xref: /openbmc/linux/fs/exec.c (revision 47010c04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/kmod.h>
60 #include <linux/fsnotify.h>
61 #include <linux/fs_struct.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 #include <linux/io_uring.h>
66 #include <linux/syscall_user_dispatch.h>
67 #include <linux/coredump.h>
68 
69 #include <linux/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/tlb.h>
72 
73 #include <trace/events/task.h>
74 #include "internal.h"
75 
76 #include <trace/events/sched.h>
77 
78 static int bprm_creds_from_file(struct linux_binprm *bprm);
79 
80 int suid_dumpable = 0;
81 
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84 
85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 	write_lock(&binfmt_lock);
88 	insert ? list_add(&fmt->lh, &formats) :
89 		 list_add_tail(&fmt->lh, &formats);
90 	write_unlock(&binfmt_lock);
91 }
92 
93 EXPORT_SYMBOL(__register_binfmt);
94 
95 void unregister_binfmt(struct linux_binfmt * fmt)
96 {
97 	write_lock(&binfmt_lock);
98 	list_del(&fmt->lh);
99 	write_unlock(&binfmt_lock);
100 }
101 
102 EXPORT_SYMBOL(unregister_binfmt);
103 
104 static inline void put_binfmt(struct linux_binfmt * fmt)
105 {
106 	module_put(fmt->module);
107 }
108 
109 bool path_noexec(const struct path *path)
110 {
111 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
112 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
113 }
114 
115 #ifdef CONFIG_USELIB
116 /*
117  * Note that a shared library must be both readable and executable due to
118  * security reasons.
119  *
120  * Also note that we take the address to load from the file itself.
121  */
122 SYSCALL_DEFINE1(uselib, const char __user *, library)
123 {
124 	struct linux_binfmt *fmt;
125 	struct file *file;
126 	struct filename *tmp = getname(library);
127 	int error = PTR_ERR(tmp);
128 	static const struct open_flags uselib_flags = {
129 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
130 		.acc_mode = MAY_READ | MAY_EXEC,
131 		.intent = LOOKUP_OPEN,
132 		.lookup_flags = LOOKUP_FOLLOW,
133 	};
134 
135 	if (IS_ERR(tmp))
136 		goto out;
137 
138 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
139 	putname(tmp);
140 	error = PTR_ERR(file);
141 	if (IS_ERR(file))
142 		goto out;
143 
144 	/*
145 	 * may_open() has already checked for this, so it should be
146 	 * impossible to trip now. But we need to be extra cautious
147 	 * and check again at the very end too.
148 	 */
149 	error = -EACCES;
150 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
151 			 path_noexec(&file->f_path)))
152 		goto exit;
153 
154 	fsnotify_open(file);
155 
156 	error = -ENOEXEC;
157 
158 	read_lock(&binfmt_lock);
159 	list_for_each_entry(fmt, &formats, lh) {
160 		if (!fmt->load_shlib)
161 			continue;
162 		if (!try_module_get(fmt->module))
163 			continue;
164 		read_unlock(&binfmt_lock);
165 		error = fmt->load_shlib(file);
166 		read_lock(&binfmt_lock);
167 		put_binfmt(fmt);
168 		if (error != -ENOEXEC)
169 			break;
170 	}
171 	read_unlock(&binfmt_lock);
172 exit:
173 	fput(file);
174 out:
175   	return error;
176 }
177 #endif /* #ifdef CONFIG_USELIB */
178 
179 #ifdef CONFIG_MMU
180 /*
181  * The nascent bprm->mm is not visible until exec_mmap() but it can
182  * use a lot of memory, account these pages in current->mm temporary
183  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
184  * change the counter back via acct_arg_size(0).
185  */
186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
187 {
188 	struct mm_struct *mm = current->mm;
189 	long diff = (long)(pages - bprm->vma_pages);
190 
191 	if (!mm || !diff)
192 		return;
193 
194 	bprm->vma_pages = pages;
195 	add_mm_counter(mm, MM_ANONPAGES, diff);
196 }
197 
198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
199 		int write)
200 {
201 	struct page *page;
202 	int ret;
203 	unsigned int gup_flags = FOLL_FORCE;
204 
205 #ifdef CONFIG_STACK_GROWSUP
206 	if (write) {
207 		ret = expand_downwards(bprm->vma, pos);
208 		if (ret < 0)
209 			return NULL;
210 	}
211 #endif
212 
213 	if (write)
214 		gup_flags |= FOLL_WRITE;
215 
216 	/*
217 	 * We are doing an exec().  'current' is the process
218 	 * doing the exec and bprm->mm is the new process's mm.
219 	 */
220 	mmap_read_lock(bprm->mm);
221 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
222 			&page, NULL, NULL);
223 	mmap_read_unlock(bprm->mm);
224 	if (ret <= 0)
225 		return NULL;
226 
227 	if (write)
228 		acct_arg_size(bprm, vma_pages(bprm->vma));
229 
230 	return page;
231 }
232 
233 static void put_arg_page(struct page *page)
234 {
235 	put_page(page);
236 }
237 
238 static void free_arg_pages(struct linux_binprm *bprm)
239 {
240 }
241 
242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
243 		struct page *page)
244 {
245 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
246 }
247 
248 static int __bprm_mm_init(struct linux_binprm *bprm)
249 {
250 	int err;
251 	struct vm_area_struct *vma = NULL;
252 	struct mm_struct *mm = bprm->mm;
253 
254 	bprm->vma = vma = vm_area_alloc(mm);
255 	if (!vma)
256 		return -ENOMEM;
257 	vma_set_anonymous(vma);
258 
259 	if (mmap_write_lock_killable(mm)) {
260 		err = -EINTR;
261 		goto err_free;
262 	}
263 
264 	/*
265 	 * Place the stack at the largest stack address the architecture
266 	 * supports. Later, we'll move this to an appropriate place. We don't
267 	 * use STACK_TOP because that can depend on attributes which aren't
268 	 * configured yet.
269 	 */
270 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
271 	vma->vm_end = STACK_TOP_MAX;
272 	vma->vm_start = vma->vm_end - PAGE_SIZE;
273 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
274 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
275 
276 	err = insert_vm_struct(mm, vma);
277 	if (err)
278 		goto err;
279 
280 	mm->stack_vm = mm->total_vm = 1;
281 	mmap_write_unlock(mm);
282 	bprm->p = vma->vm_end - sizeof(void *);
283 	return 0;
284 err:
285 	mmap_write_unlock(mm);
286 err_free:
287 	bprm->vma = NULL;
288 	vm_area_free(vma);
289 	return err;
290 }
291 
292 static bool valid_arg_len(struct linux_binprm *bprm, long len)
293 {
294 	return len <= MAX_ARG_STRLEN;
295 }
296 
297 #else
298 
299 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
300 {
301 }
302 
303 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
304 		int write)
305 {
306 	struct page *page;
307 
308 	page = bprm->page[pos / PAGE_SIZE];
309 	if (!page && write) {
310 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
311 		if (!page)
312 			return NULL;
313 		bprm->page[pos / PAGE_SIZE] = page;
314 	}
315 
316 	return page;
317 }
318 
319 static void put_arg_page(struct page *page)
320 {
321 }
322 
323 static void free_arg_page(struct linux_binprm *bprm, int i)
324 {
325 	if (bprm->page[i]) {
326 		__free_page(bprm->page[i]);
327 		bprm->page[i] = NULL;
328 	}
329 }
330 
331 static void free_arg_pages(struct linux_binprm *bprm)
332 {
333 	int i;
334 
335 	for (i = 0; i < MAX_ARG_PAGES; i++)
336 		free_arg_page(bprm, i);
337 }
338 
339 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
340 		struct page *page)
341 {
342 }
343 
344 static int __bprm_mm_init(struct linux_binprm *bprm)
345 {
346 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
347 	return 0;
348 }
349 
350 static bool valid_arg_len(struct linux_binprm *bprm, long len)
351 {
352 	return len <= bprm->p;
353 }
354 
355 #endif /* CONFIG_MMU */
356 
357 /*
358  * Create a new mm_struct and populate it with a temporary stack
359  * vm_area_struct.  We don't have enough context at this point to set the stack
360  * flags, permissions, and offset, so we use temporary values.  We'll update
361  * them later in setup_arg_pages().
362  */
363 static int bprm_mm_init(struct linux_binprm *bprm)
364 {
365 	int err;
366 	struct mm_struct *mm = NULL;
367 
368 	bprm->mm = mm = mm_alloc();
369 	err = -ENOMEM;
370 	if (!mm)
371 		goto err;
372 
373 	/* Save current stack limit for all calculations made during exec. */
374 	task_lock(current->group_leader);
375 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
376 	task_unlock(current->group_leader);
377 
378 	err = __bprm_mm_init(bprm);
379 	if (err)
380 		goto err;
381 
382 	return 0;
383 
384 err:
385 	if (mm) {
386 		bprm->mm = NULL;
387 		mmdrop(mm);
388 	}
389 
390 	return err;
391 }
392 
393 struct user_arg_ptr {
394 #ifdef CONFIG_COMPAT
395 	bool is_compat;
396 #endif
397 	union {
398 		const char __user *const __user *native;
399 #ifdef CONFIG_COMPAT
400 		const compat_uptr_t __user *compat;
401 #endif
402 	} ptr;
403 };
404 
405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
406 {
407 	const char __user *native;
408 
409 #ifdef CONFIG_COMPAT
410 	if (unlikely(argv.is_compat)) {
411 		compat_uptr_t compat;
412 
413 		if (get_user(compat, argv.ptr.compat + nr))
414 			return ERR_PTR(-EFAULT);
415 
416 		return compat_ptr(compat);
417 	}
418 #endif
419 
420 	if (get_user(native, argv.ptr.native + nr))
421 		return ERR_PTR(-EFAULT);
422 
423 	return native;
424 }
425 
426 /*
427  * count() counts the number of strings in array ARGV.
428  */
429 static int count(struct user_arg_ptr argv, int max)
430 {
431 	int i = 0;
432 
433 	if (argv.ptr.native != NULL) {
434 		for (;;) {
435 			const char __user *p = get_user_arg_ptr(argv, i);
436 
437 			if (!p)
438 				break;
439 
440 			if (IS_ERR(p))
441 				return -EFAULT;
442 
443 			if (i >= max)
444 				return -E2BIG;
445 			++i;
446 
447 			if (fatal_signal_pending(current))
448 				return -ERESTARTNOHAND;
449 			cond_resched();
450 		}
451 	}
452 	return i;
453 }
454 
455 static int count_strings_kernel(const char *const *argv)
456 {
457 	int i;
458 
459 	if (!argv)
460 		return 0;
461 
462 	for (i = 0; argv[i]; ++i) {
463 		if (i >= MAX_ARG_STRINGS)
464 			return -E2BIG;
465 		if (fatal_signal_pending(current))
466 			return -ERESTARTNOHAND;
467 		cond_resched();
468 	}
469 	return i;
470 }
471 
472 static int bprm_stack_limits(struct linux_binprm *bprm)
473 {
474 	unsigned long limit, ptr_size;
475 
476 	/*
477 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
478 	 * (whichever is smaller) for the argv+env strings.
479 	 * This ensures that:
480 	 *  - the remaining binfmt code will not run out of stack space,
481 	 *  - the program will have a reasonable amount of stack left
482 	 *    to work from.
483 	 */
484 	limit = _STK_LIM / 4 * 3;
485 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
486 	/*
487 	 * We've historically supported up to 32 pages (ARG_MAX)
488 	 * of argument strings even with small stacks
489 	 */
490 	limit = max_t(unsigned long, limit, ARG_MAX);
491 	/*
492 	 * We must account for the size of all the argv and envp pointers to
493 	 * the argv and envp strings, since they will also take up space in
494 	 * the stack. They aren't stored until much later when we can't
495 	 * signal to the parent that the child has run out of stack space.
496 	 * Instead, calculate it here so it's possible to fail gracefully.
497 	 *
498 	 * In the case of argc = 0, make sure there is space for adding a
499 	 * empty string (which will bump argc to 1), to ensure confused
500 	 * userspace programs don't start processing from argv[1], thinking
501 	 * argc can never be 0, to keep them from walking envp by accident.
502 	 * See do_execveat_common().
503 	 */
504 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
505 	if (limit <= ptr_size)
506 		return -E2BIG;
507 	limit -= ptr_size;
508 
509 	bprm->argmin = bprm->p - limit;
510 	return 0;
511 }
512 
513 /*
514  * 'copy_strings()' copies argument/environment strings from the old
515  * processes's memory to the new process's stack.  The call to get_user_pages()
516  * ensures the destination page is created and not swapped out.
517  */
518 static int copy_strings(int argc, struct user_arg_ptr argv,
519 			struct linux_binprm *bprm)
520 {
521 	struct page *kmapped_page = NULL;
522 	char *kaddr = NULL;
523 	unsigned long kpos = 0;
524 	int ret;
525 
526 	while (argc-- > 0) {
527 		const char __user *str;
528 		int len;
529 		unsigned long pos;
530 
531 		ret = -EFAULT;
532 		str = get_user_arg_ptr(argv, argc);
533 		if (IS_ERR(str))
534 			goto out;
535 
536 		len = strnlen_user(str, MAX_ARG_STRLEN);
537 		if (!len)
538 			goto out;
539 
540 		ret = -E2BIG;
541 		if (!valid_arg_len(bprm, len))
542 			goto out;
543 
544 		/* We're going to work our way backwards. */
545 		pos = bprm->p;
546 		str += len;
547 		bprm->p -= len;
548 #ifdef CONFIG_MMU
549 		if (bprm->p < bprm->argmin)
550 			goto out;
551 #endif
552 
553 		while (len > 0) {
554 			int offset, bytes_to_copy;
555 
556 			if (fatal_signal_pending(current)) {
557 				ret = -ERESTARTNOHAND;
558 				goto out;
559 			}
560 			cond_resched();
561 
562 			offset = pos % PAGE_SIZE;
563 			if (offset == 0)
564 				offset = PAGE_SIZE;
565 
566 			bytes_to_copy = offset;
567 			if (bytes_to_copy > len)
568 				bytes_to_copy = len;
569 
570 			offset -= bytes_to_copy;
571 			pos -= bytes_to_copy;
572 			str -= bytes_to_copy;
573 			len -= bytes_to_copy;
574 
575 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
576 				struct page *page;
577 
578 				page = get_arg_page(bprm, pos, 1);
579 				if (!page) {
580 					ret = -E2BIG;
581 					goto out;
582 				}
583 
584 				if (kmapped_page) {
585 					flush_dcache_page(kmapped_page);
586 					kunmap(kmapped_page);
587 					put_arg_page(kmapped_page);
588 				}
589 				kmapped_page = page;
590 				kaddr = kmap(kmapped_page);
591 				kpos = pos & PAGE_MASK;
592 				flush_arg_page(bprm, kpos, kmapped_page);
593 			}
594 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
595 				ret = -EFAULT;
596 				goto out;
597 			}
598 		}
599 	}
600 	ret = 0;
601 out:
602 	if (kmapped_page) {
603 		flush_dcache_page(kmapped_page);
604 		kunmap(kmapped_page);
605 		put_arg_page(kmapped_page);
606 	}
607 	return ret;
608 }
609 
610 /*
611  * Copy and argument/environment string from the kernel to the processes stack.
612  */
613 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
614 {
615 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
616 	unsigned long pos = bprm->p;
617 
618 	if (len == 0)
619 		return -EFAULT;
620 	if (!valid_arg_len(bprm, len))
621 		return -E2BIG;
622 
623 	/* We're going to work our way backwards. */
624 	arg += len;
625 	bprm->p -= len;
626 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
627 		return -E2BIG;
628 
629 	while (len > 0) {
630 		unsigned int bytes_to_copy = min_t(unsigned int, len,
631 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
632 		struct page *page;
633 		char *kaddr;
634 
635 		pos -= bytes_to_copy;
636 		arg -= bytes_to_copy;
637 		len -= bytes_to_copy;
638 
639 		page = get_arg_page(bprm, pos, 1);
640 		if (!page)
641 			return -E2BIG;
642 		kaddr = kmap_atomic(page);
643 		flush_arg_page(bprm, pos & PAGE_MASK, page);
644 		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
645 		flush_dcache_page(page);
646 		kunmap_atomic(kaddr);
647 		put_arg_page(page);
648 	}
649 
650 	return 0;
651 }
652 EXPORT_SYMBOL(copy_string_kernel);
653 
654 static int copy_strings_kernel(int argc, const char *const *argv,
655 			       struct linux_binprm *bprm)
656 {
657 	while (argc-- > 0) {
658 		int ret = copy_string_kernel(argv[argc], bprm);
659 		if (ret < 0)
660 			return ret;
661 		if (fatal_signal_pending(current))
662 			return -ERESTARTNOHAND;
663 		cond_resched();
664 	}
665 	return 0;
666 }
667 
668 #ifdef CONFIG_MMU
669 
670 /*
671  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
672  * the binfmt code determines where the new stack should reside, we shift it to
673  * its final location.  The process proceeds as follows:
674  *
675  * 1) Use shift to calculate the new vma endpoints.
676  * 2) Extend vma to cover both the old and new ranges.  This ensures the
677  *    arguments passed to subsequent functions are consistent.
678  * 3) Move vma's page tables to the new range.
679  * 4) Free up any cleared pgd range.
680  * 5) Shrink the vma to cover only the new range.
681  */
682 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
683 {
684 	struct mm_struct *mm = vma->vm_mm;
685 	unsigned long old_start = vma->vm_start;
686 	unsigned long old_end = vma->vm_end;
687 	unsigned long length = old_end - old_start;
688 	unsigned long new_start = old_start - shift;
689 	unsigned long new_end = old_end - shift;
690 	struct mmu_gather tlb;
691 
692 	BUG_ON(new_start > new_end);
693 
694 	/*
695 	 * ensure there are no vmas between where we want to go
696 	 * and where we are
697 	 */
698 	if (vma != find_vma(mm, new_start))
699 		return -EFAULT;
700 
701 	/*
702 	 * cover the whole range: [new_start, old_end)
703 	 */
704 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
705 		return -ENOMEM;
706 
707 	/*
708 	 * move the page tables downwards, on failure we rely on
709 	 * process cleanup to remove whatever mess we made.
710 	 */
711 	if (length != move_page_tables(vma, old_start,
712 				       vma, new_start, length, false))
713 		return -ENOMEM;
714 
715 	lru_add_drain();
716 	tlb_gather_mmu(&tlb, mm);
717 	if (new_end > old_start) {
718 		/*
719 		 * when the old and new regions overlap clear from new_end.
720 		 */
721 		free_pgd_range(&tlb, new_end, old_end, new_end,
722 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
723 	} else {
724 		/*
725 		 * otherwise, clean from old_start; this is done to not touch
726 		 * the address space in [new_end, old_start) some architectures
727 		 * have constraints on va-space that make this illegal (IA64) -
728 		 * for the others its just a little faster.
729 		 */
730 		free_pgd_range(&tlb, old_start, old_end, new_end,
731 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
732 	}
733 	tlb_finish_mmu(&tlb);
734 
735 	/*
736 	 * Shrink the vma to just the new range.  Always succeeds.
737 	 */
738 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
739 
740 	return 0;
741 }
742 
743 /*
744  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
745  * the stack is optionally relocated, and some extra space is added.
746  */
747 int setup_arg_pages(struct linux_binprm *bprm,
748 		    unsigned long stack_top,
749 		    int executable_stack)
750 {
751 	unsigned long ret;
752 	unsigned long stack_shift;
753 	struct mm_struct *mm = current->mm;
754 	struct vm_area_struct *vma = bprm->vma;
755 	struct vm_area_struct *prev = NULL;
756 	unsigned long vm_flags;
757 	unsigned long stack_base;
758 	unsigned long stack_size;
759 	unsigned long stack_expand;
760 	unsigned long rlim_stack;
761 
762 #ifdef CONFIG_STACK_GROWSUP
763 	/* Limit stack size */
764 	stack_base = bprm->rlim_stack.rlim_max;
765 
766 	stack_base = calc_max_stack_size(stack_base);
767 
768 	/* Add space for stack randomization. */
769 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
770 
771 	/* Make sure we didn't let the argument array grow too large. */
772 	if (vma->vm_end - vma->vm_start > stack_base)
773 		return -ENOMEM;
774 
775 	stack_base = PAGE_ALIGN(stack_top - stack_base);
776 
777 	stack_shift = vma->vm_start - stack_base;
778 	mm->arg_start = bprm->p - stack_shift;
779 	bprm->p = vma->vm_end - stack_shift;
780 #else
781 	stack_top = arch_align_stack(stack_top);
782 	stack_top = PAGE_ALIGN(stack_top);
783 
784 	if (unlikely(stack_top < mmap_min_addr) ||
785 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
786 		return -ENOMEM;
787 
788 	stack_shift = vma->vm_end - stack_top;
789 
790 	bprm->p -= stack_shift;
791 	mm->arg_start = bprm->p;
792 #endif
793 
794 	if (bprm->loader)
795 		bprm->loader -= stack_shift;
796 	bprm->exec -= stack_shift;
797 
798 	if (mmap_write_lock_killable(mm))
799 		return -EINTR;
800 
801 	vm_flags = VM_STACK_FLAGS;
802 
803 	/*
804 	 * Adjust stack execute permissions; explicitly enable for
805 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
806 	 * (arch default) otherwise.
807 	 */
808 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
809 		vm_flags |= VM_EXEC;
810 	else if (executable_stack == EXSTACK_DISABLE_X)
811 		vm_flags &= ~VM_EXEC;
812 	vm_flags |= mm->def_flags;
813 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
814 
815 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
816 			vm_flags);
817 	if (ret)
818 		goto out_unlock;
819 	BUG_ON(prev != vma);
820 
821 	if (unlikely(vm_flags & VM_EXEC)) {
822 		pr_warn_once("process '%pD4' started with executable stack\n",
823 			     bprm->file);
824 	}
825 
826 	/* Move stack pages down in memory. */
827 	if (stack_shift) {
828 		ret = shift_arg_pages(vma, stack_shift);
829 		if (ret)
830 			goto out_unlock;
831 	}
832 
833 	/* mprotect_fixup is overkill to remove the temporary stack flags */
834 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
835 
836 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
837 	stack_size = vma->vm_end - vma->vm_start;
838 	/*
839 	 * Align this down to a page boundary as expand_stack
840 	 * will align it up.
841 	 */
842 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
843 #ifdef CONFIG_STACK_GROWSUP
844 	if (stack_size + stack_expand > rlim_stack)
845 		stack_base = vma->vm_start + rlim_stack;
846 	else
847 		stack_base = vma->vm_end + stack_expand;
848 #else
849 	if (stack_size + stack_expand > rlim_stack)
850 		stack_base = vma->vm_end - rlim_stack;
851 	else
852 		stack_base = vma->vm_start - stack_expand;
853 #endif
854 	current->mm->start_stack = bprm->p;
855 	ret = expand_stack(vma, stack_base);
856 	if (ret)
857 		ret = -EFAULT;
858 
859 out_unlock:
860 	mmap_write_unlock(mm);
861 	return ret;
862 }
863 EXPORT_SYMBOL(setup_arg_pages);
864 
865 #else
866 
867 /*
868  * Transfer the program arguments and environment from the holding pages
869  * onto the stack. The provided stack pointer is adjusted accordingly.
870  */
871 int transfer_args_to_stack(struct linux_binprm *bprm,
872 			   unsigned long *sp_location)
873 {
874 	unsigned long index, stop, sp;
875 	int ret = 0;
876 
877 	stop = bprm->p >> PAGE_SHIFT;
878 	sp = *sp_location;
879 
880 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
881 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
882 		char *src = kmap(bprm->page[index]) + offset;
883 		sp -= PAGE_SIZE - offset;
884 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
885 			ret = -EFAULT;
886 		kunmap(bprm->page[index]);
887 		if (ret)
888 			goto out;
889 	}
890 
891 	*sp_location = sp;
892 
893 out:
894 	return ret;
895 }
896 EXPORT_SYMBOL(transfer_args_to_stack);
897 
898 #endif /* CONFIG_MMU */
899 
900 static struct file *do_open_execat(int fd, struct filename *name, int flags)
901 {
902 	struct file *file;
903 	int err;
904 	struct open_flags open_exec_flags = {
905 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
906 		.acc_mode = MAY_EXEC,
907 		.intent = LOOKUP_OPEN,
908 		.lookup_flags = LOOKUP_FOLLOW,
909 	};
910 
911 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
912 		return ERR_PTR(-EINVAL);
913 	if (flags & AT_SYMLINK_NOFOLLOW)
914 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
915 	if (flags & AT_EMPTY_PATH)
916 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
917 
918 	file = do_filp_open(fd, name, &open_exec_flags);
919 	if (IS_ERR(file))
920 		goto out;
921 
922 	/*
923 	 * may_open() has already checked for this, so it should be
924 	 * impossible to trip now. But we need to be extra cautious
925 	 * and check again at the very end too.
926 	 */
927 	err = -EACCES;
928 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
929 			 path_noexec(&file->f_path)))
930 		goto exit;
931 
932 	err = deny_write_access(file);
933 	if (err)
934 		goto exit;
935 
936 	if (name->name[0] != '\0')
937 		fsnotify_open(file);
938 
939 out:
940 	return file;
941 
942 exit:
943 	fput(file);
944 	return ERR_PTR(err);
945 }
946 
947 struct file *open_exec(const char *name)
948 {
949 	struct filename *filename = getname_kernel(name);
950 	struct file *f = ERR_CAST(filename);
951 
952 	if (!IS_ERR(filename)) {
953 		f = do_open_execat(AT_FDCWD, filename, 0);
954 		putname(filename);
955 	}
956 	return f;
957 }
958 EXPORT_SYMBOL(open_exec);
959 
960 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
961     defined(CONFIG_BINFMT_ELF_FDPIC)
962 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
963 {
964 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
965 	if (res > 0)
966 		flush_icache_user_range(addr, addr + len);
967 	return res;
968 }
969 EXPORT_SYMBOL(read_code);
970 #endif
971 
972 /*
973  * Maps the mm_struct mm into the current task struct.
974  * On success, this function returns with exec_update_lock
975  * held for writing.
976  */
977 static int exec_mmap(struct mm_struct *mm)
978 {
979 	struct task_struct *tsk;
980 	struct mm_struct *old_mm, *active_mm;
981 	int ret;
982 
983 	/* Notify parent that we're no longer interested in the old VM */
984 	tsk = current;
985 	old_mm = current->mm;
986 	exec_mm_release(tsk, old_mm);
987 	if (old_mm)
988 		sync_mm_rss(old_mm);
989 
990 	ret = down_write_killable(&tsk->signal->exec_update_lock);
991 	if (ret)
992 		return ret;
993 
994 	if (old_mm) {
995 		/*
996 		 * If there is a pending fatal signal perhaps a signal
997 		 * whose default action is to create a coredump get
998 		 * out and die instead of going through with the exec.
999 		 */
1000 		ret = mmap_read_lock_killable(old_mm);
1001 		if (ret) {
1002 			up_write(&tsk->signal->exec_update_lock);
1003 			return ret;
1004 		}
1005 	}
1006 
1007 	task_lock(tsk);
1008 	membarrier_exec_mmap(mm);
1009 
1010 	local_irq_disable();
1011 	active_mm = tsk->active_mm;
1012 	tsk->active_mm = mm;
1013 	tsk->mm = mm;
1014 	/*
1015 	 * This prevents preemption while active_mm is being loaded and
1016 	 * it and mm are being updated, which could cause problems for
1017 	 * lazy tlb mm refcounting when these are updated by context
1018 	 * switches. Not all architectures can handle irqs off over
1019 	 * activate_mm yet.
1020 	 */
1021 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1022 		local_irq_enable();
1023 	activate_mm(active_mm, mm);
1024 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1025 		local_irq_enable();
1026 	tsk->mm->vmacache_seqnum = 0;
1027 	vmacache_flush(tsk);
1028 	task_unlock(tsk);
1029 	if (old_mm) {
1030 		mmap_read_unlock(old_mm);
1031 		BUG_ON(active_mm != old_mm);
1032 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1033 		mm_update_next_owner(old_mm);
1034 		mmput(old_mm);
1035 		return 0;
1036 	}
1037 	mmdrop(active_mm);
1038 	return 0;
1039 }
1040 
1041 static int de_thread(struct task_struct *tsk)
1042 {
1043 	struct signal_struct *sig = tsk->signal;
1044 	struct sighand_struct *oldsighand = tsk->sighand;
1045 	spinlock_t *lock = &oldsighand->siglock;
1046 
1047 	if (thread_group_empty(tsk))
1048 		goto no_thread_group;
1049 
1050 	/*
1051 	 * Kill all other threads in the thread group.
1052 	 */
1053 	spin_lock_irq(lock);
1054 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1055 		/*
1056 		 * Another group action in progress, just
1057 		 * return so that the signal is processed.
1058 		 */
1059 		spin_unlock_irq(lock);
1060 		return -EAGAIN;
1061 	}
1062 
1063 	sig->group_exec_task = tsk;
1064 	sig->notify_count = zap_other_threads(tsk);
1065 	if (!thread_group_leader(tsk))
1066 		sig->notify_count--;
1067 
1068 	while (sig->notify_count) {
1069 		__set_current_state(TASK_KILLABLE);
1070 		spin_unlock_irq(lock);
1071 		schedule();
1072 		if (__fatal_signal_pending(tsk))
1073 			goto killed;
1074 		spin_lock_irq(lock);
1075 	}
1076 	spin_unlock_irq(lock);
1077 
1078 	/*
1079 	 * At this point all other threads have exited, all we have to
1080 	 * do is to wait for the thread group leader to become inactive,
1081 	 * and to assume its PID:
1082 	 */
1083 	if (!thread_group_leader(tsk)) {
1084 		struct task_struct *leader = tsk->group_leader;
1085 
1086 		for (;;) {
1087 			cgroup_threadgroup_change_begin(tsk);
1088 			write_lock_irq(&tasklist_lock);
1089 			/*
1090 			 * Do this under tasklist_lock to ensure that
1091 			 * exit_notify() can't miss ->group_exec_task
1092 			 */
1093 			sig->notify_count = -1;
1094 			if (likely(leader->exit_state))
1095 				break;
1096 			__set_current_state(TASK_KILLABLE);
1097 			write_unlock_irq(&tasklist_lock);
1098 			cgroup_threadgroup_change_end(tsk);
1099 			schedule();
1100 			if (__fatal_signal_pending(tsk))
1101 				goto killed;
1102 		}
1103 
1104 		/*
1105 		 * The only record we have of the real-time age of a
1106 		 * process, regardless of execs it's done, is start_time.
1107 		 * All the past CPU time is accumulated in signal_struct
1108 		 * from sister threads now dead.  But in this non-leader
1109 		 * exec, nothing survives from the original leader thread,
1110 		 * whose birth marks the true age of this process now.
1111 		 * When we take on its identity by switching to its PID, we
1112 		 * also take its birthdate (always earlier than our own).
1113 		 */
1114 		tsk->start_time = leader->start_time;
1115 		tsk->start_boottime = leader->start_boottime;
1116 
1117 		BUG_ON(!same_thread_group(leader, tsk));
1118 		/*
1119 		 * An exec() starts a new thread group with the
1120 		 * TGID of the previous thread group. Rehash the
1121 		 * two threads with a switched PID, and release
1122 		 * the former thread group leader:
1123 		 */
1124 
1125 		/* Become a process group leader with the old leader's pid.
1126 		 * The old leader becomes a thread of the this thread group.
1127 		 */
1128 		exchange_tids(tsk, leader);
1129 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1130 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1131 		transfer_pid(leader, tsk, PIDTYPE_SID);
1132 
1133 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1134 		list_replace_init(&leader->sibling, &tsk->sibling);
1135 
1136 		tsk->group_leader = tsk;
1137 		leader->group_leader = tsk;
1138 
1139 		tsk->exit_signal = SIGCHLD;
1140 		leader->exit_signal = -1;
1141 
1142 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1143 		leader->exit_state = EXIT_DEAD;
1144 
1145 		/*
1146 		 * We are going to release_task()->ptrace_unlink() silently,
1147 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1148 		 * the tracer wont't block again waiting for this thread.
1149 		 */
1150 		if (unlikely(leader->ptrace))
1151 			__wake_up_parent(leader, leader->parent);
1152 		write_unlock_irq(&tasklist_lock);
1153 		cgroup_threadgroup_change_end(tsk);
1154 
1155 		release_task(leader);
1156 	}
1157 
1158 	sig->group_exec_task = NULL;
1159 	sig->notify_count = 0;
1160 
1161 no_thread_group:
1162 	/* we have changed execution domain */
1163 	tsk->exit_signal = SIGCHLD;
1164 
1165 	BUG_ON(!thread_group_leader(tsk));
1166 	return 0;
1167 
1168 killed:
1169 	/* protects against exit_notify() and __exit_signal() */
1170 	read_lock(&tasklist_lock);
1171 	sig->group_exec_task = NULL;
1172 	sig->notify_count = 0;
1173 	read_unlock(&tasklist_lock);
1174 	return -EAGAIN;
1175 }
1176 
1177 
1178 /*
1179  * This function makes sure the current process has its own signal table,
1180  * so that flush_signal_handlers can later reset the handlers without
1181  * disturbing other processes.  (Other processes might share the signal
1182  * table via the CLONE_SIGHAND option to clone().)
1183  */
1184 static int unshare_sighand(struct task_struct *me)
1185 {
1186 	struct sighand_struct *oldsighand = me->sighand;
1187 
1188 	if (refcount_read(&oldsighand->count) != 1) {
1189 		struct sighand_struct *newsighand;
1190 		/*
1191 		 * This ->sighand is shared with the CLONE_SIGHAND
1192 		 * but not CLONE_THREAD task, switch to the new one.
1193 		 */
1194 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1195 		if (!newsighand)
1196 			return -ENOMEM;
1197 
1198 		refcount_set(&newsighand->count, 1);
1199 		memcpy(newsighand->action, oldsighand->action,
1200 		       sizeof(newsighand->action));
1201 
1202 		write_lock_irq(&tasklist_lock);
1203 		spin_lock(&oldsighand->siglock);
1204 		rcu_assign_pointer(me->sighand, newsighand);
1205 		spin_unlock(&oldsighand->siglock);
1206 		write_unlock_irq(&tasklist_lock);
1207 
1208 		__cleanup_sighand(oldsighand);
1209 	}
1210 	return 0;
1211 }
1212 
1213 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1214 {
1215 	task_lock(tsk);
1216 	/* Always NUL terminated and zero-padded */
1217 	strscpy_pad(buf, tsk->comm, buf_size);
1218 	task_unlock(tsk);
1219 	return buf;
1220 }
1221 EXPORT_SYMBOL_GPL(__get_task_comm);
1222 
1223 /*
1224  * These functions flushes out all traces of the currently running executable
1225  * so that a new one can be started
1226  */
1227 
1228 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1229 {
1230 	task_lock(tsk);
1231 	trace_task_rename(tsk, buf);
1232 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1233 	task_unlock(tsk);
1234 	perf_event_comm(tsk, exec);
1235 }
1236 
1237 /*
1238  * Calling this is the point of no return. None of the failures will be
1239  * seen by userspace since either the process is already taking a fatal
1240  * signal (via de_thread() or coredump), or will have SEGV raised
1241  * (after exec_mmap()) by search_binary_handler (see below).
1242  */
1243 int begin_new_exec(struct linux_binprm * bprm)
1244 {
1245 	struct task_struct *me = current;
1246 	int retval;
1247 
1248 	/* Once we are committed compute the creds */
1249 	retval = bprm_creds_from_file(bprm);
1250 	if (retval)
1251 		return retval;
1252 
1253 	/*
1254 	 * Ensure all future errors are fatal.
1255 	 */
1256 	bprm->point_of_no_return = true;
1257 
1258 	/*
1259 	 * Make this the only thread in the thread group.
1260 	 */
1261 	retval = de_thread(me);
1262 	if (retval)
1263 		goto out;
1264 
1265 	/*
1266 	 * Cancel any io_uring activity across execve
1267 	 */
1268 	io_uring_task_cancel();
1269 
1270 	/* Ensure the files table is not shared. */
1271 	retval = unshare_files();
1272 	if (retval)
1273 		goto out;
1274 
1275 	/*
1276 	 * Must be called _before_ exec_mmap() as bprm->mm is
1277 	 * not visible until then. This also enables the update
1278 	 * to be lockless.
1279 	 */
1280 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1281 	if (retval)
1282 		goto out;
1283 
1284 	/* If the binary is not readable then enforce mm->dumpable=0 */
1285 	would_dump(bprm, bprm->file);
1286 	if (bprm->have_execfd)
1287 		would_dump(bprm, bprm->executable);
1288 
1289 	/*
1290 	 * Release all of the old mmap stuff
1291 	 */
1292 	acct_arg_size(bprm, 0);
1293 	retval = exec_mmap(bprm->mm);
1294 	if (retval)
1295 		goto out;
1296 
1297 	bprm->mm = NULL;
1298 
1299 #ifdef CONFIG_POSIX_TIMERS
1300 	exit_itimers(me->signal);
1301 	flush_itimer_signals();
1302 #endif
1303 
1304 	/*
1305 	 * Make the signal table private.
1306 	 */
1307 	retval = unshare_sighand(me);
1308 	if (retval)
1309 		goto out_unlock;
1310 
1311 	if (me->flags & PF_KTHREAD)
1312 		free_kthread_struct(me);
1313 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1314 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1315 	flush_thread();
1316 	me->personality &= ~bprm->per_clear;
1317 
1318 	clear_syscall_work_syscall_user_dispatch(me);
1319 
1320 	/*
1321 	 * We have to apply CLOEXEC before we change whether the process is
1322 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1323 	 * trying to access the should-be-closed file descriptors of a process
1324 	 * undergoing exec(2).
1325 	 */
1326 	do_close_on_exec(me->files);
1327 
1328 	if (bprm->secureexec) {
1329 		/* Make sure parent cannot signal privileged process. */
1330 		me->pdeath_signal = 0;
1331 
1332 		/*
1333 		 * For secureexec, reset the stack limit to sane default to
1334 		 * avoid bad behavior from the prior rlimits. This has to
1335 		 * happen before arch_pick_mmap_layout(), which examines
1336 		 * RLIMIT_STACK, but after the point of no return to avoid
1337 		 * needing to clean up the change on failure.
1338 		 */
1339 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1340 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1341 	}
1342 
1343 	me->sas_ss_sp = me->sas_ss_size = 0;
1344 
1345 	/*
1346 	 * Figure out dumpability. Note that this checking only of current
1347 	 * is wrong, but userspace depends on it. This should be testing
1348 	 * bprm->secureexec instead.
1349 	 */
1350 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1351 	    !(uid_eq(current_euid(), current_uid()) &&
1352 	      gid_eq(current_egid(), current_gid())))
1353 		set_dumpable(current->mm, suid_dumpable);
1354 	else
1355 		set_dumpable(current->mm, SUID_DUMP_USER);
1356 
1357 	perf_event_exec();
1358 	__set_task_comm(me, kbasename(bprm->filename), true);
1359 
1360 	/* An exec changes our domain. We are no longer part of the thread
1361 	   group */
1362 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1363 	flush_signal_handlers(me, 0);
1364 
1365 	retval = set_cred_ucounts(bprm->cred);
1366 	if (retval < 0)
1367 		goto out_unlock;
1368 
1369 	/*
1370 	 * install the new credentials for this executable
1371 	 */
1372 	security_bprm_committing_creds(bprm);
1373 
1374 	commit_creds(bprm->cred);
1375 	bprm->cred = NULL;
1376 
1377 	/*
1378 	 * Disable monitoring for regular users
1379 	 * when executing setuid binaries. Must
1380 	 * wait until new credentials are committed
1381 	 * by commit_creds() above
1382 	 */
1383 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1384 		perf_event_exit_task(me);
1385 	/*
1386 	 * cred_guard_mutex must be held at least to this point to prevent
1387 	 * ptrace_attach() from altering our determination of the task's
1388 	 * credentials; any time after this it may be unlocked.
1389 	 */
1390 	security_bprm_committed_creds(bprm);
1391 
1392 	/* Pass the opened binary to the interpreter. */
1393 	if (bprm->have_execfd) {
1394 		retval = get_unused_fd_flags(0);
1395 		if (retval < 0)
1396 			goto out_unlock;
1397 		fd_install(retval, bprm->executable);
1398 		bprm->executable = NULL;
1399 		bprm->execfd = retval;
1400 	}
1401 	return 0;
1402 
1403 out_unlock:
1404 	up_write(&me->signal->exec_update_lock);
1405 out:
1406 	return retval;
1407 }
1408 EXPORT_SYMBOL(begin_new_exec);
1409 
1410 void would_dump(struct linux_binprm *bprm, struct file *file)
1411 {
1412 	struct inode *inode = file_inode(file);
1413 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1414 	if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1415 		struct user_namespace *old, *user_ns;
1416 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1417 
1418 		/* Ensure mm->user_ns contains the executable */
1419 		user_ns = old = bprm->mm->user_ns;
1420 		while ((user_ns != &init_user_ns) &&
1421 		       !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1422 			user_ns = user_ns->parent;
1423 
1424 		if (old != user_ns) {
1425 			bprm->mm->user_ns = get_user_ns(user_ns);
1426 			put_user_ns(old);
1427 		}
1428 	}
1429 }
1430 EXPORT_SYMBOL(would_dump);
1431 
1432 void setup_new_exec(struct linux_binprm * bprm)
1433 {
1434 	/* Setup things that can depend upon the personality */
1435 	struct task_struct *me = current;
1436 
1437 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1438 
1439 	arch_setup_new_exec();
1440 
1441 	/* Set the new mm task size. We have to do that late because it may
1442 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1443 	 * some architectures like powerpc
1444 	 */
1445 	me->mm->task_size = TASK_SIZE;
1446 	up_write(&me->signal->exec_update_lock);
1447 	mutex_unlock(&me->signal->cred_guard_mutex);
1448 }
1449 EXPORT_SYMBOL(setup_new_exec);
1450 
1451 /* Runs immediately before start_thread() takes over. */
1452 void finalize_exec(struct linux_binprm *bprm)
1453 {
1454 	/* Store any stack rlimit changes before starting thread. */
1455 	task_lock(current->group_leader);
1456 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1457 	task_unlock(current->group_leader);
1458 }
1459 EXPORT_SYMBOL(finalize_exec);
1460 
1461 /*
1462  * Prepare credentials and lock ->cred_guard_mutex.
1463  * setup_new_exec() commits the new creds and drops the lock.
1464  * Or, if exec fails before, free_bprm() should release ->cred
1465  * and unlock.
1466  */
1467 static int prepare_bprm_creds(struct linux_binprm *bprm)
1468 {
1469 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1470 		return -ERESTARTNOINTR;
1471 
1472 	bprm->cred = prepare_exec_creds();
1473 	if (likely(bprm->cred))
1474 		return 0;
1475 
1476 	mutex_unlock(&current->signal->cred_guard_mutex);
1477 	return -ENOMEM;
1478 }
1479 
1480 static void free_bprm(struct linux_binprm *bprm)
1481 {
1482 	if (bprm->mm) {
1483 		acct_arg_size(bprm, 0);
1484 		mmput(bprm->mm);
1485 	}
1486 	free_arg_pages(bprm);
1487 	if (bprm->cred) {
1488 		mutex_unlock(&current->signal->cred_guard_mutex);
1489 		abort_creds(bprm->cred);
1490 	}
1491 	if (bprm->file) {
1492 		allow_write_access(bprm->file);
1493 		fput(bprm->file);
1494 	}
1495 	if (bprm->executable)
1496 		fput(bprm->executable);
1497 	/* If a binfmt changed the interp, free it. */
1498 	if (bprm->interp != bprm->filename)
1499 		kfree(bprm->interp);
1500 	kfree(bprm->fdpath);
1501 	kfree(bprm);
1502 }
1503 
1504 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1505 {
1506 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1507 	int retval = -ENOMEM;
1508 	if (!bprm)
1509 		goto out;
1510 
1511 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1512 		bprm->filename = filename->name;
1513 	} else {
1514 		if (filename->name[0] == '\0')
1515 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1516 		else
1517 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1518 						  fd, filename->name);
1519 		if (!bprm->fdpath)
1520 			goto out_free;
1521 
1522 		bprm->filename = bprm->fdpath;
1523 	}
1524 	bprm->interp = bprm->filename;
1525 
1526 	retval = bprm_mm_init(bprm);
1527 	if (retval)
1528 		goto out_free;
1529 	return bprm;
1530 
1531 out_free:
1532 	free_bprm(bprm);
1533 out:
1534 	return ERR_PTR(retval);
1535 }
1536 
1537 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1538 {
1539 	/* If a binfmt changed the interp, free it first. */
1540 	if (bprm->interp != bprm->filename)
1541 		kfree(bprm->interp);
1542 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1543 	if (!bprm->interp)
1544 		return -ENOMEM;
1545 	return 0;
1546 }
1547 EXPORT_SYMBOL(bprm_change_interp);
1548 
1549 /*
1550  * determine how safe it is to execute the proposed program
1551  * - the caller must hold ->cred_guard_mutex to protect against
1552  *   PTRACE_ATTACH or seccomp thread-sync
1553  */
1554 static void check_unsafe_exec(struct linux_binprm *bprm)
1555 {
1556 	struct task_struct *p = current, *t;
1557 	unsigned n_fs;
1558 
1559 	if (p->ptrace)
1560 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1561 
1562 	/*
1563 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1564 	 * mess up.
1565 	 */
1566 	if (task_no_new_privs(current))
1567 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1568 
1569 	t = p;
1570 	n_fs = 1;
1571 	spin_lock(&p->fs->lock);
1572 	rcu_read_lock();
1573 	while_each_thread(p, t) {
1574 		if (t->fs == p->fs)
1575 			n_fs++;
1576 	}
1577 	rcu_read_unlock();
1578 
1579 	if (p->fs->users > n_fs)
1580 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1581 	else
1582 		p->fs->in_exec = 1;
1583 	spin_unlock(&p->fs->lock);
1584 }
1585 
1586 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1587 {
1588 	/* Handle suid and sgid on files */
1589 	struct user_namespace *mnt_userns;
1590 	struct inode *inode;
1591 	unsigned int mode;
1592 	kuid_t uid;
1593 	kgid_t gid;
1594 
1595 	if (!mnt_may_suid(file->f_path.mnt))
1596 		return;
1597 
1598 	if (task_no_new_privs(current))
1599 		return;
1600 
1601 	inode = file->f_path.dentry->d_inode;
1602 	mode = READ_ONCE(inode->i_mode);
1603 	if (!(mode & (S_ISUID|S_ISGID)))
1604 		return;
1605 
1606 	mnt_userns = file_mnt_user_ns(file);
1607 
1608 	/* Be careful if suid/sgid is set */
1609 	inode_lock(inode);
1610 
1611 	/* reload atomically mode/uid/gid now that lock held */
1612 	mode = inode->i_mode;
1613 	uid = i_uid_into_mnt(mnt_userns, inode);
1614 	gid = i_gid_into_mnt(mnt_userns, inode);
1615 	inode_unlock(inode);
1616 
1617 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1618 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1619 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1620 		return;
1621 
1622 	if (mode & S_ISUID) {
1623 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1624 		bprm->cred->euid = uid;
1625 	}
1626 
1627 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1628 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1629 		bprm->cred->egid = gid;
1630 	}
1631 }
1632 
1633 /*
1634  * Compute brpm->cred based upon the final binary.
1635  */
1636 static int bprm_creds_from_file(struct linux_binprm *bprm)
1637 {
1638 	/* Compute creds based on which file? */
1639 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1640 
1641 	bprm_fill_uid(bprm, file);
1642 	return security_bprm_creds_from_file(bprm, file);
1643 }
1644 
1645 /*
1646  * Fill the binprm structure from the inode.
1647  * Read the first BINPRM_BUF_SIZE bytes
1648  *
1649  * This may be called multiple times for binary chains (scripts for example).
1650  */
1651 static int prepare_binprm(struct linux_binprm *bprm)
1652 {
1653 	loff_t pos = 0;
1654 
1655 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1656 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1657 }
1658 
1659 /*
1660  * Arguments are '\0' separated strings found at the location bprm->p
1661  * points to; chop off the first by relocating brpm->p to right after
1662  * the first '\0' encountered.
1663  */
1664 int remove_arg_zero(struct linux_binprm *bprm)
1665 {
1666 	int ret = 0;
1667 	unsigned long offset;
1668 	char *kaddr;
1669 	struct page *page;
1670 
1671 	if (!bprm->argc)
1672 		return 0;
1673 
1674 	do {
1675 		offset = bprm->p & ~PAGE_MASK;
1676 		page = get_arg_page(bprm, bprm->p, 0);
1677 		if (!page) {
1678 			ret = -EFAULT;
1679 			goto out;
1680 		}
1681 		kaddr = kmap_atomic(page);
1682 
1683 		for (; offset < PAGE_SIZE && kaddr[offset];
1684 				offset++, bprm->p++)
1685 			;
1686 
1687 		kunmap_atomic(kaddr);
1688 		put_arg_page(page);
1689 	} while (offset == PAGE_SIZE);
1690 
1691 	bprm->p++;
1692 	bprm->argc--;
1693 	ret = 0;
1694 
1695 out:
1696 	return ret;
1697 }
1698 EXPORT_SYMBOL(remove_arg_zero);
1699 
1700 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1701 /*
1702  * cycle the list of binary formats handler, until one recognizes the image
1703  */
1704 static int search_binary_handler(struct linux_binprm *bprm)
1705 {
1706 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1707 	struct linux_binfmt *fmt;
1708 	int retval;
1709 
1710 	retval = prepare_binprm(bprm);
1711 	if (retval < 0)
1712 		return retval;
1713 
1714 	retval = security_bprm_check(bprm);
1715 	if (retval)
1716 		return retval;
1717 
1718 	retval = -ENOENT;
1719  retry:
1720 	read_lock(&binfmt_lock);
1721 	list_for_each_entry(fmt, &formats, lh) {
1722 		if (!try_module_get(fmt->module))
1723 			continue;
1724 		read_unlock(&binfmt_lock);
1725 
1726 		retval = fmt->load_binary(bprm);
1727 
1728 		read_lock(&binfmt_lock);
1729 		put_binfmt(fmt);
1730 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1731 			read_unlock(&binfmt_lock);
1732 			return retval;
1733 		}
1734 	}
1735 	read_unlock(&binfmt_lock);
1736 
1737 	if (need_retry) {
1738 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1739 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1740 			return retval;
1741 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1742 			return retval;
1743 		need_retry = false;
1744 		goto retry;
1745 	}
1746 
1747 	return retval;
1748 }
1749 
1750 static int exec_binprm(struct linux_binprm *bprm)
1751 {
1752 	pid_t old_pid, old_vpid;
1753 	int ret, depth;
1754 
1755 	/* Need to fetch pid before load_binary changes it */
1756 	old_pid = current->pid;
1757 	rcu_read_lock();
1758 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1759 	rcu_read_unlock();
1760 
1761 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1762 	for (depth = 0;; depth++) {
1763 		struct file *exec;
1764 		if (depth > 5)
1765 			return -ELOOP;
1766 
1767 		ret = search_binary_handler(bprm);
1768 		if (ret < 0)
1769 			return ret;
1770 		if (!bprm->interpreter)
1771 			break;
1772 
1773 		exec = bprm->file;
1774 		bprm->file = bprm->interpreter;
1775 		bprm->interpreter = NULL;
1776 
1777 		allow_write_access(exec);
1778 		if (unlikely(bprm->have_execfd)) {
1779 			if (bprm->executable) {
1780 				fput(exec);
1781 				return -ENOEXEC;
1782 			}
1783 			bprm->executable = exec;
1784 		} else
1785 			fput(exec);
1786 	}
1787 
1788 	audit_bprm(bprm);
1789 	trace_sched_process_exec(current, old_pid, bprm);
1790 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1791 	proc_exec_connector(current);
1792 	return 0;
1793 }
1794 
1795 /*
1796  * sys_execve() executes a new program.
1797  */
1798 static int bprm_execve(struct linux_binprm *bprm,
1799 		       int fd, struct filename *filename, int flags)
1800 {
1801 	struct file *file;
1802 	int retval;
1803 
1804 	retval = prepare_bprm_creds(bprm);
1805 	if (retval)
1806 		return retval;
1807 
1808 	check_unsafe_exec(bprm);
1809 	current->in_execve = 1;
1810 
1811 	file = do_open_execat(fd, filename, flags);
1812 	retval = PTR_ERR(file);
1813 	if (IS_ERR(file))
1814 		goto out_unmark;
1815 
1816 	sched_exec();
1817 
1818 	bprm->file = file;
1819 	/*
1820 	 * Record that a name derived from an O_CLOEXEC fd will be
1821 	 * inaccessible after exec.  This allows the code in exec to
1822 	 * choose to fail when the executable is not mmaped into the
1823 	 * interpreter and an open file descriptor is not passed to
1824 	 * the interpreter.  This makes for a better user experience
1825 	 * than having the interpreter start and then immediately fail
1826 	 * when it finds the executable is inaccessible.
1827 	 */
1828 	if (bprm->fdpath && get_close_on_exec(fd))
1829 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1830 
1831 	/* Set the unchanging part of bprm->cred */
1832 	retval = security_bprm_creds_for_exec(bprm);
1833 	if (retval)
1834 		goto out;
1835 
1836 	retval = exec_binprm(bprm);
1837 	if (retval < 0)
1838 		goto out;
1839 
1840 	/* execve succeeded */
1841 	current->fs->in_exec = 0;
1842 	current->in_execve = 0;
1843 	rseq_execve(current);
1844 	acct_update_integrals(current);
1845 	task_numa_free(current, false);
1846 	return retval;
1847 
1848 out:
1849 	/*
1850 	 * If past the point of no return ensure the code never
1851 	 * returns to the userspace process.  Use an existing fatal
1852 	 * signal if present otherwise terminate the process with
1853 	 * SIGSEGV.
1854 	 */
1855 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1856 		force_fatal_sig(SIGSEGV);
1857 
1858 out_unmark:
1859 	current->fs->in_exec = 0;
1860 	current->in_execve = 0;
1861 
1862 	return retval;
1863 }
1864 
1865 static int do_execveat_common(int fd, struct filename *filename,
1866 			      struct user_arg_ptr argv,
1867 			      struct user_arg_ptr envp,
1868 			      int flags)
1869 {
1870 	struct linux_binprm *bprm;
1871 	int retval;
1872 
1873 	if (IS_ERR(filename))
1874 		return PTR_ERR(filename);
1875 
1876 	/*
1877 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1878 	 * set*uid() to execve() because too many poorly written programs
1879 	 * don't check setuid() return code.  Here we additionally recheck
1880 	 * whether NPROC limit is still exceeded.
1881 	 */
1882 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1883 	    is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1884 		retval = -EAGAIN;
1885 		goto out_ret;
1886 	}
1887 
1888 	/* We're below the limit (still or again), so we don't want to make
1889 	 * further execve() calls fail. */
1890 	current->flags &= ~PF_NPROC_EXCEEDED;
1891 
1892 	bprm = alloc_bprm(fd, filename);
1893 	if (IS_ERR(bprm)) {
1894 		retval = PTR_ERR(bprm);
1895 		goto out_ret;
1896 	}
1897 
1898 	retval = count(argv, MAX_ARG_STRINGS);
1899 	if (retval == 0)
1900 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1901 			     current->comm, bprm->filename);
1902 	if (retval < 0)
1903 		goto out_free;
1904 	bprm->argc = retval;
1905 
1906 	retval = count(envp, MAX_ARG_STRINGS);
1907 	if (retval < 0)
1908 		goto out_free;
1909 	bprm->envc = retval;
1910 
1911 	retval = bprm_stack_limits(bprm);
1912 	if (retval < 0)
1913 		goto out_free;
1914 
1915 	retval = copy_string_kernel(bprm->filename, bprm);
1916 	if (retval < 0)
1917 		goto out_free;
1918 	bprm->exec = bprm->p;
1919 
1920 	retval = copy_strings(bprm->envc, envp, bprm);
1921 	if (retval < 0)
1922 		goto out_free;
1923 
1924 	retval = copy_strings(bprm->argc, argv, bprm);
1925 	if (retval < 0)
1926 		goto out_free;
1927 
1928 	/*
1929 	 * When argv is empty, add an empty string ("") as argv[0] to
1930 	 * ensure confused userspace programs that start processing
1931 	 * from argv[1] won't end up walking envp. See also
1932 	 * bprm_stack_limits().
1933 	 */
1934 	if (bprm->argc == 0) {
1935 		retval = copy_string_kernel("", bprm);
1936 		if (retval < 0)
1937 			goto out_free;
1938 		bprm->argc = 1;
1939 	}
1940 
1941 	retval = bprm_execve(bprm, fd, filename, flags);
1942 out_free:
1943 	free_bprm(bprm);
1944 
1945 out_ret:
1946 	putname(filename);
1947 	return retval;
1948 }
1949 
1950 int kernel_execve(const char *kernel_filename,
1951 		  const char *const *argv, const char *const *envp)
1952 {
1953 	struct filename *filename;
1954 	struct linux_binprm *bprm;
1955 	int fd = AT_FDCWD;
1956 	int retval;
1957 
1958 	filename = getname_kernel(kernel_filename);
1959 	if (IS_ERR(filename))
1960 		return PTR_ERR(filename);
1961 
1962 	bprm = alloc_bprm(fd, filename);
1963 	if (IS_ERR(bprm)) {
1964 		retval = PTR_ERR(bprm);
1965 		goto out_ret;
1966 	}
1967 
1968 	retval = count_strings_kernel(argv);
1969 	if (WARN_ON_ONCE(retval == 0))
1970 		retval = -EINVAL;
1971 	if (retval < 0)
1972 		goto out_free;
1973 	bprm->argc = retval;
1974 
1975 	retval = count_strings_kernel(envp);
1976 	if (retval < 0)
1977 		goto out_free;
1978 	bprm->envc = retval;
1979 
1980 	retval = bprm_stack_limits(bprm);
1981 	if (retval < 0)
1982 		goto out_free;
1983 
1984 	retval = copy_string_kernel(bprm->filename, bprm);
1985 	if (retval < 0)
1986 		goto out_free;
1987 	bprm->exec = bprm->p;
1988 
1989 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
1990 	if (retval < 0)
1991 		goto out_free;
1992 
1993 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
1994 	if (retval < 0)
1995 		goto out_free;
1996 
1997 	retval = bprm_execve(bprm, fd, filename, 0);
1998 out_free:
1999 	free_bprm(bprm);
2000 out_ret:
2001 	putname(filename);
2002 	return retval;
2003 }
2004 
2005 static int do_execve(struct filename *filename,
2006 	const char __user *const __user *__argv,
2007 	const char __user *const __user *__envp)
2008 {
2009 	struct user_arg_ptr argv = { .ptr.native = __argv };
2010 	struct user_arg_ptr envp = { .ptr.native = __envp };
2011 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2012 }
2013 
2014 static int do_execveat(int fd, struct filename *filename,
2015 		const char __user *const __user *__argv,
2016 		const char __user *const __user *__envp,
2017 		int flags)
2018 {
2019 	struct user_arg_ptr argv = { .ptr.native = __argv };
2020 	struct user_arg_ptr envp = { .ptr.native = __envp };
2021 
2022 	return do_execveat_common(fd, filename, argv, envp, flags);
2023 }
2024 
2025 #ifdef CONFIG_COMPAT
2026 static int compat_do_execve(struct filename *filename,
2027 	const compat_uptr_t __user *__argv,
2028 	const compat_uptr_t __user *__envp)
2029 {
2030 	struct user_arg_ptr argv = {
2031 		.is_compat = true,
2032 		.ptr.compat = __argv,
2033 	};
2034 	struct user_arg_ptr envp = {
2035 		.is_compat = true,
2036 		.ptr.compat = __envp,
2037 	};
2038 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2039 }
2040 
2041 static int compat_do_execveat(int fd, struct filename *filename,
2042 			      const compat_uptr_t __user *__argv,
2043 			      const compat_uptr_t __user *__envp,
2044 			      int flags)
2045 {
2046 	struct user_arg_ptr argv = {
2047 		.is_compat = true,
2048 		.ptr.compat = __argv,
2049 	};
2050 	struct user_arg_ptr envp = {
2051 		.is_compat = true,
2052 		.ptr.compat = __envp,
2053 	};
2054 	return do_execveat_common(fd, filename, argv, envp, flags);
2055 }
2056 #endif
2057 
2058 void set_binfmt(struct linux_binfmt *new)
2059 {
2060 	struct mm_struct *mm = current->mm;
2061 
2062 	if (mm->binfmt)
2063 		module_put(mm->binfmt->module);
2064 
2065 	mm->binfmt = new;
2066 	if (new)
2067 		__module_get(new->module);
2068 }
2069 EXPORT_SYMBOL(set_binfmt);
2070 
2071 /*
2072  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2073  */
2074 void set_dumpable(struct mm_struct *mm, int value)
2075 {
2076 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2077 		return;
2078 
2079 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2080 }
2081 
2082 SYSCALL_DEFINE3(execve,
2083 		const char __user *, filename,
2084 		const char __user *const __user *, argv,
2085 		const char __user *const __user *, envp)
2086 {
2087 	return do_execve(getname(filename), argv, envp);
2088 }
2089 
2090 SYSCALL_DEFINE5(execveat,
2091 		int, fd, const char __user *, filename,
2092 		const char __user *const __user *, argv,
2093 		const char __user *const __user *, envp,
2094 		int, flags)
2095 {
2096 	return do_execveat(fd,
2097 			   getname_uflags(filename, flags),
2098 			   argv, envp, flags);
2099 }
2100 
2101 #ifdef CONFIG_COMPAT
2102 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2103 	const compat_uptr_t __user *, argv,
2104 	const compat_uptr_t __user *, envp)
2105 {
2106 	return compat_do_execve(getname(filename), argv, envp);
2107 }
2108 
2109 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2110 		       const char __user *, filename,
2111 		       const compat_uptr_t __user *, argv,
2112 		       const compat_uptr_t __user *, envp,
2113 		       int,  flags)
2114 {
2115 	return compat_do_execveat(fd,
2116 				  getname_uflags(filename, flags),
2117 				  argv, envp, flags);
2118 }
2119 #endif
2120 
2121 #ifdef CONFIG_SYSCTL
2122 
2123 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2124 		void *buffer, size_t *lenp, loff_t *ppos)
2125 {
2126 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2127 
2128 	if (!error)
2129 		validate_coredump_safety();
2130 	return error;
2131 }
2132 
2133 static struct ctl_table fs_exec_sysctls[] = {
2134 	{
2135 		.procname	= "suid_dumpable",
2136 		.data		= &suid_dumpable,
2137 		.maxlen		= sizeof(int),
2138 		.mode		= 0644,
2139 		.proc_handler	= proc_dointvec_minmax_coredump,
2140 		.extra1		= SYSCTL_ZERO,
2141 		.extra2		= SYSCTL_TWO,
2142 	},
2143 	{ }
2144 };
2145 
2146 static int __init init_fs_exec_sysctls(void)
2147 {
2148 	register_sysctl_init("fs", fs_exec_sysctls);
2149 	return 0;
2150 }
2151 
2152 fs_initcall(init_fs_exec_sysctls);
2153 #endif /* CONFIG_SYSCTL */
2154