1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/swap.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/perf_event.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/proc_fs.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/tsacct_kern.h> 50 #include <linux/cn_proc.h> 51 #include <linux/audit.h> 52 #include <linux/tracehook.h> 53 #include <linux/kmod.h> 54 #include <linux/fsnotify.h> 55 #include <linux/fs_struct.h> 56 #include <linux/pipe_fs_i.h> 57 #include <linux/oom.h> 58 59 #include <asm/uaccess.h> 60 #include <asm/mmu_context.h> 61 #include <asm/tlb.h> 62 #include "internal.h" 63 64 int core_uses_pid; 65 char core_pattern[CORENAME_MAX_SIZE] = "core"; 66 unsigned int core_pipe_limit; 67 int suid_dumpable = 0; 68 69 struct core_name { 70 char *corename; 71 int used, size; 72 }; 73 static atomic_t call_count = ATOMIC_INIT(1); 74 75 /* The maximal length of core_pattern is also specified in sysctl.c */ 76 77 static LIST_HEAD(formats); 78 static DEFINE_RWLOCK(binfmt_lock); 79 80 int __register_binfmt(struct linux_binfmt * fmt, int insert) 81 { 82 if (!fmt) 83 return -EINVAL; 84 write_lock(&binfmt_lock); 85 insert ? list_add(&fmt->lh, &formats) : 86 list_add_tail(&fmt->lh, &formats); 87 write_unlock(&binfmt_lock); 88 return 0; 89 } 90 91 EXPORT_SYMBOL(__register_binfmt); 92 93 void unregister_binfmt(struct linux_binfmt * fmt) 94 { 95 write_lock(&binfmt_lock); 96 list_del(&fmt->lh); 97 write_unlock(&binfmt_lock); 98 } 99 100 EXPORT_SYMBOL(unregister_binfmt); 101 102 static inline void put_binfmt(struct linux_binfmt * fmt) 103 { 104 module_put(fmt->module); 105 } 106 107 /* 108 * Note that a shared library must be both readable and executable due to 109 * security reasons. 110 * 111 * Also note that we take the address to load from from the file itself. 112 */ 113 SYSCALL_DEFINE1(uselib, const char __user *, library) 114 { 115 struct file *file; 116 char *tmp = getname(library); 117 int error = PTR_ERR(tmp); 118 119 if (IS_ERR(tmp)) 120 goto out; 121 122 file = do_filp_open(AT_FDCWD, tmp, 123 O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 0, 124 MAY_READ | MAY_EXEC | MAY_OPEN); 125 putname(tmp); 126 error = PTR_ERR(file); 127 if (IS_ERR(file)) 128 goto out; 129 130 error = -EINVAL; 131 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 132 goto exit; 133 134 error = -EACCES; 135 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 136 goto exit; 137 138 fsnotify_open(file); 139 140 error = -ENOEXEC; 141 if(file->f_op) { 142 struct linux_binfmt * fmt; 143 144 read_lock(&binfmt_lock); 145 list_for_each_entry(fmt, &formats, lh) { 146 if (!fmt->load_shlib) 147 continue; 148 if (!try_module_get(fmt->module)) 149 continue; 150 read_unlock(&binfmt_lock); 151 error = fmt->load_shlib(file); 152 read_lock(&binfmt_lock); 153 put_binfmt(fmt); 154 if (error != -ENOEXEC) 155 break; 156 } 157 read_unlock(&binfmt_lock); 158 } 159 exit: 160 fput(file); 161 out: 162 return error; 163 } 164 165 #ifdef CONFIG_MMU 166 167 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 168 { 169 struct mm_struct *mm = current->mm; 170 long diff = (long)(pages - bprm->vma_pages); 171 172 if (!mm || !diff) 173 return; 174 175 bprm->vma_pages = pages; 176 177 #ifdef SPLIT_RSS_COUNTING 178 add_mm_counter(mm, MM_ANONPAGES, diff); 179 #else 180 spin_lock(&mm->page_table_lock); 181 add_mm_counter(mm, MM_ANONPAGES, diff); 182 spin_unlock(&mm->page_table_lock); 183 #endif 184 } 185 186 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 187 int write) 188 { 189 struct page *page; 190 int ret; 191 192 #ifdef CONFIG_STACK_GROWSUP 193 if (write) { 194 ret = expand_stack_downwards(bprm->vma, pos); 195 if (ret < 0) 196 return NULL; 197 } 198 #endif 199 ret = get_user_pages(current, bprm->mm, pos, 200 1, write, 1, &page, NULL); 201 if (ret <= 0) 202 return NULL; 203 204 if (write) { 205 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 206 struct rlimit *rlim; 207 208 acct_arg_size(bprm, size / PAGE_SIZE); 209 210 /* 211 * We've historically supported up to 32 pages (ARG_MAX) 212 * of argument strings even with small stacks 213 */ 214 if (size <= ARG_MAX) 215 return page; 216 217 /* 218 * Limit to 1/4-th the stack size for the argv+env strings. 219 * This ensures that: 220 * - the remaining binfmt code will not run out of stack space, 221 * - the program will have a reasonable amount of stack left 222 * to work from. 223 */ 224 rlim = current->signal->rlim; 225 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 226 put_page(page); 227 return NULL; 228 } 229 } 230 231 return page; 232 } 233 234 static void put_arg_page(struct page *page) 235 { 236 put_page(page); 237 } 238 239 static void free_arg_page(struct linux_binprm *bprm, int i) 240 { 241 } 242 243 static void free_arg_pages(struct linux_binprm *bprm) 244 { 245 } 246 247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 248 struct page *page) 249 { 250 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 251 } 252 253 static int __bprm_mm_init(struct linux_binprm *bprm) 254 { 255 int err; 256 struct vm_area_struct *vma = NULL; 257 struct mm_struct *mm = bprm->mm; 258 259 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 260 if (!vma) 261 return -ENOMEM; 262 263 down_write(&mm->mmap_sem); 264 vma->vm_mm = mm; 265 266 /* 267 * Place the stack at the largest stack address the architecture 268 * supports. Later, we'll move this to an appropriate place. We don't 269 * use STACK_TOP because that can depend on attributes which aren't 270 * configured yet. 271 */ 272 BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 273 vma->vm_end = STACK_TOP_MAX; 274 vma->vm_start = vma->vm_end - PAGE_SIZE; 275 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 276 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 277 INIT_LIST_HEAD(&vma->anon_vma_chain); 278 279 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1); 280 if (err) 281 goto err; 282 283 err = insert_vm_struct(mm, vma); 284 if (err) 285 goto err; 286 287 mm->stack_vm = mm->total_vm = 1; 288 up_write(&mm->mmap_sem); 289 bprm->p = vma->vm_end - sizeof(void *); 290 return 0; 291 err: 292 up_write(&mm->mmap_sem); 293 bprm->vma = NULL; 294 kmem_cache_free(vm_area_cachep, vma); 295 return err; 296 } 297 298 static bool valid_arg_len(struct linux_binprm *bprm, long len) 299 { 300 return len <= MAX_ARG_STRLEN; 301 } 302 303 #else 304 305 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 306 { 307 } 308 309 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 310 int write) 311 { 312 struct page *page; 313 314 page = bprm->page[pos / PAGE_SIZE]; 315 if (!page && write) { 316 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 317 if (!page) 318 return NULL; 319 bprm->page[pos / PAGE_SIZE] = page; 320 } 321 322 return page; 323 } 324 325 static void put_arg_page(struct page *page) 326 { 327 } 328 329 static void free_arg_page(struct linux_binprm *bprm, int i) 330 { 331 if (bprm->page[i]) { 332 __free_page(bprm->page[i]); 333 bprm->page[i] = NULL; 334 } 335 } 336 337 static void free_arg_pages(struct linux_binprm *bprm) 338 { 339 int i; 340 341 for (i = 0; i < MAX_ARG_PAGES; i++) 342 free_arg_page(bprm, i); 343 } 344 345 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 346 struct page *page) 347 { 348 } 349 350 static int __bprm_mm_init(struct linux_binprm *bprm) 351 { 352 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 353 return 0; 354 } 355 356 static bool valid_arg_len(struct linux_binprm *bprm, long len) 357 { 358 return len <= bprm->p; 359 } 360 361 #endif /* CONFIG_MMU */ 362 363 /* 364 * Create a new mm_struct and populate it with a temporary stack 365 * vm_area_struct. We don't have enough context at this point to set the stack 366 * flags, permissions, and offset, so we use temporary values. We'll update 367 * them later in setup_arg_pages(). 368 */ 369 int bprm_mm_init(struct linux_binprm *bprm) 370 { 371 int err; 372 struct mm_struct *mm = NULL; 373 374 bprm->mm = mm = mm_alloc(); 375 err = -ENOMEM; 376 if (!mm) 377 goto err; 378 379 err = init_new_context(current, mm); 380 if (err) 381 goto err; 382 383 err = __bprm_mm_init(bprm); 384 if (err) 385 goto err; 386 387 return 0; 388 389 err: 390 if (mm) { 391 bprm->mm = NULL; 392 mmdrop(mm); 393 } 394 395 return err; 396 } 397 398 /* 399 * count() counts the number of strings in array ARGV. 400 */ 401 static int count(const char __user * const __user * argv, int max) 402 { 403 int i = 0; 404 405 if (argv != NULL) { 406 for (;;) { 407 const char __user * p; 408 409 if (get_user(p, argv)) 410 return -EFAULT; 411 if (!p) 412 break; 413 argv++; 414 if (i++ >= max) 415 return -E2BIG; 416 417 if (fatal_signal_pending(current)) 418 return -ERESTARTNOHAND; 419 cond_resched(); 420 } 421 } 422 return i; 423 } 424 425 /* 426 * 'copy_strings()' copies argument/environment strings from the old 427 * processes's memory to the new process's stack. The call to get_user_pages() 428 * ensures the destination page is created and not swapped out. 429 */ 430 static int copy_strings(int argc, const char __user *const __user *argv, 431 struct linux_binprm *bprm) 432 { 433 struct page *kmapped_page = NULL; 434 char *kaddr = NULL; 435 unsigned long kpos = 0; 436 int ret; 437 438 while (argc-- > 0) { 439 const char __user *str; 440 int len; 441 unsigned long pos; 442 443 if (get_user(str, argv+argc) || 444 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 445 ret = -EFAULT; 446 goto out; 447 } 448 449 if (!valid_arg_len(bprm, len)) { 450 ret = -E2BIG; 451 goto out; 452 } 453 454 /* We're going to work our way backwords. */ 455 pos = bprm->p; 456 str += len; 457 bprm->p -= len; 458 459 while (len > 0) { 460 int offset, bytes_to_copy; 461 462 if (fatal_signal_pending(current)) { 463 ret = -ERESTARTNOHAND; 464 goto out; 465 } 466 cond_resched(); 467 468 offset = pos % PAGE_SIZE; 469 if (offset == 0) 470 offset = PAGE_SIZE; 471 472 bytes_to_copy = offset; 473 if (bytes_to_copy > len) 474 bytes_to_copy = len; 475 476 offset -= bytes_to_copy; 477 pos -= bytes_to_copy; 478 str -= bytes_to_copy; 479 len -= bytes_to_copy; 480 481 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 482 struct page *page; 483 484 page = get_arg_page(bprm, pos, 1); 485 if (!page) { 486 ret = -E2BIG; 487 goto out; 488 } 489 490 if (kmapped_page) { 491 flush_kernel_dcache_page(kmapped_page); 492 kunmap(kmapped_page); 493 put_arg_page(kmapped_page); 494 } 495 kmapped_page = page; 496 kaddr = kmap(kmapped_page); 497 kpos = pos & PAGE_MASK; 498 flush_arg_page(bprm, kpos, kmapped_page); 499 } 500 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 501 ret = -EFAULT; 502 goto out; 503 } 504 } 505 } 506 ret = 0; 507 out: 508 if (kmapped_page) { 509 flush_kernel_dcache_page(kmapped_page); 510 kunmap(kmapped_page); 511 put_arg_page(kmapped_page); 512 } 513 return ret; 514 } 515 516 /* 517 * Like copy_strings, but get argv and its values from kernel memory. 518 */ 519 int copy_strings_kernel(int argc, const char *const *argv, 520 struct linux_binprm *bprm) 521 { 522 int r; 523 mm_segment_t oldfs = get_fs(); 524 set_fs(KERNEL_DS); 525 r = copy_strings(argc, (const char __user *const __user *)argv, bprm); 526 set_fs(oldfs); 527 return r; 528 } 529 EXPORT_SYMBOL(copy_strings_kernel); 530 531 #ifdef CONFIG_MMU 532 533 /* 534 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 535 * the binfmt code determines where the new stack should reside, we shift it to 536 * its final location. The process proceeds as follows: 537 * 538 * 1) Use shift to calculate the new vma endpoints. 539 * 2) Extend vma to cover both the old and new ranges. This ensures the 540 * arguments passed to subsequent functions are consistent. 541 * 3) Move vma's page tables to the new range. 542 * 4) Free up any cleared pgd range. 543 * 5) Shrink the vma to cover only the new range. 544 */ 545 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 546 { 547 struct mm_struct *mm = vma->vm_mm; 548 unsigned long old_start = vma->vm_start; 549 unsigned long old_end = vma->vm_end; 550 unsigned long length = old_end - old_start; 551 unsigned long new_start = old_start - shift; 552 unsigned long new_end = old_end - shift; 553 struct mmu_gather *tlb; 554 555 BUG_ON(new_start > new_end); 556 557 /* 558 * ensure there are no vmas between where we want to go 559 * and where we are 560 */ 561 if (vma != find_vma(mm, new_start)) 562 return -EFAULT; 563 564 /* 565 * cover the whole range: [new_start, old_end) 566 */ 567 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 568 return -ENOMEM; 569 570 /* 571 * move the page tables downwards, on failure we rely on 572 * process cleanup to remove whatever mess we made. 573 */ 574 if (length != move_page_tables(vma, old_start, 575 vma, new_start, length)) 576 return -ENOMEM; 577 578 lru_add_drain(); 579 tlb = tlb_gather_mmu(mm, 0); 580 if (new_end > old_start) { 581 /* 582 * when the old and new regions overlap clear from new_end. 583 */ 584 free_pgd_range(tlb, new_end, old_end, new_end, 585 vma->vm_next ? vma->vm_next->vm_start : 0); 586 } else { 587 /* 588 * otherwise, clean from old_start; this is done to not touch 589 * the address space in [new_end, old_start) some architectures 590 * have constraints on va-space that make this illegal (IA64) - 591 * for the others its just a little faster. 592 */ 593 free_pgd_range(tlb, old_start, old_end, new_end, 594 vma->vm_next ? vma->vm_next->vm_start : 0); 595 } 596 tlb_finish_mmu(tlb, new_end, old_end); 597 598 /* 599 * Shrink the vma to just the new range. Always succeeds. 600 */ 601 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 602 603 return 0; 604 } 605 606 /* 607 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 608 * the stack is optionally relocated, and some extra space is added. 609 */ 610 int setup_arg_pages(struct linux_binprm *bprm, 611 unsigned long stack_top, 612 int executable_stack) 613 { 614 unsigned long ret; 615 unsigned long stack_shift; 616 struct mm_struct *mm = current->mm; 617 struct vm_area_struct *vma = bprm->vma; 618 struct vm_area_struct *prev = NULL; 619 unsigned long vm_flags; 620 unsigned long stack_base; 621 unsigned long stack_size; 622 unsigned long stack_expand; 623 unsigned long rlim_stack; 624 625 #ifdef CONFIG_STACK_GROWSUP 626 /* Limit stack size to 1GB */ 627 stack_base = rlimit_max(RLIMIT_STACK); 628 if (stack_base > (1 << 30)) 629 stack_base = 1 << 30; 630 631 /* Make sure we didn't let the argument array grow too large. */ 632 if (vma->vm_end - vma->vm_start > stack_base) 633 return -ENOMEM; 634 635 stack_base = PAGE_ALIGN(stack_top - stack_base); 636 637 stack_shift = vma->vm_start - stack_base; 638 mm->arg_start = bprm->p - stack_shift; 639 bprm->p = vma->vm_end - stack_shift; 640 #else 641 stack_top = arch_align_stack(stack_top); 642 stack_top = PAGE_ALIGN(stack_top); 643 644 if (unlikely(stack_top < mmap_min_addr) || 645 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 646 return -ENOMEM; 647 648 stack_shift = vma->vm_end - stack_top; 649 650 bprm->p -= stack_shift; 651 mm->arg_start = bprm->p; 652 #endif 653 654 if (bprm->loader) 655 bprm->loader -= stack_shift; 656 bprm->exec -= stack_shift; 657 658 down_write(&mm->mmap_sem); 659 vm_flags = VM_STACK_FLAGS; 660 661 /* 662 * Adjust stack execute permissions; explicitly enable for 663 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 664 * (arch default) otherwise. 665 */ 666 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 667 vm_flags |= VM_EXEC; 668 else if (executable_stack == EXSTACK_DISABLE_X) 669 vm_flags &= ~VM_EXEC; 670 vm_flags |= mm->def_flags; 671 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 672 673 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 674 vm_flags); 675 if (ret) 676 goto out_unlock; 677 BUG_ON(prev != vma); 678 679 /* Move stack pages down in memory. */ 680 if (stack_shift) { 681 ret = shift_arg_pages(vma, stack_shift); 682 if (ret) 683 goto out_unlock; 684 } 685 686 /* mprotect_fixup is overkill to remove the temporary stack flags */ 687 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 688 689 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 690 stack_size = vma->vm_end - vma->vm_start; 691 /* 692 * Align this down to a page boundary as expand_stack 693 * will align it up. 694 */ 695 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 696 #ifdef CONFIG_STACK_GROWSUP 697 if (stack_size + stack_expand > rlim_stack) 698 stack_base = vma->vm_start + rlim_stack; 699 else 700 stack_base = vma->vm_end + stack_expand; 701 #else 702 if (stack_size + stack_expand > rlim_stack) 703 stack_base = vma->vm_end - rlim_stack; 704 else 705 stack_base = vma->vm_start - stack_expand; 706 #endif 707 current->mm->start_stack = bprm->p; 708 ret = expand_stack(vma, stack_base); 709 if (ret) 710 ret = -EFAULT; 711 712 out_unlock: 713 up_write(&mm->mmap_sem); 714 return ret; 715 } 716 EXPORT_SYMBOL(setup_arg_pages); 717 718 #endif /* CONFIG_MMU */ 719 720 struct file *open_exec(const char *name) 721 { 722 struct file *file; 723 int err; 724 725 file = do_filp_open(AT_FDCWD, name, 726 O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 0, 727 MAY_EXEC | MAY_OPEN); 728 if (IS_ERR(file)) 729 goto out; 730 731 err = -EACCES; 732 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 733 goto exit; 734 735 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 736 goto exit; 737 738 fsnotify_open(file); 739 740 err = deny_write_access(file); 741 if (err) 742 goto exit; 743 744 out: 745 return file; 746 747 exit: 748 fput(file); 749 return ERR_PTR(err); 750 } 751 EXPORT_SYMBOL(open_exec); 752 753 int kernel_read(struct file *file, loff_t offset, 754 char *addr, unsigned long count) 755 { 756 mm_segment_t old_fs; 757 loff_t pos = offset; 758 int result; 759 760 old_fs = get_fs(); 761 set_fs(get_ds()); 762 /* The cast to a user pointer is valid due to the set_fs() */ 763 result = vfs_read(file, (void __user *)addr, count, &pos); 764 set_fs(old_fs); 765 return result; 766 } 767 768 EXPORT_SYMBOL(kernel_read); 769 770 static int exec_mmap(struct mm_struct *mm) 771 { 772 struct task_struct *tsk; 773 struct mm_struct * old_mm, *active_mm; 774 775 /* Notify parent that we're no longer interested in the old VM */ 776 tsk = current; 777 old_mm = current->mm; 778 sync_mm_rss(tsk, old_mm); 779 mm_release(tsk, old_mm); 780 781 if (old_mm) { 782 /* 783 * Make sure that if there is a core dump in progress 784 * for the old mm, we get out and die instead of going 785 * through with the exec. We must hold mmap_sem around 786 * checking core_state and changing tsk->mm. 787 */ 788 down_read(&old_mm->mmap_sem); 789 if (unlikely(old_mm->core_state)) { 790 up_read(&old_mm->mmap_sem); 791 return -EINTR; 792 } 793 } 794 task_lock(tsk); 795 active_mm = tsk->active_mm; 796 tsk->mm = mm; 797 tsk->active_mm = mm; 798 activate_mm(active_mm, mm); 799 if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) { 800 atomic_dec(&old_mm->oom_disable_count); 801 atomic_inc(&tsk->mm->oom_disable_count); 802 } 803 task_unlock(tsk); 804 arch_pick_mmap_layout(mm); 805 if (old_mm) { 806 up_read(&old_mm->mmap_sem); 807 BUG_ON(active_mm != old_mm); 808 mm_update_next_owner(old_mm); 809 mmput(old_mm); 810 return 0; 811 } 812 mmdrop(active_mm); 813 return 0; 814 } 815 816 /* 817 * This function makes sure the current process has its own signal table, 818 * so that flush_signal_handlers can later reset the handlers without 819 * disturbing other processes. (Other processes might share the signal 820 * table via the CLONE_SIGHAND option to clone().) 821 */ 822 static int de_thread(struct task_struct *tsk) 823 { 824 struct signal_struct *sig = tsk->signal; 825 struct sighand_struct *oldsighand = tsk->sighand; 826 spinlock_t *lock = &oldsighand->siglock; 827 828 if (thread_group_empty(tsk)) 829 goto no_thread_group; 830 831 /* 832 * Kill all other threads in the thread group. 833 */ 834 spin_lock_irq(lock); 835 if (signal_group_exit(sig)) { 836 /* 837 * Another group action in progress, just 838 * return so that the signal is processed. 839 */ 840 spin_unlock_irq(lock); 841 return -EAGAIN; 842 } 843 844 sig->group_exit_task = tsk; 845 sig->notify_count = zap_other_threads(tsk); 846 if (!thread_group_leader(tsk)) 847 sig->notify_count--; 848 849 while (sig->notify_count) { 850 __set_current_state(TASK_UNINTERRUPTIBLE); 851 spin_unlock_irq(lock); 852 schedule(); 853 spin_lock_irq(lock); 854 } 855 spin_unlock_irq(lock); 856 857 /* 858 * At this point all other threads have exited, all we have to 859 * do is to wait for the thread group leader to become inactive, 860 * and to assume its PID: 861 */ 862 if (!thread_group_leader(tsk)) { 863 struct task_struct *leader = tsk->group_leader; 864 865 sig->notify_count = -1; /* for exit_notify() */ 866 for (;;) { 867 write_lock_irq(&tasklist_lock); 868 if (likely(leader->exit_state)) 869 break; 870 __set_current_state(TASK_UNINTERRUPTIBLE); 871 write_unlock_irq(&tasklist_lock); 872 schedule(); 873 } 874 875 /* 876 * The only record we have of the real-time age of a 877 * process, regardless of execs it's done, is start_time. 878 * All the past CPU time is accumulated in signal_struct 879 * from sister threads now dead. But in this non-leader 880 * exec, nothing survives from the original leader thread, 881 * whose birth marks the true age of this process now. 882 * When we take on its identity by switching to its PID, we 883 * also take its birthdate (always earlier than our own). 884 */ 885 tsk->start_time = leader->start_time; 886 887 BUG_ON(!same_thread_group(leader, tsk)); 888 BUG_ON(has_group_leader_pid(tsk)); 889 /* 890 * An exec() starts a new thread group with the 891 * TGID of the previous thread group. Rehash the 892 * two threads with a switched PID, and release 893 * the former thread group leader: 894 */ 895 896 /* Become a process group leader with the old leader's pid. 897 * The old leader becomes a thread of the this thread group. 898 * Note: The old leader also uses this pid until release_task 899 * is called. Odd but simple and correct. 900 */ 901 detach_pid(tsk, PIDTYPE_PID); 902 tsk->pid = leader->pid; 903 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 904 transfer_pid(leader, tsk, PIDTYPE_PGID); 905 transfer_pid(leader, tsk, PIDTYPE_SID); 906 907 list_replace_rcu(&leader->tasks, &tsk->tasks); 908 list_replace_init(&leader->sibling, &tsk->sibling); 909 910 tsk->group_leader = tsk; 911 leader->group_leader = tsk; 912 913 tsk->exit_signal = SIGCHLD; 914 915 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 916 leader->exit_state = EXIT_DEAD; 917 write_unlock_irq(&tasklist_lock); 918 919 release_task(leader); 920 } 921 922 sig->group_exit_task = NULL; 923 sig->notify_count = 0; 924 925 no_thread_group: 926 if (current->mm) 927 setmax_mm_hiwater_rss(&sig->maxrss, current->mm); 928 929 exit_itimers(sig); 930 flush_itimer_signals(); 931 932 if (atomic_read(&oldsighand->count) != 1) { 933 struct sighand_struct *newsighand; 934 /* 935 * This ->sighand is shared with the CLONE_SIGHAND 936 * but not CLONE_THREAD task, switch to the new one. 937 */ 938 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 939 if (!newsighand) 940 return -ENOMEM; 941 942 atomic_set(&newsighand->count, 1); 943 memcpy(newsighand->action, oldsighand->action, 944 sizeof(newsighand->action)); 945 946 write_lock_irq(&tasklist_lock); 947 spin_lock(&oldsighand->siglock); 948 rcu_assign_pointer(tsk->sighand, newsighand); 949 spin_unlock(&oldsighand->siglock); 950 write_unlock_irq(&tasklist_lock); 951 952 __cleanup_sighand(oldsighand); 953 } 954 955 BUG_ON(!thread_group_leader(tsk)); 956 return 0; 957 } 958 959 /* 960 * These functions flushes out all traces of the currently running executable 961 * so that a new one can be started 962 */ 963 static void flush_old_files(struct files_struct * files) 964 { 965 long j = -1; 966 struct fdtable *fdt; 967 968 spin_lock(&files->file_lock); 969 for (;;) { 970 unsigned long set, i; 971 972 j++; 973 i = j * __NFDBITS; 974 fdt = files_fdtable(files); 975 if (i >= fdt->max_fds) 976 break; 977 set = fdt->close_on_exec->fds_bits[j]; 978 if (!set) 979 continue; 980 fdt->close_on_exec->fds_bits[j] = 0; 981 spin_unlock(&files->file_lock); 982 for ( ; set ; i++,set >>= 1) { 983 if (set & 1) { 984 sys_close(i); 985 } 986 } 987 spin_lock(&files->file_lock); 988 989 } 990 spin_unlock(&files->file_lock); 991 } 992 993 char *get_task_comm(char *buf, struct task_struct *tsk) 994 { 995 /* buf must be at least sizeof(tsk->comm) in size */ 996 task_lock(tsk); 997 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 998 task_unlock(tsk); 999 return buf; 1000 } 1001 1002 void set_task_comm(struct task_struct *tsk, char *buf) 1003 { 1004 task_lock(tsk); 1005 1006 /* 1007 * Threads may access current->comm without holding 1008 * the task lock, so write the string carefully. 1009 * Readers without a lock may see incomplete new 1010 * names but are safe from non-terminating string reads. 1011 */ 1012 memset(tsk->comm, 0, TASK_COMM_LEN); 1013 wmb(); 1014 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1015 task_unlock(tsk); 1016 perf_event_comm(tsk); 1017 } 1018 1019 int flush_old_exec(struct linux_binprm * bprm) 1020 { 1021 int retval; 1022 1023 /* 1024 * Make sure we have a private signal table and that 1025 * we are unassociated from the previous thread group. 1026 */ 1027 retval = de_thread(current); 1028 if (retval) 1029 goto out; 1030 1031 set_mm_exe_file(bprm->mm, bprm->file); 1032 1033 /* 1034 * Release all of the old mmap stuff 1035 */ 1036 acct_arg_size(bprm, 0); 1037 retval = exec_mmap(bprm->mm); 1038 if (retval) 1039 goto out; 1040 1041 bprm->mm = NULL; /* We're using it now */ 1042 1043 current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD); 1044 flush_thread(); 1045 current->personality &= ~bprm->per_clear; 1046 1047 return 0; 1048 1049 out: 1050 return retval; 1051 } 1052 EXPORT_SYMBOL(flush_old_exec); 1053 1054 void setup_new_exec(struct linux_binprm * bprm) 1055 { 1056 int i, ch; 1057 const char *name; 1058 char tcomm[sizeof(current->comm)]; 1059 1060 arch_pick_mmap_layout(current->mm); 1061 1062 /* This is the point of no return */ 1063 current->sas_ss_sp = current->sas_ss_size = 0; 1064 1065 if (current_euid() == current_uid() && current_egid() == current_gid()) 1066 set_dumpable(current->mm, 1); 1067 else 1068 set_dumpable(current->mm, suid_dumpable); 1069 1070 name = bprm->filename; 1071 1072 /* Copies the binary name from after last slash */ 1073 for (i=0; (ch = *(name++)) != '\0';) { 1074 if (ch == '/') 1075 i = 0; /* overwrite what we wrote */ 1076 else 1077 if (i < (sizeof(tcomm) - 1)) 1078 tcomm[i++] = ch; 1079 } 1080 tcomm[i] = '\0'; 1081 set_task_comm(current, tcomm); 1082 1083 /* Set the new mm task size. We have to do that late because it may 1084 * depend on TIF_32BIT which is only updated in flush_thread() on 1085 * some architectures like powerpc 1086 */ 1087 current->mm->task_size = TASK_SIZE; 1088 1089 /* install the new credentials */ 1090 if (bprm->cred->uid != current_euid() || 1091 bprm->cred->gid != current_egid()) { 1092 current->pdeath_signal = 0; 1093 } else if (file_permission(bprm->file, MAY_READ) || 1094 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) { 1095 set_dumpable(current->mm, suid_dumpable); 1096 } 1097 1098 /* 1099 * Flush performance counters when crossing a 1100 * security domain: 1101 */ 1102 if (!get_dumpable(current->mm)) 1103 perf_event_exit_task(current); 1104 1105 /* An exec changes our domain. We are no longer part of the thread 1106 group */ 1107 1108 current->self_exec_id++; 1109 1110 flush_signal_handlers(current, 0); 1111 flush_old_files(current->files); 1112 } 1113 EXPORT_SYMBOL(setup_new_exec); 1114 1115 /* 1116 * Prepare credentials and lock ->cred_guard_mutex. 1117 * install_exec_creds() commits the new creds and drops the lock. 1118 * Or, if exec fails before, free_bprm() should release ->cred and 1119 * and unlock. 1120 */ 1121 int prepare_bprm_creds(struct linux_binprm *bprm) 1122 { 1123 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1124 return -ERESTARTNOINTR; 1125 1126 bprm->cred = prepare_exec_creds(); 1127 if (likely(bprm->cred)) 1128 return 0; 1129 1130 mutex_unlock(¤t->signal->cred_guard_mutex); 1131 return -ENOMEM; 1132 } 1133 1134 void free_bprm(struct linux_binprm *bprm) 1135 { 1136 free_arg_pages(bprm); 1137 if (bprm->cred) { 1138 mutex_unlock(¤t->signal->cred_guard_mutex); 1139 abort_creds(bprm->cred); 1140 } 1141 kfree(bprm); 1142 } 1143 1144 /* 1145 * install the new credentials for this executable 1146 */ 1147 void install_exec_creds(struct linux_binprm *bprm) 1148 { 1149 security_bprm_committing_creds(bprm); 1150 1151 commit_creds(bprm->cred); 1152 bprm->cred = NULL; 1153 /* 1154 * cred_guard_mutex must be held at least to this point to prevent 1155 * ptrace_attach() from altering our determination of the task's 1156 * credentials; any time after this it may be unlocked. 1157 */ 1158 security_bprm_committed_creds(bprm); 1159 mutex_unlock(¤t->signal->cred_guard_mutex); 1160 } 1161 EXPORT_SYMBOL(install_exec_creds); 1162 1163 /* 1164 * determine how safe it is to execute the proposed program 1165 * - the caller must hold ->cred_guard_mutex to protect against 1166 * PTRACE_ATTACH 1167 */ 1168 int check_unsafe_exec(struct linux_binprm *bprm) 1169 { 1170 struct task_struct *p = current, *t; 1171 unsigned n_fs; 1172 int res = 0; 1173 1174 bprm->unsafe = tracehook_unsafe_exec(p); 1175 1176 n_fs = 1; 1177 spin_lock(&p->fs->lock); 1178 rcu_read_lock(); 1179 for (t = next_thread(p); t != p; t = next_thread(t)) { 1180 if (t->fs == p->fs) 1181 n_fs++; 1182 } 1183 rcu_read_unlock(); 1184 1185 if (p->fs->users > n_fs) { 1186 bprm->unsafe |= LSM_UNSAFE_SHARE; 1187 } else { 1188 res = -EAGAIN; 1189 if (!p->fs->in_exec) { 1190 p->fs->in_exec = 1; 1191 res = 1; 1192 } 1193 } 1194 spin_unlock(&p->fs->lock); 1195 1196 return res; 1197 } 1198 1199 /* 1200 * Fill the binprm structure from the inode. 1201 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1202 * 1203 * This may be called multiple times for binary chains (scripts for example). 1204 */ 1205 int prepare_binprm(struct linux_binprm *bprm) 1206 { 1207 umode_t mode; 1208 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1209 int retval; 1210 1211 mode = inode->i_mode; 1212 if (bprm->file->f_op == NULL) 1213 return -EACCES; 1214 1215 /* clear any previous set[ug]id data from a previous binary */ 1216 bprm->cred->euid = current_euid(); 1217 bprm->cred->egid = current_egid(); 1218 1219 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1220 /* Set-uid? */ 1221 if (mode & S_ISUID) { 1222 bprm->per_clear |= PER_CLEAR_ON_SETID; 1223 bprm->cred->euid = inode->i_uid; 1224 } 1225 1226 /* Set-gid? */ 1227 /* 1228 * If setgid is set but no group execute bit then this 1229 * is a candidate for mandatory locking, not a setgid 1230 * executable. 1231 */ 1232 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1233 bprm->per_clear |= PER_CLEAR_ON_SETID; 1234 bprm->cred->egid = inode->i_gid; 1235 } 1236 } 1237 1238 /* fill in binprm security blob */ 1239 retval = security_bprm_set_creds(bprm); 1240 if (retval) 1241 return retval; 1242 bprm->cred_prepared = 1; 1243 1244 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1245 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1246 } 1247 1248 EXPORT_SYMBOL(prepare_binprm); 1249 1250 /* 1251 * Arguments are '\0' separated strings found at the location bprm->p 1252 * points to; chop off the first by relocating brpm->p to right after 1253 * the first '\0' encountered. 1254 */ 1255 int remove_arg_zero(struct linux_binprm *bprm) 1256 { 1257 int ret = 0; 1258 unsigned long offset; 1259 char *kaddr; 1260 struct page *page; 1261 1262 if (!bprm->argc) 1263 return 0; 1264 1265 do { 1266 offset = bprm->p & ~PAGE_MASK; 1267 page = get_arg_page(bprm, bprm->p, 0); 1268 if (!page) { 1269 ret = -EFAULT; 1270 goto out; 1271 } 1272 kaddr = kmap_atomic(page, KM_USER0); 1273 1274 for (; offset < PAGE_SIZE && kaddr[offset]; 1275 offset++, bprm->p++) 1276 ; 1277 1278 kunmap_atomic(kaddr, KM_USER0); 1279 put_arg_page(page); 1280 1281 if (offset == PAGE_SIZE) 1282 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1283 } while (offset == PAGE_SIZE); 1284 1285 bprm->p++; 1286 bprm->argc--; 1287 ret = 0; 1288 1289 out: 1290 return ret; 1291 } 1292 EXPORT_SYMBOL(remove_arg_zero); 1293 1294 /* 1295 * cycle the list of binary formats handler, until one recognizes the image 1296 */ 1297 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1298 { 1299 unsigned int depth = bprm->recursion_depth; 1300 int try,retval; 1301 struct linux_binfmt *fmt; 1302 1303 retval = security_bprm_check(bprm); 1304 if (retval) 1305 return retval; 1306 1307 /* kernel module loader fixup */ 1308 /* so we don't try to load run modprobe in kernel space. */ 1309 set_fs(USER_DS); 1310 1311 retval = audit_bprm(bprm); 1312 if (retval) 1313 return retval; 1314 1315 retval = -ENOENT; 1316 for (try=0; try<2; try++) { 1317 read_lock(&binfmt_lock); 1318 list_for_each_entry(fmt, &formats, lh) { 1319 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1320 if (!fn) 1321 continue; 1322 if (!try_module_get(fmt->module)) 1323 continue; 1324 read_unlock(&binfmt_lock); 1325 retval = fn(bprm, regs); 1326 /* 1327 * Restore the depth counter to its starting value 1328 * in this call, so we don't have to rely on every 1329 * load_binary function to restore it on return. 1330 */ 1331 bprm->recursion_depth = depth; 1332 if (retval >= 0) { 1333 if (depth == 0) 1334 tracehook_report_exec(fmt, bprm, regs); 1335 put_binfmt(fmt); 1336 allow_write_access(bprm->file); 1337 if (bprm->file) 1338 fput(bprm->file); 1339 bprm->file = NULL; 1340 current->did_exec = 1; 1341 proc_exec_connector(current); 1342 return retval; 1343 } 1344 read_lock(&binfmt_lock); 1345 put_binfmt(fmt); 1346 if (retval != -ENOEXEC || bprm->mm == NULL) 1347 break; 1348 if (!bprm->file) { 1349 read_unlock(&binfmt_lock); 1350 return retval; 1351 } 1352 } 1353 read_unlock(&binfmt_lock); 1354 if (retval != -ENOEXEC || bprm->mm == NULL) { 1355 break; 1356 #ifdef CONFIG_MODULES 1357 } else { 1358 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1359 if (printable(bprm->buf[0]) && 1360 printable(bprm->buf[1]) && 1361 printable(bprm->buf[2]) && 1362 printable(bprm->buf[3])) 1363 break; /* -ENOEXEC */ 1364 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1365 #endif 1366 } 1367 } 1368 return retval; 1369 } 1370 1371 EXPORT_SYMBOL(search_binary_handler); 1372 1373 /* 1374 * sys_execve() executes a new program. 1375 */ 1376 int do_execve(const char * filename, 1377 const char __user *const __user *argv, 1378 const char __user *const __user *envp, 1379 struct pt_regs * regs) 1380 { 1381 struct linux_binprm *bprm; 1382 struct file *file; 1383 struct files_struct *displaced; 1384 bool clear_in_exec; 1385 int retval; 1386 1387 retval = unshare_files(&displaced); 1388 if (retval) 1389 goto out_ret; 1390 1391 retval = -ENOMEM; 1392 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1393 if (!bprm) 1394 goto out_files; 1395 1396 retval = prepare_bprm_creds(bprm); 1397 if (retval) 1398 goto out_free; 1399 1400 retval = check_unsafe_exec(bprm); 1401 if (retval < 0) 1402 goto out_free; 1403 clear_in_exec = retval; 1404 current->in_execve = 1; 1405 1406 file = open_exec(filename); 1407 retval = PTR_ERR(file); 1408 if (IS_ERR(file)) 1409 goto out_unmark; 1410 1411 sched_exec(); 1412 1413 bprm->file = file; 1414 bprm->filename = filename; 1415 bprm->interp = filename; 1416 1417 retval = bprm_mm_init(bprm); 1418 if (retval) 1419 goto out_file; 1420 1421 bprm->argc = count(argv, MAX_ARG_STRINGS); 1422 if ((retval = bprm->argc) < 0) 1423 goto out; 1424 1425 bprm->envc = count(envp, MAX_ARG_STRINGS); 1426 if ((retval = bprm->envc) < 0) 1427 goto out; 1428 1429 retval = prepare_binprm(bprm); 1430 if (retval < 0) 1431 goto out; 1432 1433 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1434 if (retval < 0) 1435 goto out; 1436 1437 bprm->exec = bprm->p; 1438 retval = copy_strings(bprm->envc, envp, bprm); 1439 if (retval < 0) 1440 goto out; 1441 1442 retval = copy_strings(bprm->argc, argv, bprm); 1443 if (retval < 0) 1444 goto out; 1445 1446 retval = search_binary_handler(bprm,regs); 1447 if (retval < 0) 1448 goto out; 1449 1450 /* execve succeeded */ 1451 current->fs->in_exec = 0; 1452 current->in_execve = 0; 1453 acct_update_integrals(current); 1454 free_bprm(bprm); 1455 if (displaced) 1456 put_files_struct(displaced); 1457 return retval; 1458 1459 out: 1460 if (bprm->mm) { 1461 acct_arg_size(bprm, 0); 1462 mmput(bprm->mm); 1463 } 1464 1465 out_file: 1466 if (bprm->file) { 1467 allow_write_access(bprm->file); 1468 fput(bprm->file); 1469 } 1470 1471 out_unmark: 1472 if (clear_in_exec) 1473 current->fs->in_exec = 0; 1474 current->in_execve = 0; 1475 1476 out_free: 1477 free_bprm(bprm); 1478 1479 out_files: 1480 if (displaced) 1481 reset_files_struct(displaced); 1482 out_ret: 1483 return retval; 1484 } 1485 1486 void set_binfmt(struct linux_binfmt *new) 1487 { 1488 struct mm_struct *mm = current->mm; 1489 1490 if (mm->binfmt) 1491 module_put(mm->binfmt->module); 1492 1493 mm->binfmt = new; 1494 if (new) 1495 __module_get(new->module); 1496 } 1497 1498 EXPORT_SYMBOL(set_binfmt); 1499 1500 static int expand_corename(struct core_name *cn) 1501 { 1502 char *old_corename = cn->corename; 1503 1504 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count); 1505 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL); 1506 1507 if (!cn->corename) { 1508 kfree(old_corename); 1509 return -ENOMEM; 1510 } 1511 1512 return 0; 1513 } 1514 1515 static int cn_printf(struct core_name *cn, const char *fmt, ...) 1516 { 1517 char *cur; 1518 int need; 1519 int ret; 1520 va_list arg; 1521 1522 va_start(arg, fmt); 1523 need = vsnprintf(NULL, 0, fmt, arg); 1524 va_end(arg); 1525 1526 if (likely(need < cn->size - cn->used - 1)) 1527 goto out_printf; 1528 1529 ret = expand_corename(cn); 1530 if (ret) 1531 goto expand_fail; 1532 1533 out_printf: 1534 cur = cn->corename + cn->used; 1535 va_start(arg, fmt); 1536 vsnprintf(cur, need + 1, fmt, arg); 1537 va_end(arg); 1538 cn->used += need; 1539 return 0; 1540 1541 expand_fail: 1542 return ret; 1543 } 1544 1545 /* format_corename will inspect the pattern parameter, and output a 1546 * name into corename, which must have space for at least 1547 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1548 */ 1549 static int format_corename(struct core_name *cn, long signr) 1550 { 1551 const struct cred *cred = current_cred(); 1552 const char *pat_ptr = core_pattern; 1553 int ispipe = (*pat_ptr == '|'); 1554 int pid_in_pattern = 0; 1555 int err = 0; 1556 1557 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count); 1558 cn->corename = kmalloc(cn->size, GFP_KERNEL); 1559 cn->used = 0; 1560 1561 if (!cn->corename) 1562 return -ENOMEM; 1563 1564 /* Repeat as long as we have more pattern to process and more output 1565 space */ 1566 while (*pat_ptr) { 1567 if (*pat_ptr != '%') { 1568 if (*pat_ptr == 0) 1569 goto out; 1570 err = cn_printf(cn, "%c", *pat_ptr++); 1571 } else { 1572 switch (*++pat_ptr) { 1573 /* single % at the end, drop that */ 1574 case 0: 1575 goto out; 1576 /* Double percent, output one percent */ 1577 case '%': 1578 err = cn_printf(cn, "%c", '%'); 1579 break; 1580 /* pid */ 1581 case 'p': 1582 pid_in_pattern = 1; 1583 err = cn_printf(cn, "%d", 1584 task_tgid_vnr(current)); 1585 break; 1586 /* uid */ 1587 case 'u': 1588 err = cn_printf(cn, "%d", cred->uid); 1589 break; 1590 /* gid */ 1591 case 'g': 1592 err = cn_printf(cn, "%d", cred->gid); 1593 break; 1594 /* signal that caused the coredump */ 1595 case 's': 1596 err = cn_printf(cn, "%ld", signr); 1597 break; 1598 /* UNIX time of coredump */ 1599 case 't': { 1600 struct timeval tv; 1601 do_gettimeofday(&tv); 1602 err = cn_printf(cn, "%lu", tv.tv_sec); 1603 break; 1604 } 1605 /* hostname */ 1606 case 'h': 1607 down_read(&uts_sem); 1608 err = cn_printf(cn, "%s", 1609 utsname()->nodename); 1610 up_read(&uts_sem); 1611 break; 1612 /* executable */ 1613 case 'e': 1614 err = cn_printf(cn, "%s", current->comm); 1615 break; 1616 /* core limit size */ 1617 case 'c': 1618 err = cn_printf(cn, "%lu", 1619 rlimit(RLIMIT_CORE)); 1620 break; 1621 default: 1622 break; 1623 } 1624 ++pat_ptr; 1625 } 1626 1627 if (err) 1628 return err; 1629 } 1630 1631 /* Backward compatibility with core_uses_pid: 1632 * 1633 * If core_pattern does not include a %p (as is the default) 1634 * and core_uses_pid is set, then .%pid will be appended to 1635 * the filename. Do not do this for piped commands. */ 1636 if (!ispipe && !pid_in_pattern && core_uses_pid) { 1637 err = cn_printf(cn, ".%d", task_tgid_vnr(current)); 1638 if (err) 1639 return err; 1640 } 1641 out: 1642 return ispipe; 1643 } 1644 1645 static int zap_process(struct task_struct *start, int exit_code) 1646 { 1647 struct task_struct *t; 1648 int nr = 0; 1649 1650 start->signal->flags = SIGNAL_GROUP_EXIT; 1651 start->signal->group_exit_code = exit_code; 1652 start->signal->group_stop_count = 0; 1653 1654 t = start; 1655 do { 1656 if (t != current && t->mm) { 1657 sigaddset(&t->pending.signal, SIGKILL); 1658 signal_wake_up(t, 1); 1659 nr++; 1660 } 1661 } while_each_thread(start, t); 1662 1663 return nr; 1664 } 1665 1666 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1667 struct core_state *core_state, int exit_code) 1668 { 1669 struct task_struct *g, *p; 1670 unsigned long flags; 1671 int nr = -EAGAIN; 1672 1673 spin_lock_irq(&tsk->sighand->siglock); 1674 if (!signal_group_exit(tsk->signal)) { 1675 mm->core_state = core_state; 1676 nr = zap_process(tsk, exit_code); 1677 } 1678 spin_unlock_irq(&tsk->sighand->siglock); 1679 if (unlikely(nr < 0)) 1680 return nr; 1681 1682 if (atomic_read(&mm->mm_users) == nr + 1) 1683 goto done; 1684 /* 1685 * We should find and kill all tasks which use this mm, and we should 1686 * count them correctly into ->nr_threads. We don't take tasklist 1687 * lock, but this is safe wrt: 1688 * 1689 * fork: 1690 * None of sub-threads can fork after zap_process(leader). All 1691 * processes which were created before this point should be 1692 * visible to zap_threads() because copy_process() adds the new 1693 * process to the tail of init_task.tasks list, and lock/unlock 1694 * of ->siglock provides a memory barrier. 1695 * 1696 * do_exit: 1697 * The caller holds mm->mmap_sem. This means that the task which 1698 * uses this mm can't pass exit_mm(), so it can't exit or clear 1699 * its ->mm. 1700 * 1701 * de_thread: 1702 * It does list_replace_rcu(&leader->tasks, ¤t->tasks), 1703 * we must see either old or new leader, this does not matter. 1704 * However, it can change p->sighand, so lock_task_sighand(p) 1705 * must be used. Since p->mm != NULL and we hold ->mmap_sem 1706 * it can't fail. 1707 * 1708 * Note also that "g" can be the old leader with ->mm == NULL 1709 * and already unhashed and thus removed from ->thread_group. 1710 * This is OK, __unhash_process()->list_del_rcu() does not 1711 * clear the ->next pointer, we will find the new leader via 1712 * next_thread(). 1713 */ 1714 rcu_read_lock(); 1715 for_each_process(g) { 1716 if (g == tsk->group_leader) 1717 continue; 1718 if (g->flags & PF_KTHREAD) 1719 continue; 1720 p = g; 1721 do { 1722 if (p->mm) { 1723 if (unlikely(p->mm == mm)) { 1724 lock_task_sighand(p, &flags); 1725 nr += zap_process(p, exit_code); 1726 unlock_task_sighand(p, &flags); 1727 } 1728 break; 1729 } 1730 } while_each_thread(g, p); 1731 } 1732 rcu_read_unlock(); 1733 done: 1734 atomic_set(&core_state->nr_threads, nr); 1735 return nr; 1736 } 1737 1738 static int coredump_wait(int exit_code, struct core_state *core_state) 1739 { 1740 struct task_struct *tsk = current; 1741 struct mm_struct *mm = tsk->mm; 1742 struct completion *vfork_done; 1743 int core_waiters = -EBUSY; 1744 1745 init_completion(&core_state->startup); 1746 core_state->dumper.task = tsk; 1747 core_state->dumper.next = NULL; 1748 1749 down_write(&mm->mmap_sem); 1750 if (!mm->core_state) 1751 core_waiters = zap_threads(tsk, mm, core_state, exit_code); 1752 up_write(&mm->mmap_sem); 1753 1754 if (unlikely(core_waiters < 0)) 1755 goto fail; 1756 1757 /* 1758 * Make sure nobody is waiting for us to release the VM, 1759 * otherwise we can deadlock when we wait on each other 1760 */ 1761 vfork_done = tsk->vfork_done; 1762 if (vfork_done) { 1763 tsk->vfork_done = NULL; 1764 complete(vfork_done); 1765 } 1766 1767 if (core_waiters) 1768 wait_for_completion(&core_state->startup); 1769 fail: 1770 return core_waiters; 1771 } 1772 1773 static void coredump_finish(struct mm_struct *mm) 1774 { 1775 struct core_thread *curr, *next; 1776 struct task_struct *task; 1777 1778 next = mm->core_state->dumper.next; 1779 while ((curr = next) != NULL) { 1780 next = curr->next; 1781 task = curr->task; 1782 /* 1783 * see exit_mm(), curr->task must not see 1784 * ->task == NULL before we read ->next. 1785 */ 1786 smp_mb(); 1787 curr->task = NULL; 1788 wake_up_process(task); 1789 } 1790 1791 mm->core_state = NULL; 1792 } 1793 1794 /* 1795 * set_dumpable converts traditional three-value dumpable to two flags and 1796 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1797 * these bits are not changed atomically. So get_dumpable can observe the 1798 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1799 * return either old dumpable or new one by paying attention to the order of 1800 * modifying the bits. 1801 * 1802 * dumpable | mm->flags (binary) 1803 * old new | initial interim final 1804 * ---------+----------------------- 1805 * 0 1 | 00 01 01 1806 * 0 2 | 00 10(*) 11 1807 * 1 0 | 01 00 00 1808 * 1 2 | 01 11 11 1809 * 2 0 | 11 10(*) 00 1810 * 2 1 | 11 11 01 1811 * 1812 * (*) get_dumpable regards interim value of 10 as 11. 1813 */ 1814 void set_dumpable(struct mm_struct *mm, int value) 1815 { 1816 switch (value) { 1817 case 0: 1818 clear_bit(MMF_DUMPABLE, &mm->flags); 1819 smp_wmb(); 1820 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1821 break; 1822 case 1: 1823 set_bit(MMF_DUMPABLE, &mm->flags); 1824 smp_wmb(); 1825 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1826 break; 1827 case 2: 1828 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1829 smp_wmb(); 1830 set_bit(MMF_DUMPABLE, &mm->flags); 1831 break; 1832 } 1833 } 1834 1835 static int __get_dumpable(unsigned long mm_flags) 1836 { 1837 int ret; 1838 1839 ret = mm_flags & MMF_DUMPABLE_MASK; 1840 return (ret >= 2) ? 2 : ret; 1841 } 1842 1843 int get_dumpable(struct mm_struct *mm) 1844 { 1845 return __get_dumpable(mm->flags); 1846 } 1847 1848 static void wait_for_dump_helpers(struct file *file) 1849 { 1850 struct pipe_inode_info *pipe; 1851 1852 pipe = file->f_path.dentry->d_inode->i_pipe; 1853 1854 pipe_lock(pipe); 1855 pipe->readers++; 1856 pipe->writers--; 1857 1858 while ((pipe->readers > 1) && (!signal_pending(current))) { 1859 wake_up_interruptible_sync(&pipe->wait); 1860 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 1861 pipe_wait(pipe); 1862 } 1863 1864 pipe->readers--; 1865 pipe->writers++; 1866 pipe_unlock(pipe); 1867 1868 } 1869 1870 1871 /* 1872 * uhm_pipe_setup 1873 * helper function to customize the process used 1874 * to collect the core in userspace. Specifically 1875 * it sets up a pipe and installs it as fd 0 (stdin) 1876 * for the process. Returns 0 on success, or 1877 * PTR_ERR on failure. 1878 * Note that it also sets the core limit to 1. This 1879 * is a special value that we use to trap recursive 1880 * core dumps 1881 */ 1882 static int umh_pipe_setup(struct subprocess_info *info) 1883 { 1884 struct file *rp, *wp; 1885 struct fdtable *fdt; 1886 struct coredump_params *cp = (struct coredump_params *)info->data; 1887 struct files_struct *cf = current->files; 1888 1889 wp = create_write_pipe(0); 1890 if (IS_ERR(wp)) 1891 return PTR_ERR(wp); 1892 1893 rp = create_read_pipe(wp, 0); 1894 if (IS_ERR(rp)) { 1895 free_write_pipe(wp); 1896 return PTR_ERR(rp); 1897 } 1898 1899 cp->file = wp; 1900 1901 sys_close(0); 1902 fd_install(0, rp); 1903 spin_lock(&cf->file_lock); 1904 fdt = files_fdtable(cf); 1905 FD_SET(0, fdt->open_fds); 1906 FD_CLR(0, fdt->close_on_exec); 1907 spin_unlock(&cf->file_lock); 1908 1909 /* and disallow core files too */ 1910 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; 1911 1912 return 0; 1913 } 1914 1915 void do_coredump(long signr, int exit_code, struct pt_regs *regs) 1916 { 1917 struct core_state core_state; 1918 struct core_name cn; 1919 struct mm_struct *mm = current->mm; 1920 struct linux_binfmt * binfmt; 1921 const struct cred *old_cred; 1922 struct cred *cred; 1923 int retval = 0; 1924 int flag = 0; 1925 int ispipe; 1926 static atomic_t core_dump_count = ATOMIC_INIT(0); 1927 struct coredump_params cprm = { 1928 .signr = signr, 1929 .regs = regs, 1930 .limit = rlimit(RLIMIT_CORE), 1931 /* 1932 * We must use the same mm->flags while dumping core to avoid 1933 * inconsistency of bit flags, since this flag is not protected 1934 * by any locks. 1935 */ 1936 .mm_flags = mm->flags, 1937 }; 1938 1939 audit_core_dumps(signr); 1940 1941 binfmt = mm->binfmt; 1942 if (!binfmt || !binfmt->core_dump) 1943 goto fail; 1944 if (!__get_dumpable(cprm.mm_flags)) 1945 goto fail; 1946 1947 cred = prepare_creds(); 1948 if (!cred) 1949 goto fail; 1950 /* 1951 * We cannot trust fsuid as being the "true" uid of the 1952 * process nor do we know its entire history. We only know it 1953 * was tainted so we dump it as root in mode 2. 1954 */ 1955 if (__get_dumpable(cprm.mm_flags) == 2) { 1956 /* Setuid core dump mode */ 1957 flag = O_EXCL; /* Stop rewrite attacks */ 1958 cred->fsuid = 0; /* Dump root private */ 1959 } 1960 1961 retval = coredump_wait(exit_code, &core_state); 1962 if (retval < 0) 1963 goto fail_creds; 1964 1965 old_cred = override_creds(cred); 1966 1967 /* 1968 * Clear any false indication of pending signals that might 1969 * be seen by the filesystem code called to write the core file. 1970 */ 1971 clear_thread_flag(TIF_SIGPENDING); 1972 1973 ispipe = format_corename(&cn, signr); 1974 1975 if (ispipe == -ENOMEM) { 1976 printk(KERN_WARNING "format_corename failed\n"); 1977 printk(KERN_WARNING "Aborting core\n"); 1978 goto fail_corename; 1979 } 1980 1981 if (ispipe) { 1982 int dump_count; 1983 char **helper_argv; 1984 1985 if (cprm.limit == 1) { 1986 /* 1987 * Normally core limits are irrelevant to pipes, since 1988 * we're not writing to the file system, but we use 1989 * cprm.limit of 1 here as a speacial value. Any 1990 * non-1 limit gets set to RLIM_INFINITY below, but 1991 * a limit of 0 skips the dump. This is a consistent 1992 * way to catch recursive crashes. We can still crash 1993 * if the core_pattern binary sets RLIM_CORE = !1 1994 * but it runs as root, and can do lots of stupid things 1995 * Note that we use task_tgid_vnr here to grab the pid 1996 * of the process group leader. That way we get the 1997 * right pid if a thread in a multi-threaded 1998 * core_pattern process dies. 1999 */ 2000 printk(KERN_WARNING 2001 "Process %d(%s) has RLIMIT_CORE set to 1\n", 2002 task_tgid_vnr(current), current->comm); 2003 printk(KERN_WARNING "Aborting core\n"); 2004 goto fail_unlock; 2005 } 2006 cprm.limit = RLIM_INFINITY; 2007 2008 dump_count = atomic_inc_return(&core_dump_count); 2009 if (core_pipe_limit && (core_pipe_limit < dump_count)) { 2010 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", 2011 task_tgid_vnr(current), current->comm); 2012 printk(KERN_WARNING "Skipping core dump\n"); 2013 goto fail_dropcount; 2014 } 2015 2016 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL); 2017 if (!helper_argv) { 2018 printk(KERN_WARNING "%s failed to allocate memory\n", 2019 __func__); 2020 goto fail_dropcount; 2021 } 2022 2023 retval = call_usermodehelper_fns(helper_argv[0], helper_argv, 2024 NULL, UMH_WAIT_EXEC, umh_pipe_setup, 2025 NULL, &cprm); 2026 argv_free(helper_argv); 2027 if (retval) { 2028 printk(KERN_INFO "Core dump to %s pipe failed\n", 2029 cn.corename); 2030 goto close_fail; 2031 } 2032 } else { 2033 struct inode *inode; 2034 2035 if (cprm.limit < binfmt->min_coredump) 2036 goto fail_unlock; 2037 2038 cprm.file = filp_open(cn.corename, 2039 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 2040 0600); 2041 if (IS_ERR(cprm.file)) 2042 goto fail_unlock; 2043 2044 inode = cprm.file->f_path.dentry->d_inode; 2045 if (inode->i_nlink > 1) 2046 goto close_fail; 2047 if (d_unhashed(cprm.file->f_path.dentry)) 2048 goto close_fail; 2049 /* 2050 * AK: actually i see no reason to not allow this for named 2051 * pipes etc, but keep the previous behaviour for now. 2052 */ 2053 if (!S_ISREG(inode->i_mode)) 2054 goto close_fail; 2055 /* 2056 * Dont allow local users get cute and trick others to coredump 2057 * into their pre-created files. 2058 */ 2059 if (inode->i_uid != current_fsuid()) 2060 goto close_fail; 2061 if (!cprm.file->f_op || !cprm.file->f_op->write) 2062 goto close_fail; 2063 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) 2064 goto close_fail; 2065 } 2066 2067 retval = binfmt->core_dump(&cprm); 2068 if (retval) 2069 current->signal->group_exit_code |= 0x80; 2070 2071 if (ispipe && core_pipe_limit) 2072 wait_for_dump_helpers(cprm.file); 2073 close_fail: 2074 if (cprm.file) 2075 filp_close(cprm.file, NULL); 2076 fail_dropcount: 2077 if (ispipe) 2078 atomic_dec(&core_dump_count); 2079 fail_unlock: 2080 kfree(cn.corename); 2081 fail_corename: 2082 coredump_finish(mm); 2083 revert_creds(old_cred); 2084 fail_creds: 2085 put_cred(cred); 2086 fail: 2087 return; 2088 } 2089 2090 /* 2091 * Core dumping helper functions. These are the only things you should 2092 * do on a core-file: use only these functions to write out all the 2093 * necessary info. 2094 */ 2095 int dump_write(struct file *file, const void *addr, int nr) 2096 { 2097 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr; 2098 } 2099 EXPORT_SYMBOL(dump_write); 2100 2101 int dump_seek(struct file *file, loff_t off) 2102 { 2103 int ret = 1; 2104 2105 if (file->f_op->llseek && file->f_op->llseek != no_llseek) { 2106 if (file->f_op->llseek(file, off, SEEK_CUR) < 0) 2107 return 0; 2108 } else { 2109 char *buf = (char *)get_zeroed_page(GFP_KERNEL); 2110 2111 if (!buf) 2112 return 0; 2113 while (off > 0) { 2114 unsigned long n = off; 2115 2116 if (n > PAGE_SIZE) 2117 n = PAGE_SIZE; 2118 if (!dump_write(file, buf, n)) { 2119 ret = 0; 2120 break; 2121 } 2122 off -= n; 2123 } 2124 free_page((unsigned long)buf); 2125 } 2126 return ret; 2127 } 2128 EXPORT_SYMBOL(dump_seek); 2129