1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/vmacache.h> 30 #include <linux/stat.h> 31 #include <linux/fcntl.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/coredump.h> 37 #include <linux/sched/signal.h> 38 #include <linux/sched/numa_balancing.h> 39 #include <linux/sched/task.h> 40 #include <linux/pagemap.h> 41 #include <linux/perf_event.h> 42 #include <linux/highmem.h> 43 #include <linux/spinlock.h> 44 #include <linux/key.h> 45 #include <linux/personality.h> 46 #include <linux/binfmts.h> 47 #include <linux/utsname.h> 48 #include <linux/pid_namespace.h> 49 #include <linux/module.h> 50 #include <linux/namei.h> 51 #include <linux/mount.h> 52 #include <linux/security.h> 53 #include <linux/syscalls.h> 54 #include <linux/tsacct_kern.h> 55 #include <linux/cn_proc.h> 56 #include <linux/audit.h> 57 #include <linux/tracehook.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 61 #include <linux/pipe_fs_i.h> 62 #include <linux/oom.h> 63 #include <linux/compat.h> 64 #include <linux/vmalloc.h> 65 66 #include <linux/uaccess.h> 67 #include <asm/mmu_context.h> 68 #include <asm/tlb.h> 69 70 #include <trace/events/task.h> 71 #include "internal.h" 72 73 #include <trace/events/sched.h> 74 75 int suid_dumpable = 0; 76 77 static LIST_HEAD(formats); 78 static DEFINE_RWLOCK(binfmt_lock); 79 80 void __register_binfmt(struct linux_binfmt * fmt, int insert) 81 { 82 BUG_ON(!fmt); 83 if (WARN_ON(!fmt->load_binary)) 84 return; 85 write_lock(&binfmt_lock); 86 insert ? list_add(&fmt->lh, &formats) : 87 list_add_tail(&fmt->lh, &formats); 88 write_unlock(&binfmt_lock); 89 } 90 91 EXPORT_SYMBOL(__register_binfmt); 92 93 void unregister_binfmt(struct linux_binfmt * fmt) 94 { 95 write_lock(&binfmt_lock); 96 list_del(&fmt->lh); 97 write_unlock(&binfmt_lock); 98 } 99 100 EXPORT_SYMBOL(unregister_binfmt); 101 102 static inline void put_binfmt(struct linux_binfmt * fmt) 103 { 104 module_put(fmt->module); 105 } 106 107 bool path_noexec(const struct path *path) 108 { 109 return (path->mnt->mnt_flags & MNT_NOEXEC) || 110 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 111 } 112 113 #ifdef CONFIG_USELIB 114 /* 115 * Note that a shared library must be both readable and executable due to 116 * security reasons. 117 * 118 * Also note that we take the address to load from from the file itself. 119 */ 120 SYSCALL_DEFINE1(uselib, const char __user *, library) 121 { 122 struct linux_binfmt *fmt; 123 struct file *file; 124 struct filename *tmp = getname(library); 125 int error = PTR_ERR(tmp); 126 static const struct open_flags uselib_flags = { 127 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 128 .acc_mode = MAY_READ | MAY_EXEC, 129 .intent = LOOKUP_OPEN, 130 .lookup_flags = LOOKUP_FOLLOW, 131 }; 132 133 if (IS_ERR(tmp)) 134 goto out; 135 136 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 137 putname(tmp); 138 error = PTR_ERR(file); 139 if (IS_ERR(file)) 140 goto out; 141 142 error = -EINVAL; 143 if (!S_ISREG(file_inode(file)->i_mode)) 144 goto exit; 145 146 error = -EACCES; 147 if (path_noexec(&file->f_path)) 148 goto exit; 149 150 fsnotify_open(file); 151 152 error = -ENOEXEC; 153 154 read_lock(&binfmt_lock); 155 list_for_each_entry(fmt, &formats, lh) { 156 if (!fmt->load_shlib) 157 continue; 158 if (!try_module_get(fmt->module)) 159 continue; 160 read_unlock(&binfmt_lock); 161 error = fmt->load_shlib(file); 162 read_lock(&binfmt_lock); 163 put_binfmt(fmt); 164 if (error != -ENOEXEC) 165 break; 166 } 167 read_unlock(&binfmt_lock); 168 exit: 169 fput(file); 170 out: 171 return error; 172 } 173 #endif /* #ifdef CONFIG_USELIB */ 174 175 #ifdef CONFIG_MMU 176 /* 177 * The nascent bprm->mm is not visible until exec_mmap() but it can 178 * use a lot of memory, account these pages in current->mm temporary 179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 180 * change the counter back via acct_arg_size(0). 181 */ 182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 183 { 184 struct mm_struct *mm = current->mm; 185 long diff = (long)(pages - bprm->vma_pages); 186 187 if (!mm || !diff) 188 return; 189 190 bprm->vma_pages = pages; 191 add_mm_counter(mm, MM_ANONPAGES, diff); 192 } 193 194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 195 int write) 196 { 197 struct page *page; 198 int ret; 199 unsigned int gup_flags = FOLL_FORCE; 200 201 #ifdef CONFIG_STACK_GROWSUP 202 if (write) { 203 ret = expand_downwards(bprm->vma, pos); 204 if (ret < 0) 205 return NULL; 206 } 207 #endif 208 209 if (write) 210 gup_flags |= FOLL_WRITE; 211 212 /* 213 * We are doing an exec(). 'current' is the process 214 * doing the exec and bprm->mm is the new process's mm. 215 */ 216 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags, 217 &page, NULL, NULL); 218 if (ret <= 0) 219 return NULL; 220 221 if (write) { 222 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 223 struct rlimit *rlim; 224 225 acct_arg_size(bprm, size / PAGE_SIZE); 226 227 /* 228 * We've historically supported up to 32 pages (ARG_MAX) 229 * of argument strings even with small stacks 230 */ 231 if (size <= ARG_MAX) 232 return page; 233 234 /* 235 * Limit to 1/4-th the stack size for the argv+env strings. 236 * This ensures that: 237 * - the remaining binfmt code will not run out of stack space, 238 * - the program will have a reasonable amount of stack left 239 * to work from. 240 */ 241 rlim = current->signal->rlim; 242 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 243 put_page(page); 244 return NULL; 245 } 246 } 247 248 return page; 249 } 250 251 static void put_arg_page(struct page *page) 252 { 253 put_page(page); 254 } 255 256 static void free_arg_pages(struct linux_binprm *bprm) 257 { 258 } 259 260 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 261 struct page *page) 262 { 263 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 264 } 265 266 static int __bprm_mm_init(struct linux_binprm *bprm) 267 { 268 int err; 269 struct vm_area_struct *vma = NULL; 270 struct mm_struct *mm = bprm->mm; 271 272 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 273 if (!vma) 274 return -ENOMEM; 275 276 if (down_write_killable(&mm->mmap_sem)) { 277 err = -EINTR; 278 goto err_free; 279 } 280 vma->vm_mm = mm; 281 282 /* 283 * Place the stack at the largest stack address the architecture 284 * supports. Later, we'll move this to an appropriate place. We don't 285 * use STACK_TOP because that can depend on attributes which aren't 286 * configured yet. 287 */ 288 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 289 vma->vm_end = STACK_TOP_MAX; 290 vma->vm_start = vma->vm_end - PAGE_SIZE; 291 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 292 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 293 INIT_LIST_HEAD(&vma->anon_vma_chain); 294 295 err = insert_vm_struct(mm, vma); 296 if (err) 297 goto err; 298 299 mm->stack_vm = mm->total_vm = 1; 300 arch_bprm_mm_init(mm, vma); 301 up_write(&mm->mmap_sem); 302 bprm->p = vma->vm_end - sizeof(void *); 303 return 0; 304 err: 305 up_write(&mm->mmap_sem); 306 err_free: 307 bprm->vma = NULL; 308 kmem_cache_free(vm_area_cachep, vma); 309 return err; 310 } 311 312 static bool valid_arg_len(struct linux_binprm *bprm, long len) 313 { 314 return len <= MAX_ARG_STRLEN; 315 } 316 317 #else 318 319 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 320 { 321 } 322 323 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 324 int write) 325 { 326 struct page *page; 327 328 page = bprm->page[pos / PAGE_SIZE]; 329 if (!page && write) { 330 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 331 if (!page) 332 return NULL; 333 bprm->page[pos / PAGE_SIZE] = page; 334 } 335 336 return page; 337 } 338 339 static void put_arg_page(struct page *page) 340 { 341 } 342 343 static void free_arg_page(struct linux_binprm *bprm, int i) 344 { 345 if (bprm->page[i]) { 346 __free_page(bprm->page[i]); 347 bprm->page[i] = NULL; 348 } 349 } 350 351 static void free_arg_pages(struct linux_binprm *bprm) 352 { 353 int i; 354 355 for (i = 0; i < MAX_ARG_PAGES; i++) 356 free_arg_page(bprm, i); 357 } 358 359 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 360 struct page *page) 361 { 362 } 363 364 static int __bprm_mm_init(struct linux_binprm *bprm) 365 { 366 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 367 return 0; 368 } 369 370 static bool valid_arg_len(struct linux_binprm *bprm, long len) 371 { 372 return len <= bprm->p; 373 } 374 375 #endif /* CONFIG_MMU */ 376 377 /* 378 * Create a new mm_struct and populate it with a temporary stack 379 * vm_area_struct. We don't have enough context at this point to set the stack 380 * flags, permissions, and offset, so we use temporary values. We'll update 381 * them later in setup_arg_pages(). 382 */ 383 static int bprm_mm_init(struct linux_binprm *bprm) 384 { 385 int err; 386 struct mm_struct *mm = NULL; 387 388 bprm->mm = mm = mm_alloc(); 389 err = -ENOMEM; 390 if (!mm) 391 goto err; 392 393 err = __bprm_mm_init(bprm); 394 if (err) 395 goto err; 396 397 return 0; 398 399 err: 400 if (mm) { 401 bprm->mm = NULL; 402 mmdrop(mm); 403 } 404 405 return err; 406 } 407 408 struct user_arg_ptr { 409 #ifdef CONFIG_COMPAT 410 bool is_compat; 411 #endif 412 union { 413 const char __user *const __user *native; 414 #ifdef CONFIG_COMPAT 415 const compat_uptr_t __user *compat; 416 #endif 417 } ptr; 418 }; 419 420 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 421 { 422 const char __user *native; 423 424 #ifdef CONFIG_COMPAT 425 if (unlikely(argv.is_compat)) { 426 compat_uptr_t compat; 427 428 if (get_user(compat, argv.ptr.compat + nr)) 429 return ERR_PTR(-EFAULT); 430 431 return compat_ptr(compat); 432 } 433 #endif 434 435 if (get_user(native, argv.ptr.native + nr)) 436 return ERR_PTR(-EFAULT); 437 438 return native; 439 } 440 441 /* 442 * count() counts the number of strings in array ARGV. 443 */ 444 static int count(struct user_arg_ptr argv, int max) 445 { 446 int i = 0; 447 448 if (argv.ptr.native != NULL) { 449 for (;;) { 450 const char __user *p = get_user_arg_ptr(argv, i); 451 452 if (!p) 453 break; 454 455 if (IS_ERR(p)) 456 return -EFAULT; 457 458 if (i >= max) 459 return -E2BIG; 460 ++i; 461 462 if (fatal_signal_pending(current)) 463 return -ERESTARTNOHAND; 464 cond_resched(); 465 } 466 } 467 return i; 468 } 469 470 /* 471 * 'copy_strings()' copies argument/environment strings from the old 472 * processes's memory to the new process's stack. The call to get_user_pages() 473 * ensures the destination page is created and not swapped out. 474 */ 475 static int copy_strings(int argc, struct user_arg_ptr argv, 476 struct linux_binprm *bprm) 477 { 478 struct page *kmapped_page = NULL; 479 char *kaddr = NULL; 480 unsigned long kpos = 0; 481 int ret; 482 483 while (argc-- > 0) { 484 const char __user *str; 485 int len; 486 unsigned long pos; 487 488 ret = -EFAULT; 489 str = get_user_arg_ptr(argv, argc); 490 if (IS_ERR(str)) 491 goto out; 492 493 len = strnlen_user(str, MAX_ARG_STRLEN); 494 if (!len) 495 goto out; 496 497 ret = -E2BIG; 498 if (!valid_arg_len(bprm, len)) 499 goto out; 500 501 /* We're going to work our way backwords. */ 502 pos = bprm->p; 503 str += len; 504 bprm->p -= len; 505 506 while (len > 0) { 507 int offset, bytes_to_copy; 508 509 if (fatal_signal_pending(current)) { 510 ret = -ERESTARTNOHAND; 511 goto out; 512 } 513 cond_resched(); 514 515 offset = pos % PAGE_SIZE; 516 if (offset == 0) 517 offset = PAGE_SIZE; 518 519 bytes_to_copy = offset; 520 if (bytes_to_copy > len) 521 bytes_to_copy = len; 522 523 offset -= bytes_to_copy; 524 pos -= bytes_to_copy; 525 str -= bytes_to_copy; 526 len -= bytes_to_copy; 527 528 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 529 struct page *page; 530 531 page = get_arg_page(bprm, pos, 1); 532 if (!page) { 533 ret = -E2BIG; 534 goto out; 535 } 536 537 if (kmapped_page) { 538 flush_kernel_dcache_page(kmapped_page); 539 kunmap(kmapped_page); 540 put_arg_page(kmapped_page); 541 } 542 kmapped_page = page; 543 kaddr = kmap(kmapped_page); 544 kpos = pos & PAGE_MASK; 545 flush_arg_page(bprm, kpos, kmapped_page); 546 } 547 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 548 ret = -EFAULT; 549 goto out; 550 } 551 } 552 } 553 ret = 0; 554 out: 555 if (kmapped_page) { 556 flush_kernel_dcache_page(kmapped_page); 557 kunmap(kmapped_page); 558 put_arg_page(kmapped_page); 559 } 560 return ret; 561 } 562 563 /* 564 * Like copy_strings, but get argv and its values from kernel memory. 565 */ 566 int copy_strings_kernel(int argc, const char *const *__argv, 567 struct linux_binprm *bprm) 568 { 569 int r; 570 mm_segment_t oldfs = get_fs(); 571 struct user_arg_ptr argv = { 572 .ptr.native = (const char __user *const __user *)__argv, 573 }; 574 575 set_fs(KERNEL_DS); 576 r = copy_strings(argc, argv, bprm); 577 set_fs(oldfs); 578 579 return r; 580 } 581 EXPORT_SYMBOL(copy_strings_kernel); 582 583 #ifdef CONFIG_MMU 584 585 /* 586 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 587 * the binfmt code determines where the new stack should reside, we shift it to 588 * its final location. The process proceeds as follows: 589 * 590 * 1) Use shift to calculate the new vma endpoints. 591 * 2) Extend vma to cover both the old and new ranges. This ensures the 592 * arguments passed to subsequent functions are consistent. 593 * 3) Move vma's page tables to the new range. 594 * 4) Free up any cleared pgd range. 595 * 5) Shrink the vma to cover only the new range. 596 */ 597 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 598 { 599 struct mm_struct *mm = vma->vm_mm; 600 unsigned long old_start = vma->vm_start; 601 unsigned long old_end = vma->vm_end; 602 unsigned long length = old_end - old_start; 603 unsigned long new_start = old_start - shift; 604 unsigned long new_end = old_end - shift; 605 struct mmu_gather tlb; 606 607 BUG_ON(new_start > new_end); 608 609 /* 610 * ensure there are no vmas between where we want to go 611 * and where we are 612 */ 613 if (vma != find_vma(mm, new_start)) 614 return -EFAULT; 615 616 /* 617 * cover the whole range: [new_start, old_end) 618 */ 619 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 620 return -ENOMEM; 621 622 /* 623 * move the page tables downwards, on failure we rely on 624 * process cleanup to remove whatever mess we made. 625 */ 626 if (length != move_page_tables(vma, old_start, 627 vma, new_start, length, false)) 628 return -ENOMEM; 629 630 lru_add_drain(); 631 tlb_gather_mmu(&tlb, mm, old_start, old_end); 632 if (new_end > old_start) { 633 /* 634 * when the old and new regions overlap clear from new_end. 635 */ 636 free_pgd_range(&tlb, new_end, old_end, new_end, 637 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 638 } else { 639 /* 640 * otherwise, clean from old_start; this is done to not touch 641 * the address space in [new_end, old_start) some architectures 642 * have constraints on va-space that make this illegal (IA64) - 643 * for the others its just a little faster. 644 */ 645 free_pgd_range(&tlb, old_start, old_end, new_end, 646 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 647 } 648 tlb_finish_mmu(&tlb, old_start, old_end); 649 650 /* 651 * Shrink the vma to just the new range. Always succeeds. 652 */ 653 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 654 655 return 0; 656 } 657 658 /* 659 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 660 * the stack is optionally relocated, and some extra space is added. 661 */ 662 int setup_arg_pages(struct linux_binprm *bprm, 663 unsigned long stack_top, 664 int executable_stack) 665 { 666 unsigned long ret; 667 unsigned long stack_shift; 668 struct mm_struct *mm = current->mm; 669 struct vm_area_struct *vma = bprm->vma; 670 struct vm_area_struct *prev = NULL; 671 unsigned long vm_flags; 672 unsigned long stack_base; 673 unsigned long stack_size; 674 unsigned long stack_expand; 675 unsigned long rlim_stack; 676 677 #ifdef CONFIG_STACK_GROWSUP 678 /* Limit stack size */ 679 stack_base = rlimit_max(RLIMIT_STACK); 680 if (stack_base > STACK_SIZE_MAX) 681 stack_base = STACK_SIZE_MAX; 682 683 /* Add space for stack randomization. */ 684 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 685 686 /* Make sure we didn't let the argument array grow too large. */ 687 if (vma->vm_end - vma->vm_start > stack_base) 688 return -ENOMEM; 689 690 stack_base = PAGE_ALIGN(stack_top - stack_base); 691 692 stack_shift = vma->vm_start - stack_base; 693 mm->arg_start = bprm->p - stack_shift; 694 bprm->p = vma->vm_end - stack_shift; 695 #else 696 stack_top = arch_align_stack(stack_top); 697 stack_top = PAGE_ALIGN(stack_top); 698 699 if (unlikely(stack_top < mmap_min_addr) || 700 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 701 return -ENOMEM; 702 703 stack_shift = vma->vm_end - stack_top; 704 705 bprm->p -= stack_shift; 706 mm->arg_start = bprm->p; 707 #endif 708 709 if (bprm->loader) 710 bprm->loader -= stack_shift; 711 bprm->exec -= stack_shift; 712 713 if (down_write_killable(&mm->mmap_sem)) 714 return -EINTR; 715 716 vm_flags = VM_STACK_FLAGS; 717 718 /* 719 * Adjust stack execute permissions; explicitly enable for 720 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 721 * (arch default) otherwise. 722 */ 723 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 724 vm_flags |= VM_EXEC; 725 else if (executable_stack == EXSTACK_DISABLE_X) 726 vm_flags &= ~VM_EXEC; 727 vm_flags |= mm->def_flags; 728 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 729 730 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 731 vm_flags); 732 if (ret) 733 goto out_unlock; 734 BUG_ON(prev != vma); 735 736 /* Move stack pages down in memory. */ 737 if (stack_shift) { 738 ret = shift_arg_pages(vma, stack_shift); 739 if (ret) 740 goto out_unlock; 741 } 742 743 /* mprotect_fixup is overkill to remove the temporary stack flags */ 744 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 745 746 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 747 stack_size = vma->vm_end - vma->vm_start; 748 /* 749 * Align this down to a page boundary as expand_stack 750 * will align it up. 751 */ 752 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 753 #ifdef CONFIG_STACK_GROWSUP 754 if (stack_size + stack_expand > rlim_stack) 755 stack_base = vma->vm_start + rlim_stack; 756 else 757 stack_base = vma->vm_end + stack_expand; 758 #else 759 if (stack_size + stack_expand > rlim_stack) 760 stack_base = vma->vm_end - rlim_stack; 761 else 762 stack_base = vma->vm_start - stack_expand; 763 #endif 764 current->mm->start_stack = bprm->p; 765 ret = expand_stack(vma, stack_base); 766 if (ret) 767 ret = -EFAULT; 768 769 out_unlock: 770 up_write(&mm->mmap_sem); 771 return ret; 772 } 773 EXPORT_SYMBOL(setup_arg_pages); 774 775 #else 776 777 /* 778 * Transfer the program arguments and environment from the holding pages 779 * onto the stack. The provided stack pointer is adjusted accordingly. 780 */ 781 int transfer_args_to_stack(struct linux_binprm *bprm, 782 unsigned long *sp_location) 783 { 784 unsigned long index, stop, sp; 785 int ret = 0; 786 787 stop = bprm->p >> PAGE_SHIFT; 788 sp = *sp_location; 789 790 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 791 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 792 char *src = kmap(bprm->page[index]) + offset; 793 sp -= PAGE_SIZE - offset; 794 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 795 ret = -EFAULT; 796 kunmap(bprm->page[index]); 797 if (ret) 798 goto out; 799 } 800 801 *sp_location = sp; 802 803 out: 804 return ret; 805 } 806 EXPORT_SYMBOL(transfer_args_to_stack); 807 808 #endif /* CONFIG_MMU */ 809 810 static struct file *do_open_execat(int fd, struct filename *name, int flags) 811 { 812 struct file *file; 813 int err; 814 struct open_flags open_exec_flags = { 815 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 816 .acc_mode = MAY_EXEC, 817 .intent = LOOKUP_OPEN, 818 .lookup_flags = LOOKUP_FOLLOW, 819 }; 820 821 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 822 return ERR_PTR(-EINVAL); 823 if (flags & AT_SYMLINK_NOFOLLOW) 824 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 825 if (flags & AT_EMPTY_PATH) 826 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 827 828 file = do_filp_open(fd, name, &open_exec_flags); 829 if (IS_ERR(file)) 830 goto out; 831 832 err = -EACCES; 833 if (!S_ISREG(file_inode(file)->i_mode)) 834 goto exit; 835 836 if (path_noexec(&file->f_path)) 837 goto exit; 838 839 err = deny_write_access(file); 840 if (err) 841 goto exit; 842 843 if (name->name[0] != '\0') 844 fsnotify_open(file); 845 846 out: 847 return file; 848 849 exit: 850 fput(file); 851 return ERR_PTR(err); 852 } 853 854 struct file *open_exec(const char *name) 855 { 856 struct filename *filename = getname_kernel(name); 857 struct file *f = ERR_CAST(filename); 858 859 if (!IS_ERR(filename)) { 860 f = do_open_execat(AT_FDCWD, filename, 0); 861 putname(filename); 862 } 863 return f; 864 } 865 EXPORT_SYMBOL(open_exec); 866 867 int kernel_read(struct file *file, loff_t offset, 868 char *addr, unsigned long count) 869 { 870 mm_segment_t old_fs; 871 loff_t pos = offset; 872 int result; 873 874 old_fs = get_fs(); 875 set_fs(get_ds()); 876 /* The cast to a user pointer is valid due to the set_fs() */ 877 result = vfs_read(file, (void __user *)addr, count, &pos); 878 set_fs(old_fs); 879 return result; 880 } 881 882 EXPORT_SYMBOL(kernel_read); 883 884 int kernel_read_file(struct file *file, void **buf, loff_t *size, 885 loff_t max_size, enum kernel_read_file_id id) 886 { 887 loff_t i_size, pos; 888 ssize_t bytes = 0; 889 int ret; 890 891 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) 892 return -EINVAL; 893 894 ret = security_kernel_read_file(file, id); 895 if (ret) 896 return ret; 897 898 ret = deny_write_access(file); 899 if (ret) 900 return ret; 901 902 i_size = i_size_read(file_inode(file)); 903 if (max_size > 0 && i_size > max_size) { 904 ret = -EFBIG; 905 goto out; 906 } 907 if (i_size <= 0) { 908 ret = -EINVAL; 909 goto out; 910 } 911 912 if (id != READING_FIRMWARE_PREALLOC_BUFFER) 913 *buf = vmalloc(i_size); 914 if (!*buf) { 915 ret = -ENOMEM; 916 goto out; 917 } 918 919 pos = 0; 920 while (pos < i_size) { 921 bytes = kernel_read(file, pos, (char *)(*buf) + pos, 922 i_size - pos); 923 if (bytes < 0) { 924 ret = bytes; 925 goto out; 926 } 927 928 if (bytes == 0) 929 break; 930 pos += bytes; 931 } 932 933 if (pos != i_size) { 934 ret = -EIO; 935 goto out_free; 936 } 937 938 ret = security_kernel_post_read_file(file, *buf, i_size, id); 939 if (!ret) 940 *size = pos; 941 942 out_free: 943 if (ret < 0) { 944 if (id != READING_FIRMWARE_PREALLOC_BUFFER) { 945 vfree(*buf); 946 *buf = NULL; 947 } 948 } 949 950 out: 951 allow_write_access(file); 952 return ret; 953 } 954 EXPORT_SYMBOL_GPL(kernel_read_file); 955 956 int kernel_read_file_from_path(char *path, void **buf, loff_t *size, 957 loff_t max_size, enum kernel_read_file_id id) 958 { 959 struct file *file; 960 int ret; 961 962 if (!path || !*path) 963 return -EINVAL; 964 965 file = filp_open(path, O_RDONLY, 0); 966 if (IS_ERR(file)) 967 return PTR_ERR(file); 968 969 ret = kernel_read_file(file, buf, size, max_size, id); 970 fput(file); 971 return ret; 972 } 973 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); 974 975 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, 976 enum kernel_read_file_id id) 977 { 978 struct fd f = fdget(fd); 979 int ret = -EBADF; 980 981 if (!f.file) 982 goto out; 983 984 ret = kernel_read_file(f.file, buf, size, max_size, id); 985 out: 986 fdput(f); 987 return ret; 988 } 989 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); 990 991 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 992 { 993 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 994 if (res > 0) 995 flush_icache_range(addr, addr + len); 996 return res; 997 } 998 EXPORT_SYMBOL(read_code); 999 1000 static int exec_mmap(struct mm_struct *mm) 1001 { 1002 struct task_struct *tsk; 1003 struct mm_struct *old_mm, *active_mm; 1004 1005 /* Notify parent that we're no longer interested in the old VM */ 1006 tsk = current; 1007 old_mm = current->mm; 1008 mm_release(tsk, old_mm); 1009 1010 if (old_mm) { 1011 sync_mm_rss(old_mm); 1012 /* 1013 * Make sure that if there is a core dump in progress 1014 * for the old mm, we get out and die instead of going 1015 * through with the exec. We must hold mmap_sem around 1016 * checking core_state and changing tsk->mm. 1017 */ 1018 down_read(&old_mm->mmap_sem); 1019 if (unlikely(old_mm->core_state)) { 1020 up_read(&old_mm->mmap_sem); 1021 return -EINTR; 1022 } 1023 } 1024 task_lock(tsk); 1025 active_mm = tsk->active_mm; 1026 tsk->mm = mm; 1027 tsk->active_mm = mm; 1028 activate_mm(active_mm, mm); 1029 tsk->mm->vmacache_seqnum = 0; 1030 vmacache_flush(tsk); 1031 task_unlock(tsk); 1032 if (old_mm) { 1033 up_read(&old_mm->mmap_sem); 1034 BUG_ON(active_mm != old_mm); 1035 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1036 mm_update_next_owner(old_mm); 1037 mmput(old_mm); 1038 return 0; 1039 } 1040 mmdrop(active_mm); 1041 return 0; 1042 } 1043 1044 /* 1045 * This function makes sure the current process has its own signal table, 1046 * so that flush_signal_handlers can later reset the handlers without 1047 * disturbing other processes. (Other processes might share the signal 1048 * table via the CLONE_SIGHAND option to clone().) 1049 */ 1050 static int de_thread(struct task_struct *tsk) 1051 { 1052 struct signal_struct *sig = tsk->signal; 1053 struct sighand_struct *oldsighand = tsk->sighand; 1054 spinlock_t *lock = &oldsighand->siglock; 1055 1056 if (thread_group_empty(tsk)) 1057 goto no_thread_group; 1058 1059 /* 1060 * Kill all other threads in the thread group. 1061 */ 1062 spin_lock_irq(lock); 1063 if (signal_group_exit(sig)) { 1064 /* 1065 * Another group action in progress, just 1066 * return so that the signal is processed. 1067 */ 1068 spin_unlock_irq(lock); 1069 return -EAGAIN; 1070 } 1071 1072 sig->group_exit_task = tsk; 1073 sig->notify_count = zap_other_threads(tsk); 1074 if (!thread_group_leader(tsk)) 1075 sig->notify_count--; 1076 1077 while (sig->notify_count) { 1078 __set_current_state(TASK_KILLABLE); 1079 spin_unlock_irq(lock); 1080 schedule(); 1081 if (unlikely(__fatal_signal_pending(tsk))) 1082 goto killed; 1083 spin_lock_irq(lock); 1084 } 1085 spin_unlock_irq(lock); 1086 1087 /* 1088 * At this point all other threads have exited, all we have to 1089 * do is to wait for the thread group leader to become inactive, 1090 * and to assume its PID: 1091 */ 1092 if (!thread_group_leader(tsk)) { 1093 struct task_struct *leader = tsk->group_leader; 1094 1095 for (;;) { 1096 cgroup_threadgroup_change_begin(tsk); 1097 write_lock_irq(&tasklist_lock); 1098 /* 1099 * Do this under tasklist_lock to ensure that 1100 * exit_notify() can't miss ->group_exit_task 1101 */ 1102 sig->notify_count = -1; 1103 if (likely(leader->exit_state)) 1104 break; 1105 __set_current_state(TASK_KILLABLE); 1106 write_unlock_irq(&tasklist_lock); 1107 cgroup_threadgroup_change_end(tsk); 1108 schedule(); 1109 if (unlikely(__fatal_signal_pending(tsk))) 1110 goto killed; 1111 } 1112 1113 /* 1114 * The only record we have of the real-time age of a 1115 * process, regardless of execs it's done, is start_time. 1116 * All the past CPU time is accumulated in signal_struct 1117 * from sister threads now dead. But in this non-leader 1118 * exec, nothing survives from the original leader thread, 1119 * whose birth marks the true age of this process now. 1120 * When we take on its identity by switching to its PID, we 1121 * also take its birthdate (always earlier than our own). 1122 */ 1123 tsk->start_time = leader->start_time; 1124 tsk->real_start_time = leader->real_start_time; 1125 1126 BUG_ON(!same_thread_group(leader, tsk)); 1127 BUG_ON(has_group_leader_pid(tsk)); 1128 /* 1129 * An exec() starts a new thread group with the 1130 * TGID of the previous thread group. Rehash the 1131 * two threads with a switched PID, and release 1132 * the former thread group leader: 1133 */ 1134 1135 /* Become a process group leader with the old leader's pid. 1136 * The old leader becomes a thread of the this thread group. 1137 * Note: The old leader also uses this pid until release_task 1138 * is called. Odd but simple and correct. 1139 */ 1140 tsk->pid = leader->pid; 1141 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 1142 transfer_pid(leader, tsk, PIDTYPE_PGID); 1143 transfer_pid(leader, tsk, PIDTYPE_SID); 1144 1145 list_replace_rcu(&leader->tasks, &tsk->tasks); 1146 list_replace_init(&leader->sibling, &tsk->sibling); 1147 1148 tsk->group_leader = tsk; 1149 leader->group_leader = tsk; 1150 1151 tsk->exit_signal = SIGCHLD; 1152 leader->exit_signal = -1; 1153 1154 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1155 leader->exit_state = EXIT_DEAD; 1156 1157 /* 1158 * We are going to release_task()->ptrace_unlink() silently, 1159 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1160 * the tracer wont't block again waiting for this thread. 1161 */ 1162 if (unlikely(leader->ptrace)) 1163 __wake_up_parent(leader, leader->parent); 1164 write_unlock_irq(&tasklist_lock); 1165 cgroup_threadgroup_change_end(tsk); 1166 1167 release_task(leader); 1168 } 1169 1170 sig->group_exit_task = NULL; 1171 sig->notify_count = 0; 1172 1173 no_thread_group: 1174 /* we have changed execution domain */ 1175 tsk->exit_signal = SIGCHLD; 1176 1177 #ifdef CONFIG_POSIX_TIMERS 1178 exit_itimers(sig); 1179 flush_itimer_signals(); 1180 #endif 1181 1182 if (atomic_read(&oldsighand->count) != 1) { 1183 struct sighand_struct *newsighand; 1184 /* 1185 * This ->sighand is shared with the CLONE_SIGHAND 1186 * but not CLONE_THREAD task, switch to the new one. 1187 */ 1188 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1189 if (!newsighand) 1190 return -ENOMEM; 1191 1192 atomic_set(&newsighand->count, 1); 1193 memcpy(newsighand->action, oldsighand->action, 1194 sizeof(newsighand->action)); 1195 1196 write_lock_irq(&tasklist_lock); 1197 spin_lock(&oldsighand->siglock); 1198 rcu_assign_pointer(tsk->sighand, newsighand); 1199 spin_unlock(&oldsighand->siglock); 1200 write_unlock_irq(&tasklist_lock); 1201 1202 __cleanup_sighand(oldsighand); 1203 } 1204 1205 BUG_ON(!thread_group_leader(tsk)); 1206 return 0; 1207 1208 killed: 1209 /* protects against exit_notify() and __exit_signal() */ 1210 read_lock(&tasklist_lock); 1211 sig->group_exit_task = NULL; 1212 sig->notify_count = 0; 1213 read_unlock(&tasklist_lock); 1214 return -EAGAIN; 1215 } 1216 1217 char *get_task_comm(char *buf, struct task_struct *tsk) 1218 { 1219 /* buf must be at least sizeof(tsk->comm) in size */ 1220 task_lock(tsk); 1221 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1222 task_unlock(tsk); 1223 return buf; 1224 } 1225 EXPORT_SYMBOL_GPL(get_task_comm); 1226 1227 /* 1228 * These functions flushes out all traces of the currently running executable 1229 * so that a new one can be started 1230 */ 1231 1232 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1233 { 1234 task_lock(tsk); 1235 trace_task_rename(tsk, buf); 1236 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1237 task_unlock(tsk); 1238 perf_event_comm(tsk, exec); 1239 } 1240 1241 int flush_old_exec(struct linux_binprm * bprm) 1242 { 1243 int retval; 1244 1245 /* 1246 * Make sure we have a private signal table and that 1247 * we are unassociated from the previous thread group. 1248 */ 1249 retval = de_thread(current); 1250 if (retval) 1251 goto out; 1252 1253 /* 1254 * Must be called _before_ exec_mmap() as bprm->mm is 1255 * not visibile until then. This also enables the update 1256 * to be lockless. 1257 */ 1258 set_mm_exe_file(bprm->mm, bprm->file); 1259 1260 /* 1261 * Release all of the old mmap stuff 1262 */ 1263 acct_arg_size(bprm, 0); 1264 retval = exec_mmap(bprm->mm); 1265 if (retval) 1266 goto out; 1267 1268 bprm->mm = NULL; /* We're using it now */ 1269 1270 set_fs(USER_DS); 1271 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1272 PF_NOFREEZE | PF_NO_SETAFFINITY); 1273 flush_thread(); 1274 current->personality &= ~bprm->per_clear; 1275 1276 /* 1277 * We have to apply CLOEXEC before we change whether the process is 1278 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1279 * trying to access the should-be-closed file descriptors of a process 1280 * undergoing exec(2). 1281 */ 1282 do_close_on_exec(current->files); 1283 return 0; 1284 1285 out: 1286 return retval; 1287 } 1288 EXPORT_SYMBOL(flush_old_exec); 1289 1290 void would_dump(struct linux_binprm *bprm, struct file *file) 1291 { 1292 struct inode *inode = file_inode(file); 1293 if (inode_permission(inode, MAY_READ) < 0) { 1294 struct user_namespace *old, *user_ns; 1295 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1296 1297 /* Ensure mm->user_ns contains the executable */ 1298 user_ns = old = bprm->mm->user_ns; 1299 while ((user_ns != &init_user_ns) && 1300 !privileged_wrt_inode_uidgid(user_ns, inode)) 1301 user_ns = user_ns->parent; 1302 1303 if (old != user_ns) { 1304 bprm->mm->user_ns = get_user_ns(user_ns); 1305 put_user_ns(old); 1306 } 1307 } 1308 } 1309 EXPORT_SYMBOL(would_dump); 1310 1311 void setup_new_exec(struct linux_binprm * bprm) 1312 { 1313 arch_pick_mmap_layout(current->mm); 1314 1315 /* This is the point of no return */ 1316 current->sas_ss_sp = current->sas_ss_size = 0; 1317 1318 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid())) 1319 set_dumpable(current->mm, SUID_DUMP_USER); 1320 else 1321 set_dumpable(current->mm, suid_dumpable); 1322 1323 arch_setup_new_exec(); 1324 perf_event_exec(); 1325 __set_task_comm(current, kbasename(bprm->filename), true); 1326 1327 /* Set the new mm task size. We have to do that late because it may 1328 * depend on TIF_32BIT which is only updated in flush_thread() on 1329 * some architectures like powerpc 1330 */ 1331 current->mm->task_size = TASK_SIZE; 1332 1333 /* install the new credentials */ 1334 if (!uid_eq(bprm->cred->uid, current_euid()) || 1335 !gid_eq(bprm->cred->gid, current_egid())) { 1336 current->pdeath_signal = 0; 1337 } else { 1338 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) 1339 set_dumpable(current->mm, suid_dumpable); 1340 } 1341 1342 /* An exec changes our domain. We are no longer part of the thread 1343 group */ 1344 current->self_exec_id++; 1345 flush_signal_handlers(current, 0); 1346 } 1347 EXPORT_SYMBOL(setup_new_exec); 1348 1349 /* 1350 * Prepare credentials and lock ->cred_guard_mutex. 1351 * install_exec_creds() commits the new creds and drops the lock. 1352 * Or, if exec fails before, free_bprm() should release ->cred and 1353 * and unlock. 1354 */ 1355 int prepare_bprm_creds(struct linux_binprm *bprm) 1356 { 1357 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1358 return -ERESTARTNOINTR; 1359 1360 bprm->cred = prepare_exec_creds(); 1361 if (likely(bprm->cred)) 1362 return 0; 1363 1364 mutex_unlock(¤t->signal->cred_guard_mutex); 1365 return -ENOMEM; 1366 } 1367 1368 static void free_bprm(struct linux_binprm *bprm) 1369 { 1370 free_arg_pages(bprm); 1371 if (bprm->cred) { 1372 mutex_unlock(¤t->signal->cred_guard_mutex); 1373 abort_creds(bprm->cred); 1374 } 1375 if (bprm->file) { 1376 allow_write_access(bprm->file); 1377 fput(bprm->file); 1378 } 1379 /* If a binfmt changed the interp, free it. */ 1380 if (bprm->interp != bprm->filename) 1381 kfree(bprm->interp); 1382 kfree(bprm); 1383 } 1384 1385 int bprm_change_interp(char *interp, struct linux_binprm *bprm) 1386 { 1387 /* If a binfmt changed the interp, free it first. */ 1388 if (bprm->interp != bprm->filename) 1389 kfree(bprm->interp); 1390 bprm->interp = kstrdup(interp, GFP_KERNEL); 1391 if (!bprm->interp) 1392 return -ENOMEM; 1393 return 0; 1394 } 1395 EXPORT_SYMBOL(bprm_change_interp); 1396 1397 /* 1398 * install the new credentials for this executable 1399 */ 1400 void install_exec_creds(struct linux_binprm *bprm) 1401 { 1402 security_bprm_committing_creds(bprm); 1403 1404 commit_creds(bprm->cred); 1405 bprm->cred = NULL; 1406 1407 /* 1408 * Disable monitoring for regular users 1409 * when executing setuid binaries. Must 1410 * wait until new credentials are committed 1411 * by commit_creds() above 1412 */ 1413 if (get_dumpable(current->mm) != SUID_DUMP_USER) 1414 perf_event_exit_task(current); 1415 /* 1416 * cred_guard_mutex must be held at least to this point to prevent 1417 * ptrace_attach() from altering our determination of the task's 1418 * credentials; any time after this it may be unlocked. 1419 */ 1420 security_bprm_committed_creds(bprm); 1421 mutex_unlock(¤t->signal->cred_guard_mutex); 1422 } 1423 EXPORT_SYMBOL(install_exec_creds); 1424 1425 /* 1426 * determine how safe it is to execute the proposed program 1427 * - the caller must hold ->cred_guard_mutex to protect against 1428 * PTRACE_ATTACH or seccomp thread-sync 1429 */ 1430 static void check_unsafe_exec(struct linux_binprm *bprm) 1431 { 1432 struct task_struct *p = current, *t; 1433 unsigned n_fs; 1434 1435 if (p->ptrace) 1436 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1437 1438 /* 1439 * This isn't strictly necessary, but it makes it harder for LSMs to 1440 * mess up. 1441 */ 1442 if (task_no_new_privs(current)) 1443 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1444 1445 t = p; 1446 n_fs = 1; 1447 spin_lock(&p->fs->lock); 1448 rcu_read_lock(); 1449 while_each_thread(p, t) { 1450 if (t->fs == p->fs) 1451 n_fs++; 1452 } 1453 rcu_read_unlock(); 1454 1455 if (p->fs->users > n_fs) 1456 bprm->unsafe |= LSM_UNSAFE_SHARE; 1457 else 1458 p->fs->in_exec = 1; 1459 spin_unlock(&p->fs->lock); 1460 } 1461 1462 static void bprm_fill_uid(struct linux_binprm *bprm) 1463 { 1464 struct inode *inode; 1465 unsigned int mode; 1466 kuid_t uid; 1467 kgid_t gid; 1468 1469 /* 1470 * Since this can be called multiple times (via prepare_binprm), 1471 * we must clear any previous work done when setting set[ug]id 1472 * bits from any earlier bprm->file uses (for example when run 1473 * first for a setuid script then again for its interpreter). 1474 */ 1475 bprm->cred->euid = current_euid(); 1476 bprm->cred->egid = current_egid(); 1477 1478 if (!mnt_may_suid(bprm->file->f_path.mnt)) 1479 return; 1480 1481 if (task_no_new_privs(current)) 1482 return; 1483 1484 inode = bprm->file->f_path.dentry->d_inode; 1485 mode = READ_ONCE(inode->i_mode); 1486 if (!(mode & (S_ISUID|S_ISGID))) 1487 return; 1488 1489 /* Be careful if suid/sgid is set */ 1490 inode_lock(inode); 1491 1492 /* reload atomically mode/uid/gid now that lock held */ 1493 mode = inode->i_mode; 1494 uid = inode->i_uid; 1495 gid = inode->i_gid; 1496 inode_unlock(inode); 1497 1498 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1499 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1500 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1501 return; 1502 1503 if (mode & S_ISUID) { 1504 bprm->per_clear |= PER_CLEAR_ON_SETID; 1505 bprm->cred->euid = uid; 1506 } 1507 1508 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1509 bprm->per_clear |= PER_CLEAR_ON_SETID; 1510 bprm->cred->egid = gid; 1511 } 1512 } 1513 1514 /* 1515 * Fill the binprm structure from the inode. 1516 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1517 * 1518 * This may be called multiple times for binary chains (scripts for example). 1519 */ 1520 int prepare_binprm(struct linux_binprm *bprm) 1521 { 1522 int retval; 1523 1524 bprm_fill_uid(bprm); 1525 1526 /* fill in binprm security blob */ 1527 retval = security_bprm_set_creds(bprm); 1528 if (retval) 1529 return retval; 1530 bprm->cred_prepared = 1; 1531 1532 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1533 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1534 } 1535 1536 EXPORT_SYMBOL(prepare_binprm); 1537 1538 /* 1539 * Arguments are '\0' separated strings found at the location bprm->p 1540 * points to; chop off the first by relocating brpm->p to right after 1541 * the first '\0' encountered. 1542 */ 1543 int remove_arg_zero(struct linux_binprm *bprm) 1544 { 1545 int ret = 0; 1546 unsigned long offset; 1547 char *kaddr; 1548 struct page *page; 1549 1550 if (!bprm->argc) 1551 return 0; 1552 1553 do { 1554 offset = bprm->p & ~PAGE_MASK; 1555 page = get_arg_page(bprm, bprm->p, 0); 1556 if (!page) { 1557 ret = -EFAULT; 1558 goto out; 1559 } 1560 kaddr = kmap_atomic(page); 1561 1562 for (; offset < PAGE_SIZE && kaddr[offset]; 1563 offset++, bprm->p++) 1564 ; 1565 1566 kunmap_atomic(kaddr); 1567 put_arg_page(page); 1568 } while (offset == PAGE_SIZE); 1569 1570 bprm->p++; 1571 bprm->argc--; 1572 ret = 0; 1573 1574 out: 1575 return ret; 1576 } 1577 EXPORT_SYMBOL(remove_arg_zero); 1578 1579 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1580 /* 1581 * cycle the list of binary formats handler, until one recognizes the image 1582 */ 1583 int search_binary_handler(struct linux_binprm *bprm) 1584 { 1585 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1586 struct linux_binfmt *fmt; 1587 int retval; 1588 1589 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1590 if (bprm->recursion_depth > 5) 1591 return -ELOOP; 1592 1593 retval = security_bprm_check(bprm); 1594 if (retval) 1595 return retval; 1596 1597 retval = -ENOENT; 1598 retry: 1599 read_lock(&binfmt_lock); 1600 list_for_each_entry(fmt, &formats, lh) { 1601 if (!try_module_get(fmt->module)) 1602 continue; 1603 read_unlock(&binfmt_lock); 1604 bprm->recursion_depth++; 1605 retval = fmt->load_binary(bprm); 1606 read_lock(&binfmt_lock); 1607 put_binfmt(fmt); 1608 bprm->recursion_depth--; 1609 if (retval < 0 && !bprm->mm) { 1610 /* we got to flush_old_exec() and failed after it */ 1611 read_unlock(&binfmt_lock); 1612 force_sigsegv(SIGSEGV, current); 1613 return retval; 1614 } 1615 if (retval != -ENOEXEC || !bprm->file) { 1616 read_unlock(&binfmt_lock); 1617 return retval; 1618 } 1619 } 1620 read_unlock(&binfmt_lock); 1621 1622 if (need_retry) { 1623 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1624 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1625 return retval; 1626 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1627 return retval; 1628 need_retry = false; 1629 goto retry; 1630 } 1631 1632 return retval; 1633 } 1634 EXPORT_SYMBOL(search_binary_handler); 1635 1636 static int exec_binprm(struct linux_binprm *bprm) 1637 { 1638 pid_t old_pid, old_vpid; 1639 int ret; 1640 1641 /* Need to fetch pid before load_binary changes it */ 1642 old_pid = current->pid; 1643 rcu_read_lock(); 1644 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1645 rcu_read_unlock(); 1646 1647 ret = search_binary_handler(bprm); 1648 if (ret >= 0) { 1649 audit_bprm(bprm); 1650 trace_sched_process_exec(current, old_pid, bprm); 1651 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1652 proc_exec_connector(current); 1653 } 1654 1655 return ret; 1656 } 1657 1658 /* 1659 * sys_execve() executes a new program. 1660 */ 1661 static int do_execveat_common(int fd, struct filename *filename, 1662 struct user_arg_ptr argv, 1663 struct user_arg_ptr envp, 1664 int flags) 1665 { 1666 char *pathbuf = NULL; 1667 struct linux_binprm *bprm; 1668 struct file *file; 1669 struct files_struct *displaced; 1670 int retval; 1671 1672 if (IS_ERR(filename)) 1673 return PTR_ERR(filename); 1674 1675 /* 1676 * We move the actual failure in case of RLIMIT_NPROC excess from 1677 * set*uid() to execve() because too many poorly written programs 1678 * don't check setuid() return code. Here we additionally recheck 1679 * whether NPROC limit is still exceeded. 1680 */ 1681 if ((current->flags & PF_NPROC_EXCEEDED) && 1682 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1683 retval = -EAGAIN; 1684 goto out_ret; 1685 } 1686 1687 /* We're below the limit (still or again), so we don't want to make 1688 * further execve() calls fail. */ 1689 current->flags &= ~PF_NPROC_EXCEEDED; 1690 1691 retval = unshare_files(&displaced); 1692 if (retval) 1693 goto out_ret; 1694 1695 retval = -ENOMEM; 1696 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1697 if (!bprm) 1698 goto out_files; 1699 1700 retval = prepare_bprm_creds(bprm); 1701 if (retval) 1702 goto out_free; 1703 1704 check_unsafe_exec(bprm); 1705 current->in_execve = 1; 1706 1707 file = do_open_execat(fd, filename, flags); 1708 retval = PTR_ERR(file); 1709 if (IS_ERR(file)) 1710 goto out_unmark; 1711 1712 sched_exec(); 1713 1714 bprm->file = file; 1715 if (fd == AT_FDCWD || filename->name[0] == '/') { 1716 bprm->filename = filename->name; 1717 } else { 1718 if (filename->name[0] == '\0') 1719 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd); 1720 else 1721 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s", 1722 fd, filename->name); 1723 if (!pathbuf) { 1724 retval = -ENOMEM; 1725 goto out_unmark; 1726 } 1727 /* 1728 * Record that a name derived from an O_CLOEXEC fd will be 1729 * inaccessible after exec. Relies on having exclusive access to 1730 * current->files (due to unshare_files above). 1731 */ 1732 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1733 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1734 bprm->filename = pathbuf; 1735 } 1736 bprm->interp = bprm->filename; 1737 1738 retval = bprm_mm_init(bprm); 1739 if (retval) 1740 goto out_unmark; 1741 1742 bprm->argc = count(argv, MAX_ARG_STRINGS); 1743 if ((retval = bprm->argc) < 0) 1744 goto out; 1745 1746 bprm->envc = count(envp, MAX_ARG_STRINGS); 1747 if ((retval = bprm->envc) < 0) 1748 goto out; 1749 1750 retval = prepare_binprm(bprm); 1751 if (retval < 0) 1752 goto out; 1753 1754 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1755 if (retval < 0) 1756 goto out; 1757 1758 bprm->exec = bprm->p; 1759 retval = copy_strings(bprm->envc, envp, bprm); 1760 if (retval < 0) 1761 goto out; 1762 1763 retval = copy_strings(bprm->argc, argv, bprm); 1764 if (retval < 0) 1765 goto out; 1766 1767 would_dump(bprm, bprm->file); 1768 1769 retval = exec_binprm(bprm); 1770 if (retval < 0) 1771 goto out; 1772 1773 /* execve succeeded */ 1774 current->fs->in_exec = 0; 1775 current->in_execve = 0; 1776 acct_update_integrals(current); 1777 task_numa_free(current); 1778 free_bprm(bprm); 1779 kfree(pathbuf); 1780 putname(filename); 1781 if (displaced) 1782 put_files_struct(displaced); 1783 return retval; 1784 1785 out: 1786 if (bprm->mm) { 1787 acct_arg_size(bprm, 0); 1788 mmput(bprm->mm); 1789 } 1790 1791 out_unmark: 1792 current->fs->in_exec = 0; 1793 current->in_execve = 0; 1794 1795 out_free: 1796 free_bprm(bprm); 1797 kfree(pathbuf); 1798 1799 out_files: 1800 if (displaced) 1801 reset_files_struct(displaced); 1802 out_ret: 1803 putname(filename); 1804 return retval; 1805 } 1806 1807 int do_execve(struct filename *filename, 1808 const char __user *const __user *__argv, 1809 const char __user *const __user *__envp) 1810 { 1811 struct user_arg_ptr argv = { .ptr.native = __argv }; 1812 struct user_arg_ptr envp = { .ptr.native = __envp }; 1813 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1814 } 1815 1816 int do_execveat(int fd, struct filename *filename, 1817 const char __user *const __user *__argv, 1818 const char __user *const __user *__envp, 1819 int flags) 1820 { 1821 struct user_arg_ptr argv = { .ptr.native = __argv }; 1822 struct user_arg_ptr envp = { .ptr.native = __envp }; 1823 1824 return do_execveat_common(fd, filename, argv, envp, flags); 1825 } 1826 1827 #ifdef CONFIG_COMPAT 1828 static int compat_do_execve(struct filename *filename, 1829 const compat_uptr_t __user *__argv, 1830 const compat_uptr_t __user *__envp) 1831 { 1832 struct user_arg_ptr argv = { 1833 .is_compat = true, 1834 .ptr.compat = __argv, 1835 }; 1836 struct user_arg_ptr envp = { 1837 .is_compat = true, 1838 .ptr.compat = __envp, 1839 }; 1840 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1841 } 1842 1843 static int compat_do_execveat(int fd, struct filename *filename, 1844 const compat_uptr_t __user *__argv, 1845 const compat_uptr_t __user *__envp, 1846 int flags) 1847 { 1848 struct user_arg_ptr argv = { 1849 .is_compat = true, 1850 .ptr.compat = __argv, 1851 }; 1852 struct user_arg_ptr envp = { 1853 .is_compat = true, 1854 .ptr.compat = __envp, 1855 }; 1856 return do_execveat_common(fd, filename, argv, envp, flags); 1857 } 1858 #endif 1859 1860 void set_binfmt(struct linux_binfmt *new) 1861 { 1862 struct mm_struct *mm = current->mm; 1863 1864 if (mm->binfmt) 1865 module_put(mm->binfmt->module); 1866 1867 mm->binfmt = new; 1868 if (new) 1869 __module_get(new->module); 1870 } 1871 EXPORT_SYMBOL(set_binfmt); 1872 1873 /* 1874 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 1875 */ 1876 void set_dumpable(struct mm_struct *mm, int value) 1877 { 1878 unsigned long old, new; 1879 1880 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 1881 return; 1882 1883 do { 1884 old = ACCESS_ONCE(mm->flags); 1885 new = (old & ~MMF_DUMPABLE_MASK) | value; 1886 } while (cmpxchg(&mm->flags, old, new) != old); 1887 } 1888 1889 SYSCALL_DEFINE3(execve, 1890 const char __user *, filename, 1891 const char __user *const __user *, argv, 1892 const char __user *const __user *, envp) 1893 { 1894 return do_execve(getname(filename), argv, envp); 1895 } 1896 1897 SYSCALL_DEFINE5(execveat, 1898 int, fd, const char __user *, filename, 1899 const char __user *const __user *, argv, 1900 const char __user *const __user *, envp, 1901 int, flags) 1902 { 1903 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1904 1905 return do_execveat(fd, 1906 getname_flags(filename, lookup_flags, NULL), 1907 argv, envp, flags); 1908 } 1909 1910 #ifdef CONFIG_COMPAT 1911 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 1912 const compat_uptr_t __user *, argv, 1913 const compat_uptr_t __user *, envp) 1914 { 1915 return compat_do_execve(getname(filename), argv, envp); 1916 } 1917 1918 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 1919 const char __user *, filename, 1920 const compat_uptr_t __user *, argv, 1921 const compat_uptr_t __user *, envp, 1922 int, flags) 1923 { 1924 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1925 1926 return compat_do_execveat(fd, 1927 getname_flags(filename, lookup_flags, NULL), 1928 argv, envp, flags); 1929 } 1930 #endif 1931