1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/vmacache.h> 30 #include <linux/stat.h> 31 #include <linux/fcntl.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/pagemap.h> 36 #include <linux/perf_event.h> 37 #include <linux/highmem.h> 38 #include <linux/spinlock.h> 39 #include <linux/key.h> 40 #include <linux/personality.h> 41 #include <linux/binfmts.h> 42 #include <linux/utsname.h> 43 #include <linux/pid_namespace.h> 44 #include <linux/module.h> 45 #include <linux/namei.h> 46 #include <linux/mount.h> 47 #include <linux/security.h> 48 #include <linux/syscalls.h> 49 #include <linux/tsacct_kern.h> 50 #include <linux/cn_proc.h> 51 #include <linux/audit.h> 52 #include <linux/tracehook.h> 53 #include <linux/kmod.h> 54 #include <linux/fsnotify.h> 55 #include <linux/fs_struct.h> 56 #include <linux/pipe_fs_i.h> 57 #include <linux/oom.h> 58 #include <linux/compat.h> 59 60 #include <asm/uaccess.h> 61 #include <asm/mmu_context.h> 62 #include <asm/tlb.h> 63 64 #include <trace/events/task.h> 65 #include "internal.h" 66 67 #include <trace/events/sched.h> 68 69 int suid_dumpable = 0; 70 71 static LIST_HEAD(formats); 72 static DEFINE_RWLOCK(binfmt_lock); 73 74 void __register_binfmt(struct linux_binfmt * fmt, int insert) 75 { 76 BUG_ON(!fmt); 77 if (WARN_ON(!fmt->load_binary)) 78 return; 79 write_lock(&binfmt_lock); 80 insert ? list_add(&fmt->lh, &formats) : 81 list_add_tail(&fmt->lh, &formats); 82 write_unlock(&binfmt_lock); 83 } 84 85 EXPORT_SYMBOL(__register_binfmt); 86 87 void unregister_binfmt(struct linux_binfmt * fmt) 88 { 89 write_lock(&binfmt_lock); 90 list_del(&fmt->lh); 91 write_unlock(&binfmt_lock); 92 } 93 94 EXPORT_SYMBOL(unregister_binfmt); 95 96 static inline void put_binfmt(struct linux_binfmt * fmt) 97 { 98 module_put(fmt->module); 99 } 100 101 #ifdef CONFIG_USELIB 102 /* 103 * Note that a shared library must be both readable and executable due to 104 * security reasons. 105 * 106 * Also note that we take the address to load from from the file itself. 107 */ 108 SYSCALL_DEFINE1(uselib, const char __user *, library) 109 { 110 struct linux_binfmt *fmt; 111 struct file *file; 112 struct filename *tmp = getname(library); 113 int error = PTR_ERR(tmp); 114 static const struct open_flags uselib_flags = { 115 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 116 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN, 117 .intent = LOOKUP_OPEN, 118 .lookup_flags = LOOKUP_FOLLOW, 119 }; 120 121 if (IS_ERR(tmp)) 122 goto out; 123 124 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 125 putname(tmp); 126 error = PTR_ERR(file); 127 if (IS_ERR(file)) 128 goto out; 129 130 error = -EINVAL; 131 if (!S_ISREG(file_inode(file)->i_mode)) 132 goto exit; 133 134 error = -EACCES; 135 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 136 goto exit; 137 138 fsnotify_open(file); 139 140 error = -ENOEXEC; 141 142 read_lock(&binfmt_lock); 143 list_for_each_entry(fmt, &formats, lh) { 144 if (!fmt->load_shlib) 145 continue; 146 if (!try_module_get(fmt->module)) 147 continue; 148 read_unlock(&binfmt_lock); 149 error = fmt->load_shlib(file); 150 read_lock(&binfmt_lock); 151 put_binfmt(fmt); 152 if (error != -ENOEXEC) 153 break; 154 } 155 read_unlock(&binfmt_lock); 156 exit: 157 fput(file); 158 out: 159 return error; 160 } 161 #endif /* #ifdef CONFIG_USELIB */ 162 163 #ifdef CONFIG_MMU 164 /* 165 * The nascent bprm->mm is not visible until exec_mmap() but it can 166 * use a lot of memory, account these pages in current->mm temporary 167 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 168 * change the counter back via acct_arg_size(0). 169 */ 170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 171 { 172 struct mm_struct *mm = current->mm; 173 long diff = (long)(pages - bprm->vma_pages); 174 175 if (!mm || !diff) 176 return; 177 178 bprm->vma_pages = pages; 179 add_mm_counter(mm, MM_ANONPAGES, diff); 180 } 181 182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 183 int write) 184 { 185 struct page *page; 186 int ret; 187 188 #ifdef CONFIG_STACK_GROWSUP 189 if (write) { 190 ret = expand_downwards(bprm->vma, pos); 191 if (ret < 0) 192 return NULL; 193 } 194 #endif 195 ret = get_user_pages(current, bprm->mm, pos, 196 1, write, 1, &page, NULL); 197 if (ret <= 0) 198 return NULL; 199 200 if (write) { 201 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 202 struct rlimit *rlim; 203 204 acct_arg_size(bprm, size / PAGE_SIZE); 205 206 /* 207 * We've historically supported up to 32 pages (ARG_MAX) 208 * of argument strings even with small stacks 209 */ 210 if (size <= ARG_MAX) 211 return page; 212 213 /* 214 * Limit to 1/4-th the stack size for the argv+env strings. 215 * This ensures that: 216 * - the remaining binfmt code will not run out of stack space, 217 * - the program will have a reasonable amount of stack left 218 * to work from. 219 */ 220 rlim = current->signal->rlim; 221 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 222 put_page(page); 223 return NULL; 224 } 225 } 226 227 return page; 228 } 229 230 static void put_arg_page(struct page *page) 231 { 232 put_page(page); 233 } 234 235 static void free_arg_page(struct linux_binprm *bprm, int i) 236 { 237 } 238 239 static void free_arg_pages(struct linux_binprm *bprm) 240 { 241 } 242 243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 244 struct page *page) 245 { 246 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 247 } 248 249 static int __bprm_mm_init(struct linux_binprm *bprm) 250 { 251 int err; 252 struct vm_area_struct *vma = NULL; 253 struct mm_struct *mm = bprm->mm; 254 255 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 256 if (!vma) 257 return -ENOMEM; 258 259 down_write(&mm->mmap_sem); 260 vma->vm_mm = mm; 261 262 /* 263 * Place the stack at the largest stack address the architecture 264 * supports. Later, we'll move this to an appropriate place. We don't 265 * use STACK_TOP because that can depend on attributes which aren't 266 * configured yet. 267 */ 268 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 269 vma->vm_end = STACK_TOP_MAX; 270 vma->vm_start = vma->vm_end - PAGE_SIZE; 271 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 272 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 273 INIT_LIST_HEAD(&vma->anon_vma_chain); 274 275 err = insert_vm_struct(mm, vma); 276 if (err) 277 goto err; 278 279 mm->stack_vm = mm->total_vm = 1; 280 arch_bprm_mm_init(mm, vma); 281 up_write(&mm->mmap_sem); 282 bprm->p = vma->vm_end - sizeof(void *); 283 return 0; 284 err: 285 up_write(&mm->mmap_sem); 286 bprm->vma = NULL; 287 kmem_cache_free(vm_area_cachep, vma); 288 return err; 289 } 290 291 static bool valid_arg_len(struct linux_binprm *bprm, long len) 292 { 293 return len <= MAX_ARG_STRLEN; 294 } 295 296 #else 297 298 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 299 { 300 } 301 302 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 303 int write) 304 { 305 struct page *page; 306 307 page = bprm->page[pos / PAGE_SIZE]; 308 if (!page && write) { 309 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 310 if (!page) 311 return NULL; 312 bprm->page[pos / PAGE_SIZE] = page; 313 } 314 315 return page; 316 } 317 318 static void put_arg_page(struct page *page) 319 { 320 } 321 322 static void free_arg_page(struct linux_binprm *bprm, int i) 323 { 324 if (bprm->page[i]) { 325 __free_page(bprm->page[i]); 326 bprm->page[i] = NULL; 327 } 328 } 329 330 static void free_arg_pages(struct linux_binprm *bprm) 331 { 332 int i; 333 334 for (i = 0; i < MAX_ARG_PAGES; i++) 335 free_arg_page(bprm, i); 336 } 337 338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 339 struct page *page) 340 { 341 } 342 343 static int __bprm_mm_init(struct linux_binprm *bprm) 344 { 345 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 346 return 0; 347 } 348 349 static bool valid_arg_len(struct linux_binprm *bprm, long len) 350 { 351 return len <= bprm->p; 352 } 353 354 #endif /* CONFIG_MMU */ 355 356 /* 357 * Create a new mm_struct and populate it with a temporary stack 358 * vm_area_struct. We don't have enough context at this point to set the stack 359 * flags, permissions, and offset, so we use temporary values. We'll update 360 * them later in setup_arg_pages(). 361 */ 362 static int bprm_mm_init(struct linux_binprm *bprm) 363 { 364 int err; 365 struct mm_struct *mm = NULL; 366 367 bprm->mm = mm = mm_alloc(); 368 err = -ENOMEM; 369 if (!mm) 370 goto err; 371 372 err = __bprm_mm_init(bprm); 373 if (err) 374 goto err; 375 376 return 0; 377 378 err: 379 if (mm) { 380 bprm->mm = NULL; 381 mmdrop(mm); 382 } 383 384 return err; 385 } 386 387 struct user_arg_ptr { 388 #ifdef CONFIG_COMPAT 389 bool is_compat; 390 #endif 391 union { 392 const char __user *const __user *native; 393 #ifdef CONFIG_COMPAT 394 const compat_uptr_t __user *compat; 395 #endif 396 } ptr; 397 }; 398 399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 400 { 401 const char __user *native; 402 403 #ifdef CONFIG_COMPAT 404 if (unlikely(argv.is_compat)) { 405 compat_uptr_t compat; 406 407 if (get_user(compat, argv.ptr.compat + nr)) 408 return ERR_PTR(-EFAULT); 409 410 return compat_ptr(compat); 411 } 412 #endif 413 414 if (get_user(native, argv.ptr.native + nr)) 415 return ERR_PTR(-EFAULT); 416 417 return native; 418 } 419 420 /* 421 * count() counts the number of strings in array ARGV. 422 */ 423 static int count(struct user_arg_ptr argv, int max) 424 { 425 int i = 0; 426 427 if (argv.ptr.native != NULL) { 428 for (;;) { 429 const char __user *p = get_user_arg_ptr(argv, i); 430 431 if (!p) 432 break; 433 434 if (IS_ERR(p)) 435 return -EFAULT; 436 437 if (i >= max) 438 return -E2BIG; 439 ++i; 440 441 if (fatal_signal_pending(current)) 442 return -ERESTARTNOHAND; 443 cond_resched(); 444 } 445 } 446 return i; 447 } 448 449 /* 450 * 'copy_strings()' copies argument/environment strings from the old 451 * processes's memory to the new process's stack. The call to get_user_pages() 452 * ensures the destination page is created and not swapped out. 453 */ 454 static int copy_strings(int argc, struct user_arg_ptr argv, 455 struct linux_binprm *bprm) 456 { 457 struct page *kmapped_page = NULL; 458 char *kaddr = NULL; 459 unsigned long kpos = 0; 460 int ret; 461 462 while (argc-- > 0) { 463 const char __user *str; 464 int len; 465 unsigned long pos; 466 467 ret = -EFAULT; 468 str = get_user_arg_ptr(argv, argc); 469 if (IS_ERR(str)) 470 goto out; 471 472 len = strnlen_user(str, MAX_ARG_STRLEN); 473 if (!len) 474 goto out; 475 476 ret = -E2BIG; 477 if (!valid_arg_len(bprm, len)) 478 goto out; 479 480 /* We're going to work our way backwords. */ 481 pos = bprm->p; 482 str += len; 483 bprm->p -= len; 484 485 while (len > 0) { 486 int offset, bytes_to_copy; 487 488 if (fatal_signal_pending(current)) { 489 ret = -ERESTARTNOHAND; 490 goto out; 491 } 492 cond_resched(); 493 494 offset = pos % PAGE_SIZE; 495 if (offset == 0) 496 offset = PAGE_SIZE; 497 498 bytes_to_copy = offset; 499 if (bytes_to_copy > len) 500 bytes_to_copy = len; 501 502 offset -= bytes_to_copy; 503 pos -= bytes_to_copy; 504 str -= bytes_to_copy; 505 len -= bytes_to_copy; 506 507 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 508 struct page *page; 509 510 page = get_arg_page(bprm, pos, 1); 511 if (!page) { 512 ret = -E2BIG; 513 goto out; 514 } 515 516 if (kmapped_page) { 517 flush_kernel_dcache_page(kmapped_page); 518 kunmap(kmapped_page); 519 put_arg_page(kmapped_page); 520 } 521 kmapped_page = page; 522 kaddr = kmap(kmapped_page); 523 kpos = pos & PAGE_MASK; 524 flush_arg_page(bprm, kpos, kmapped_page); 525 } 526 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 527 ret = -EFAULT; 528 goto out; 529 } 530 } 531 } 532 ret = 0; 533 out: 534 if (kmapped_page) { 535 flush_kernel_dcache_page(kmapped_page); 536 kunmap(kmapped_page); 537 put_arg_page(kmapped_page); 538 } 539 return ret; 540 } 541 542 /* 543 * Like copy_strings, but get argv and its values from kernel memory. 544 */ 545 int copy_strings_kernel(int argc, const char *const *__argv, 546 struct linux_binprm *bprm) 547 { 548 int r; 549 mm_segment_t oldfs = get_fs(); 550 struct user_arg_ptr argv = { 551 .ptr.native = (const char __user *const __user *)__argv, 552 }; 553 554 set_fs(KERNEL_DS); 555 r = copy_strings(argc, argv, bprm); 556 set_fs(oldfs); 557 558 return r; 559 } 560 EXPORT_SYMBOL(copy_strings_kernel); 561 562 #ifdef CONFIG_MMU 563 564 /* 565 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 566 * the binfmt code determines where the new stack should reside, we shift it to 567 * its final location. The process proceeds as follows: 568 * 569 * 1) Use shift to calculate the new vma endpoints. 570 * 2) Extend vma to cover both the old and new ranges. This ensures the 571 * arguments passed to subsequent functions are consistent. 572 * 3) Move vma's page tables to the new range. 573 * 4) Free up any cleared pgd range. 574 * 5) Shrink the vma to cover only the new range. 575 */ 576 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 577 { 578 struct mm_struct *mm = vma->vm_mm; 579 unsigned long old_start = vma->vm_start; 580 unsigned long old_end = vma->vm_end; 581 unsigned long length = old_end - old_start; 582 unsigned long new_start = old_start - shift; 583 unsigned long new_end = old_end - shift; 584 struct mmu_gather tlb; 585 586 BUG_ON(new_start > new_end); 587 588 /* 589 * ensure there are no vmas between where we want to go 590 * and where we are 591 */ 592 if (vma != find_vma(mm, new_start)) 593 return -EFAULT; 594 595 /* 596 * cover the whole range: [new_start, old_end) 597 */ 598 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 599 return -ENOMEM; 600 601 /* 602 * move the page tables downwards, on failure we rely on 603 * process cleanup to remove whatever mess we made. 604 */ 605 if (length != move_page_tables(vma, old_start, 606 vma, new_start, length, false)) 607 return -ENOMEM; 608 609 lru_add_drain(); 610 tlb_gather_mmu(&tlb, mm, old_start, old_end); 611 if (new_end > old_start) { 612 /* 613 * when the old and new regions overlap clear from new_end. 614 */ 615 free_pgd_range(&tlb, new_end, old_end, new_end, 616 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 617 } else { 618 /* 619 * otherwise, clean from old_start; this is done to not touch 620 * the address space in [new_end, old_start) some architectures 621 * have constraints on va-space that make this illegal (IA64) - 622 * for the others its just a little faster. 623 */ 624 free_pgd_range(&tlb, old_start, old_end, new_end, 625 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 626 } 627 tlb_finish_mmu(&tlb, old_start, old_end); 628 629 /* 630 * Shrink the vma to just the new range. Always succeeds. 631 */ 632 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 633 634 return 0; 635 } 636 637 /* 638 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 639 * the stack is optionally relocated, and some extra space is added. 640 */ 641 int setup_arg_pages(struct linux_binprm *bprm, 642 unsigned long stack_top, 643 int executable_stack) 644 { 645 unsigned long ret; 646 unsigned long stack_shift; 647 struct mm_struct *mm = current->mm; 648 struct vm_area_struct *vma = bprm->vma; 649 struct vm_area_struct *prev = NULL; 650 unsigned long vm_flags; 651 unsigned long stack_base; 652 unsigned long stack_size; 653 unsigned long stack_expand; 654 unsigned long rlim_stack; 655 656 #ifdef CONFIG_STACK_GROWSUP 657 /* Limit stack size */ 658 stack_base = rlimit_max(RLIMIT_STACK); 659 if (stack_base > STACK_SIZE_MAX) 660 stack_base = STACK_SIZE_MAX; 661 662 /* Make sure we didn't let the argument array grow too large. */ 663 if (vma->vm_end - vma->vm_start > stack_base) 664 return -ENOMEM; 665 666 stack_base = PAGE_ALIGN(stack_top - stack_base); 667 668 stack_shift = vma->vm_start - stack_base; 669 mm->arg_start = bprm->p - stack_shift; 670 bprm->p = vma->vm_end - stack_shift; 671 #else 672 stack_top = arch_align_stack(stack_top); 673 stack_top = PAGE_ALIGN(stack_top); 674 675 if (unlikely(stack_top < mmap_min_addr) || 676 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 677 return -ENOMEM; 678 679 stack_shift = vma->vm_end - stack_top; 680 681 bprm->p -= stack_shift; 682 mm->arg_start = bprm->p; 683 #endif 684 685 if (bprm->loader) 686 bprm->loader -= stack_shift; 687 bprm->exec -= stack_shift; 688 689 down_write(&mm->mmap_sem); 690 vm_flags = VM_STACK_FLAGS; 691 692 /* 693 * Adjust stack execute permissions; explicitly enable for 694 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 695 * (arch default) otherwise. 696 */ 697 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 698 vm_flags |= VM_EXEC; 699 else if (executable_stack == EXSTACK_DISABLE_X) 700 vm_flags &= ~VM_EXEC; 701 vm_flags |= mm->def_flags; 702 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 703 704 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 705 vm_flags); 706 if (ret) 707 goto out_unlock; 708 BUG_ON(prev != vma); 709 710 /* Move stack pages down in memory. */ 711 if (stack_shift) { 712 ret = shift_arg_pages(vma, stack_shift); 713 if (ret) 714 goto out_unlock; 715 } 716 717 /* mprotect_fixup is overkill to remove the temporary stack flags */ 718 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 719 720 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 721 stack_size = vma->vm_end - vma->vm_start; 722 /* 723 * Align this down to a page boundary as expand_stack 724 * will align it up. 725 */ 726 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 727 #ifdef CONFIG_STACK_GROWSUP 728 if (stack_size + stack_expand > rlim_stack) 729 stack_base = vma->vm_start + rlim_stack; 730 else 731 stack_base = vma->vm_end + stack_expand; 732 #else 733 if (stack_size + stack_expand > rlim_stack) 734 stack_base = vma->vm_end - rlim_stack; 735 else 736 stack_base = vma->vm_start - stack_expand; 737 #endif 738 current->mm->start_stack = bprm->p; 739 ret = expand_stack(vma, stack_base); 740 if (ret) 741 ret = -EFAULT; 742 743 out_unlock: 744 up_write(&mm->mmap_sem); 745 return ret; 746 } 747 EXPORT_SYMBOL(setup_arg_pages); 748 749 #endif /* CONFIG_MMU */ 750 751 static struct file *do_open_execat(int fd, struct filename *name, int flags) 752 { 753 struct file *file; 754 int err; 755 struct open_flags open_exec_flags = { 756 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 757 .acc_mode = MAY_EXEC | MAY_OPEN, 758 .intent = LOOKUP_OPEN, 759 .lookup_flags = LOOKUP_FOLLOW, 760 }; 761 762 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 763 return ERR_PTR(-EINVAL); 764 if (flags & AT_SYMLINK_NOFOLLOW) 765 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 766 if (flags & AT_EMPTY_PATH) 767 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 768 769 file = do_filp_open(fd, name, &open_exec_flags); 770 if (IS_ERR(file)) 771 goto out; 772 773 err = -EACCES; 774 if (!S_ISREG(file_inode(file)->i_mode)) 775 goto exit; 776 777 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 778 goto exit; 779 780 err = deny_write_access(file); 781 if (err) 782 goto exit; 783 784 if (name->name[0] != '\0') 785 fsnotify_open(file); 786 787 out: 788 return file; 789 790 exit: 791 fput(file); 792 return ERR_PTR(err); 793 } 794 795 struct file *open_exec(const char *name) 796 { 797 struct filename *filename = getname_kernel(name); 798 struct file *f = ERR_CAST(filename); 799 800 if (!IS_ERR(filename)) { 801 f = do_open_execat(AT_FDCWD, filename, 0); 802 putname(filename); 803 } 804 return f; 805 } 806 EXPORT_SYMBOL(open_exec); 807 808 int kernel_read(struct file *file, loff_t offset, 809 char *addr, unsigned long count) 810 { 811 mm_segment_t old_fs; 812 loff_t pos = offset; 813 int result; 814 815 old_fs = get_fs(); 816 set_fs(get_ds()); 817 /* The cast to a user pointer is valid due to the set_fs() */ 818 result = vfs_read(file, (void __user *)addr, count, &pos); 819 set_fs(old_fs); 820 return result; 821 } 822 823 EXPORT_SYMBOL(kernel_read); 824 825 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 826 { 827 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 828 if (res > 0) 829 flush_icache_range(addr, addr + len); 830 return res; 831 } 832 EXPORT_SYMBOL(read_code); 833 834 static int exec_mmap(struct mm_struct *mm) 835 { 836 struct task_struct *tsk; 837 struct mm_struct *old_mm, *active_mm; 838 839 /* Notify parent that we're no longer interested in the old VM */ 840 tsk = current; 841 old_mm = current->mm; 842 mm_release(tsk, old_mm); 843 844 if (old_mm) { 845 sync_mm_rss(old_mm); 846 /* 847 * Make sure that if there is a core dump in progress 848 * for the old mm, we get out and die instead of going 849 * through with the exec. We must hold mmap_sem around 850 * checking core_state and changing tsk->mm. 851 */ 852 down_read(&old_mm->mmap_sem); 853 if (unlikely(old_mm->core_state)) { 854 up_read(&old_mm->mmap_sem); 855 return -EINTR; 856 } 857 } 858 task_lock(tsk); 859 active_mm = tsk->active_mm; 860 tsk->mm = mm; 861 tsk->active_mm = mm; 862 activate_mm(active_mm, mm); 863 tsk->mm->vmacache_seqnum = 0; 864 vmacache_flush(tsk); 865 task_unlock(tsk); 866 if (old_mm) { 867 up_read(&old_mm->mmap_sem); 868 BUG_ON(active_mm != old_mm); 869 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 870 mm_update_next_owner(old_mm); 871 mmput(old_mm); 872 return 0; 873 } 874 mmdrop(active_mm); 875 return 0; 876 } 877 878 /* 879 * This function makes sure the current process has its own signal table, 880 * so that flush_signal_handlers can later reset the handlers without 881 * disturbing other processes. (Other processes might share the signal 882 * table via the CLONE_SIGHAND option to clone().) 883 */ 884 static int de_thread(struct task_struct *tsk) 885 { 886 struct signal_struct *sig = tsk->signal; 887 struct sighand_struct *oldsighand = tsk->sighand; 888 spinlock_t *lock = &oldsighand->siglock; 889 890 if (thread_group_empty(tsk)) 891 goto no_thread_group; 892 893 /* 894 * Kill all other threads in the thread group. 895 */ 896 spin_lock_irq(lock); 897 if (signal_group_exit(sig)) { 898 /* 899 * Another group action in progress, just 900 * return so that the signal is processed. 901 */ 902 spin_unlock_irq(lock); 903 return -EAGAIN; 904 } 905 906 sig->group_exit_task = tsk; 907 sig->notify_count = zap_other_threads(tsk); 908 if (!thread_group_leader(tsk)) 909 sig->notify_count--; 910 911 while (sig->notify_count) { 912 __set_current_state(TASK_KILLABLE); 913 spin_unlock_irq(lock); 914 schedule(); 915 if (unlikely(__fatal_signal_pending(tsk))) 916 goto killed; 917 spin_lock_irq(lock); 918 } 919 spin_unlock_irq(lock); 920 921 /* 922 * At this point all other threads have exited, all we have to 923 * do is to wait for the thread group leader to become inactive, 924 * and to assume its PID: 925 */ 926 if (!thread_group_leader(tsk)) { 927 struct task_struct *leader = tsk->group_leader; 928 929 sig->notify_count = -1; /* for exit_notify() */ 930 for (;;) { 931 threadgroup_change_begin(tsk); 932 write_lock_irq(&tasklist_lock); 933 if (likely(leader->exit_state)) 934 break; 935 __set_current_state(TASK_KILLABLE); 936 write_unlock_irq(&tasklist_lock); 937 threadgroup_change_end(tsk); 938 schedule(); 939 if (unlikely(__fatal_signal_pending(tsk))) 940 goto killed; 941 } 942 943 /* 944 * The only record we have of the real-time age of a 945 * process, regardless of execs it's done, is start_time. 946 * All the past CPU time is accumulated in signal_struct 947 * from sister threads now dead. But in this non-leader 948 * exec, nothing survives from the original leader thread, 949 * whose birth marks the true age of this process now. 950 * When we take on its identity by switching to its PID, we 951 * also take its birthdate (always earlier than our own). 952 */ 953 tsk->start_time = leader->start_time; 954 tsk->real_start_time = leader->real_start_time; 955 956 BUG_ON(!same_thread_group(leader, tsk)); 957 BUG_ON(has_group_leader_pid(tsk)); 958 /* 959 * An exec() starts a new thread group with the 960 * TGID of the previous thread group. Rehash the 961 * two threads with a switched PID, and release 962 * the former thread group leader: 963 */ 964 965 /* Become a process group leader with the old leader's pid. 966 * The old leader becomes a thread of the this thread group. 967 * Note: The old leader also uses this pid until release_task 968 * is called. Odd but simple and correct. 969 */ 970 tsk->pid = leader->pid; 971 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 972 transfer_pid(leader, tsk, PIDTYPE_PGID); 973 transfer_pid(leader, tsk, PIDTYPE_SID); 974 975 list_replace_rcu(&leader->tasks, &tsk->tasks); 976 list_replace_init(&leader->sibling, &tsk->sibling); 977 978 tsk->group_leader = tsk; 979 leader->group_leader = tsk; 980 981 tsk->exit_signal = SIGCHLD; 982 leader->exit_signal = -1; 983 984 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 985 leader->exit_state = EXIT_DEAD; 986 987 /* 988 * We are going to release_task()->ptrace_unlink() silently, 989 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 990 * the tracer wont't block again waiting for this thread. 991 */ 992 if (unlikely(leader->ptrace)) 993 __wake_up_parent(leader, leader->parent); 994 write_unlock_irq(&tasklist_lock); 995 threadgroup_change_end(tsk); 996 997 release_task(leader); 998 } 999 1000 sig->group_exit_task = NULL; 1001 sig->notify_count = 0; 1002 1003 no_thread_group: 1004 /* we have changed execution domain */ 1005 tsk->exit_signal = SIGCHLD; 1006 1007 exit_itimers(sig); 1008 flush_itimer_signals(); 1009 1010 if (atomic_read(&oldsighand->count) != 1) { 1011 struct sighand_struct *newsighand; 1012 /* 1013 * This ->sighand is shared with the CLONE_SIGHAND 1014 * but not CLONE_THREAD task, switch to the new one. 1015 */ 1016 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1017 if (!newsighand) 1018 return -ENOMEM; 1019 1020 atomic_set(&newsighand->count, 1); 1021 memcpy(newsighand->action, oldsighand->action, 1022 sizeof(newsighand->action)); 1023 1024 write_lock_irq(&tasklist_lock); 1025 spin_lock(&oldsighand->siglock); 1026 rcu_assign_pointer(tsk->sighand, newsighand); 1027 spin_unlock(&oldsighand->siglock); 1028 write_unlock_irq(&tasklist_lock); 1029 1030 __cleanup_sighand(oldsighand); 1031 } 1032 1033 BUG_ON(!thread_group_leader(tsk)); 1034 return 0; 1035 1036 killed: 1037 /* protects against exit_notify() and __exit_signal() */ 1038 read_lock(&tasklist_lock); 1039 sig->group_exit_task = NULL; 1040 sig->notify_count = 0; 1041 read_unlock(&tasklist_lock); 1042 return -EAGAIN; 1043 } 1044 1045 char *get_task_comm(char *buf, struct task_struct *tsk) 1046 { 1047 /* buf must be at least sizeof(tsk->comm) in size */ 1048 task_lock(tsk); 1049 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1050 task_unlock(tsk); 1051 return buf; 1052 } 1053 EXPORT_SYMBOL_GPL(get_task_comm); 1054 1055 /* 1056 * These functions flushes out all traces of the currently running executable 1057 * so that a new one can be started 1058 */ 1059 1060 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1061 { 1062 task_lock(tsk); 1063 trace_task_rename(tsk, buf); 1064 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1065 task_unlock(tsk); 1066 perf_event_comm(tsk, exec); 1067 } 1068 1069 int flush_old_exec(struct linux_binprm * bprm) 1070 { 1071 int retval; 1072 1073 /* 1074 * Make sure we have a private signal table and that 1075 * we are unassociated from the previous thread group. 1076 */ 1077 retval = de_thread(current); 1078 if (retval) 1079 goto out; 1080 1081 set_mm_exe_file(bprm->mm, bprm->file); 1082 /* 1083 * Release all of the old mmap stuff 1084 */ 1085 acct_arg_size(bprm, 0); 1086 retval = exec_mmap(bprm->mm); 1087 if (retval) 1088 goto out; 1089 1090 bprm->mm = NULL; /* We're using it now */ 1091 1092 set_fs(USER_DS); 1093 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1094 PF_NOFREEZE | PF_NO_SETAFFINITY); 1095 flush_thread(); 1096 current->personality &= ~bprm->per_clear; 1097 1098 return 0; 1099 1100 out: 1101 return retval; 1102 } 1103 EXPORT_SYMBOL(flush_old_exec); 1104 1105 void would_dump(struct linux_binprm *bprm, struct file *file) 1106 { 1107 if (inode_permission(file_inode(file), MAY_READ) < 0) 1108 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1109 } 1110 EXPORT_SYMBOL(would_dump); 1111 1112 void setup_new_exec(struct linux_binprm * bprm) 1113 { 1114 arch_pick_mmap_layout(current->mm); 1115 1116 /* This is the point of no return */ 1117 current->sas_ss_sp = current->sas_ss_size = 0; 1118 1119 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid())) 1120 set_dumpable(current->mm, SUID_DUMP_USER); 1121 else 1122 set_dumpable(current->mm, suid_dumpable); 1123 1124 perf_event_exec(); 1125 __set_task_comm(current, kbasename(bprm->filename), true); 1126 1127 /* Set the new mm task size. We have to do that late because it may 1128 * depend on TIF_32BIT which is only updated in flush_thread() on 1129 * some architectures like powerpc 1130 */ 1131 current->mm->task_size = TASK_SIZE; 1132 1133 /* install the new credentials */ 1134 if (!uid_eq(bprm->cred->uid, current_euid()) || 1135 !gid_eq(bprm->cred->gid, current_egid())) { 1136 current->pdeath_signal = 0; 1137 } else { 1138 would_dump(bprm, bprm->file); 1139 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) 1140 set_dumpable(current->mm, suid_dumpable); 1141 } 1142 1143 /* An exec changes our domain. We are no longer part of the thread 1144 group */ 1145 current->self_exec_id++; 1146 flush_signal_handlers(current, 0); 1147 do_close_on_exec(current->files); 1148 } 1149 EXPORT_SYMBOL(setup_new_exec); 1150 1151 /* 1152 * Prepare credentials and lock ->cred_guard_mutex. 1153 * install_exec_creds() commits the new creds and drops the lock. 1154 * Or, if exec fails before, free_bprm() should release ->cred and 1155 * and unlock. 1156 */ 1157 int prepare_bprm_creds(struct linux_binprm *bprm) 1158 { 1159 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1160 return -ERESTARTNOINTR; 1161 1162 bprm->cred = prepare_exec_creds(); 1163 if (likely(bprm->cred)) 1164 return 0; 1165 1166 mutex_unlock(¤t->signal->cred_guard_mutex); 1167 return -ENOMEM; 1168 } 1169 1170 static void free_bprm(struct linux_binprm *bprm) 1171 { 1172 free_arg_pages(bprm); 1173 if (bprm->cred) { 1174 mutex_unlock(¤t->signal->cred_guard_mutex); 1175 abort_creds(bprm->cred); 1176 } 1177 if (bprm->file) { 1178 allow_write_access(bprm->file); 1179 fput(bprm->file); 1180 } 1181 /* If a binfmt changed the interp, free it. */ 1182 if (bprm->interp != bprm->filename) 1183 kfree(bprm->interp); 1184 kfree(bprm); 1185 } 1186 1187 int bprm_change_interp(char *interp, struct linux_binprm *bprm) 1188 { 1189 /* If a binfmt changed the interp, free it first. */ 1190 if (bprm->interp != bprm->filename) 1191 kfree(bprm->interp); 1192 bprm->interp = kstrdup(interp, GFP_KERNEL); 1193 if (!bprm->interp) 1194 return -ENOMEM; 1195 return 0; 1196 } 1197 EXPORT_SYMBOL(bprm_change_interp); 1198 1199 /* 1200 * install the new credentials for this executable 1201 */ 1202 void install_exec_creds(struct linux_binprm *bprm) 1203 { 1204 security_bprm_committing_creds(bprm); 1205 1206 commit_creds(bprm->cred); 1207 bprm->cred = NULL; 1208 1209 /* 1210 * Disable monitoring for regular users 1211 * when executing setuid binaries. Must 1212 * wait until new credentials are committed 1213 * by commit_creds() above 1214 */ 1215 if (get_dumpable(current->mm) != SUID_DUMP_USER) 1216 perf_event_exit_task(current); 1217 /* 1218 * cred_guard_mutex must be held at least to this point to prevent 1219 * ptrace_attach() from altering our determination of the task's 1220 * credentials; any time after this it may be unlocked. 1221 */ 1222 security_bprm_committed_creds(bprm); 1223 mutex_unlock(¤t->signal->cred_guard_mutex); 1224 } 1225 EXPORT_SYMBOL(install_exec_creds); 1226 1227 /* 1228 * determine how safe it is to execute the proposed program 1229 * - the caller must hold ->cred_guard_mutex to protect against 1230 * PTRACE_ATTACH or seccomp thread-sync 1231 */ 1232 static void check_unsafe_exec(struct linux_binprm *bprm) 1233 { 1234 struct task_struct *p = current, *t; 1235 unsigned n_fs; 1236 1237 if (p->ptrace) { 1238 if (p->ptrace & PT_PTRACE_CAP) 1239 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP; 1240 else 1241 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1242 } 1243 1244 /* 1245 * This isn't strictly necessary, but it makes it harder for LSMs to 1246 * mess up. 1247 */ 1248 if (task_no_new_privs(current)) 1249 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1250 1251 t = p; 1252 n_fs = 1; 1253 spin_lock(&p->fs->lock); 1254 rcu_read_lock(); 1255 while_each_thread(p, t) { 1256 if (t->fs == p->fs) 1257 n_fs++; 1258 } 1259 rcu_read_unlock(); 1260 1261 if (p->fs->users > n_fs) 1262 bprm->unsafe |= LSM_UNSAFE_SHARE; 1263 else 1264 p->fs->in_exec = 1; 1265 spin_unlock(&p->fs->lock); 1266 } 1267 1268 /* 1269 * Fill the binprm structure from the inode. 1270 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1271 * 1272 * This may be called multiple times for binary chains (scripts for example). 1273 */ 1274 int prepare_binprm(struct linux_binprm *bprm) 1275 { 1276 struct inode *inode = file_inode(bprm->file); 1277 umode_t mode = inode->i_mode; 1278 int retval; 1279 1280 1281 /* clear any previous set[ug]id data from a previous binary */ 1282 bprm->cred->euid = current_euid(); 1283 bprm->cred->egid = current_egid(); 1284 1285 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) && 1286 !task_no_new_privs(current) && 1287 kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) && 1288 kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) { 1289 /* Set-uid? */ 1290 if (mode & S_ISUID) { 1291 bprm->per_clear |= PER_CLEAR_ON_SETID; 1292 bprm->cred->euid = inode->i_uid; 1293 } 1294 1295 /* Set-gid? */ 1296 /* 1297 * If setgid is set but no group execute bit then this 1298 * is a candidate for mandatory locking, not a setgid 1299 * executable. 1300 */ 1301 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1302 bprm->per_clear |= PER_CLEAR_ON_SETID; 1303 bprm->cred->egid = inode->i_gid; 1304 } 1305 } 1306 1307 /* fill in binprm security blob */ 1308 retval = security_bprm_set_creds(bprm); 1309 if (retval) 1310 return retval; 1311 bprm->cred_prepared = 1; 1312 1313 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1314 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1315 } 1316 1317 EXPORT_SYMBOL(prepare_binprm); 1318 1319 /* 1320 * Arguments are '\0' separated strings found at the location bprm->p 1321 * points to; chop off the first by relocating brpm->p to right after 1322 * the first '\0' encountered. 1323 */ 1324 int remove_arg_zero(struct linux_binprm *bprm) 1325 { 1326 int ret = 0; 1327 unsigned long offset; 1328 char *kaddr; 1329 struct page *page; 1330 1331 if (!bprm->argc) 1332 return 0; 1333 1334 do { 1335 offset = bprm->p & ~PAGE_MASK; 1336 page = get_arg_page(bprm, bprm->p, 0); 1337 if (!page) { 1338 ret = -EFAULT; 1339 goto out; 1340 } 1341 kaddr = kmap_atomic(page); 1342 1343 for (; offset < PAGE_SIZE && kaddr[offset]; 1344 offset++, bprm->p++) 1345 ; 1346 1347 kunmap_atomic(kaddr); 1348 put_arg_page(page); 1349 1350 if (offset == PAGE_SIZE) 1351 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1352 } while (offset == PAGE_SIZE); 1353 1354 bprm->p++; 1355 bprm->argc--; 1356 ret = 0; 1357 1358 out: 1359 return ret; 1360 } 1361 EXPORT_SYMBOL(remove_arg_zero); 1362 1363 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1364 /* 1365 * cycle the list of binary formats handler, until one recognizes the image 1366 */ 1367 int search_binary_handler(struct linux_binprm *bprm) 1368 { 1369 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1370 struct linux_binfmt *fmt; 1371 int retval; 1372 1373 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1374 if (bprm->recursion_depth > 5) 1375 return -ELOOP; 1376 1377 retval = security_bprm_check(bprm); 1378 if (retval) 1379 return retval; 1380 1381 retval = -ENOENT; 1382 retry: 1383 read_lock(&binfmt_lock); 1384 list_for_each_entry(fmt, &formats, lh) { 1385 if (!try_module_get(fmt->module)) 1386 continue; 1387 read_unlock(&binfmt_lock); 1388 bprm->recursion_depth++; 1389 retval = fmt->load_binary(bprm); 1390 read_lock(&binfmt_lock); 1391 put_binfmt(fmt); 1392 bprm->recursion_depth--; 1393 if (retval < 0 && !bprm->mm) { 1394 /* we got to flush_old_exec() and failed after it */ 1395 read_unlock(&binfmt_lock); 1396 force_sigsegv(SIGSEGV, current); 1397 return retval; 1398 } 1399 if (retval != -ENOEXEC || !bprm->file) { 1400 read_unlock(&binfmt_lock); 1401 return retval; 1402 } 1403 } 1404 read_unlock(&binfmt_lock); 1405 1406 if (need_retry) { 1407 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1408 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1409 return retval; 1410 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1411 return retval; 1412 need_retry = false; 1413 goto retry; 1414 } 1415 1416 return retval; 1417 } 1418 EXPORT_SYMBOL(search_binary_handler); 1419 1420 static int exec_binprm(struct linux_binprm *bprm) 1421 { 1422 pid_t old_pid, old_vpid; 1423 int ret; 1424 1425 /* Need to fetch pid before load_binary changes it */ 1426 old_pid = current->pid; 1427 rcu_read_lock(); 1428 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1429 rcu_read_unlock(); 1430 1431 ret = search_binary_handler(bprm); 1432 if (ret >= 0) { 1433 audit_bprm(bprm); 1434 trace_sched_process_exec(current, old_pid, bprm); 1435 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1436 proc_exec_connector(current); 1437 } 1438 1439 return ret; 1440 } 1441 1442 /* 1443 * sys_execve() executes a new program. 1444 */ 1445 static int do_execveat_common(int fd, struct filename *filename, 1446 struct user_arg_ptr argv, 1447 struct user_arg_ptr envp, 1448 int flags) 1449 { 1450 char *pathbuf = NULL; 1451 struct linux_binprm *bprm; 1452 struct file *file; 1453 struct files_struct *displaced; 1454 int retval; 1455 1456 if (IS_ERR(filename)) 1457 return PTR_ERR(filename); 1458 1459 /* 1460 * We move the actual failure in case of RLIMIT_NPROC excess from 1461 * set*uid() to execve() because too many poorly written programs 1462 * don't check setuid() return code. Here we additionally recheck 1463 * whether NPROC limit is still exceeded. 1464 */ 1465 if ((current->flags & PF_NPROC_EXCEEDED) && 1466 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1467 retval = -EAGAIN; 1468 goto out_ret; 1469 } 1470 1471 /* We're below the limit (still or again), so we don't want to make 1472 * further execve() calls fail. */ 1473 current->flags &= ~PF_NPROC_EXCEEDED; 1474 1475 retval = unshare_files(&displaced); 1476 if (retval) 1477 goto out_ret; 1478 1479 retval = -ENOMEM; 1480 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1481 if (!bprm) 1482 goto out_files; 1483 1484 retval = prepare_bprm_creds(bprm); 1485 if (retval) 1486 goto out_free; 1487 1488 check_unsafe_exec(bprm); 1489 current->in_execve = 1; 1490 1491 file = do_open_execat(fd, filename, flags); 1492 retval = PTR_ERR(file); 1493 if (IS_ERR(file)) 1494 goto out_unmark; 1495 1496 sched_exec(); 1497 1498 bprm->file = file; 1499 if (fd == AT_FDCWD || filename->name[0] == '/') { 1500 bprm->filename = filename->name; 1501 } else { 1502 if (filename->name[0] == '\0') 1503 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd); 1504 else 1505 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s", 1506 fd, filename->name); 1507 if (!pathbuf) { 1508 retval = -ENOMEM; 1509 goto out_unmark; 1510 } 1511 /* 1512 * Record that a name derived from an O_CLOEXEC fd will be 1513 * inaccessible after exec. Relies on having exclusive access to 1514 * current->files (due to unshare_files above). 1515 */ 1516 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1517 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1518 bprm->filename = pathbuf; 1519 } 1520 bprm->interp = bprm->filename; 1521 1522 retval = bprm_mm_init(bprm); 1523 if (retval) 1524 goto out_unmark; 1525 1526 bprm->argc = count(argv, MAX_ARG_STRINGS); 1527 if ((retval = bprm->argc) < 0) 1528 goto out; 1529 1530 bprm->envc = count(envp, MAX_ARG_STRINGS); 1531 if ((retval = bprm->envc) < 0) 1532 goto out; 1533 1534 retval = prepare_binprm(bprm); 1535 if (retval < 0) 1536 goto out; 1537 1538 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1539 if (retval < 0) 1540 goto out; 1541 1542 bprm->exec = bprm->p; 1543 retval = copy_strings(bprm->envc, envp, bprm); 1544 if (retval < 0) 1545 goto out; 1546 1547 retval = copy_strings(bprm->argc, argv, bprm); 1548 if (retval < 0) 1549 goto out; 1550 1551 retval = exec_binprm(bprm); 1552 if (retval < 0) 1553 goto out; 1554 1555 /* execve succeeded */ 1556 current->fs->in_exec = 0; 1557 current->in_execve = 0; 1558 acct_update_integrals(current); 1559 task_numa_free(current); 1560 free_bprm(bprm); 1561 kfree(pathbuf); 1562 putname(filename); 1563 if (displaced) 1564 put_files_struct(displaced); 1565 return retval; 1566 1567 out: 1568 if (bprm->mm) { 1569 acct_arg_size(bprm, 0); 1570 mmput(bprm->mm); 1571 } 1572 1573 out_unmark: 1574 current->fs->in_exec = 0; 1575 current->in_execve = 0; 1576 1577 out_free: 1578 free_bprm(bprm); 1579 kfree(pathbuf); 1580 1581 out_files: 1582 if (displaced) 1583 reset_files_struct(displaced); 1584 out_ret: 1585 putname(filename); 1586 return retval; 1587 } 1588 1589 int do_execve(struct filename *filename, 1590 const char __user *const __user *__argv, 1591 const char __user *const __user *__envp) 1592 { 1593 struct user_arg_ptr argv = { .ptr.native = __argv }; 1594 struct user_arg_ptr envp = { .ptr.native = __envp }; 1595 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1596 } 1597 1598 int do_execveat(int fd, struct filename *filename, 1599 const char __user *const __user *__argv, 1600 const char __user *const __user *__envp, 1601 int flags) 1602 { 1603 struct user_arg_ptr argv = { .ptr.native = __argv }; 1604 struct user_arg_ptr envp = { .ptr.native = __envp }; 1605 1606 return do_execveat_common(fd, filename, argv, envp, flags); 1607 } 1608 1609 #ifdef CONFIG_COMPAT 1610 static int compat_do_execve(struct filename *filename, 1611 const compat_uptr_t __user *__argv, 1612 const compat_uptr_t __user *__envp) 1613 { 1614 struct user_arg_ptr argv = { 1615 .is_compat = true, 1616 .ptr.compat = __argv, 1617 }; 1618 struct user_arg_ptr envp = { 1619 .is_compat = true, 1620 .ptr.compat = __envp, 1621 }; 1622 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1623 } 1624 1625 static int compat_do_execveat(int fd, struct filename *filename, 1626 const compat_uptr_t __user *__argv, 1627 const compat_uptr_t __user *__envp, 1628 int flags) 1629 { 1630 struct user_arg_ptr argv = { 1631 .is_compat = true, 1632 .ptr.compat = __argv, 1633 }; 1634 struct user_arg_ptr envp = { 1635 .is_compat = true, 1636 .ptr.compat = __envp, 1637 }; 1638 return do_execveat_common(fd, filename, argv, envp, flags); 1639 } 1640 #endif 1641 1642 void set_binfmt(struct linux_binfmt *new) 1643 { 1644 struct mm_struct *mm = current->mm; 1645 1646 if (mm->binfmt) 1647 module_put(mm->binfmt->module); 1648 1649 mm->binfmt = new; 1650 if (new) 1651 __module_get(new->module); 1652 } 1653 EXPORT_SYMBOL(set_binfmt); 1654 1655 /* 1656 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 1657 */ 1658 void set_dumpable(struct mm_struct *mm, int value) 1659 { 1660 unsigned long old, new; 1661 1662 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 1663 return; 1664 1665 do { 1666 old = ACCESS_ONCE(mm->flags); 1667 new = (old & ~MMF_DUMPABLE_MASK) | value; 1668 } while (cmpxchg(&mm->flags, old, new) != old); 1669 } 1670 1671 SYSCALL_DEFINE3(execve, 1672 const char __user *, filename, 1673 const char __user *const __user *, argv, 1674 const char __user *const __user *, envp) 1675 { 1676 return do_execve(getname(filename), argv, envp); 1677 } 1678 1679 SYSCALL_DEFINE5(execveat, 1680 int, fd, const char __user *, filename, 1681 const char __user *const __user *, argv, 1682 const char __user *const __user *, envp, 1683 int, flags) 1684 { 1685 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1686 1687 return do_execveat(fd, 1688 getname_flags(filename, lookup_flags, NULL), 1689 argv, envp, flags); 1690 } 1691 1692 #ifdef CONFIG_COMPAT 1693 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 1694 const compat_uptr_t __user *, argv, 1695 const compat_uptr_t __user *, envp) 1696 { 1697 return compat_do_execve(getname(filename), argv, envp); 1698 } 1699 1700 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 1701 const char __user *, filename, 1702 const compat_uptr_t __user *, argv, 1703 const compat_uptr_t __user *, envp, 1704 int, flags) 1705 { 1706 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1707 1708 return compat_do_execveat(fd, 1709 getname_flags(filename, lookup_flags, NULL), 1710 argv, envp, flags); 1711 } 1712 #endif 1713