
1145 
1146 	/* fill in binprm security blob */
1147 	retval = security_bprm_set_creds(bprm);
1148 	if (retval)
1149 		return retval;
1150 	bprm->cred_prepared = 1;
1151 
1152 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1153 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1154 }
1155 
1156 EXPORT_SYMBOL(prepare_binprm);
1157 
1158 /*
1159  * Arguments are '\0' separated strings found at the location bprm->p
1160  * points to; chop off the first by relocating brpm->p to right after
1161  * the first '\0' encountered.
1162  */
1163 int remove_arg_zero(struct linux_binprm *bprm)
1164 {
1165 	int ret = 0;
1166 	unsigned long offset;
1167 	char *kaddr;
1168 	struct page *page;
1169 
1170 	if (!bprm->argc)
1171 		return 0;
1172 
1173 	do {
1174 		offset = bprm->p & ~PAGE_MASK;
1175 		page = get_arg_page(bprm, bprm->p, 0);
1176 		if (!page) {
1177 			ret = -EFAULT;
1178 			goto out;
1179 		}
1180 		kaddr = kmap_atomic(page, KM_USER0);
1181 
1182 		for (; offset < PAGE_SIZE && kaddr[offset];
1183 				offset++, bprm->p++)
1184 			;
1185 
1186 		kunmap_atomic(kaddr, KM_USER0);
1187 		put_arg_page(page);
1188 
1189 		if (offset == PAGE_SIZE)
1190 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1191 	} while (offset == PAGE_SIZE);
1192 
1193 	bprm->p++;
1194 	bprm->argc--;
1195 	ret = 0;
1196 
1197 out:
1198 	return ret;
1199 }
1200 EXPORT_SYMBOL(remove_arg_zero);
1201 
1202 /*
1203  * cycle the list of binary formats handler, until one recognizes the image
1204  */
1205 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1206 {
1207 	unsigned int depth = bprm->recursion_depth;
1208 	int try,retval;
1209 	struct linux_binfmt *fmt;
1210 
1211 	retval = security_bprm_check(bprm);
1212 	if (retval)
1213 		return retval;
1214 	retval = ima_bprm_check(bprm);
1215 	if (retval)
1216 		return retval;
1217 
1218 	/* kernel module loader fixup */
1219 	/* so we don't try to load run modprobe in kernel space. */
1220 	set_fs(USER_DS);
1221 
1222 	retval = audit_bprm(bprm);
1223 	if (retval)
1224 		return retval;
1225 
1226 	retval = -ENOENT;
1227 	for (try=0; try<2; try++) {
1228 		read_lock(&binfmt_lock);
1229 		list_for_each_entry(fmt, &formats, lh) {
1230 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1231 			if (!fn)
1232 				continue;
1233 			if (!try_module_get(fmt->module))
1234 				continue;
1235 			read_unlock(&binfmt_lock);
1236 			retval = fn(bprm, regs);
1237 			/*
1238 			 * Restore the depth counter to its starting value
1239 			 * in this call, so we don't have to rely on every
1240 			 * load_binary function to restore it on return.
1241 			 */
1242 			bprm->recursion_depth = depth;
1243 			if (retval >= 0) {
1244 				if (depth == 0)
1245 					tracehook_report_exec(fmt, bprm, regs);
1246 				put_binfmt(fmt);
1247 				allow_write_access(bprm->file);
1248 				if (bprm->file)
1249 					fput(bprm->file);
1250 				bprm->file = NULL;
1251 				current->did_exec = 1;
1252 				proc_exec_connector(current);
1253 				return retval;
1254 			}
1255 			read_lock(&binfmt_lock);
1256 			put_binfmt(fmt);
1257 			if (retval != -ENOEXEC || bprm->mm == NULL)
1258 				break;
1259 			if (!bprm->file) {
1260 				read_unlock(&binfmt_lock);
1261 				return retval;
1262 			}
1263 		}
1264 		read_unlock(&binfmt_lock);
1265 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1266 			break;
1267 #ifdef CONFIG_MODULES
1268 		} else {
1269 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1270 			if (printable(bprm->buf[0]) &&
1271 			    printable(bprm->buf[1]) &&
1272 			    printable(bprm->buf[2]) &&
1273 			    printable(bprm->buf[3]))
1274 				break; /* -ENOEXEC */
1275 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1276 #endif
1277 		}
1278 	}
1279 	return retval;
1280 }
1281 
1282 EXPORT_SYMBOL(search_binary_handler);
1283 
1284 /*
1285  * sys_execve() executes a new program.
1286  */
1287 int do_execve(char * filename,
1288 	char __user *__user *argv,
1289 	char __user *__user *envp,
1290 	struct pt_regs * regs)
1291 {
1292 	struct linux_binprm *bprm;
1293 	struct file *file;
1294 	struct files_struct *displaced;
1295 	bool clear_in_exec;
1296 	int retval;
1297 
1298 	retval = unshare_files(&displaced);
1299 	if (retval)
1300 		goto out_ret;
1301 
1302 	retval = -ENOMEM;
1303 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1304 	if (!bprm)
1305 		goto out_files;
1306 
1307 	retval = prepare_bprm_creds(bprm);
1308 	if (retval)
1309 		goto out_free;
1310 
1311 	retval = check_unsafe_exec(bprm);
1312 	if (retval < 0)
1313 		goto out_free;
1314 	clear_in_exec = retval;
1315 	current->in_execve = 1;
1316 
1317 	file = open_exec(filename);
1318 	retval = PTR_ERR(file);
1319 	if (IS_ERR(file))
1320 		goto out_unmark;
1321 
1322 	sched_exec();
1323 
1324 	bprm->file = file;
1325 	bprm->filename = filename;
1326 	bprm->interp = filename;
1327 
1328 	retval = bprm_mm_init(bprm);
1329 	if (retval)
1330 		goto out_file;
1331 
1332 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1333 	if ((retval = bprm->argc) < 0)
1334 		goto out;
1335 
1336 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1337 	if ((retval = bprm->envc) < 0)
1338 		goto out;
1339 
1340 	retval = prepare_binprm(bprm);
1341 	if (retval < 0)
1342 		goto out;
1343 
1344 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1345 	if (retval < 0)
1346 		goto out;
1347 
1348 	bprm->exec = bprm->p;
1349 	retval = copy_strings(bprm->envc, envp, bprm);
1350 	if (retval < 0)
1351 		goto out;
1352 
1353 	retval = copy_strings(bprm->argc, argv, bprm);
1354 	if (retval < 0)
1355 		goto out;
1356 
1357 	current->flags &= ~PF_KTHREAD;
1358 	retval = search_binary_handler(bprm,regs);
1359 	if (retval < 0)
1360 		goto out;
1361 
1362 	current->stack_start = current->mm->start_stack;
1363 
1364 	/* execve succeeded */
1365 	current->fs->in_exec = 0;
1366 	current->in_execve = 0;
1367 	acct_update_integrals(current);
1368 	free_bprm(bprm);
1369 	if (displaced)
1370 		put_files_struct(displaced);
1371 	return retval;
1372 
1373 out:
1374 	if (bprm->mm)
1375 		mmput (bprm->mm);
1376 
1377 out_file:
1378 	if (bprm->file) {
1379 		allow_write_access(bprm->file);
1380 		fput(bprm->file);
1381 	}
1382 
1383 out_unmark:
1384 	if (clear_in_exec)
1385 		current->fs->in_exec = 0;
1386 	current->in_execve = 0;
1387 
1388 out_free:
1389 	free_bprm(bprm);
1390 
1391 out_files:
1392 	if (displaced)
1393 		reset_files_struct(displaced);
1394 out_ret:
1395 	return retval;
1396 }
1397 
1398 void set_binfmt(struct linux_binfmt *new)
1399 {
1400 	struct mm_struct *mm = current->mm;
1401 
1402 	if (mm->binfmt)
1403 		module_put(mm->binfmt->module);
1404 
1405 	mm->binfmt = new;
1406 	if (new)
1407 		__module_get(new->module);
1408 }
1409 
1410 EXPORT_SYMBOL(set_binfmt);
1411 
1412 /* format_corename will inspect the pattern parameter, and output a
1413  * name into corename, which must have space for at least
1414  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1415  */
1416 static int format_corename(char *corename, long signr)
1417 {
1418 	const struct cred *cred = current_cred();
1419 	const char *pat_ptr = core_pattern;
1420 	int ispipe = (*pat_ptr == '|');
1421 	char *out_ptr = corename;
1422 	char *const out_end = corename + CORENAME_MAX_SIZE;
1423 	int rc;
1424 	int pid_in_pattern = 0;
1425 
1426 	/* Repeat as long as we have more pattern to process and more output
1427 	   space */
1428 	while (*pat_ptr) {
1429 		if (*pat_ptr != '%') {
1430 			if (out_ptr == out_end)
1431 				goto out;
1432 			*out_ptr++ = *pat_ptr++;
1433 		} else {
1434 			switch (*++pat_ptr) {
1435 			case 0:
1436 				goto out;
1437 			/* Double percent, output one percent */
1438 			case '%':
1439 				if (out_ptr == out_end)
1440 					goto out;
1441 				*out_ptr++ = '%';
1442 				break;
1443 			/* pid */
1444 			case 'p':
1445 				pid_in_pattern = 1;
1446 				rc = snprintf(out_ptr, out_end - out_ptr,
1447 					      "%d", task_tgid_vnr(current));
1448 				if (rc > out_end - out_ptr)
1449 					goto out;
1450 				out_ptr += rc;
1451 				break;
1452 			/* uid */
1453 			case 'u':
1454 				rc = snprintf(out_ptr, out_end - out_ptr,
1455 					      "%d", cred->uid);
1456 				if (rc > out_end - out_ptr)
1457 					goto out;
1458 				out_ptr += rc;
1459 				break;
1460 			/* gid */
1461 			case 'g':
1462 				rc = snprintf(out_ptr, out_end - out_ptr,
1463 					      "%d", cred->gid);
1464 				if (rc > out_end - out_ptr)
1465 					goto out;
1466 				out_ptr += rc;
1467 				break;
1468 			/* signal that caused the coredump */
1469 			case 's':
1470 				rc = snprintf(out_ptr, out_end - out_ptr,
1471 					      "%ld", signr);
1472 				if (rc > out_end - out_ptr)
1473 					goto out;
1474 				out_ptr += rc;
1475 				break;
1476 			/* UNIX time of coredump */
1477 			case 't': {
1478 				struct timeval tv;
1479 				do_gettimeofday(&tv);
1480 				rc = snprintf(out_ptr, out_end - out_ptr,
1481 					      "%lu", tv.tv_sec);
1482 				if (rc > out_end - out_ptr)
1483 					goto out;
1484 				out_ptr += rc;
1485 				break;
1486 			}
1487 			/* hostname */
1488 			case 'h':
1489 				down_read(&uts_sem);
1490 				rc = snprintf(out_ptr, out_end - out_ptr,
1491 					      "%s", utsname()->nodename);
1492 				up_read(&uts_sem);
1493 				if (rc > out_end - out_ptr)
1494 					goto out;
1495 				out_ptr += rc;
1496 				break;
1497 			/* executable */
1498 			case 'e':
1499 				rc = snprintf(out_ptr, out_end - out_ptr,
1500 					      "%s", current->comm);
1501 				if (rc > out_end - out_ptr)
1502 					goto out;
1503 				out_ptr += rc;
1504 				break;
1505 			/* core limit size */
1506 			case 'c':
1507 				rc = snprintf(out_ptr, out_end - out_ptr,
1508 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1509 				if (rc > out_end - out_ptr)
1510 					goto out;
1511 				out_ptr += rc;
1512 				break;
1513 			default:
1514 				break;
1515 			}
1516 			++pat_ptr;
1517 		}
1518 	}
1519 	/* Backward compatibility with core_uses_pid:
1520 	 *
1521 	 * If core_pattern does not include a %p (as is the default)
1522 	 * and core_uses_pid is set, then .%pid will be appended to
1523 	 * the filename. Do not do this for piped commands. */
1524 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1525 		rc = snprintf(out_ptr, out_end - out_ptr,
1526 			      ".%d", task_tgid_vnr(current));
1527 		if (rc > out_end - out_ptr)
1528 			goto out;
1529 		out_ptr += rc;
1530 	}
1531 out:
1532 	*out_ptr = 0;
1533 	return ispipe;
1534 }
1535 
1536 static int zap_process(struct task_struct *start)
1537 {
1538 	struct task_struct *t;
1539 	int nr = 0;
1540 
1541 	start->signal->flags = SIGNAL_GROUP_EXIT;
1542 	start->signal->group_stop_count = 0;
1543 
1544 	t = start;
1545 	do {
1546 		if (t != current && t->mm) {
1547 			sigaddset(&t->pending.signal, SIGKILL);
1548 			signal_wake_up(t, 1);
1549 			nr++;
1550 		}
1551 	} while_each_thread(start, t);
1552 
1553 	return nr;
1554 }
1555 
1556 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1557 				struct core_state *core_state, int exit_code)
1558 {
1559 	struct task_struct *g, *p;
1560 	unsigned long flags;
1561 	int nr = -EAGAIN;
1562 
1563 	spin_lock_irq(&tsk->sighand->siglock);
1564 	if (!signal_group_exit(tsk->signal)) {
1565 		mm->core_state = core_state;
1566 		tsk->signal->group_exit_code = exit_code;
1567 		nr = zap_process(tsk);
1568 	}
1569 	spin_unlock_irq(&tsk->sighand->siglock);
1570 	if (unlikely(nr < 0))
1571 		return nr;
1572 
1573 	if (atomic_read(&mm->mm_users) == nr + 1)
1574 		goto done;
1575 	/*
1576 	 * We should find and kill all tasks which use this mm, and we should
1577 	 * count them correctly into ->nr_threads. We don't take tasklist
1578 	 * lock, but this is safe wrt:
1579 	 *
1580 	 * fork:
1581 	 *	None of sub-threads can fork after zap_process(leader). All
1582 	 *	processes which were created before this point should be
1583 	 *	visible to zap_threads() because copy_process() adds the new
1584 	 *	process to the tail of init_task.tasks list, and lock/unlock
1585 	 *	of ->siglock provides a memory barrier.
1586 	 *
1587 	 * do_exit:
1588 	 *	The caller holds mm->mmap_sem. This means that the task which
1589 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1590 	 *	its ->mm.
1591 	 *
1592 	 * de_thread:
1593 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1594 	 *	we must see either old or new leader, this does not matter.
1595 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1596 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1597 	 *	it can't fail.
1598 	 *
1599 	 *	Note also that "g" can be the old leader with ->mm == NULL
1600 	 *	and already unhashed and thus removed from ->thread_group.
1601 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1602 	 *	clear the ->next pointer, we will find the new leader via
1603 	 *	next_thread().
1604 	 */
1605 	rcu_read_lock();
1606 	for_each_process(g) {
1607 		if (g == tsk->group_leader)
1608 			continue;
1609 		if (g->flags & PF_KTHREAD)
1610 			continue;
1611 		p = g;
1612 		do {
1613 			if (p->mm) {
1614 				if (unlikely(p->mm == mm)) {
1615 					lock_task_sighand(p, &flags);
1616 					nr += zap_process(p);
1617 					unlock_task_sighand(p, &flags);
1618 				}
1619 				break;
1620 			}
1621 		} while_each_thread(g, p);
1622 	}
1623 	rcu_read_unlock();
1624 done:
1625 	atomic_set(&core_state->nr_threads, nr);
1626 	return nr;
1627 }
1628 
1629 static int coredump_wait(int exit_code, struct core_state *core_state)
1630 {
1631 	struct task_struct *tsk = current;
1632 	struct mm_struct *mm = tsk->mm;
1633 	struct completion *vfork_done;
1634 	int core_waiters;
1635 
1636 	init_completion(&core_state->startup);
1637 	core_state->dumper.task = tsk;
1638 	core_state->dumper.next = NULL;
1639 	core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1640 	up_write(&mm->mmap_sem);
1641 
1642 	if (unlikely(core_waiters < 0))
1643 		goto fail;
1644 
1645 	/*
1646 	 * Make sure nobody is waiting for us to release the VM,
1647 	 * otherwise we can deadlock when we wait on each other
1648 	 */
1649 	vfork_done = tsk->vfork_done;
1650 	if (vfork_done) {
1651 		tsk->vfork_done = NULL;
1652 		complete(vfork_done);
1653 	}
1654 
1655 	if (core_waiters)
1656 		wait_for_completion(&core_state->startup);
1657 fail:
1658 	return core_waiters;
1659 }
1660 
1661 static void coredump_finish(struct mm_struct *mm)
1662 {
1663 	struct core_thread *curr, *next;
1664 	struct task_struct *task;
1665 
1666 	next = mm->core_state->dumper.next;
1667 	while ((curr = next) != NULL) {
1668 		next = curr->next;
1669 		task = curr->task;
1670 		/*
1671 		 * see exit_mm(), curr->task must not see
1672 		 * ->task == NULL before we read ->next.
1673 		 */
1674 		smp_mb();
1675 		curr->task = NULL;
1676 		wake_up_process(task);
1677 	}
1678 
1679 	mm->core_state = NULL;
1680 }
1681 
1682 /*
1683  * set_dumpable converts traditional three-value dumpable to two flags and
1684  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1685  * these bits are not changed atomically.  So get_dumpable can observe the
1686  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1687  * return either old dumpable or new one by paying attention to the order of
1688  * modifying the bits.
1689  *
1690  * dumpable |   mm->flags (binary)
1691  * old  new | initial interim  final
1692  * ---------+-----------------------
1693  *  0    1  |   00      01      01
1694  *  0    2  |   00      10(*)   11
1695  *  1    0  |   01      00      00
1696  *  1    2  |   01      11      11
1697  *  2    0  |   11      10(*)   00
1698  *  2    1  |   11      11      01
1699  *
1700  * (*) get_dumpable regards interim value of 10 as 11.
1701  */
1702 void set_dumpable(struct mm_struct *mm, int value)
1703 {
1704 	switch (value) {
1705 	case 0:
1706 		clear_bit(MMF_DUMPABLE, &mm->flags);
1707 		smp_wmb();
1708 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1709 		break;
1710 	case 1:
1711 		set_bit(MMF_DUMPABLE, &mm->flags);
1712 		smp_wmb();
1713 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1714 		break;
1715 	case 2:
1716 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1717 		smp_wmb();
1718 		set_bit(MMF_DUMPABLE, &mm->flags);
1719 		break;
1720 	}
1721 }
1722 
1723 int get_dumpable(struct mm_struct *mm)
1724 {
1725 	int ret;
1726 
1727 	ret = mm->flags & 0x3;
1728 	return (ret >= 2) ? 2 : ret;
1729 }
1730 
1731 static void wait_for_dump_helpers(struct file *file)
1732 {
1733 	struct pipe_inode_info *pipe;
1734 
1735 	pipe = file->f_path.dentry->d_inode->i_pipe;
1736 
1737 	pipe_lock(pipe);
1738 	pipe->readers++;
1739 	pipe->writers--;
1740 
1741 	while ((pipe->readers > 1) && (!signal_pending(current))) {
1742 		wake_up_interruptible_sync(&pipe->wait);
1743 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1744 		pipe_wait(pipe);
1745 	}
1746 
1747 	pipe->readers--;
1748 	pipe->writers++;
1749 	pipe_unlock(pipe);
1750 
1751 }
1752 
1753 
1754 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1755 {
1756 	struct core_state core_state;
1757 	char corename[CORENAME_MAX_SIZE + 1];
1758 	struct mm_struct *mm = current->mm;
1759 	struct linux_binfmt * binfmt;
1760 	struct inode * inode;
1761 	struct file * file;
1762 	const struct cred *old_cred;
1763 	struct cred *cred;
1764 	int retval = 0;
1765 	int flag = 0;
1766 	int ispipe = 0;
1767 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1768 	char **helper_argv = NULL;
1769 	int helper_argc = 0;
1770 	int dump_count = 0;
1771 	static atomic_t core_dump_count = ATOMIC_INIT(0);
1772 
1773 	audit_core_dumps(signr);
1774 
1775 	binfmt = mm->binfmt;
1776 	if (!binfmt || !binfmt->core_dump)
1777 		goto fail;
1778 
1779 	cred = prepare_creds();
1780 	if (!cred) {
1781 		retval = -ENOMEM;
1782 		goto fail;
1783 	}
1784 
1785 	down_write(&mm->mmap_sem);
1786 	/*
1787 	 * If another thread got here first, or we are not dumpable, bail out.
1788 	 */
1789 	if (mm->core_state || !get_dumpable(mm)) {
1790 		up_write(&mm->mmap_sem);
1791 		put_cred(cred);
1792 		goto fail;
1793 	}
1794 
1795 	/*
1796 	 *	We cannot trust fsuid as being the "true" uid of the
1797 	 *	process nor do we know its entire history. We only know it
1798 	 *	was tainted so we dump it as root in mode 2.
1799 	 */
1800 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1801 		flag = O_EXCL;		/* Stop rewrite attacks */
1802 		cred->fsuid = 0;	/* Dump root private */
1803 	}
1804 
1805 	retval = coredump_wait(exit_code, &core_state);
1806 	if (retval < 0) {
1807 		put_cred(cred);
1808 		goto fail;
1809 	}
1810 
1811 	old_cred = override_creds(cred);
1812 
1813 	/*
1814 	 * Clear any false indication of pending signals that might
1815 	 * be seen by the filesystem code called to write the core file.
1816 	 */
1817 	clear_thread_flag(TIF_SIGPENDING);
1818 
1819 	/*
1820 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1821 	 * uses lock_kernel()
1822 	 */
1823  	lock_kernel();
1824 	ispipe = format_corename(corename, signr);
1825 	unlock_kernel();
1826 
1827 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1828 		goto fail_unlock;
1829 
1830  	if (ispipe) {
1831 		if (core_limit == 0) {
1832 			/*
1833 			 * Normally core limits are irrelevant to pipes, since
1834 			 * we're not writing to the file system, but we use
1835 			 * core_limit of 0 here as a speacial value. Any
1836 			 * non-zero limit gets set to RLIM_INFINITY below, but
1837 			 * a limit of 0 skips the dump.  This is a consistent
1838 			 * way to catch recursive crashes.  We can still crash
1839 			 * if the core_pattern binary sets RLIM_CORE =  !0
1840 			 * but it runs as root, and can do lots of stupid things
1841 			 * Note that we use task_tgid_vnr here to grab the pid
1842 			 * of the process group leader.  That way we get the
1843 			 * right pid if a thread in a multi-threaded
1844 			 * core_pattern process dies.
1845 			 */
1846 			printk(KERN_WARNING
1847 				"Process %d(%s) has RLIMIT_CORE set to 0\n",
1848 				task_tgid_vnr(current), current->comm);
1849 			printk(KERN_WARNING "Aborting core\n");
1850 			goto fail_unlock;
1851 		}
1852 
1853 		dump_count = atomic_inc_return(&core_dump_count);
1854 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1855 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1856 			       task_tgid_vnr(current), current->comm);
1857 			printk(KERN_WARNING "Skipping core dump\n");
1858 			goto fail_dropcount;
1859 		}
1860 
1861 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1862 		if (!helper_argv) {
1863 			printk(KERN_WARNING "%s failed to allocate memory\n",
1864 			       __func__);
1865 			goto fail_dropcount;
1866 		}
1867 
1868 		core_limit = RLIM_INFINITY;
1869 
1870 		/* SIGPIPE can happen, but it's just never processed */
1871 		if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
1872 				&file)) {
1873  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1874 			       corename);
1875 			goto fail_dropcount;
1876  		}
1877  	} else
1878  		file = filp_open(corename,
1879 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1880 				 0600);
1881 	if (IS_ERR(file))
1882 		goto fail_dropcount;
1883 	inode = file->f_path.dentry->d_inode;
1884 	if (inode->i_nlink > 1)
1885 		goto close_fail;	/* multiple links - don't dump */
1886 	if (!ispipe && d_unhashed(file->f_path.dentry))
1887 		goto close_fail;
1888 
1889 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1890 	   but keep the previous behaviour for now. */
1891 	if (!ispipe && !S_ISREG(inode->i_mode))
1892 		goto close_fail;
1893 	/*
1894 	 * Dont allow local users get cute and trick others to coredump
1895 	 * into their pre-created files:
1896 	 */
1897 	if (inode->i_uid != current_fsuid())
1898 		goto close_fail;
1899 	if (!file->f_op)
1900 		goto close_fail;
1901 	if (!file->f_op->write)
1902 		goto close_fail;
1903 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1904 		goto close_fail;
1905 
1906 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1907 
1908 	if (retval)
1909 		current->signal->group_exit_code |= 0x80;
1910 close_fail:
1911 	if (ispipe && core_pipe_limit)
1912 		wait_for_dump_helpers(file);
1913 	filp_close(file, NULL);
1914 fail_dropcount:
1915 	if (dump_count)
1916 		atomic_dec(&core_dump_count);
1917 fail_unlock:
1918 	if (helper_argv)
1919 		argv_free(helper_argv);
1920 
1921 	revert_creds(old_cred);
1922 	put_cred(cred);
1923 	coredump_finish(mm);
1924 fail:
1925 	return;
1926 }
1927