xref: /openbmc/linux/fs/exec.c (revision 4800cd83)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
63 
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
68 
69 struct core_name {
70 	char *corename;
71 	int used, size;
72 };
73 static atomic_t call_count = ATOMIC_INIT(1);
74 
75 /* The maximal length of core_pattern is also specified in sysctl.c */
76 
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79 
80 int __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82 	if (!fmt)
83 		return -EINVAL;
84 	write_lock(&binfmt_lock);
85 	insert ? list_add(&fmt->lh, &formats) :
86 		 list_add_tail(&fmt->lh, &formats);
87 	write_unlock(&binfmt_lock);
88 	return 0;
89 }
90 
91 EXPORT_SYMBOL(__register_binfmt);
92 
93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 	write_lock(&binfmt_lock);
96 	list_del(&fmt->lh);
97 	write_unlock(&binfmt_lock);
98 }
99 
100 EXPORT_SYMBOL(unregister_binfmt);
101 
102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104 	module_put(fmt->module);
105 }
106 
107 /*
108  * Note that a shared library must be both readable and executable due to
109  * security reasons.
110  *
111  * Also note that we take the address to load from from the file itself.
112  */
113 SYSCALL_DEFINE1(uselib, const char __user *, library)
114 {
115 	struct file *file;
116 	char *tmp = getname(library);
117 	int error = PTR_ERR(tmp);
118 
119 	if (IS_ERR(tmp))
120 		goto out;
121 
122 	file = do_filp_open(AT_FDCWD, tmp,
123 				O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 0,
124 				MAY_READ | MAY_EXEC | MAY_OPEN);
125 	putname(tmp);
126 	error = PTR_ERR(file);
127 	if (IS_ERR(file))
128 		goto out;
129 
130 	error = -EINVAL;
131 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
132 		goto exit;
133 
134 	error = -EACCES;
135 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136 		goto exit;
137 
138 	fsnotify_open(file);
139 
140 	error = -ENOEXEC;
141 	if(file->f_op) {
142 		struct linux_binfmt * fmt;
143 
144 		read_lock(&binfmt_lock);
145 		list_for_each_entry(fmt, &formats, lh) {
146 			if (!fmt->load_shlib)
147 				continue;
148 			if (!try_module_get(fmt->module))
149 				continue;
150 			read_unlock(&binfmt_lock);
151 			error = fmt->load_shlib(file);
152 			read_lock(&binfmt_lock);
153 			put_binfmt(fmt);
154 			if (error != -ENOEXEC)
155 				break;
156 		}
157 		read_unlock(&binfmt_lock);
158 	}
159 exit:
160 	fput(file);
161 out:
162   	return error;
163 }
164 
165 #ifdef CONFIG_MMU
166 
167 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
168 {
169 	struct mm_struct *mm = current->mm;
170 	long diff = (long)(pages - bprm->vma_pages);
171 
172 	if (!mm || !diff)
173 		return;
174 
175 	bprm->vma_pages = pages;
176 
177 #ifdef SPLIT_RSS_COUNTING
178 	add_mm_counter(mm, MM_ANONPAGES, diff);
179 #else
180 	spin_lock(&mm->page_table_lock);
181 	add_mm_counter(mm, MM_ANONPAGES, diff);
182 	spin_unlock(&mm->page_table_lock);
183 #endif
184 }
185 
186 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
187 		int write)
188 {
189 	struct page *page;
190 	int ret;
191 
192 #ifdef CONFIG_STACK_GROWSUP
193 	if (write) {
194 		ret = expand_stack_downwards(bprm->vma, pos);
195 		if (ret < 0)
196 			return NULL;
197 	}
198 #endif
199 	ret = get_user_pages(current, bprm->mm, pos,
200 			1, write, 1, &page, NULL);
201 	if (ret <= 0)
202 		return NULL;
203 
204 	if (write) {
205 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
206 		struct rlimit *rlim;
207 
208 		acct_arg_size(bprm, size / PAGE_SIZE);
209 
210 		/*
211 		 * We've historically supported up to 32 pages (ARG_MAX)
212 		 * of argument strings even with small stacks
213 		 */
214 		if (size <= ARG_MAX)
215 			return page;
216 
217 		/*
218 		 * Limit to 1/4-th the stack size for the argv+env strings.
219 		 * This ensures that:
220 		 *  - the remaining binfmt code will not run out of stack space,
221 		 *  - the program will have a reasonable amount of stack left
222 		 *    to work from.
223 		 */
224 		rlim = current->signal->rlim;
225 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
226 			put_page(page);
227 			return NULL;
228 		}
229 	}
230 
231 	return page;
232 }
233 
234 static void put_arg_page(struct page *page)
235 {
236 	put_page(page);
237 }
238 
239 static void free_arg_page(struct linux_binprm *bprm, int i)
240 {
241 }
242 
243 static void free_arg_pages(struct linux_binprm *bprm)
244 {
245 }
246 
247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
248 		struct page *page)
249 {
250 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
251 }
252 
253 static int __bprm_mm_init(struct linux_binprm *bprm)
254 {
255 	int err;
256 	struct vm_area_struct *vma = NULL;
257 	struct mm_struct *mm = bprm->mm;
258 
259 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
260 	if (!vma)
261 		return -ENOMEM;
262 
263 	down_write(&mm->mmap_sem);
264 	vma->vm_mm = mm;
265 
266 	/*
267 	 * Place the stack at the largest stack address the architecture
268 	 * supports. Later, we'll move this to an appropriate place. We don't
269 	 * use STACK_TOP because that can depend on attributes which aren't
270 	 * configured yet.
271 	 */
272 	BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
273 	vma->vm_end = STACK_TOP_MAX;
274 	vma->vm_start = vma->vm_end - PAGE_SIZE;
275 	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
276 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
277 	INIT_LIST_HEAD(&vma->anon_vma_chain);
278 
279 	err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
280 	if (err)
281 		goto err;
282 
283 	err = insert_vm_struct(mm, vma);
284 	if (err)
285 		goto err;
286 
287 	mm->stack_vm = mm->total_vm = 1;
288 	up_write(&mm->mmap_sem);
289 	bprm->p = vma->vm_end - sizeof(void *);
290 	return 0;
291 err:
292 	up_write(&mm->mmap_sem);
293 	bprm->vma = NULL;
294 	kmem_cache_free(vm_area_cachep, vma);
295 	return err;
296 }
297 
298 static bool valid_arg_len(struct linux_binprm *bprm, long len)
299 {
300 	return len <= MAX_ARG_STRLEN;
301 }
302 
303 #else
304 
305 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
306 {
307 }
308 
309 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
310 		int write)
311 {
312 	struct page *page;
313 
314 	page = bprm->page[pos / PAGE_SIZE];
315 	if (!page && write) {
316 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
317 		if (!page)
318 			return NULL;
319 		bprm->page[pos / PAGE_SIZE] = page;
320 	}
321 
322 	return page;
323 }
324 
325 static void put_arg_page(struct page *page)
326 {
327 }
328 
329 static void free_arg_page(struct linux_binprm *bprm, int i)
330 {
331 	if (bprm->page[i]) {
332 		__free_page(bprm->page[i]);
333 		bprm->page[i] = NULL;
334 	}
335 }
336 
337 static void free_arg_pages(struct linux_binprm *bprm)
338 {
339 	int i;
340 
341 	for (i = 0; i < MAX_ARG_PAGES; i++)
342 		free_arg_page(bprm, i);
343 }
344 
345 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
346 		struct page *page)
347 {
348 }
349 
350 static int __bprm_mm_init(struct linux_binprm *bprm)
351 {
352 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
353 	return 0;
354 }
355 
356 static bool valid_arg_len(struct linux_binprm *bprm, long len)
357 {
358 	return len <= bprm->p;
359 }
360 
361 #endif /* CONFIG_MMU */
362 
363 /*
364  * Create a new mm_struct and populate it with a temporary stack
365  * vm_area_struct.  We don't have enough context at this point to set the stack
366  * flags, permissions, and offset, so we use temporary values.  We'll update
367  * them later in setup_arg_pages().
368  */
369 int bprm_mm_init(struct linux_binprm *bprm)
370 {
371 	int err;
372 	struct mm_struct *mm = NULL;
373 
374 	bprm->mm = mm = mm_alloc();
375 	err = -ENOMEM;
376 	if (!mm)
377 		goto err;
378 
379 	err = init_new_context(current, mm);
380 	if (err)
381 		goto err;
382 
383 	err = __bprm_mm_init(bprm);
384 	if (err)
385 		goto err;
386 
387 	return 0;
388 
389 err:
390 	if (mm) {
391 		bprm->mm = NULL;
392 		mmdrop(mm);
393 	}
394 
395 	return err;
396 }
397 
398 /*
399  * count() counts the number of strings in array ARGV.
400  */
401 static int count(const char __user * const __user * argv, int max)
402 {
403 	int i = 0;
404 
405 	if (argv != NULL) {
406 		for (;;) {
407 			const char __user * p;
408 
409 			if (get_user(p, argv))
410 				return -EFAULT;
411 			if (!p)
412 				break;
413 			argv++;
414 			if (i++ >= max)
415 				return -E2BIG;
416 
417 			if (fatal_signal_pending(current))
418 				return -ERESTARTNOHAND;
419 			cond_resched();
420 		}
421 	}
422 	return i;
423 }
424 
425 /*
426  * 'copy_strings()' copies argument/environment strings from the old
427  * processes's memory to the new process's stack.  The call to get_user_pages()
428  * ensures the destination page is created and not swapped out.
429  */
430 static int copy_strings(int argc, const char __user *const __user *argv,
431 			struct linux_binprm *bprm)
432 {
433 	struct page *kmapped_page = NULL;
434 	char *kaddr = NULL;
435 	unsigned long kpos = 0;
436 	int ret;
437 
438 	while (argc-- > 0) {
439 		const char __user *str;
440 		int len;
441 		unsigned long pos;
442 
443 		if (get_user(str, argv+argc) ||
444 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
445 			ret = -EFAULT;
446 			goto out;
447 		}
448 
449 		if (!valid_arg_len(bprm, len)) {
450 			ret = -E2BIG;
451 			goto out;
452 		}
453 
454 		/* We're going to work our way backwords. */
455 		pos = bprm->p;
456 		str += len;
457 		bprm->p -= len;
458 
459 		while (len > 0) {
460 			int offset, bytes_to_copy;
461 
462 			if (fatal_signal_pending(current)) {
463 				ret = -ERESTARTNOHAND;
464 				goto out;
465 			}
466 			cond_resched();
467 
468 			offset = pos % PAGE_SIZE;
469 			if (offset == 0)
470 				offset = PAGE_SIZE;
471 
472 			bytes_to_copy = offset;
473 			if (bytes_to_copy > len)
474 				bytes_to_copy = len;
475 
476 			offset -= bytes_to_copy;
477 			pos -= bytes_to_copy;
478 			str -= bytes_to_copy;
479 			len -= bytes_to_copy;
480 
481 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
482 				struct page *page;
483 
484 				page = get_arg_page(bprm, pos, 1);
485 				if (!page) {
486 					ret = -E2BIG;
487 					goto out;
488 				}
489 
490 				if (kmapped_page) {
491 					flush_kernel_dcache_page(kmapped_page);
492 					kunmap(kmapped_page);
493 					put_arg_page(kmapped_page);
494 				}
495 				kmapped_page = page;
496 				kaddr = kmap(kmapped_page);
497 				kpos = pos & PAGE_MASK;
498 				flush_arg_page(bprm, kpos, kmapped_page);
499 			}
500 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
501 				ret = -EFAULT;
502 				goto out;
503 			}
504 		}
505 	}
506 	ret = 0;
507 out:
508 	if (kmapped_page) {
509 		flush_kernel_dcache_page(kmapped_page);
510 		kunmap(kmapped_page);
511 		put_arg_page(kmapped_page);
512 	}
513 	return ret;
514 }
515 
516 /*
517  * Like copy_strings, but get argv and its values from kernel memory.
518  */
519 int copy_strings_kernel(int argc, const char *const *argv,
520 			struct linux_binprm *bprm)
521 {
522 	int r;
523 	mm_segment_t oldfs = get_fs();
524 	set_fs(KERNEL_DS);
525 	r = copy_strings(argc, (const char __user *const  __user *)argv, bprm);
526 	set_fs(oldfs);
527 	return r;
528 }
529 EXPORT_SYMBOL(copy_strings_kernel);
530 
531 #ifdef CONFIG_MMU
532 
533 /*
534  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
535  * the binfmt code determines where the new stack should reside, we shift it to
536  * its final location.  The process proceeds as follows:
537  *
538  * 1) Use shift to calculate the new vma endpoints.
539  * 2) Extend vma to cover both the old and new ranges.  This ensures the
540  *    arguments passed to subsequent functions are consistent.
541  * 3) Move vma's page tables to the new range.
542  * 4) Free up any cleared pgd range.
543  * 5) Shrink the vma to cover only the new range.
544  */
545 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
546 {
547 	struct mm_struct *mm = vma->vm_mm;
548 	unsigned long old_start = vma->vm_start;
549 	unsigned long old_end = vma->vm_end;
550 	unsigned long length = old_end - old_start;
551 	unsigned long new_start = old_start - shift;
552 	unsigned long new_end = old_end - shift;
553 	struct mmu_gather *tlb;
554 
555 	BUG_ON(new_start > new_end);
556 
557 	/*
558 	 * ensure there are no vmas between where we want to go
559 	 * and where we are
560 	 */
561 	if (vma != find_vma(mm, new_start))
562 		return -EFAULT;
563 
564 	/*
565 	 * cover the whole range: [new_start, old_end)
566 	 */
567 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
568 		return -ENOMEM;
569 
570 	/*
571 	 * move the page tables downwards, on failure we rely on
572 	 * process cleanup to remove whatever mess we made.
573 	 */
574 	if (length != move_page_tables(vma, old_start,
575 				       vma, new_start, length))
576 		return -ENOMEM;
577 
578 	lru_add_drain();
579 	tlb = tlb_gather_mmu(mm, 0);
580 	if (new_end > old_start) {
581 		/*
582 		 * when the old and new regions overlap clear from new_end.
583 		 */
584 		free_pgd_range(tlb, new_end, old_end, new_end,
585 			vma->vm_next ? vma->vm_next->vm_start : 0);
586 	} else {
587 		/*
588 		 * otherwise, clean from old_start; this is done to not touch
589 		 * the address space in [new_end, old_start) some architectures
590 		 * have constraints on va-space that make this illegal (IA64) -
591 		 * for the others its just a little faster.
592 		 */
593 		free_pgd_range(tlb, old_start, old_end, new_end,
594 			vma->vm_next ? vma->vm_next->vm_start : 0);
595 	}
596 	tlb_finish_mmu(tlb, new_end, old_end);
597 
598 	/*
599 	 * Shrink the vma to just the new range.  Always succeeds.
600 	 */
601 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
602 
603 	return 0;
604 }
605 
606 /*
607  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
608  * the stack is optionally relocated, and some extra space is added.
609  */
610 int setup_arg_pages(struct linux_binprm *bprm,
611 		    unsigned long stack_top,
612 		    int executable_stack)
613 {
614 	unsigned long ret;
615 	unsigned long stack_shift;
616 	struct mm_struct *mm = current->mm;
617 	struct vm_area_struct *vma = bprm->vma;
618 	struct vm_area_struct *prev = NULL;
619 	unsigned long vm_flags;
620 	unsigned long stack_base;
621 	unsigned long stack_size;
622 	unsigned long stack_expand;
623 	unsigned long rlim_stack;
624 
625 #ifdef CONFIG_STACK_GROWSUP
626 	/* Limit stack size to 1GB */
627 	stack_base = rlimit_max(RLIMIT_STACK);
628 	if (stack_base > (1 << 30))
629 		stack_base = 1 << 30;
630 
631 	/* Make sure we didn't let the argument array grow too large. */
632 	if (vma->vm_end - vma->vm_start > stack_base)
633 		return -ENOMEM;
634 
635 	stack_base = PAGE_ALIGN(stack_top - stack_base);
636 
637 	stack_shift = vma->vm_start - stack_base;
638 	mm->arg_start = bprm->p - stack_shift;
639 	bprm->p = vma->vm_end - stack_shift;
640 #else
641 	stack_top = arch_align_stack(stack_top);
642 	stack_top = PAGE_ALIGN(stack_top);
643 
644 	if (unlikely(stack_top < mmap_min_addr) ||
645 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
646 		return -ENOMEM;
647 
648 	stack_shift = vma->vm_end - stack_top;
649 
650 	bprm->p -= stack_shift;
651 	mm->arg_start = bprm->p;
652 #endif
653 
654 	if (bprm->loader)
655 		bprm->loader -= stack_shift;
656 	bprm->exec -= stack_shift;
657 
658 	down_write(&mm->mmap_sem);
659 	vm_flags = VM_STACK_FLAGS;
660 
661 	/*
662 	 * Adjust stack execute permissions; explicitly enable for
663 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
664 	 * (arch default) otherwise.
665 	 */
666 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
667 		vm_flags |= VM_EXEC;
668 	else if (executable_stack == EXSTACK_DISABLE_X)
669 		vm_flags &= ~VM_EXEC;
670 	vm_flags |= mm->def_flags;
671 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
672 
673 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
674 			vm_flags);
675 	if (ret)
676 		goto out_unlock;
677 	BUG_ON(prev != vma);
678 
679 	/* Move stack pages down in memory. */
680 	if (stack_shift) {
681 		ret = shift_arg_pages(vma, stack_shift);
682 		if (ret)
683 			goto out_unlock;
684 	}
685 
686 	/* mprotect_fixup is overkill to remove the temporary stack flags */
687 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
688 
689 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
690 	stack_size = vma->vm_end - vma->vm_start;
691 	/*
692 	 * Align this down to a page boundary as expand_stack
693 	 * will align it up.
694 	 */
695 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
696 #ifdef CONFIG_STACK_GROWSUP
697 	if (stack_size + stack_expand > rlim_stack)
698 		stack_base = vma->vm_start + rlim_stack;
699 	else
700 		stack_base = vma->vm_end + stack_expand;
701 #else
702 	if (stack_size + stack_expand > rlim_stack)
703 		stack_base = vma->vm_end - rlim_stack;
704 	else
705 		stack_base = vma->vm_start - stack_expand;
706 #endif
707 	current->mm->start_stack = bprm->p;
708 	ret = expand_stack(vma, stack_base);
709 	if (ret)
710 		ret = -EFAULT;
711 
712 out_unlock:
713 	up_write(&mm->mmap_sem);
714 	return ret;
715 }
716 EXPORT_SYMBOL(setup_arg_pages);
717 
718 #endif /* CONFIG_MMU */
719 
720 struct file *open_exec(const char *name)
721 {
722 	struct file *file;
723 	int err;
724 
725 	file = do_filp_open(AT_FDCWD, name,
726 				O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 0,
727 				MAY_EXEC | MAY_OPEN);
728 	if (IS_ERR(file))
729 		goto out;
730 
731 	err = -EACCES;
732 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
733 		goto exit;
734 
735 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
736 		goto exit;
737 
738 	fsnotify_open(file);
739 
740 	err = deny_write_access(file);
741 	if (err)
742 		goto exit;
743 
744 out:
745 	return file;
746 
747 exit:
748 	fput(file);
749 	return ERR_PTR(err);
750 }
751 EXPORT_SYMBOL(open_exec);
752 
753 int kernel_read(struct file *file, loff_t offset,
754 		char *addr, unsigned long count)
755 {
756 	mm_segment_t old_fs;
757 	loff_t pos = offset;
758 	int result;
759 
760 	old_fs = get_fs();
761 	set_fs(get_ds());
762 	/* The cast to a user pointer is valid due to the set_fs() */
763 	result = vfs_read(file, (void __user *)addr, count, &pos);
764 	set_fs(old_fs);
765 	return result;
766 }
767 
768 EXPORT_SYMBOL(kernel_read);
769 
770 static int exec_mmap(struct mm_struct *mm)
771 {
772 	struct task_struct *tsk;
773 	struct mm_struct * old_mm, *active_mm;
774 
775 	/* Notify parent that we're no longer interested in the old VM */
776 	tsk = current;
777 	old_mm = current->mm;
778 	sync_mm_rss(tsk, old_mm);
779 	mm_release(tsk, old_mm);
780 
781 	if (old_mm) {
782 		/*
783 		 * Make sure that if there is a core dump in progress
784 		 * for the old mm, we get out and die instead of going
785 		 * through with the exec.  We must hold mmap_sem around
786 		 * checking core_state and changing tsk->mm.
787 		 */
788 		down_read(&old_mm->mmap_sem);
789 		if (unlikely(old_mm->core_state)) {
790 			up_read(&old_mm->mmap_sem);
791 			return -EINTR;
792 		}
793 	}
794 	task_lock(tsk);
795 	active_mm = tsk->active_mm;
796 	tsk->mm = mm;
797 	tsk->active_mm = mm;
798 	activate_mm(active_mm, mm);
799 	if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
800 		atomic_dec(&old_mm->oom_disable_count);
801 		atomic_inc(&tsk->mm->oom_disable_count);
802 	}
803 	task_unlock(tsk);
804 	arch_pick_mmap_layout(mm);
805 	if (old_mm) {
806 		up_read(&old_mm->mmap_sem);
807 		BUG_ON(active_mm != old_mm);
808 		mm_update_next_owner(old_mm);
809 		mmput(old_mm);
810 		return 0;
811 	}
812 	mmdrop(active_mm);
813 	return 0;
814 }
815 
816 /*
817  * This function makes sure the current process has its own signal table,
818  * so that flush_signal_handlers can later reset the handlers without
819  * disturbing other processes.  (Other processes might share the signal
820  * table via the CLONE_SIGHAND option to clone().)
821  */
822 static int de_thread(struct task_struct *tsk)
823 {
824 	struct signal_struct *sig = tsk->signal;
825 	struct sighand_struct *oldsighand = tsk->sighand;
826 	spinlock_t *lock = &oldsighand->siglock;
827 
828 	if (thread_group_empty(tsk))
829 		goto no_thread_group;
830 
831 	/*
832 	 * Kill all other threads in the thread group.
833 	 */
834 	spin_lock_irq(lock);
835 	if (signal_group_exit(sig)) {
836 		/*
837 		 * Another group action in progress, just
838 		 * return so that the signal is processed.
839 		 */
840 		spin_unlock_irq(lock);
841 		return -EAGAIN;
842 	}
843 
844 	sig->group_exit_task = tsk;
845 	sig->notify_count = zap_other_threads(tsk);
846 	if (!thread_group_leader(tsk))
847 		sig->notify_count--;
848 
849 	while (sig->notify_count) {
850 		__set_current_state(TASK_UNINTERRUPTIBLE);
851 		spin_unlock_irq(lock);
852 		schedule();
853 		spin_lock_irq(lock);
854 	}
855 	spin_unlock_irq(lock);
856 
857 	/*
858 	 * At this point all other threads have exited, all we have to
859 	 * do is to wait for the thread group leader to become inactive,
860 	 * and to assume its PID:
861 	 */
862 	if (!thread_group_leader(tsk)) {
863 		struct task_struct *leader = tsk->group_leader;
864 
865 		sig->notify_count = -1;	/* for exit_notify() */
866 		for (;;) {
867 			write_lock_irq(&tasklist_lock);
868 			if (likely(leader->exit_state))
869 				break;
870 			__set_current_state(TASK_UNINTERRUPTIBLE);
871 			write_unlock_irq(&tasklist_lock);
872 			schedule();
873 		}
874 
875 		/*
876 		 * The only record we have of the real-time age of a
877 		 * process, regardless of execs it's done, is start_time.
878 		 * All the past CPU time is accumulated in signal_struct
879 		 * from sister threads now dead.  But in this non-leader
880 		 * exec, nothing survives from the original leader thread,
881 		 * whose birth marks the true age of this process now.
882 		 * When we take on its identity by switching to its PID, we
883 		 * also take its birthdate (always earlier than our own).
884 		 */
885 		tsk->start_time = leader->start_time;
886 
887 		BUG_ON(!same_thread_group(leader, tsk));
888 		BUG_ON(has_group_leader_pid(tsk));
889 		/*
890 		 * An exec() starts a new thread group with the
891 		 * TGID of the previous thread group. Rehash the
892 		 * two threads with a switched PID, and release
893 		 * the former thread group leader:
894 		 */
895 
896 		/* Become a process group leader with the old leader's pid.
897 		 * The old leader becomes a thread of the this thread group.
898 		 * Note: The old leader also uses this pid until release_task
899 		 *       is called.  Odd but simple and correct.
900 		 */
901 		detach_pid(tsk, PIDTYPE_PID);
902 		tsk->pid = leader->pid;
903 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
904 		transfer_pid(leader, tsk, PIDTYPE_PGID);
905 		transfer_pid(leader, tsk, PIDTYPE_SID);
906 
907 		list_replace_rcu(&leader->tasks, &tsk->tasks);
908 		list_replace_init(&leader->sibling, &tsk->sibling);
909 
910 		tsk->group_leader = tsk;
911 		leader->group_leader = tsk;
912 
913 		tsk->exit_signal = SIGCHLD;
914 
915 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
916 		leader->exit_state = EXIT_DEAD;
917 		write_unlock_irq(&tasklist_lock);
918 
919 		release_task(leader);
920 	}
921 
922 	sig->group_exit_task = NULL;
923 	sig->notify_count = 0;
924 
925 no_thread_group:
926 	if (current->mm)
927 		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
928 
929 	exit_itimers(sig);
930 	flush_itimer_signals();
931 
932 	if (atomic_read(&oldsighand->count) != 1) {
933 		struct sighand_struct *newsighand;
934 		/*
935 		 * This ->sighand is shared with the CLONE_SIGHAND
936 		 * but not CLONE_THREAD task, switch to the new one.
937 		 */
938 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
939 		if (!newsighand)
940 			return -ENOMEM;
941 
942 		atomic_set(&newsighand->count, 1);
943 		memcpy(newsighand->action, oldsighand->action,
944 		       sizeof(newsighand->action));
945 
946 		write_lock_irq(&tasklist_lock);
947 		spin_lock(&oldsighand->siglock);
948 		rcu_assign_pointer(tsk->sighand, newsighand);
949 		spin_unlock(&oldsighand->siglock);
950 		write_unlock_irq(&tasklist_lock);
951 
952 		__cleanup_sighand(oldsighand);
953 	}
954 
955 	BUG_ON(!thread_group_leader(tsk));
956 	return 0;
957 }
958 
959 /*
960  * These functions flushes out all traces of the currently running executable
961  * so that a new one can be started
962  */
963 static void flush_old_files(struct files_struct * files)
964 {
965 	long j = -1;
966 	struct fdtable *fdt;
967 
968 	spin_lock(&files->file_lock);
969 	for (;;) {
970 		unsigned long set, i;
971 
972 		j++;
973 		i = j * __NFDBITS;
974 		fdt = files_fdtable(files);
975 		if (i >= fdt->max_fds)
976 			break;
977 		set = fdt->close_on_exec->fds_bits[j];
978 		if (!set)
979 			continue;
980 		fdt->close_on_exec->fds_bits[j] = 0;
981 		spin_unlock(&files->file_lock);
982 		for ( ; set ; i++,set >>= 1) {
983 			if (set & 1) {
984 				sys_close(i);
985 			}
986 		}
987 		spin_lock(&files->file_lock);
988 
989 	}
990 	spin_unlock(&files->file_lock);
991 }
992 
993 char *get_task_comm(char *buf, struct task_struct *tsk)
994 {
995 	/* buf must be at least sizeof(tsk->comm) in size */
996 	task_lock(tsk);
997 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
998 	task_unlock(tsk);
999 	return buf;
1000 }
1001 
1002 void set_task_comm(struct task_struct *tsk, char *buf)
1003 {
1004 	task_lock(tsk);
1005 
1006 	/*
1007 	 * Threads may access current->comm without holding
1008 	 * the task lock, so write the string carefully.
1009 	 * Readers without a lock may see incomplete new
1010 	 * names but are safe from non-terminating string reads.
1011 	 */
1012 	memset(tsk->comm, 0, TASK_COMM_LEN);
1013 	wmb();
1014 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1015 	task_unlock(tsk);
1016 	perf_event_comm(tsk);
1017 }
1018 
1019 int flush_old_exec(struct linux_binprm * bprm)
1020 {
1021 	int retval;
1022 
1023 	/*
1024 	 * Make sure we have a private signal table and that
1025 	 * we are unassociated from the previous thread group.
1026 	 */
1027 	retval = de_thread(current);
1028 	if (retval)
1029 		goto out;
1030 
1031 	set_mm_exe_file(bprm->mm, bprm->file);
1032 
1033 	/*
1034 	 * Release all of the old mmap stuff
1035 	 */
1036 	acct_arg_size(bprm, 0);
1037 	retval = exec_mmap(bprm->mm);
1038 	if (retval)
1039 		goto out;
1040 
1041 	bprm->mm = NULL;		/* We're using it now */
1042 
1043 	current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
1044 	flush_thread();
1045 	current->personality &= ~bprm->per_clear;
1046 
1047 	return 0;
1048 
1049 out:
1050 	return retval;
1051 }
1052 EXPORT_SYMBOL(flush_old_exec);
1053 
1054 void setup_new_exec(struct linux_binprm * bprm)
1055 {
1056 	int i, ch;
1057 	const char *name;
1058 	char tcomm[sizeof(current->comm)];
1059 
1060 	arch_pick_mmap_layout(current->mm);
1061 
1062 	/* This is the point of no return */
1063 	current->sas_ss_sp = current->sas_ss_size = 0;
1064 
1065 	if (current_euid() == current_uid() && current_egid() == current_gid())
1066 		set_dumpable(current->mm, 1);
1067 	else
1068 		set_dumpable(current->mm, suid_dumpable);
1069 
1070 	name = bprm->filename;
1071 
1072 	/* Copies the binary name from after last slash */
1073 	for (i=0; (ch = *(name++)) != '\0';) {
1074 		if (ch == '/')
1075 			i = 0; /* overwrite what we wrote */
1076 		else
1077 			if (i < (sizeof(tcomm) - 1))
1078 				tcomm[i++] = ch;
1079 	}
1080 	tcomm[i] = '\0';
1081 	set_task_comm(current, tcomm);
1082 
1083 	/* Set the new mm task size. We have to do that late because it may
1084 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1085 	 * some architectures like powerpc
1086 	 */
1087 	current->mm->task_size = TASK_SIZE;
1088 
1089 	/* install the new credentials */
1090 	if (bprm->cred->uid != current_euid() ||
1091 	    bprm->cred->gid != current_egid()) {
1092 		current->pdeath_signal = 0;
1093 	} else if (file_permission(bprm->file, MAY_READ) ||
1094 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1095 		set_dumpable(current->mm, suid_dumpable);
1096 	}
1097 
1098 	/*
1099 	 * Flush performance counters when crossing a
1100 	 * security domain:
1101 	 */
1102 	if (!get_dumpable(current->mm))
1103 		perf_event_exit_task(current);
1104 
1105 	/* An exec changes our domain. We are no longer part of the thread
1106 	   group */
1107 
1108 	current->self_exec_id++;
1109 
1110 	flush_signal_handlers(current, 0);
1111 	flush_old_files(current->files);
1112 }
1113 EXPORT_SYMBOL(setup_new_exec);
1114 
1115 /*
1116  * Prepare credentials and lock ->cred_guard_mutex.
1117  * install_exec_creds() commits the new creds and drops the lock.
1118  * Or, if exec fails before, free_bprm() should release ->cred and
1119  * and unlock.
1120  */
1121 int prepare_bprm_creds(struct linux_binprm *bprm)
1122 {
1123 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1124 		return -ERESTARTNOINTR;
1125 
1126 	bprm->cred = prepare_exec_creds();
1127 	if (likely(bprm->cred))
1128 		return 0;
1129 
1130 	mutex_unlock(&current->signal->cred_guard_mutex);
1131 	return -ENOMEM;
1132 }
1133 
1134 void free_bprm(struct linux_binprm *bprm)
1135 {
1136 	free_arg_pages(bprm);
1137 	if (bprm->cred) {
1138 		mutex_unlock(&current->signal->cred_guard_mutex);
1139 		abort_creds(bprm->cred);
1140 	}
1141 	kfree(bprm);
1142 }
1143 
1144 /*
1145  * install the new credentials for this executable
1146  */
1147 void install_exec_creds(struct linux_binprm *bprm)
1148 {
1149 	security_bprm_committing_creds(bprm);
1150 
1151 	commit_creds(bprm->cred);
1152 	bprm->cred = NULL;
1153 	/*
1154 	 * cred_guard_mutex must be held at least to this point to prevent
1155 	 * ptrace_attach() from altering our determination of the task's
1156 	 * credentials; any time after this it may be unlocked.
1157 	 */
1158 	security_bprm_committed_creds(bprm);
1159 	mutex_unlock(&current->signal->cred_guard_mutex);
1160 }
1161 EXPORT_SYMBOL(install_exec_creds);
1162 
1163 /*
1164  * determine how safe it is to execute the proposed program
1165  * - the caller must hold ->cred_guard_mutex to protect against
1166  *   PTRACE_ATTACH
1167  */
1168 int check_unsafe_exec(struct linux_binprm *bprm)
1169 {
1170 	struct task_struct *p = current, *t;
1171 	unsigned n_fs;
1172 	int res = 0;
1173 
1174 	bprm->unsafe = tracehook_unsafe_exec(p);
1175 
1176 	n_fs = 1;
1177 	spin_lock(&p->fs->lock);
1178 	rcu_read_lock();
1179 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1180 		if (t->fs == p->fs)
1181 			n_fs++;
1182 	}
1183 	rcu_read_unlock();
1184 
1185 	if (p->fs->users > n_fs) {
1186 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1187 	} else {
1188 		res = -EAGAIN;
1189 		if (!p->fs->in_exec) {
1190 			p->fs->in_exec = 1;
1191 			res = 1;
1192 		}
1193 	}
1194 	spin_unlock(&p->fs->lock);
1195 
1196 	return res;
1197 }
1198 
1199 /*
1200  * Fill the binprm structure from the inode.
1201  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1202  *
1203  * This may be called multiple times for binary chains (scripts for example).
1204  */
1205 int prepare_binprm(struct linux_binprm *bprm)
1206 {
1207 	umode_t mode;
1208 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1209 	int retval;
1210 
1211 	mode = inode->i_mode;
1212 	if (bprm->file->f_op == NULL)
1213 		return -EACCES;
1214 
1215 	/* clear any previous set[ug]id data from a previous binary */
1216 	bprm->cred->euid = current_euid();
1217 	bprm->cred->egid = current_egid();
1218 
1219 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1220 		/* Set-uid? */
1221 		if (mode & S_ISUID) {
1222 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1223 			bprm->cred->euid = inode->i_uid;
1224 		}
1225 
1226 		/* Set-gid? */
1227 		/*
1228 		 * If setgid is set but no group execute bit then this
1229 		 * is a candidate for mandatory locking, not a setgid
1230 		 * executable.
1231 		 */
1232 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1233 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1234 			bprm->cred->egid = inode->i_gid;
1235 		}
1236 	}
1237 
1238 	/* fill in binprm security blob */
1239 	retval = security_bprm_set_creds(bprm);
1240 	if (retval)
1241 		return retval;
1242 	bprm->cred_prepared = 1;
1243 
1244 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1245 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1246 }
1247 
1248 EXPORT_SYMBOL(prepare_binprm);
1249 
1250 /*
1251  * Arguments are '\0' separated strings found at the location bprm->p
1252  * points to; chop off the first by relocating brpm->p to right after
1253  * the first '\0' encountered.
1254  */
1255 int remove_arg_zero(struct linux_binprm *bprm)
1256 {
1257 	int ret = 0;
1258 	unsigned long offset;
1259 	char *kaddr;
1260 	struct page *page;
1261 
1262 	if (!bprm->argc)
1263 		return 0;
1264 
1265 	do {
1266 		offset = bprm->p & ~PAGE_MASK;
1267 		page = get_arg_page(bprm, bprm->p, 0);
1268 		if (!page) {
1269 			ret = -EFAULT;
1270 			goto out;
1271 		}
1272 		kaddr = kmap_atomic(page, KM_USER0);
1273 
1274 		for (; offset < PAGE_SIZE && kaddr[offset];
1275 				offset++, bprm->p++)
1276 			;
1277 
1278 		kunmap_atomic(kaddr, KM_USER0);
1279 		put_arg_page(page);
1280 
1281 		if (offset == PAGE_SIZE)
1282 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1283 	} while (offset == PAGE_SIZE);
1284 
1285 	bprm->p++;
1286 	bprm->argc--;
1287 	ret = 0;
1288 
1289 out:
1290 	return ret;
1291 }
1292 EXPORT_SYMBOL(remove_arg_zero);
1293 
1294 /*
1295  * cycle the list of binary formats handler, until one recognizes the image
1296  */
1297 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1298 {
1299 	unsigned int depth = bprm->recursion_depth;
1300 	int try,retval;
1301 	struct linux_binfmt *fmt;
1302 
1303 	retval = security_bprm_check(bprm);
1304 	if (retval)
1305 		return retval;
1306 
1307 	/* kernel module loader fixup */
1308 	/* so we don't try to load run modprobe in kernel space. */
1309 	set_fs(USER_DS);
1310 
1311 	retval = audit_bprm(bprm);
1312 	if (retval)
1313 		return retval;
1314 
1315 	retval = -ENOENT;
1316 	for (try=0; try<2; try++) {
1317 		read_lock(&binfmt_lock);
1318 		list_for_each_entry(fmt, &formats, lh) {
1319 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1320 			if (!fn)
1321 				continue;
1322 			if (!try_module_get(fmt->module))
1323 				continue;
1324 			read_unlock(&binfmt_lock);
1325 			retval = fn(bprm, regs);
1326 			/*
1327 			 * Restore the depth counter to its starting value
1328 			 * in this call, so we don't have to rely on every
1329 			 * load_binary function to restore it on return.
1330 			 */
1331 			bprm->recursion_depth = depth;
1332 			if (retval >= 0) {
1333 				if (depth == 0)
1334 					tracehook_report_exec(fmt, bprm, regs);
1335 				put_binfmt(fmt);
1336 				allow_write_access(bprm->file);
1337 				if (bprm->file)
1338 					fput(bprm->file);
1339 				bprm->file = NULL;
1340 				current->did_exec = 1;
1341 				proc_exec_connector(current);
1342 				return retval;
1343 			}
1344 			read_lock(&binfmt_lock);
1345 			put_binfmt(fmt);
1346 			if (retval != -ENOEXEC || bprm->mm == NULL)
1347 				break;
1348 			if (!bprm->file) {
1349 				read_unlock(&binfmt_lock);
1350 				return retval;
1351 			}
1352 		}
1353 		read_unlock(&binfmt_lock);
1354 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1355 			break;
1356 #ifdef CONFIG_MODULES
1357 		} else {
1358 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1359 			if (printable(bprm->buf[0]) &&
1360 			    printable(bprm->buf[1]) &&
1361 			    printable(bprm->buf[2]) &&
1362 			    printable(bprm->buf[3]))
1363 				break; /* -ENOEXEC */
1364 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1365 #endif
1366 		}
1367 	}
1368 	return retval;
1369 }
1370 
1371 EXPORT_SYMBOL(search_binary_handler);
1372 
1373 /*
1374  * sys_execve() executes a new program.
1375  */
1376 int do_execve(const char * filename,
1377 	const char __user *const __user *argv,
1378 	const char __user *const __user *envp,
1379 	struct pt_regs * regs)
1380 {
1381 	struct linux_binprm *bprm;
1382 	struct file *file;
1383 	struct files_struct *displaced;
1384 	bool clear_in_exec;
1385 	int retval;
1386 
1387 	retval = unshare_files(&displaced);
1388 	if (retval)
1389 		goto out_ret;
1390 
1391 	retval = -ENOMEM;
1392 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1393 	if (!bprm)
1394 		goto out_files;
1395 
1396 	retval = prepare_bprm_creds(bprm);
1397 	if (retval)
1398 		goto out_free;
1399 
1400 	retval = check_unsafe_exec(bprm);
1401 	if (retval < 0)
1402 		goto out_free;
1403 	clear_in_exec = retval;
1404 	current->in_execve = 1;
1405 
1406 	file = open_exec(filename);
1407 	retval = PTR_ERR(file);
1408 	if (IS_ERR(file))
1409 		goto out_unmark;
1410 
1411 	sched_exec();
1412 
1413 	bprm->file = file;
1414 	bprm->filename = filename;
1415 	bprm->interp = filename;
1416 
1417 	retval = bprm_mm_init(bprm);
1418 	if (retval)
1419 		goto out_file;
1420 
1421 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1422 	if ((retval = bprm->argc) < 0)
1423 		goto out;
1424 
1425 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1426 	if ((retval = bprm->envc) < 0)
1427 		goto out;
1428 
1429 	retval = prepare_binprm(bprm);
1430 	if (retval < 0)
1431 		goto out;
1432 
1433 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1434 	if (retval < 0)
1435 		goto out;
1436 
1437 	bprm->exec = bprm->p;
1438 	retval = copy_strings(bprm->envc, envp, bprm);
1439 	if (retval < 0)
1440 		goto out;
1441 
1442 	retval = copy_strings(bprm->argc, argv, bprm);
1443 	if (retval < 0)
1444 		goto out;
1445 
1446 	retval = search_binary_handler(bprm,regs);
1447 	if (retval < 0)
1448 		goto out;
1449 
1450 	/* execve succeeded */
1451 	current->fs->in_exec = 0;
1452 	current->in_execve = 0;
1453 	acct_update_integrals(current);
1454 	free_bprm(bprm);
1455 	if (displaced)
1456 		put_files_struct(displaced);
1457 	return retval;
1458 
1459 out:
1460 	if (bprm->mm) {
1461 		acct_arg_size(bprm, 0);
1462 		mmput(bprm->mm);
1463 	}
1464 
1465 out_file:
1466 	if (bprm->file) {
1467 		allow_write_access(bprm->file);
1468 		fput(bprm->file);
1469 	}
1470 
1471 out_unmark:
1472 	if (clear_in_exec)
1473 		current->fs->in_exec = 0;
1474 	current->in_execve = 0;
1475 
1476 out_free:
1477 	free_bprm(bprm);
1478 
1479 out_files:
1480 	if (displaced)
1481 		reset_files_struct(displaced);
1482 out_ret:
1483 	return retval;
1484 }
1485 
1486 void set_binfmt(struct linux_binfmt *new)
1487 {
1488 	struct mm_struct *mm = current->mm;
1489 
1490 	if (mm->binfmt)
1491 		module_put(mm->binfmt->module);
1492 
1493 	mm->binfmt = new;
1494 	if (new)
1495 		__module_get(new->module);
1496 }
1497 
1498 EXPORT_SYMBOL(set_binfmt);
1499 
1500 static int expand_corename(struct core_name *cn)
1501 {
1502 	char *old_corename = cn->corename;
1503 
1504 	cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1505 	cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1506 
1507 	if (!cn->corename) {
1508 		kfree(old_corename);
1509 		return -ENOMEM;
1510 	}
1511 
1512 	return 0;
1513 }
1514 
1515 static int cn_printf(struct core_name *cn, const char *fmt, ...)
1516 {
1517 	char *cur;
1518 	int need;
1519 	int ret;
1520 	va_list arg;
1521 
1522 	va_start(arg, fmt);
1523 	need = vsnprintf(NULL, 0, fmt, arg);
1524 	va_end(arg);
1525 
1526 	if (likely(need < cn->size - cn->used - 1))
1527 		goto out_printf;
1528 
1529 	ret = expand_corename(cn);
1530 	if (ret)
1531 		goto expand_fail;
1532 
1533 out_printf:
1534 	cur = cn->corename + cn->used;
1535 	va_start(arg, fmt);
1536 	vsnprintf(cur, need + 1, fmt, arg);
1537 	va_end(arg);
1538 	cn->used += need;
1539 	return 0;
1540 
1541 expand_fail:
1542 	return ret;
1543 }
1544 
1545 /* format_corename will inspect the pattern parameter, and output a
1546  * name into corename, which must have space for at least
1547  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1548  */
1549 static int format_corename(struct core_name *cn, long signr)
1550 {
1551 	const struct cred *cred = current_cred();
1552 	const char *pat_ptr = core_pattern;
1553 	int ispipe = (*pat_ptr == '|');
1554 	int pid_in_pattern = 0;
1555 	int err = 0;
1556 
1557 	cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1558 	cn->corename = kmalloc(cn->size, GFP_KERNEL);
1559 	cn->used = 0;
1560 
1561 	if (!cn->corename)
1562 		return -ENOMEM;
1563 
1564 	/* Repeat as long as we have more pattern to process and more output
1565 	   space */
1566 	while (*pat_ptr) {
1567 		if (*pat_ptr != '%') {
1568 			if (*pat_ptr == 0)
1569 				goto out;
1570 			err = cn_printf(cn, "%c", *pat_ptr++);
1571 		} else {
1572 			switch (*++pat_ptr) {
1573 			/* single % at the end, drop that */
1574 			case 0:
1575 				goto out;
1576 			/* Double percent, output one percent */
1577 			case '%':
1578 				err = cn_printf(cn, "%c", '%');
1579 				break;
1580 			/* pid */
1581 			case 'p':
1582 				pid_in_pattern = 1;
1583 				err = cn_printf(cn, "%d",
1584 					      task_tgid_vnr(current));
1585 				break;
1586 			/* uid */
1587 			case 'u':
1588 				err = cn_printf(cn, "%d", cred->uid);
1589 				break;
1590 			/* gid */
1591 			case 'g':
1592 				err = cn_printf(cn, "%d", cred->gid);
1593 				break;
1594 			/* signal that caused the coredump */
1595 			case 's':
1596 				err = cn_printf(cn, "%ld", signr);
1597 				break;
1598 			/* UNIX time of coredump */
1599 			case 't': {
1600 				struct timeval tv;
1601 				do_gettimeofday(&tv);
1602 				err = cn_printf(cn, "%lu", tv.tv_sec);
1603 				break;
1604 			}
1605 			/* hostname */
1606 			case 'h':
1607 				down_read(&uts_sem);
1608 				err = cn_printf(cn, "%s",
1609 					      utsname()->nodename);
1610 				up_read(&uts_sem);
1611 				break;
1612 			/* executable */
1613 			case 'e':
1614 				err = cn_printf(cn, "%s", current->comm);
1615 				break;
1616 			/* core limit size */
1617 			case 'c':
1618 				err = cn_printf(cn, "%lu",
1619 					      rlimit(RLIMIT_CORE));
1620 				break;
1621 			default:
1622 				break;
1623 			}
1624 			++pat_ptr;
1625 		}
1626 
1627 		if (err)
1628 			return err;
1629 	}
1630 
1631 	/* Backward compatibility with core_uses_pid:
1632 	 *
1633 	 * If core_pattern does not include a %p (as is the default)
1634 	 * and core_uses_pid is set, then .%pid will be appended to
1635 	 * the filename. Do not do this for piped commands. */
1636 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1637 		err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1638 		if (err)
1639 			return err;
1640 	}
1641 out:
1642 	return ispipe;
1643 }
1644 
1645 static int zap_process(struct task_struct *start, int exit_code)
1646 {
1647 	struct task_struct *t;
1648 	int nr = 0;
1649 
1650 	start->signal->flags = SIGNAL_GROUP_EXIT;
1651 	start->signal->group_exit_code = exit_code;
1652 	start->signal->group_stop_count = 0;
1653 
1654 	t = start;
1655 	do {
1656 		if (t != current && t->mm) {
1657 			sigaddset(&t->pending.signal, SIGKILL);
1658 			signal_wake_up(t, 1);
1659 			nr++;
1660 		}
1661 	} while_each_thread(start, t);
1662 
1663 	return nr;
1664 }
1665 
1666 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1667 				struct core_state *core_state, int exit_code)
1668 {
1669 	struct task_struct *g, *p;
1670 	unsigned long flags;
1671 	int nr = -EAGAIN;
1672 
1673 	spin_lock_irq(&tsk->sighand->siglock);
1674 	if (!signal_group_exit(tsk->signal)) {
1675 		mm->core_state = core_state;
1676 		nr = zap_process(tsk, exit_code);
1677 	}
1678 	spin_unlock_irq(&tsk->sighand->siglock);
1679 	if (unlikely(nr < 0))
1680 		return nr;
1681 
1682 	if (atomic_read(&mm->mm_users) == nr + 1)
1683 		goto done;
1684 	/*
1685 	 * We should find and kill all tasks which use this mm, and we should
1686 	 * count them correctly into ->nr_threads. We don't take tasklist
1687 	 * lock, but this is safe wrt:
1688 	 *
1689 	 * fork:
1690 	 *	None of sub-threads can fork after zap_process(leader). All
1691 	 *	processes which were created before this point should be
1692 	 *	visible to zap_threads() because copy_process() adds the new
1693 	 *	process to the tail of init_task.tasks list, and lock/unlock
1694 	 *	of ->siglock provides a memory barrier.
1695 	 *
1696 	 * do_exit:
1697 	 *	The caller holds mm->mmap_sem. This means that the task which
1698 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1699 	 *	its ->mm.
1700 	 *
1701 	 * de_thread:
1702 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1703 	 *	we must see either old or new leader, this does not matter.
1704 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1705 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1706 	 *	it can't fail.
1707 	 *
1708 	 *	Note also that "g" can be the old leader with ->mm == NULL
1709 	 *	and already unhashed and thus removed from ->thread_group.
1710 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1711 	 *	clear the ->next pointer, we will find the new leader via
1712 	 *	next_thread().
1713 	 */
1714 	rcu_read_lock();
1715 	for_each_process(g) {
1716 		if (g == tsk->group_leader)
1717 			continue;
1718 		if (g->flags & PF_KTHREAD)
1719 			continue;
1720 		p = g;
1721 		do {
1722 			if (p->mm) {
1723 				if (unlikely(p->mm == mm)) {
1724 					lock_task_sighand(p, &flags);
1725 					nr += zap_process(p, exit_code);
1726 					unlock_task_sighand(p, &flags);
1727 				}
1728 				break;
1729 			}
1730 		} while_each_thread(g, p);
1731 	}
1732 	rcu_read_unlock();
1733 done:
1734 	atomic_set(&core_state->nr_threads, nr);
1735 	return nr;
1736 }
1737 
1738 static int coredump_wait(int exit_code, struct core_state *core_state)
1739 {
1740 	struct task_struct *tsk = current;
1741 	struct mm_struct *mm = tsk->mm;
1742 	struct completion *vfork_done;
1743 	int core_waiters = -EBUSY;
1744 
1745 	init_completion(&core_state->startup);
1746 	core_state->dumper.task = tsk;
1747 	core_state->dumper.next = NULL;
1748 
1749 	down_write(&mm->mmap_sem);
1750 	if (!mm->core_state)
1751 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1752 	up_write(&mm->mmap_sem);
1753 
1754 	if (unlikely(core_waiters < 0))
1755 		goto fail;
1756 
1757 	/*
1758 	 * Make sure nobody is waiting for us to release the VM,
1759 	 * otherwise we can deadlock when we wait on each other
1760 	 */
1761 	vfork_done = tsk->vfork_done;
1762 	if (vfork_done) {
1763 		tsk->vfork_done = NULL;
1764 		complete(vfork_done);
1765 	}
1766 
1767 	if (core_waiters)
1768 		wait_for_completion(&core_state->startup);
1769 fail:
1770 	return core_waiters;
1771 }
1772 
1773 static void coredump_finish(struct mm_struct *mm)
1774 {
1775 	struct core_thread *curr, *next;
1776 	struct task_struct *task;
1777 
1778 	next = mm->core_state->dumper.next;
1779 	while ((curr = next) != NULL) {
1780 		next = curr->next;
1781 		task = curr->task;
1782 		/*
1783 		 * see exit_mm(), curr->task must not see
1784 		 * ->task == NULL before we read ->next.
1785 		 */
1786 		smp_mb();
1787 		curr->task = NULL;
1788 		wake_up_process(task);
1789 	}
1790 
1791 	mm->core_state = NULL;
1792 }
1793 
1794 /*
1795  * set_dumpable converts traditional three-value dumpable to two flags and
1796  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1797  * these bits are not changed atomically.  So get_dumpable can observe the
1798  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1799  * return either old dumpable or new one by paying attention to the order of
1800  * modifying the bits.
1801  *
1802  * dumpable |   mm->flags (binary)
1803  * old  new | initial interim  final
1804  * ---------+-----------------------
1805  *  0    1  |   00      01      01
1806  *  0    2  |   00      10(*)   11
1807  *  1    0  |   01      00      00
1808  *  1    2  |   01      11      11
1809  *  2    0  |   11      10(*)   00
1810  *  2    1  |   11      11      01
1811  *
1812  * (*) get_dumpable regards interim value of 10 as 11.
1813  */
1814 void set_dumpable(struct mm_struct *mm, int value)
1815 {
1816 	switch (value) {
1817 	case 0:
1818 		clear_bit(MMF_DUMPABLE, &mm->flags);
1819 		smp_wmb();
1820 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1821 		break;
1822 	case 1:
1823 		set_bit(MMF_DUMPABLE, &mm->flags);
1824 		smp_wmb();
1825 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1826 		break;
1827 	case 2:
1828 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1829 		smp_wmb();
1830 		set_bit(MMF_DUMPABLE, &mm->flags);
1831 		break;
1832 	}
1833 }
1834 
1835 static int __get_dumpable(unsigned long mm_flags)
1836 {
1837 	int ret;
1838 
1839 	ret = mm_flags & MMF_DUMPABLE_MASK;
1840 	return (ret >= 2) ? 2 : ret;
1841 }
1842 
1843 int get_dumpable(struct mm_struct *mm)
1844 {
1845 	return __get_dumpable(mm->flags);
1846 }
1847 
1848 static void wait_for_dump_helpers(struct file *file)
1849 {
1850 	struct pipe_inode_info *pipe;
1851 
1852 	pipe = file->f_path.dentry->d_inode->i_pipe;
1853 
1854 	pipe_lock(pipe);
1855 	pipe->readers++;
1856 	pipe->writers--;
1857 
1858 	while ((pipe->readers > 1) && (!signal_pending(current))) {
1859 		wake_up_interruptible_sync(&pipe->wait);
1860 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1861 		pipe_wait(pipe);
1862 	}
1863 
1864 	pipe->readers--;
1865 	pipe->writers++;
1866 	pipe_unlock(pipe);
1867 
1868 }
1869 
1870 
1871 /*
1872  * uhm_pipe_setup
1873  * helper function to customize the process used
1874  * to collect the core in userspace.  Specifically
1875  * it sets up a pipe and installs it as fd 0 (stdin)
1876  * for the process.  Returns 0 on success, or
1877  * PTR_ERR on failure.
1878  * Note that it also sets the core limit to 1.  This
1879  * is a special value that we use to trap recursive
1880  * core dumps
1881  */
1882 static int umh_pipe_setup(struct subprocess_info *info)
1883 {
1884 	struct file *rp, *wp;
1885 	struct fdtable *fdt;
1886 	struct coredump_params *cp = (struct coredump_params *)info->data;
1887 	struct files_struct *cf = current->files;
1888 
1889 	wp = create_write_pipe(0);
1890 	if (IS_ERR(wp))
1891 		return PTR_ERR(wp);
1892 
1893 	rp = create_read_pipe(wp, 0);
1894 	if (IS_ERR(rp)) {
1895 		free_write_pipe(wp);
1896 		return PTR_ERR(rp);
1897 	}
1898 
1899 	cp->file = wp;
1900 
1901 	sys_close(0);
1902 	fd_install(0, rp);
1903 	spin_lock(&cf->file_lock);
1904 	fdt = files_fdtable(cf);
1905 	FD_SET(0, fdt->open_fds);
1906 	FD_CLR(0, fdt->close_on_exec);
1907 	spin_unlock(&cf->file_lock);
1908 
1909 	/* and disallow core files too */
1910 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1911 
1912 	return 0;
1913 }
1914 
1915 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1916 {
1917 	struct core_state core_state;
1918 	struct core_name cn;
1919 	struct mm_struct *mm = current->mm;
1920 	struct linux_binfmt * binfmt;
1921 	const struct cred *old_cred;
1922 	struct cred *cred;
1923 	int retval = 0;
1924 	int flag = 0;
1925 	int ispipe;
1926 	static atomic_t core_dump_count = ATOMIC_INIT(0);
1927 	struct coredump_params cprm = {
1928 		.signr = signr,
1929 		.regs = regs,
1930 		.limit = rlimit(RLIMIT_CORE),
1931 		/*
1932 		 * We must use the same mm->flags while dumping core to avoid
1933 		 * inconsistency of bit flags, since this flag is not protected
1934 		 * by any locks.
1935 		 */
1936 		.mm_flags = mm->flags,
1937 	};
1938 
1939 	audit_core_dumps(signr);
1940 
1941 	binfmt = mm->binfmt;
1942 	if (!binfmt || !binfmt->core_dump)
1943 		goto fail;
1944 	if (!__get_dumpable(cprm.mm_flags))
1945 		goto fail;
1946 
1947 	cred = prepare_creds();
1948 	if (!cred)
1949 		goto fail;
1950 	/*
1951 	 *	We cannot trust fsuid as being the "true" uid of the
1952 	 *	process nor do we know its entire history. We only know it
1953 	 *	was tainted so we dump it as root in mode 2.
1954 	 */
1955 	if (__get_dumpable(cprm.mm_flags) == 2) {
1956 		/* Setuid core dump mode */
1957 		flag = O_EXCL;		/* Stop rewrite attacks */
1958 		cred->fsuid = 0;	/* Dump root private */
1959 	}
1960 
1961 	retval = coredump_wait(exit_code, &core_state);
1962 	if (retval < 0)
1963 		goto fail_creds;
1964 
1965 	old_cred = override_creds(cred);
1966 
1967 	/*
1968 	 * Clear any false indication of pending signals that might
1969 	 * be seen by the filesystem code called to write the core file.
1970 	 */
1971 	clear_thread_flag(TIF_SIGPENDING);
1972 
1973 	ispipe = format_corename(&cn, signr);
1974 
1975 	if (ispipe == -ENOMEM) {
1976 		printk(KERN_WARNING "format_corename failed\n");
1977 		printk(KERN_WARNING "Aborting core\n");
1978 		goto fail_corename;
1979 	}
1980 
1981  	if (ispipe) {
1982 		int dump_count;
1983 		char **helper_argv;
1984 
1985 		if (cprm.limit == 1) {
1986 			/*
1987 			 * Normally core limits are irrelevant to pipes, since
1988 			 * we're not writing to the file system, but we use
1989 			 * cprm.limit of 1 here as a speacial value. Any
1990 			 * non-1 limit gets set to RLIM_INFINITY below, but
1991 			 * a limit of 0 skips the dump.  This is a consistent
1992 			 * way to catch recursive crashes.  We can still crash
1993 			 * if the core_pattern binary sets RLIM_CORE =  !1
1994 			 * but it runs as root, and can do lots of stupid things
1995 			 * Note that we use task_tgid_vnr here to grab the pid
1996 			 * of the process group leader.  That way we get the
1997 			 * right pid if a thread in a multi-threaded
1998 			 * core_pattern process dies.
1999 			 */
2000 			printk(KERN_WARNING
2001 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
2002 				task_tgid_vnr(current), current->comm);
2003 			printk(KERN_WARNING "Aborting core\n");
2004 			goto fail_unlock;
2005 		}
2006 		cprm.limit = RLIM_INFINITY;
2007 
2008 		dump_count = atomic_inc_return(&core_dump_count);
2009 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2010 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2011 			       task_tgid_vnr(current), current->comm);
2012 			printk(KERN_WARNING "Skipping core dump\n");
2013 			goto fail_dropcount;
2014 		}
2015 
2016 		helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
2017 		if (!helper_argv) {
2018 			printk(KERN_WARNING "%s failed to allocate memory\n",
2019 			       __func__);
2020 			goto fail_dropcount;
2021 		}
2022 
2023 		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2024 					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2025 					NULL, &cprm);
2026 		argv_free(helper_argv);
2027 		if (retval) {
2028  			printk(KERN_INFO "Core dump to %s pipe failed\n",
2029 			       cn.corename);
2030 			goto close_fail;
2031  		}
2032 	} else {
2033 		struct inode *inode;
2034 
2035 		if (cprm.limit < binfmt->min_coredump)
2036 			goto fail_unlock;
2037 
2038 		cprm.file = filp_open(cn.corename,
2039 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2040 				 0600);
2041 		if (IS_ERR(cprm.file))
2042 			goto fail_unlock;
2043 
2044 		inode = cprm.file->f_path.dentry->d_inode;
2045 		if (inode->i_nlink > 1)
2046 			goto close_fail;
2047 		if (d_unhashed(cprm.file->f_path.dentry))
2048 			goto close_fail;
2049 		/*
2050 		 * AK: actually i see no reason to not allow this for named
2051 		 * pipes etc, but keep the previous behaviour for now.
2052 		 */
2053 		if (!S_ISREG(inode->i_mode))
2054 			goto close_fail;
2055 		/*
2056 		 * Dont allow local users get cute and trick others to coredump
2057 		 * into their pre-created files.
2058 		 */
2059 		if (inode->i_uid != current_fsuid())
2060 			goto close_fail;
2061 		if (!cprm.file->f_op || !cprm.file->f_op->write)
2062 			goto close_fail;
2063 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2064 			goto close_fail;
2065 	}
2066 
2067 	retval = binfmt->core_dump(&cprm);
2068 	if (retval)
2069 		current->signal->group_exit_code |= 0x80;
2070 
2071 	if (ispipe && core_pipe_limit)
2072 		wait_for_dump_helpers(cprm.file);
2073 close_fail:
2074 	if (cprm.file)
2075 		filp_close(cprm.file, NULL);
2076 fail_dropcount:
2077 	if (ispipe)
2078 		atomic_dec(&core_dump_count);
2079 fail_unlock:
2080 	kfree(cn.corename);
2081 fail_corename:
2082 	coredump_finish(mm);
2083 	revert_creds(old_cred);
2084 fail_creds:
2085 	put_cred(cred);
2086 fail:
2087 	return;
2088 }
2089 
2090 /*
2091  * Core dumping helper functions.  These are the only things you should
2092  * do on a core-file: use only these functions to write out all the
2093  * necessary info.
2094  */
2095 int dump_write(struct file *file, const void *addr, int nr)
2096 {
2097 	return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2098 }
2099 EXPORT_SYMBOL(dump_write);
2100 
2101 int dump_seek(struct file *file, loff_t off)
2102 {
2103 	int ret = 1;
2104 
2105 	if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2106 		if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2107 			return 0;
2108 	} else {
2109 		char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2110 
2111 		if (!buf)
2112 			return 0;
2113 		while (off > 0) {
2114 			unsigned long n = off;
2115 
2116 			if (n > PAGE_SIZE)
2117 				n = PAGE_SIZE;
2118 			if (!dump_write(file, buf, n)) {
2119 				ret = 0;
2120 				break;
2121 			}
2122 			off -= n;
2123 		}
2124 		free_page((unsigned long)buf);
2125 	}
2126 	return ret;
2127 }
2128 EXPORT_SYMBOL(dump_seek);
2129