1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 67 68 #include <linux/uaccess.h> 69 #include <asm/mmu_context.h> 70 #include <asm/tlb.h> 71 72 #include <trace/events/task.h> 73 #include "internal.h" 74 75 #include <trace/events/sched.h> 76 77 static int bprm_creds_from_file(struct linux_binprm *bprm); 78 79 int suid_dumpable = 0; 80 81 static LIST_HEAD(formats); 82 static DEFINE_RWLOCK(binfmt_lock); 83 84 void __register_binfmt(struct linux_binfmt * fmt, int insert) 85 { 86 write_lock(&binfmt_lock); 87 insert ? list_add(&fmt->lh, &formats) : 88 list_add_tail(&fmt->lh, &formats); 89 write_unlock(&binfmt_lock); 90 } 91 92 EXPORT_SYMBOL(__register_binfmt); 93 94 void unregister_binfmt(struct linux_binfmt * fmt) 95 { 96 write_lock(&binfmt_lock); 97 list_del(&fmt->lh); 98 write_unlock(&binfmt_lock); 99 } 100 101 EXPORT_SYMBOL(unregister_binfmt); 102 103 static inline void put_binfmt(struct linux_binfmt * fmt) 104 { 105 module_put(fmt->module); 106 } 107 108 bool path_noexec(const struct path *path) 109 { 110 return (path->mnt->mnt_flags & MNT_NOEXEC) || 111 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 112 } 113 114 #ifdef CONFIG_USELIB 115 /* 116 * Note that a shared library must be both readable and executable due to 117 * security reasons. 118 * 119 * Also note that we take the address to load from the file itself. 120 */ 121 SYSCALL_DEFINE1(uselib, const char __user *, library) 122 { 123 struct linux_binfmt *fmt; 124 struct file *file; 125 struct filename *tmp = getname(library); 126 int error = PTR_ERR(tmp); 127 static const struct open_flags uselib_flags = { 128 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 129 .acc_mode = MAY_READ | MAY_EXEC, 130 .intent = LOOKUP_OPEN, 131 .lookup_flags = LOOKUP_FOLLOW, 132 }; 133 134 if (IS_ERR(tmp)) 135 goto out; 136 137 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 138 putname(tmp); 139 error = PTR_ERR(file); 140 if (IS_ERR(file)) 141 goto out; 142 143 /* 144 * may_open() has already checked for this, so it should be 145 * impossible to trip now. But we need to be extra cautious 146 * and check again at the very end too. 147 */ 148 error = -EACCES; 149 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 150 path_noexec(&file->f_path))) 151 goto exit; 152 153 fsnotify_open(file); 154 155 error = -ENOEXEC; 156 157 read_lock(&binfmt_lock); 158 list_for_each_entry(fmt, &formats, lh) { 159 if (!fmt->load_shlib) 160 continue; 161 if (!try_module_get(fmt->module)) 162 continue; 163 read_unlock(&binfmt_lock); 164 error = fmt->load_shlib(file); 165 read_lock(&binfmt_lock); 166 put_binfmt(fmt); 167 if (error != -ENOEXEC) 168 break; 169 } 170 read_unlock(&binfmt_lock); 171 exit: 172 fput(file); 173 out: 174 return error; 175 } 176 #endif /* #ifdef CONFIG_USELIB */ 177 178 #ifdef CONFIG_MMU 179 /* 180 * The nascent bprm->mm is not visible until exec_mmap() but it can 181 * use a lot of memory, account these pages in current->mm temporary 182 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 183 * change the counter back via acct_arg_size(0). 184 */ 185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 186 { 187 struct mm_struct *mm = current->mm; 188 long diff = (long)(pages - bprm->vma_pages); 189 190 if (!mm || !diff) 191 return; 192 193 bprm->vma_pages = pages; 194 add_mm_counter(mm, MM_ANONPAGES, diff); 195 } 196 197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 198 int write) 199 { 200 struct page *page; 201 int ret; 202 unsigned int gup_flags = FOLL_FORCE; 203 204 #ifdef CONFIG_STACK_GROWSUP 205 if (write) { 206 ret = expand_downwards(bprm->vma, pos); 207 if (ret < 0) 208 return NULL; 209 } 210 #endif 211 212 if (write) 213 gup_flags |= FOLL_WRITE; 214 215 /* 216 * We are doing an exec(). 'current' is the process 217 * doing the exec and bprm->mm is the new process's mm. 218 */ 219 mmap_read_lock(bprm->mm); 220 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags, 221 &page, NULL, NULL); 222 mmap_read_unlock(bprm->mm); 223 if (ret <= 0) 224 return NULL; 225 226 if (write) 227 acct_arg_size(bprm, vma_pages(bprm->vma)); 228 229 return page; 230 } 231 232 static void put_arg_page(struct page *page) 233 { 234 put_page(page); 235 } 236 237 static void free_arg_pages(struct linux_binprm *bprm) 238 { 239 } 240 241 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 242 struct page *page) 243 { 244 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 245 } 246 247 static int __bprm_mm_init(struct linux_binprm *bprm) 248 { 249 int err; 250 struct vm_area_struct *vma = NULL; 251 struct mm_struct *mm = bprm->mm; 252 253 bprm->vma = vma = vm_area_alloc(mm); 254 if (!vma) 255 return -ENOMEM; 256 vma_set_anonymous(vma); 257 258 if (mmap_write_lock_killable(mm)) { 259 err = -EINTR; 260 goto err_free; 261 } 262 263 /* 264 * Place the stack at the largest stack address the architecture 265 * supports. Later, we'll move this to an appropriate place. We don't 266 * use STACK_TOP because that can depend on attributes which aren't 267 * configured yet. 268 */ 269 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 270 vma->vm_end = STACK_TOP_MAX; 271 vma->vm_start = vma->vm_end - PAGE_SIZE; 272 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 273 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 274 275 err = insert_vm_struct(mm, vma); 276 if (err) 277 goto err; 278 279 mm->stack_vm = mm->total_vm = 1; 280 mmap_write_unlock(mm); 281 bprm->p = vma->vm_end - sizeof(void *); 282 return 0; 283 err: 284 mmap_write_unlock(mm); 285 err_free: 286 bprm->vma = NULL; 287 vm_area_free(vma); 288 return err; 289 } 290 291 static bool valid_arg_len(struct linux_binprm *bprm, long len) 292 { 293 return len <= MAX_ARG_STRLEN; 294 } 295 296 #else 297 298 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 299 { 300 } 301 302 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 303 int write) 304 { 305 struct page *page; 306 307 page = bprm->page[pos / PAGE_SIZE]; 308 if (!page && write) { 309 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 310 if (!page) 311 return NULL; 312 bprm->page[pos / PAGE_SIZE] = page; 313 } 314 315 return page; 316 } 317 318 static void put_arg_page(struct page *page) 319 { 320 } 321 322 static void free_arg_page(struct linux_binprm *bprm, int i) 323 { 324 if (bprm->page[i]) { 325 __free_page(bprm->page[i]); 326 bprm->page[i] = NULL; 327 } 328 } 329 330 static void free_arg_pages(struct linux_binprm *bprm) 331 { 332 int i; 333 334 for (i = 0; i < MAX_ARG_PAGES; i++) 335 free_arg_page(bprm, i); 336 } 337 338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 339 struct page *page) 340 { 341 } 342 343 static int __bprm_mm_init(struct linux_binprm *bprm) 344 { 345 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 346 return 0; 347 } 348 349 static bool valid_arg_len(struct linux_binprm *bprm, long len) 350 { 351 return len <= bprm->p; 352 } 353 354 #endif /* CONFIG_MMU */ 355 356 /* 357 * Create a new mm_struct and populate it with a temporary stack 358 * vm_area_struct. We don't have enough context at this point to set the stack 359 * flags, permissions, and offset, so we use temporary values. We'll update 360 * them later in setup_arg_pages(). 361 */ 362 static int bprm_mm_init(struct linux_binprm *bprm) 363 { 364 int err; 365 struct mm_struct *mm = NULL; 366 367 bprm->mm = mm = mm_alloc(); 368 err = -ENOMEM; 369 if (!mm) 370 goto err; 371 372 /* Save current stack limit for all calculations made during exec. */ 373 task_lock(current->group_leader); 374 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 375 task_unlock(current->group_leader); 376 377 err = __bprm_mm_init(bprm); 378 if (err) 379 goto err; 380 381 return 0; 382 383 err: 384 if (mm) { 385 bprm->mm = NULL; 386 mmdrop(mm); 387 } 388 389 return err; 390 } 391 392 struct user_arg_ptr { 393 #ifdef CONFIG_COMPAT 394 bool is_compat; 395 #endif 396 union { 397 const char __user *const __user *native; 398 #ifdef CONFIG_COMPAT 399 const compat_uptr_t __user *compat; 400 #endif 401 } ptr; 402 }; 403 404 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 405 { 406 const char __user *native; 407 408 #ifdef CONFIG_COMPAT 409 if (unlikely(argv.is_compat)) { 410 compat_uptr_t compat; 411 412 if (get_user(compat, argv.ptr.compat + nr)) 413 return ERR_PTR(-EFAULT); 414 415 return compat_ptr(compat); 416 } 417 #endif 418 419 if (get_user(native, argv.ptr.native + nr)) 420 return ERR_PTR(-EFAULT); 421 422 return native; 423 } 424 425 /* 426 * count() counts the number of strings in array ARGV. 427 */ 428 static int count(struct user_arg_ptr argv, int max) 429 { 430 int i = 0; 431 432 if (argv.ptr.native != NULL) { 433 for (;;) { 434 const char __user *p = get_user_arg_ptr(argv, i); 435 436 if (!p) 437 break; 438 439 if (IS_ERR(p)) 440 return -EFAULT; 441 442 if (i >= max) 443 return -E2BIG; 444 ++i; 445 446 if (fatal_signal_pending(current)) 447 return -ERESTARTNOHAND; 448 cond_resched(); 449 } 450 } 451 return i; 452 } 453 454 static int count_strings_kernel(const char *const *argv) 455 { 456 int i; 457 458 if (!argv) 459 return 0; 460 461 for (i = 0; argv[i]; ++i) { 462 if (i >= MAX_ARG_STRINGS) 463 return -E2BIG; 464 if (fatal_signal_pending(current)) 465 return -ERESTARTNOHAND; 466 cond_resched(); 467 } 468 return i; 469 } 470 471 static int bprm_stack_limits(struct linux_binprm *bprm) 472 { 473 unsigned long limit, ptr_size; 474 475 /* 476 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 477 * (whichever is smaller) for the argv+env strings. 478 * This ensures that: 479 * - the remaining binfmt code will not run out of stack space, 480 * - the program will have a reasonable amount of stack left 481 * to work from. 482 */ 483 limit = _STK_LIM / 4 * 3; 484 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 485 /* 486 * We've historically supported up to 32 pages (ARG_MAX) 487 * of argument strings even with small stacks 488 */ 489 limit = max_t(unsigned long, limit, ARG_MAX); 490 /* 491 * We must account for the size of all the argv and envp pointers to 492 * the argv and envp strings, since they will also take up space in 493 * the stack. They aren't stored until much later when we can't 494 * signal to the parent that the child has run out of stack space. 495 * Instead, calculate it here so it's possible to fail gracefully. 496 * 497 * In the case of argc = 0, make sure there is space for adding a 498 * empty string (which will bump argc to 1), to ensure confused 499 * userspace programs don't start processing from argv[1], thinking 500 * argc can never be 0, to keep them from walking envp by accident. 501 * See do_execveat_common(). 502 */ 503 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *); 504 if (limit <= ptr_size) 505 return -E2BIG; 506 limit -= ptr_size; 507 508 bprm->argmin = bprm->p - limit; 509 return 0; 510 } 511 512 /* 513 * 'copy_strings()' copies argument/environment strings from the old 514 * processes's memory to the new process's stack. The call to get_user_pages() 515 * ensures the destination page is created and not swapped out. 516 */ 517 static int copy_strings(int argc, struct user_arg_ptr argv, 518 struct linux_binprm *bprm) 519 { 520 struct page *kmapped_page = NULL; 521 char *kaddr = NULL; 522 unsigned long kpos = 0; 523 int ret; 524 525 while (argc-- > 0) { 526 const char __user *str; 527 int len; 528 unsigned long pos; 529 530 ret = -EFAULT; 531 str = get_user_arg_ptr(argv, argc); 532 if (IS_ERR(str)) 533 goto out; 534 535 len = strnlen_user(str, MAX_ARG_STRLEN); 536 if (!len) 537 goto out; 538 539 ret = -E2BIG; 540 if (!valid_arg_len(bprm, len)) 541 goto out; 542 543 /* We're going to work our way backwards. */ 544 pos = bprm->p; 545 str += len; 546 bprm->p -= len; 547 #ifdef CONFIG_MMU 548 if (bprm->p < bprm->argmin) 549 goto out; 550 #endif 551 552 while (len > 0) { 553 int offset, bytes_to_copy; 554 555 if (fatal_signal_pending(current)) { 556 ret = -ERESTARTNOHAND; 557 goto out; 558 } 559 cond_resched(); 560 561 offset = pos % PAGE_SIZE; 562 if (offset == 0) 563 offset = PAGE_SIZE; 564 565 bytes_to_copy = offset; 566 if (bytes_to_copy > len) 567 bytes_to_copy = len; 568 569 offset -= bytes_to_copy; 570 pos -= bytes_to_copy; 571 str -= bytes_to_copy; 572 len -= bytes_to_copy; 573 574 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 575 struct page *page; 576 577 page = get_arg_page(bprm, pos, 1); 578 if (!page) { 579 ret = -E2BIG; 580 goto out; 581 } 582 583 if (kmapped_page) { 584 flush_dcache_page(kmapped_page); 585 kunmap_local(kaddr); 586 put_arg_page(kmapped_page); 587 } 588 kmapped_page = page; 589 kaddr = kmap_local_page(kmapped_page); 590 kpos = pos & PAGE_MASK; 591 flush_arg_page(bprm, kpos, kmapped_page); 592 } 593 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 594 ret = -EFAULT; 595 goto out; 596 } 597 } 598 } 599 ret = 0; 600 out: 601 if (kmapped_page) { 602 flush_dcache_page(kmapped_page); 603 kunmap_local(kaddr); 604 put_arg_page(kmapped_page); 605 } 606 return ret; 607 } 608 609 /* 610 * Copy and argument/environment string from the kernel to the processes stack. 611 */ 612 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 613 { 614 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 615 unsigned long pos = bprm->p; 616 617 if (len == 0) 618 return -EFAULT; 619 if (!valid_arg_len(bprm, len)) 620 return -E2BIG; 621 622 /* We're going to work our way backwards. */ 623 arg += len; 624 bprm->p -= len; 625 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 626 return -E2BIG; 627 628 while (len > 0) { 629 unsigned int bytes_to_copy = min_t(unsigned int, len, 630 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 631 struct page *page; 632 633 pos -= bytes_to_copy; 634 arg -= bytes_to_copy; 635 len -= bytes_to_copy; 636 637 page = get_arg_page(bprm, pos, 1); 638 if (!page) 639 return -E2BIG; 640 flush_arg_page(bprm, pos & PAGE_MASK, page); 641 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy); 642 put_arg_page(page); 643 } 644 645 return 0; 646 } 647 EXPORT_SYMBOL(copy_string_kernel); 648 649 static int copy_strings_kernel(int argc, const char *const *argv, 650 struct linux_binprm *bprm) 651 { 652 while (argc-- > 0) { 653 int ret = copy_string_kernel(argv[argc], bprm); 654 if (ret < 0) 655 return ret; 656 if (fatal_signal_pending(current)) 657 return -ERESTARTNOHAND; 658 cond_resched(); 659 } 660 return 0; 661 } 662 663 #ifdef CONFIG_MMU 664 665 /* 666 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 667 * the binfmt code determines where the new stack should reside, we shift it to 668 * its final location. The process proceeds as follows: 669 * 670 * 1) Use shift to calculate the new vma endpoints. 671 * 2) Extend vma to cover both the old and new ranges. This ensures the 672 * arguments passed to subsequent functions are consistent. 673 * 3) Move vma's page tables to the new range. 674 * 4) Free up any cleared pgd range. 675 * 5) Shrink the vma to cover only the new range. 676 */ 677 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 678 { 679 struct mm_struct *mm = vma->vm_mm; 680 unsigned long old_start = vma->vm_start; 681 unsigned long old_end = vma->vm_end; 682 unsigned long length = old_end - old_start; 683 unsigned long new_start = old_start - shift; 684 unsigned long new_end = old_end - shift; 685 VMA_ITERATOR(vmi, mm, new_start); 686 struct vm_area_struct *next; 687 struct mmu_gather tlb; 688 689 BUG_ON(new_start > new_end); 690 691 /* 692 * ensure there are no vmas between where we want to go 693 * and where we are 694 */ 695 if (vma != vma_next(&vmi)) 696 return -EFAULT; 697 698 /* 699 * cover the whole range: [new_start, old_end) 700 */ 701 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 702 return -ENOMEM; 703 704 /* 705 * move the page tables downwards, on failure we rely on 706 * process cleanup to remove whatever mess we made. 707 */ 708 if (length != move_page_tables(vma, old_start, 709 vma, new_start, length, false)) 710 return -ENOMEM; 711 712 lru_add_drain(); 713 tlb_gather_mmu(&tlb, mm); 714 next = vma_next(&vmi); 715 if (new_end > old_start) { 716 /* 717 * when the old and new regions overlap clear from new_end. 718 */ 719 free_pgd_range(&tlb, new_end, old_end, new_end, 720 next ? next->vm_start : USER_PGTABLES_CEILING); 721 } else { 722 /* 723 * otherwise, clean from old_start; this is done to not touch 724 * the address space in [new_end, old_start) some architectures 725 * have constraints on va-space that make this illegal (IA64) - 726 * for the others its just a little faster. 727 */ 728 free_pgd_range(&tlb, old_start, old_end, new_end, 729 next ? next->vm_start : USER_PGTABLES_CEILING); 730 } 731 tlb_finish_mmu(&tlb); 732 733 /* 734 * Shrink the vma to just the new range. Always succeeds. 735 */ 736 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 737 738 return 0; 739 } 740 741 /* 742 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 743 * the stack is optionally relocated, and some extra space is added. 744 */ 745 int setup_arg_pages(struct linux_binprm *bprm, 746 unsigned long stack_top, 747 int executable_stack) 748 { 749 unsigned long ret; 750 unsigned long stack_shift; 751 struct mm_struct *mm = current->mm; 752 struct vm_area_struct *vma = bprm->vma; 753 struct vm_area_struct *prev = NULL; 754 unsigned long vm_flags; 755 unsigned long stack_base; 756 unsigned long stack_size; 757 unsigned long stack_expand; 758 unsigned long rlim_stack; 759 struct mmu_gather tlb; 760 761 #ifdef CONFIG_STACK_GROWSUP 762 /* Limit stack size */ 763 stack_base = bprm->rlim_stack.rlim_max; 764 765 stack_base = calc_max_stack_size(stack_base); 766 767 /* Add space for stack randomization. */ 768 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 769 770 /* Make sure we didn't let the argument array grow too large. */ 771 if (vma->vm_end - vma->vm_start > stack_base) 772 return -ENOMEM; 773 774 stack_base = PAGE_ALIGN(stack_top - stack_base); 775 776 stack_shift = vma->vm_start - stack_base; 777 mm->arg_start = bprm->p - stack_shift; 778 bprm->p = vma->vm_end - stack_shift; 779 #else 780 stack_top = arch_align_stack(stack_top); 781 stack_top = PAGE_ALIGN(stack_top); 782 783 if (unlikely(stack_top < mmap_min_addr) || 784 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 785 return -ENOMEM; 786 787 stack_shift = vma->vm_end - stack_top; 788 789 bprm->p -= stack_shift; 790 mm->arg_start = bprm->p; 791 #endif 792 793 if (bprm->loader) 794 bprm->loader -= stack_shift; 795 bprm->exec -= stack_shift; 796 797 if (mmap_write_lock_killable(mm)) 798 return -EINTR; 799 800 vm_flags = VM_STACK_FLAGS; 801 802 /* 803 * Adjust stack execute permissions; explicitly enable for 804 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 805 * (arch default) otherwise. 806 */ 807 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 808 vm_flags |= VM_EXEC; 809 else if (executable_stack == EXSTACK_DISABLE_X) 810 vm_flags &= ~VM_EXEC; 811 vm_flags |= mm->def_flags; 812 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 813 814 tlb_gather_mmu(&tlb, mm); 815 ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end, 816 vm_flags); 817 tlb_finish_mmu(&tlb); 818 819 if (ret) 820 goto out_unlock; 821 BUG_ON(prev != vma); 822 823 if (unlikely(vm_flags & VM_EXEC)) { 824 pr_warn_once("process '%pD4' started with executable stack\n", 825 bprm->file); 826 } 827 828 /* Move stack pages down in memory. */ 829 if (stack_shift) { 830 ret = shift_arg_pages(vma, stack_shift); 831 if (ret) 832 goto out_unlock; 833 } 834 835 /* mprotect_fixup is overkill to remove the temporary stack flags */ 836 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 837 838 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 839 stack_size = vma->vm_end - vma->vm_start; 840 /* 841 * Align this down to a page boundary as expand_stack 842 * will align it up. 843 */ 844 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 845 #ifdef CONFIG_STACK_GROWSUP 846 if (stack_size + stack_expand > rlim_stack) 847 stack_base = vma->vm_start + rlim_stack; 848 else 849 stack_base = vma->vm_end + stack_expand; 850 #else 851 if (stack_size + stack_expand > rlim_stack) 852 stack_base = vma->vm_end - rlim_stack; 853 else 854 stack_base = vma->vm_start - stack_expand; 855 #endif 856 current->mm->start_stack = bprm->p; 857 ret = expand_stack(vma, stack_base); 858 if (ret) 859 ret = -EFAULT; 860 861 out_unlock: 862 mmap_write_unlock(mm); 863 return ret; 864 } 865 EXPORT_SYMBOL(setup_arg_pages); 866 867 #else 868 869 /* 870 * Transfer the program arguments and environment from the holding pages 871 * onto the stack. The provided stack pointer is adjusted accordingly. 872 */ 873 int transfer_args_to_stack(struct linux_binprm *bprm, 874 unsigned long *sp_location) 875 { 876 unsigned long index, stop, sp; 877 int ret = 0; 878 879 stop = bprm->p >> PAGE_SHIFT; 880 sp = *sp_location; 881 882 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 883 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 884 char *src = kmap_local_page(bprm->page[index]) + offset; 885 sp -= PAGE_SIZE - offset; 886 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 887 ret = -EFAULT; 888 kunmap_local(src); 889 if (ret) 890 goto out; 891 } 892 893 *sp_location = sp; 894 895 out: 896 return ret; 897 } 898 EXPORT_SYMBOL(transfer_args_to_stack); 899 900 #endif /* CONFIG_MMU */ 901 902 static struct file *do_open_execat(int fd, struct filename *name, int flags) 903 { 904 struct file *file; 905 int err; 906 struct open_flags open_exec_flags = { 907 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 908 .acc_mode = MAY_EXEC, 909 .intent = LOOKUP_OPEN, 910 .lookup_flags = LOOKUP_FOLLOW, 911 }; 912 913 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 914 return ERR_PTR(-EINVAL); 915 if (flags & AT_SYMLINK_NOFOLLOW) 916 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 917 if (flags & AT_EMPTY_PATH) 918 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 919 920 file = do_filp_open(fd, name, &open_exec_flags); 921 if (IS_ERR(file)) 922 goto out; 923 924 /* 925 * may_open() has already checked for this, so it should be 926 * impossible to trip now. But we need to be extra cautious 927 * and check again at the very end too. 928 */ 929 err = -EACCES; 930 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 931 path_noexec(&file->f_path))) 932 goto exit; 933 934 err = deny_write_access(file); 935 if (err) 936 goto exit; 937 938 if (name->name[0] != '\0') 939 fsnotify_open(file); 940 941 out: 942 return file; 943 944 exit: 945 fput(file); 946 return ERR_PTR(err); 947 } 948 949 struct file *open_exec(const char *name) 950 { 951 struct filename *filename = getname_kernel(name); 952 struct file *f = ERR_CAST(filename); 953 954 if (!IS_ERR(filename)) { 955 f = do_open_execat(AT_FDCWD, filename, 0); 956 putname(filename); 957 } 958 return f; 959 } 960 EXPORT_SYMBOL(open_exec); 961 962 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC) 963 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 964 { 965 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 966 if (res > 0) 967 flush_icache_user_range(addr, addr + len); 968 return res; 969 } 970 EXPORT_SYMBOL(read_code); 971 #endif 972 973 /* 974 * Maps the mm_struct mm into the current task struct. 975 * On success, this function returns with exec_update_lock 976 * held for writing. 977 */ 978 static int exec_mmap(struct mm_struct *mm) 979 { 980 struct task_struct *tsk; 981 struct mm_struct *old_mm, *active_mm; 982 int ret; 983 984 /* Notify parent that we're no longer interested in the old VM */ 985 tsk = current; 986 old_mm = current->mm; 987 exec_mm_release(tsk, old_mm); 988 if (old_mm) 989 sync_mm_rss(old_mm); 990 991 ret = down_write_killable(&tsk->signal->exec_update_lock); 992 if (ret) 993 return ret; 994 995 if (old_mm) { 996 /* 997 * If there is a pending fatal signal perhaps a signal 998 * whose default action is to create a coredump get 999 * out and die instead of going through with the exec. 1000 */ 1001 ret = mmap_read_lock_killable(old_mm); 1002 if (ret) { 1003 up_write(&tsk->signal->exec_update_lock); 1004 return ret; 1005 } 1006 } 1007 1008 task_lock(tsk); 1009 membarrier_exec_mmap(mm); 1010 1011 local_irq_disable(); 1012 active_mm = tsk->active_mm; 1013 tsk->active_mm = mm; 1014 tsk->mm = mm; 1015 lru_gen_add_mm(mm); 1016 /* 1017 * This prevents preemption while active_mm is being loaded and 1018 * it and mm are being updated, which could cause problems for 1019 * lazy tlb mm refcounting when these are updated by context 1020 * switches. Not all architectures can handle irqs off over 1021 * activate_mm yet. 1022 */ 1023 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1024 local_irq_enable(); 1025 activate_mm(active_mm, mm); 1026 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1027 local_irq_enable(); 1028 task_unlock(tsk); 1029 lru_gen_use_mm(mm); 1030 if (old_mm) { 1031 mmap_read_unlock(old_mm); 1032 BUG_ON(active_mm != old_mm); 1033 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1034 mm_update_next_owner(old_mm); 1035 mmput(old_mm); 1036 return 0; 1037 } 1038 mmdrop(active_mm); 1039 return 0; 1040 } 1041 1042 static int de_thread(struct task_struct *tsk) 1043 { 1044 struct signal_struct *sig = tsk->signal; 1045 struct sighand_struct *oldsighand = tsk->sighand; 1046 spinlock_t *lock = &oldsighand->siglock; 1047 1048 if (thread_group_empty(tsk)) 1049 goto no_thread_group; 1050 1051 /* 1052 * Kill all other threads in the thread group. 1053 */ 1054 spin_lock_irq(lock); 1055 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1056 /* 1057 * Another group action in progress, just 1058 * return so that the signal is processed. 1059 */ 1060 spin_unlock_irq(lock); 1061 return -EAGAIN; 1062 } 1063 1064 sig->group_exec_task = tsk; 1065 sig->notify_count = zap_other_threads(tsk); 1066 if (!thread_group_leader(tsk)) 1067 sig->notify_count--; 1068 1069 while (sig->notify_count) { 1070 __set_current_state(TASK_KILLABLE); 1071 spin_unlock_irq(lock); 1072 schedule(); 1073 if (__fatal_signal_pending(tsk)) 1074 goto killed; 1075 spin_lock_irq(lock); 1076 } 1077 spin_unlock_irq(lock); 1078 1079 /* 1080 * At this point all other threads have exited, all we have to 1081 * do is to wait for the thread group leader to become inactive, 1082 * and to assume its PID: 1083 */ 1084 if (!thread_group_leader(tsk)) { 1085 struct task_struct *leader = tsk->group_leader; 1086 1087 for (;;) { 1088 cgroup_threadgroup_change_begin(tsk); 1089 write_lock_irq(&tasklist_lock); 1090 /* 1091 * Do this under tasklist_lock to ensure that 1092 * exit_notify() can't miss ->group_exec_task 1093 */ 1094 sig->notify_count = -1; 1095 if (likely(leader->exit_state)) 1096 break; 1097 __set_current_state(TASK_KILLABLE); 1098 write_unlock_irq(&tasklist_lock); 1099 cgroup_threadgroup_change_end(tsk); 1100 schedule(); 1101 if (__fatal_signal_pending(tsk)) 1102 goto killed; 1103 } 1104 1105 /* 1106 * The only record we have of the real-time age of a 1107 * process, regardless of execs it's done, is start_time. 1108 * All the past CPU time is accumulated in signal_struct 1109 * from sister threads now dead. But in this non-leader 1110 * exec, nothing survives from the original leader thread, 1111 * whose birth marks the true age of this process now. 1112 * When we take on its identity by switching to its PID, we 1113 * also take its birthdate (always earlier than our own). 1114 */ 1115 tsk->start_time = leader->start_time; 1116 tsk->start_boottime = leader->start_boottime; 1117 1118 BUG_ON(!same_thread_group(leader, tsk)); 1119 /* 1120 * An exec() starts a new thread group with the 1121 * TGID of the previous thread group. Rehash the 1122 * two threads with a switched PID, and release 1123 * the former thread group leader: 1124 */ 1125 1126 /* Become a process group leader with the old leader's pid. 1127 * The old leader becomes a thread of the this thread group. 1128 */ 1129 exchange_tids(tsk, leader); 1130 transfer_pid(leader, tsk, PIDTYPE_TGID); 1131 transfer_pid(leader, tsk, PIDTYPE_PGID); 1132 transfer_pid(leader, tsk, PIDTYPE_SID); 1133 1134 list_replace_rcu(&leader->tasks, &tsk->tasks); 1135 list_replace_init(&leader->sibling, &tsk->sibling); 1136 1137 tsk->group_leader = tsk; 1138 leader->group_leader = tsk; 1139 1140 tsk->exit_signal = SIGCHLD; 1141 leader->exit_signal = -1; 1142 1143 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1144 leader->exit_state = EXIT_DEAD; 1145 1146 /* 1147 * We are going to release_task()->ptrace_unlink() silently, 1148 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1149 * the tracer won't block again waiting for this thread. 1150 */ 1151 if (unlikely(leader->ptrace)) 1152 __wake_up_parent(leader, leader->parent); 1153 write_unlock_irq(&tasklist_lock); 1154 cgroup_threadgroup_change_end(tsk); 1155 1156 release_task(leader); 1157 } 1158 1159 sig->group_exec_task = NULL; 1160 sig->notify_count = 0; 1161 1162 no_thread_group: 1163 /* we have changed execution domain */ 1164 tsk->exit_signal = SIGCHLD; 1165 1166 BUG_ON(!thread_group_leader(tsk)); 1167 return 0; 1168 1169 killed: 1170 /* protects against exit_notify() and __exit_signal() */ 1171 read_lock(&tasklist_lock); 1172 sig->group_exec_task = NULL; 1173 sig->notify_count = 0; 1174 read_unlock(&tasklist_lock); 1175 return -EAGAIN; 1176 } 1177 1178 1179 /* 1180 * This function makes sure the current process has its own signal table, 1181 * so that flush_signal_handlers can later reset the handlers without 1182 * disturbing other processes. (Other processes might share the signal 1183 * table via the CLONE_SIGHAND option to clone().) 1184 */ 1185 static int unshare_sighand(struct task_struct *me) 1186 { 1187 struct sighand_struct *oldsighand = me->sighand; 1188 1189 if (refcount_read(&oldsighand->count) != 1) { 1190 struct sighand_struct *newsighand; 1191 /* 1192 * This ->sighand is shared with the CLONE_SIGHAND 1193 * but not CLONE_THREAD task, switch to the new one. 1194 */ 1195 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1196 if (!newsighand) 1197 return -ENOMEM; 1198 1199 refcount_set(&newsighand->count, 1); 1200 memcpy(newsighand->action, oldsighand->action, 1201 sizeof(newsighand->action)); 1202 1203 write_lock_irq(&tasklist_lock); 1204 spin_lock(&oldsighand->siglock); 1205 rcu_assign_pointer(me->sighand, newsighand); 1206 spin_unlock(&oldsighand->siglock); 1207 write_unlock_irq(&tasklist_lock); 1208 1209 __cleanup_sighand(oldsighand); 1210 } 1211 return 0; 1212 } 1213 1214 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1215 { 1216 task_lock(tsk); 1217 /* Always NUL terminated and zero-padded */ 1218 strscpy_pad(buf, tsk->comm, buf_size); 1219 task_unlock(tsk); 1220 return buf; 1221 } 1222 EXPORT_SYMBOL_GPL(__get_task_comm); 1223 1224 /* 1225 * These functions flushes out all traces of the currently running executable 1226 * so that a new one can be started 1227 */ 1228 1229 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1230 { 1231 task_lock(tsk); 1232 trace_task_rename(tsk, buf); 1233 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1234 task_unlock(tsk); 1235 perf_event_comm(tsk, exec); 1236 } 1237 1238 /* 1239 * Calling this is the point of no return. None of the failures will be 1240 * seen by userspace since either the process is already taking a fatal 1241 * signal (via de_thread() or coredump), or will have SEGV raised 1242 * (after exec_mmap()) by search_binary_handler (see below). 1243 */ 1244 int begin_new_exec(struct linux_binprm * bprm) 1245 { 1246 struct task_struct *me = current; 1247 int retval; 1248 1249 /* Once we are committed compute the creds */ 1250 retval = bprm_creds_from_file(bprm); 1251 if (retval) 1252 return retval; 1253 1254 /* 1255 * Ensure all future errors are fatal. 1256 */ 1257 bprm->point_of_no_return = true; 1258 1259 /* 1260 * Make this the only thread in the thread group. 1261 */ 1262 retval = de_thread(me); 1263 if (retval) 1264 goto out; 1265 1266 /* 1267 * Cancel any io_uring activity across execve 1268 */ 1269 io_uring_task_cancel(); 1270 1271 /* Ensure the files table is not shared. */ 1272 retval = unshare_files(); 1273 if (retval) 1274 goto out; 1275 1276 /* 1277 * Must be called _before_ exec_mmap() as bprm->mm is 1278 * not visible until then. This also enables the update 1279 * to be lockless. 1280 */ 1281 retval = set_mm_exe_file(bprm->mm, bprm->file); 1282 if (retval) 1283 goto out; 1284 1285 /* If the binary is not readable then enforce mm->dumpable=0 */ 1286 would_dump(bprm, bprm->file); 1287 if (bprm->have_execfd) 1288 would_dump(bprm, bprm->executable); 1289 1290 /* 1291 * Release all of the old mmap stuff 1292 */ 1293 acct_arg_size(bprm, 0); 1294 retval = exec_mmap(bprm->mm); 1295 if (retval) 1296 goto out; 1297 1298 bprm->mm = NULL; 1299 1300 #ifdef CONFIG_POSIX_TIMERS 1301 spin_lock_irq(&me->sighand->siglock); 1302 posix_cpu_timers_exit(me); 1303 spin_unlock_irq(&me->sighand->siglock); 1304 exit_itimers(me); 1305 flush_itimer_signals(); 1306 #endif 1307 1308 /* 1309 * Make the signal table private. 1310 */ 1311 retval = unshare_sighand(me); 1312 if (retval) 1313 goto out_unlock; 1314 1315 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | 1316 PF_NOFREEZE | PF_NO_SETAFFINITY); 1317 flush_thread(); 1318 me->personality &= ~bprm->per_clear; 1319 1320 clear_syscall_work_syscall_user_dispatch(me); 1321 1322 /* 1323 * We have to apply CLOEXEC before we change whether the process is 1324 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1325 * trying to access the should-be-closed file descriptors of a process 1326 * undergoing exec(2). 1327 */ 1328 do_close_on_exec(me->files); 1329 1330 if (bprm->secureexec) { 1331 /* Make sure parent cannot signal privileged process. */ 1332 me->pdeath_signal = 0; 1333 1334 /* 1335 * For secureexec, reset the stack limit to sane default to 1336 * avoid bad behavior from the prior rlimits. This has to 1337 * happen before arch_pick_mmap_layout(), which examines 1338 * RLIMIT_STACK, but after the point of no return to avoid 1339 * needing to clean up the change on failure. 1340 */ 1341 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1342 bprm->rlim_stack.rlim_cur = _STK_LIM; 1343 } 1344 1345 me->sas_ss_sp = me->sas_ss_size = 0; 1346 1347 /* 1348 * Figure out dumpability. Note that this checking only of current 1349 * is wrong, but userspace depends on it. This should be testing 1350 * bprm->secureexec instead. 1351 */ 1352 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1353 !(uid_eq(current_euid(), current_uid()) && 1354 gid_eq(current_egid(), current_gid()))) 1355 set_dumpable(current->mm, suid_dumpable); 1356 else 1357 set_dumpable(current->mm, SUID_DUMP_USER); 1358 1359 perf_event_exec(); 1360 __set_task_comm(me, kbasename(bprm->filename), true); 1361 1362 /* An exec changes our domain. We are no longer part of the thread 1363 group */ 1364 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1365 flush_signal_handlers(me, 0); 1366 1367 retval = set_cred_ucounts(bprm->cred); 1368 if (retval < 0) 1369 goto out_unlock; 1370 1371 /* 1372 * install the new credentials for this executable 1373 */ 1374 security_bprm_committing_creds(bprm); 1375 1376 commit_creds(bprm->cred); 1377 bprm->cred = NULL; 1378 1379 /* 1380 * Disable monitoring for regular users 1381 * when executing setuid binaries. Must 1382 * wait until new credentials are committed 1383 * by commit_creds() above 1384 */ 1385 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1386 perf_event_exit_task(me); 1387 /* 1388 * cred_guard_mutex must be held at least to this point to prevent 1389 * ptrace_attach() from altering our determination of the task's 1390 * credentials; any time after this it may be unlocked. 1391 */ 1392 security_bprm_committed_creds(bprm); 1393 1394 /* Pass the opened binary to the interpreter. */ 1395 if (bprm->have_execfd) { 1396 retval = get_unused_fd_flags(0); 1397 if (retval < 0) 1398 goto out_unlock; 1399 fd_install(retval, bprm->executable); 1400 bprm->executable = NULL; 1401 bprm->execfd = retval; 1402 } 1403 return 0; 1404 1405 out_unlock: 1406 up_write(&me->signal->exec_update_lock); 1407 out: 1408 return retval; 1409 } 1410 EXPORT_SYMBOL(begin_new_exec); 1411 1412 void would_dump(struct linux_binprm *bprm, struct file *file) 1413 { 1414 struct inode *inode = file_inode(file); 1415 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 1416 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) { 1417 struct user_namespace *old, *user_ns; 1418 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1419 1420 /* Ensure mm->user_ns contains the executable */ 1421 user_ns = old = bprm->mm->user_ns; 1422 while ((user_ns != &init_user_ns) && 1423 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode)) 1424 user_ns = user_ns->parent; 1425 1426 if (old != user_ns) { 1427 bprm->mm->user_ns = get_user_ns(user_ns); 1428 put_user_ns(old); 1429 } 1430 } 1431 } 1432 EXPORT_SYMBOL(would_dump); 1433 1434 void setup_new_exec(struct linux_binprm * bprm) 1435 { 1436 /* Setup things that can depend upon the personality */ 1437 struct task_struct *me = current; 1438 1439 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1440 1441 arch_setup_new_exec(); 1442 1443 /* Set the new mm task size. We have to do that late because it may 1444 * depend on TIF_32BIT which is only updated in flush_thread() on 1445 * some architectures like powerpc 1446 */ 1447 me->mm->task_size = TASK_SIZE; 1448 up_write(&me->signal->exec_update_lock); 1449 mutex_unlock(&me->signal->cred_guard_mutex); 1450 } 1451 EXPORT_SYMBOL(setup_new_exec); 1452 1453 /* Runs immediately before start_thread() takes over. */ 1454 void finalize_exec(struct linux_binprm *bprm) 1455 { 1456 /* Store any stack rlimit changes before starting thread. */ 1457 task_lock(current->group_leader); 1458 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1459 task_unlock(current->group_leader); 1460 } 1461 EXPORT_SYMBOL(finalize_exec); 1462 1463 /* 1464 * Prepare credentials and lock ->cred_guard_mutex. 1465 * setup_new_exec() commits the new creds and drops the lock. 1466 * Or, if exec fails before, free_bprm() should release ->cred 1467 * and unlock. 1468 */ 1469 static int prepare_bprm_creds(struct linux_binprm *bprm) 1470 { 1471 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1472 return -ERESTARTNOINTR; 1473 1474 bprm->cred = prepare_exec_creds(); 1475 if (likely(bprm->cred)) 1476 return 0; 1477 1478 mutex_unlock(¤t->signal->cred_guard_mutex); 1479 return -ENOMEM; 1480 } 1481 1482 static void free_bprm(struct linux_binprm *bprm) 1483 { 1484 if (bprm->mm) { 1485 acct_arg_size(bprm, 0); 1486 mmput(bprm->mm); 1487 } 1488 free_arg_pages(bprm); 1489 if (bprm->cred) { 1490 mutex_unlock(¤t->signal->cred_guard_mutex); 1491 abort_creds(bprm->cred); 1492 } 1493 if (bprm->file) { 1494 allow_write_access(bprm->file); 1495 fput(bprm->file); 1496 } 1497 if (bprm->executable) 1498 fput(bprm->executable); 1499 /* If a binfmt changed the interp, free it. */ 1500 if (bprm->interp != bprm->filename) 1501 kfree(bprm->interp); 1502 kfree(bprm->fdpath); 1503 kfree(bprm); 1504 } 1505 1506 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1507 { 1508 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1509 int retval = -ENOMEM; 1510 if (!bprm) 1511 goto out; 1512 1513 if (fd == AT_FDCWD || filename->name[0] == '/') { 1514 bprm->filename = filename->name; 1515 } else { 1516 if (filename->name[0] == '\0') 1517 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1518 else 1519 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1520 fd, filename->name); 1521 if (!bprm->fdpath) 1522 goto out_free; 1523 1524 bprm->filename = bprm->fdpath; 1525 } 1526 bprm->interp = bprm->filename; 1527 1528 retval = bprm_mm_init(bprm); 1529 if (retval) 1530 goto out_free; 1531 return bprm; 1532 1533 out_free: 1534 free_bprm(bprm); 1535 out: 1536 return ERR_PTR(retval); 1537 } 1538 1539 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1540 { 1541 /* If a binfmt changed the interp, free it first. */ 1542 if (bprm->interp != bprm->filename) 1543 kfree(bprm->interp); 1544 bprm->interp = kstrdup(interp, GFP_KERNEL); 1545 if (!bprm->interp) 1546 return -ENOMEM; 1547 return 0; 1548 } 1549 EXPORT_SYMBOL(bprm_change_interp); 1550 1551 /* 1552 * determine how safe it is to execute the proposed program 1553 * - the caller must hold ->cred_guard_mutex to protect against 1554 * PTRACE_ATTACH or seccomp thread-sync 1555 */ 1556 static void check_unsafe_exec(struct linux_binprm *bprm) 1557 { 1558 struct task_struct *p = current, *t; 1559 unsigned n_fs; 1560 1561 if (p->ptrace) 1562 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1563 1564 /* 1565 * This isn't strictly necessary, but it makes it harder for LSMs to 1566 * mess up. 1567 */ 1568 if (task_no_new_privs(current)) 1569 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1570 1571 t = p; 1572 n_fs = 1; 1573 spin_lock(&p->fs->lock); 1574 rcu_read_lock(); 1575 while_each_thread(p, t) { 1576 if (t->fs == p->fs) 1577 n_fs++; 1578 } 1579 rcu_read_unlock(); 1580 1581 if (p->fs->users > n_fs) 1582 bprm->unsafe |= LSM_UNSAFE_SHARE; 1583 else 1584 p->fs->in_exec = 1; 1585 spin_unlock(&p->fs->lock); 1586 } 1587 1588 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1589 { 1590 /* Handle suid and sgid on files */ 1591 struct user_namespace *mnt_userns; 1592 struct inode *inode = file_inode(file); 1593 unsigned int mode; 1594 kuid_t uid; 1595 kgid_t gid; 1596 1597 if (!mnt_may_suid(file->f_path.mnt)) 1598 return; 1599 1600 if (task_no_new_privs(current)) 1601 return; 1602 1603 mode = READ_ONCE(inode->i_mode); 1604 if (!(mode & (S_ISUID|S_ISGID))) 1605 return; 1606 1607 mnt_userns = file_mnt_user_ns(file); 1608 1609 /* Be careful if suid/sgid is set */ 1610 inode_lock(inode); 1611 1612 /* reload atomically mode/uid/gid now that lock held */ 1613 mode = inode->i_mode; 1614 uid = i_uid_into_mnt(mnt_userns, inode); 1615 gid = i_gid_into_mnt(mnt_userns, inode); 1616 inode_unlock(inode); 1617 1618 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1619 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1620 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1621 return; 1622 1623 if (mode & S_ISUID) { 1624 bprm->per_clear |= PER_CLEAR_ON_SETID; 1625 bprm->cred->euid = uid; 1626 } 1627 1628 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1629 bprm->per_clear |= PER_CLEAR_ON_SETID; 1630 bprm->cred->egid = gid; 1631 } 1632 } 1633 1634 /* 1635 * Compute brpm->cred based upon the final binary. 1636 */ 1637 static int bprm_creds_from_file(struct linux_binprm *bprm) 1638 { 1639 /* Compute creds based on which file? */ 1640 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1641 1642 bprm_fill_uid(bprm, file); 1643 return security_bprm_creds_from_file(bprm, file); 1644 } 1645 1646 /* 1647 * Fill the binprm structure from the inode. 1648 * Read the first BINPRM_BUF_SIZE bytes 1649 * 1650 * This may be called multiple times for binary chains (scripts for example). 1651 */ 1652 static int prepare_binprm(struct linux_binprm *bprm) 1653 { 1654 loff_t pos = 0; 1655 1656 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1657 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1658 } 1659 1660 /* 1661 * Arguments are '\0' separated strings found at the location bprm->p 1662 * points to; chop off the first by relocating brpm->p to right after 1663 * the first '\0' encountered. 1664 */ 1665 int remove_arg_zero(struct linux_binprm *bprm) 1666 { 1667 int ret = 0; 1668 unsigned long offset; 1669 char *kaddr; 1670 struct page *page; 1671 1672 if (!bprm->argc) 1673 return 0; 1674 1675 do { 1676 offset = bprm->p & ~PAGE_MASK; 1677 page = get_arg_page(bprm, bprm->p, 0); 1678 if (!page) { 1679 ret = -EFAULT; 1680 goto out; 1681 } 1682 kaddr = kmap_local_page(page); 1683 1684 for (; offset < PAGE_SIZE && kaddr[offset]; 1685 offset++, bprm->p++) 1686 ; 1687 1688 kunmap_local(kaddr); 1689 put_arg_page(page); 1690 } while (offset == PAGE_SIZE); 1691 1692 bprm->p++; 1693 bprm->argc--; 1694 ret = 0; 1695 1696 out: 1697 return ret; 1698 } 1699 EXPORT_SYMBOL(remove_arg_zero); 1700 1701 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1702 /* 1703 * cycle the list of binary formats handler, until one recognizes the image 1704 */ 1705 static int search_binary_handler(struct linux_binprm *bprm) 1706 { 1707 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1708 struct linux_binfmt *fmt; 1709 int retval; 1710 1711 retval = prepare_binprm(bprm); 1712 if (retval < 0) 1713 return retval; 1714 1715 retval = security_bprm_check(bprm); 1716 if (retval) 1717 return retval; 1718 1719 retval = -ENOENT; 1720 retry: 1721 read_lock(&binfmt_lock); 1722 list_for_each_entry(fmt, &formats, lh) { 1723 if (!try_module_get(fmt->module)) 1724 continue; 1725 read_unlock(&binfmt_lock); 1726 1727 retval = fmt->load_binary(bprm); 1728 1729 read_lock(&binfmt_lock); 1730 put_binfmt(fmt); 1731 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1732 read_unlock(&binfmt_lock); 1733 return retval; 1734 } 1735 } 1736 read_unlock(&binfmt_lock); 1737 1738 if (need_retry) { 1739 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1740 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1741 return retval; 1742 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1743 return retval; 1744 need_retry = false; 1745 goto retry; 1746 } 1747 1748 return retval; 1749 } 1750 1751 static int exec_binprm(struct linux_binprm *bprm) 1752 { 1753 pid_t old_pid, old_vpid; 1754 int ret, depth; 1755 1756 /* Need to fetch pid before load_binary changes it */ 1757 old_pid = current->pid; 1758 rcu_read_lock(); 1759 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1760 rcu_read_unlock(); 1761 1762 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1763 for (depth = 0;; depth++) { 1764 struct file *exec; 1765 if (depth > 5) 1766 return -ELOOP; 1767 1768 ret = search_binary_handler(bprm); 1769 if (ret < 0) 1770 return ret; 1771 if (!bprm->interpreter) 1772 break; 1773 1774 exec = bprm->file; 1775 bprm->file = bprm->interpreter; 1776 bprm->interpreter = NULL; 1777 1778 allow_write_access(exec); 1779 if (unlikely(bprm->have_execfd)) { 1780 if (bprm->executable) { 1781 fput(exec); 1782 return -ENOEXEC; 1783 } 1784 bprm->executable = exec; 1785 } else 1786 fput(exec); 1787 } 1788 1789 audit_bprm(bprm); 1790 trace_sched_process_exec(current, old_pid, bprm); 1791 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1792 proc_exec_connector(current); 1793 return 0; 1794 } 1795 1796 /* 1797 * sys_execve() executes a new program. 1798 */ 1799 static int bprm_execve(struct linux_binprm *bprm, 1800 int fd, struct filename *filename, int flags) 1801 { 1802 struct file *file; 1803 int retval; 1804 1805 retval = prepare_bprm_creds(bprm); 1806 if (retval) 1807 return retval; 1808 1809 check_unsafe_exec(bprm); 1810 current->in_execve = 1; 1811 1812 file = do_open_execat(fd, filename, flags); 1813 retval = PTR_ERR(file); 1814 if (IS_ERR(file)) 1815 goto out_unmark; 1816 1817 sched_exec(); 1818 1819 bprm->file = file; 1820 /* 1821 * Record that a name derived from an O_CLOEXEC fd will be 1822 * inaccessible after exec. This allows the code in exec to 1823 * choose to fail when the executable is not mmaped into the 1824 * interpreter and an open file descriptor is not passed to 1825 * the interpreter. This makes for a better user experience 1826 * than having the interpreter start and then immediately fail 1827 * when it finds the executable is inaccessible. 1828 */ 1829 if (bprm->fdpath && get_close_on_exec(fd)) 1830 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1831 1832 /* Set the unchanging part of bprm->cred */ 1833 retval = security_bprm_creds_for_exec(bprm); 1834 if (retval) 1835 goto out; 1836 1837 retval = exec_binprm(bprm); 1838 if (retval < 0) 1839 goto out; 1840 1841 /* execve succeeded */ 1842 current->fs->in_exec = 0; 1843 current->in_execve = 0; 1844 rseq_execve(current); 1845 acct_update_integrals(current); 1846 task_numa_free(current, false); 1847 return retval; 1848 1849 out: 1850 /* 1851 * If past the point of no return ensure the code never 1852 * returns to the userspace process. Use an existing fatal 1853 * signal if present otherwise terminate the process with 1854 * SIGSEGV. 1855 */ 1856 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1857 force_fatal_sig(SIGSEGV); 1858 1859 out_unmark: 1860 current->fs->in_exec = 0; 1861 current->in_execve = 0; 1862 1863 return retval; 1864 } 1865 1866 static int do_execveat_common(int fd, struct filename *filename, 1867 struct user_arg_ptr argv, 1868 struct user_arg_ptr envp, 1869 int flags) 1870 { 1871 struct linux_binprm *bprm; 1872 int retval; 1873 1874 if (IS_ERR(filename)) 1875 return PTR_ERR(filename); 1876 1877 /* 1878 * We move the actual failure in case of RLIMIT_NPROC excess from 1879 * set*uid() to execve() because too many poorly written programs 1880 * don't check setuid() return code. Here we additionally recheck 1881 * whether NPROC limit is still exceeded. 1882 */ 1883 if ((current->flags & PF_NPROC_EXCEEDED) && 1884 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1885 retval = -EAGAIN; 1886 goto out_ret; 1887 } 1888 1889 /* We're below the limit (still or again), so we don't want to make 1890 * further execve() calls fail. */ 1891 current->flags &= ~PF_NPROC_EXCEEDED; 1892 1893 bprm = alloc_bprm(fd, filename); 1894 if (IS_ERR(bprm)) { 1895 retval = PTR_ERR(bprm); 1896 goto out_ret; 1897 } 1898 1899 retval = count(argv, MAX_ARG_STRINGS); 1900 if (retval == 0) 1901 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1902 current->comm, bprm->filename); 1903 if (retval < 0) 1904 goto out_free; 1905 bprm->argc = retval; 1906 1907 retval = count(envp, MAX_ARG_STRINGS); 1908 if (retval < 0) 1909 goto out_free; 1910 bprm->envc = retval; 1911 1912 retval = bprm_stack_limits(bprm); 1913 if (retval < 0) 1914 goto out_free; 1915 1916 retval = copy_string_kernel(bprm->filename, bprm); 1917 if (retval < 0) 1918 goto out_free; 1919 bprm->exec = bprm->p; 1920 1921 retval = copy_strings(bprm->envc, envp, bprm); 1922 if (retval < 0) 1923 goto out_free; 1924 1925 retval = copy_strings(bprm->argc, argv, bprm); 1926 if (retval < 0) 1927 goto out_free; 1928 1929 /* 1930 * When argv is empty, add an empty string ("") as argv[0] to 1931 * ensure confused userspace programs that start processing 1932 * from argv[1] won't end up walking envp. See also 1933 * bprm_stack_limits(). 1934 */ 1935 if (bprm->argc == 0) { 1936 retval = copy_string_kernel("", bprm); 1937 if (retval < 0) 1938 goto out_free; 1939 bprm->argc = 1; 1940 } 1941 1942 retval = bprm_execve(bprm, fd, filename, flags); 1943 out_free: 1944 free_bprm(bprm); 1945 1946 out_ret: 1947 putname(filename); 1948 return retval; 1949 } 1950 1951 int kernel_execve(const char *kernel_filename, 1952 const char *const *argv, const char *const *envp) 1953 { 1954 struct filename *filename; 1955 struct linux_binprm *bprm; 1956 int fd = AT_FDCWD; 1957 int retval; 1958 1959 /* It is non-sense for kernel threads to call execve */ 1960 if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) 1961 return -EINVAL; 1962 1963 filename = getname_kernel(kernel_filename); 1964 if (IS_ERR(filename)) 1965 return PTR_ERR(filename); 1966 1967 bprm = alloc_bprm(fd, filename); 1968 if (IS_ERR(bprm)) { 1969 retval = PTR_ERR(bprm); 1970 goto out_ret; 1971 } 1972 1973 retval = count_strings_kernel(argv); 1974 if (WARN_ON_ONCE(retval == 0)) 1975 retval = -EINVAL; 1976 if (retval < 0) 1977 goto out_free; 1978 bprm->argc = retval; 1979 1980 retval = count_strings_kernel(envp); 1981 if (retval < 0) 1982 goto out_free; 1983 bprm->envc = retval; 1984 1985 retval = bprm_stack_limits(bprm); 1986 if (retval < 0) 1987 goto out_free; 1988 1989 retval = copy_string_kernel(bprm->filename, bprm); 1990 if (retval < 0) 1991 goto out_free; 1992 bprm->exec = bprm->p; 1993 1994 retval = copy_strings_kernel(bprm->envc, envp, bprm); 1995 if (retval < 0) 1996 goto out_free; 1997 1998 retval = copy_strings_kernel(bprm->argc, argv, bprm); 1999 if (retval < 0) 2000 goto out_free; 2001 2002 retval = bprm_execve(bprm, fd, filename, 0); 2003 out_free: 2004 free_bprm(bprm); 2005 out_ret: 2006 putname(filename); 2007 return retval; 2008 } 2009 2010 static int do_execve(struct filename *filename, 2011 const char __user *const __user *__argv, 2012 const char __user *const __user *__envp) 2013 { 2014 struct user_arg_ptr argv = { .ptr.native = __argv }; 2015 struct user_arg_ptr envp = { .ptr.native = __envp }; 2016 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2017 } 2018 2019 static int do_execveat(int fd, struct filename *filename, 2020 const char __user *const __user *__argv, 2021 const char __user *const __user *__envp, 2022 int flags) 2023 { 2024 struct user_arg_ptr argv = { .ptr.native = __argv }; 2025 struct user_arg_ptr envp = { .ptr.native = __envp }; 2026 2027 return do_execveat_common(fd, filename, argv, envp, flags); 2028 } 2029 2030 #ifdef CONFIG_COMPAT 2031 static int compat_do_execve(struct filename *filename, 2032 const compat_uptr_t __user *__argv, 2033 const compat_uptr_t __user *__envp) 2034 { 2035 struct user_arg_ptr argv = { 2036 .is_compat = true, 2037 .ptr.compat = __argv, 2038 }; 2039 struct user_arg_ptr envp = { 2040 .is_compat = true, 2041 .ptr.compat = __envp, 2042 }; 2043 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2044 } 2045 2046 static int compat_do_execveat(int fd, struct filename *filename, 2047 const compat_uptr_t __user *__argv, 2048 const compat_uptr_t __user *__envp, 2049 int flags) 2050 { 2051 struct user_arg_ptr argv = { 2052 .is_compat = true, 2053 .ptr.compat = __argv, 2054 }; 2055 struct user_arg_ptr envp = { 2056 .is_compat = true, 2057 .ptr.compat = __envp, 2058 }; 2059 return do_execveat_common(fd, filename, argv, envp, flags); 2060 } 2061 #endif 2062 2063 void set_binfmt(struct linux_binfmt *new) 2064 { 2065 struct mm_struct *mm = current->mm; 2066 2067 if (mm->binfmt) 2068 module_put(mm->binfmt->module); 2069 2070 mm->binfmt = new; 2071 if (new) 2072 __module_get(new->module); 2073 } 2074 EXPORT_SYMBOL(set_binfmt); 2075 2076 /* 2077 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2078 */ 2079 void set_dumpable(struct mm_struct *mm, int value) 2080 { 2081 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2082 return; 2083 2084 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2085 } 2086 2087 SYSCALL_DEFINE3(execve, 2088 const char __user *, filename, 2089 const char __user *const __user *, argv, 2090 const char __user *const __user *, envp) 2091 { 2092 return do_execve(getname(filename), argv, envp); 2093 } 2094 2095 SYSCALL_DEFINE5(execveat, 2096 int, fd, const char __user *, filename, 2097 const char __user *const __user *, argv, 2098 const char __user *const __user *, envp, 2099 int, flags) 2100 { 2101 return do_execveat(fd, 2102 getname_uflags(filename, flags), 2103 argv, envp, flags); 2104 } 2105 2106 #ifdef CONFIG_COMPAT 2107 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2108 const compat_uptr_t __user *, argv, 2109 const compat_uptr_t __user *, envp) 2110 { 2111 return compat_do_execve(getname(filename), argv, envp); 2112 } 2113 2114 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2115 const char __user *, filename, 2116 const compat_uptr_t __user *, argv, 2117 const compat_uptr_t __user *, envp, 2118 int, flags) 2119 { 2120 return compat_do_execveat(fd, 2121 getname_uflags(filename, flags), 2122 argv, envp, flags); 2123 } 2124 #endif 2125 2126 #ifdef CONFIG_SYSCTL 2127 2128 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write, 2129 void *buffer, size_t *lenp, loff_t *ppos) 2130 { 2131 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2132 2133 if (!error) 2134 validate_coredump_safety(); 2135 return error; 2136 } 2137 2138 static struct ctl_table fs_exec_sysctls[] = { 2139 { 2140 .procname = "suid_dumpable", 2141 .data = &suid_dumpable, 2142 .maxlen = sizeof(int), 2143 .mode = 0644, 2144 .proc_handler = proc_dointvec_minmax_coredump, 2145 .extra1 = SYSCTL_ZERO, 2146 .extra2 = SYSCTL_TWO, 2147 }, 2148 { } 2149 }; 2150 2151 static int __init init_fs_exec_sysctls(void) 2152 { 2153 register_sysctl_init("fs", fs_exec_sysctls); 2154 return 0; 2155 } 2156 2157 fs_initcall(init_fs_exec_sysctls); 2158 #endif /* CONFIG_SYSCTL */ 2159