1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mman.h> 29 #include <linux/a.out.h> 30 #include <linux/stat.h> 31 #include <linux/fcntl.h> 32 #include <linux/smp_lock.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/pagemap.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/swap.h> 42 #include <linux/utsname.h> 43 #include <linux/pid_namespace.h> 44 #include <linux/module.h> 45 #include <linux/namei.h> 46 #include <linux/proc_fs.h> 47 #include <linux/ptrace.h> 48 #include <linux/mount.h> 49 #include <linux/security.h> 50 #include <linux/syscalls.h> 51 #include <linux/rmap.h> 52 #include <linux/tsacct_kern.h> 53 #include <linux/cn_proc.h> 54 #include <linux/audit.h> 55 56 #include <asm/uaccess.h> 57 #include <asm/mmu_context.h> 58 #include <asm/tlb.h> 59 60 #ifdef CONFIG_KMOD 61 #include <linux/kmod.h> 62 #endif 63 64 int core_uses_pid; 65 char core_pattern[CORENAME_MAX_SIZE] = "core"; 66 int suid_dumpable = 0; 67 68 /* The maximal length of core_pattern is also specified in sysctl.c */ 69 70 static LIST_HEAD(formats); 71 static DEFINE_RWLOCK(binfmt_lock); 72 73 int register_binfmt(struct linux_binfmt * fmt) 74 { 75 if (!fmt) 76 return -EINVAL; 77 write_lock(&binfmt_lock); 78 list_add(&fmt->lh, &formats); 79 write_unlock(&binfmt_lock); 80 return 0; 81 } 82 83 EXPORT_SYMBOL(register_binfmt); 84 85 void unregister_binfmt(struct linux_binfmt * fmt) 86 { 87 write_lock(&binfmt_lock); 88 list_del(&fmt->lh); 89 write_unlock(&binfmt_lock); 90 } 91 92 EXPORT_SYMBOL(unregister_binfmt); 93 94 static inline void put_binfmt(struct linux_binfmt * fmt) 95 { 96 module_put(fmt->module); 97 } 98 99 /* 100 * Note that a shared library must be both readable and executable due to 101 * security reasons. 102 * 103 * Also note that we take the address to load from from the file itself. 104 */ 105 asmlinkage long sys_uselib(const char __user * library) 106 { 107 struct file * file; 108 struct nameidata nd; 109 int error; 110 111 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 112 if (error) 113 goto out; 114 115 error = -EINVAL; 116 if (!S_ISREG(nd.path.dentry->d_inode->i_mode)) 117 goto exit; 118 119 error = vfs_permission(&nd, MAY_READ | MAY_EXEC); 120 if (error) 121 goto exit; 122 123 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE); 124 error = PTR_ERR(file); 125 if (IS_ERR(file)) 126 goto out; 127 128 error = -ENOEXEC; 129 if(file->f_op) { 130 struct linux_binfmt * fmt; 131 132 read_lock(&binfmt_lock); 133 list_for_each_entry(fmt, &formats, lh) { 134 if (!fmt->load_shlib) 135 continue; 136 if (!try_module_get(fmt->module)) 137 continue; 138 read_unlock(&binfmt_lock); 139 error = fmt->load_shlib(file); 140 read_lock(&binfmt_lock); 141 put_binfmt(fmt); 142 if (error != -ENOEXEC) 143 break; 144 } 145 read_unlock(&binfmt_lock); 146 } 147 fput(file); 148 out: 149 return error; 150 exit: 151 release_open_intent(&nd); 152 path_put(&nd.path); 153 goto out; 154 } 155 156 #ifdef CONFIG_MMU 157 158 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 159 int write) 160 { 161 struct page *page; 162 int ret; 163 164 #ifdef CONFIG_STACK_GROWSUP 165 if (write) { 166 ret = expand_stack_downwards(bprm->vma, pos); 167 if (ret < 0) 168 return NULL; 169 } 170 #endif 171 ret = get_user_pages(current, bprm->mm, pos, 172 1, write, 1, &page, NULL); 173 if (ret <= 0) 174 return NULL; 175 176 if (write) { 177 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 178 struct rlimit *rlim; 179 180 /* 181 * We've historically supported up to 32 pages (ARG_MAX) 182 * of argument strings even with small stacks 183 */ 184 if (size <= ARG_MAX) 185 return page; 186 187 /* 188 * Limit to 1/4-th the stack size for the argv+env strings. 189 * This ensures that: 190 * - the remaining binfmt code will not run out of stack space, 191 * - the program will have a reasonable amount of stack left 192 * to work from. 193 */ 194 rlim = current->signal->rlim; 195 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { 196 put_page(page); 197 return NULL; 198 } 199 } 200 201 return page; 202 } 203 204 static void put_arg_page(struct page *page) 205 { 206 put_page(page); 207 } 208 209 static void free_arg_page(struct linux_binprm *bprm, int i) 210 { 211 } 212 213 static void free_arg_pages(struct linux_binprm *bprm) 214 { 215 } 216 217 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 218 struct page *page) 219 { 220 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 221 } 222 223 static int __bprm_mm_init(struct linux_binprm *bprm) 224 { 225 int err = -ENOMEM; 226 struct vm_area_struct *vma = NULL; 227 struct mm_struct *mm = bprm->mm; 228 229 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 230 if (!vma) 231 goto err; 232 233 down_write(&mm->mmap_sem); 234 vma->vm_mm = mm; 235 236 /* 237 * Place the stack at the largest stack address the architecture 238 * supports. Later, we'll move this to an appropriate place. We don't 239 * use STACK_TOP because that can depend on attributes which aren't 240 * configured yet. 241 */ 242 vma->vm_end = STACK_TOP_MAX; 243 vma->vm_start = vma->vm_end - PAGE_SIZE; 244 245 vma->vm_flags = VM_STACK_FLAGS; 246 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 247 err = insert_vm_struct(mm, vma); 248 if (err) { 249 up_write(&mm->mmap_sem); 250 goto err; 251 } 252 253 mm->stack_vm = mm->total_vm = 1; 254 up_write(&mm->mmap_sem); 255 256 bprm->p = vma->vm_end - sizeof(void *); 257 258 return 0; 259 260 err: 261 if (vma) { 262 bprm->vma = NULL; 263 kmem_cache_free(vm_area_cachep, vma); 264 } 265 266 return err; 267 } 268 269 static bool valid_arg_len(struct linux_binprm *bprm, long len) 270 { 271 return len <= MAX_ARG_STRLEN; 272 } 273 274 #else 275 276 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 277 int write) 278 { 279 struct page *page; 280 281 page = bprm->page[pos / PAGE_SIZE]; 282 if (!page && write) { 283 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 284 if (!page) 285 return NULL; 286 bprm->page[pos / PAGE_SIZE] = page; 287 } 288 289 return page; 290 } 291 292 static void put_arg_page(struct page *page) 293 { 294 } 295 296 static void free_arg_page(struct linux_binprm *bprm, int i) 297 { 298 if (bprm->page[i]) { 299 __free_page(bprm->page[i]); 300 bprm->page[i] = NULL; 301 } 302 } 303 304 static void free_arg_pages(struct linux_binprm *bprm) 305 { 306 int i; 307 308 for (i = 0; i < MAX_ARG_PAGES; i++) 309 free_arg_page(bprm, i); 310 } 311 312 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 313 struct page *page) 314 { 315 } 316 317 static int __bprm_mm_init(struct linux_binprm *bprm) 318 { 319 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 320 return 0; 321 } 322 323 static bool valid_arg_len(struct linux_binprm *bprm, long len) 324 { 325 return len <= bprm->p; 326 } 327 328 #endif /* CONFIG_MMU */ 329 330 /* 331 * Create a new mm_struct and populate it with a temporary stack 332 * vm_area_struct. We don't have enough context at this point to set the stack 333 * flags, permissions, and offset, so we use temporary values. We'll update 334 * them later in setup_arg_pages(). 335 */ 336 int bprm_mm_init(struct linux_binprm *bprm) 337 { 338 int err; 339 struct mm_struct *mm = NULL; 340 341 bprm->mm = mm = mm_alloc(); 342 err = -ENOMEM; 343 if (!mm) 344 goto err; 345 346 err = init_new_context(current, mm); 347 if (err) 348 goto err; 349 350 err = __bprm_mm_init(bprm); 351 if (err) 352 goto err; 353 354 return 0; 355 356 err: 357 if (mm) { 358 bprm->mm = NULL; 359 mmdrop(mm); 360 } 361 362 return err; 363 } 364 365 /* 366 * count() counts the number of strings in array ARGV. 367 */ 368 static int count(char __user * __user * argv, int max) 369 { 370 int i = 0; 371 372 if (argv != NULL) { 373 for (;;) { 374 char __user * p; 375 376 if (get_user(p, argv)) 377 return -EFAULT; 378 if (!p) 379 break; 380 argv++; 381 if(++i > max) 382 return -E2BIG; 383 cond_resched(); 384 } 385 } 386 return i; 387 } 388 389 /* 390 * 'copy_strings()' copies argument/environment strings from the old 391 * processes's memory to the new process's stack. The call to get_user_pages() 392 * ensures the destination page is created and not swapped out. 393 */ 394 static int copy_strings(int argc, char __user * __user * argv, 395 struct linux_binprm *bprm) 396 { 397 struct page *kmapped_page = NULL; 398 char *kaddr = NULL; 399 unsigned long kpos = 0; 400 int ret; 401 402 while (argc-- > 0) { 403 char __user *str; 404 int len; 405 unsigned long pos; 406 407 if (get_user(str, argv+argc) || 408 !(len = strnlen_user(str, MAX_ARG_STRLEN))) { 409 ret = -EFAULT; 410 goto out; 411 } 412 413 if (!valid_arg_len(bprm, len)) { 414 ret = -E2BIG; 415 goto out; 416 } 417 418 /* We're going to work our way backwords. */ 419 pos = bprm->p; 420 str += len; 421 bprm->p -= len; 422 423 while (len > 0) { 424 int offset, bytes_to_copy; 425 426 offset = pos % PAGE_SIZE; 427 if (offset == 0) 428 offset = PAGE_SIZE; 429 430 bytes_to_copy = offset; 431 if (bytes_to_copy > len) 432 bytes_to_copy = len; 433 434 offset -= bytes_to_copy; 435 pos -= bytes_to_copy; 436 str -= bytes_to_copy; 437 len -= bytes_to_copy; 438 439 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 440 struct page *page; 441 442 page = get_arg_page(bprm, pos, 1); 443 if (!page) { 444 ret = -E2BIG; 445 goto out; 446 } 447 448 if (kmapped_page) { 449 flush_kernel_dcache_page(kmapped_page); 450 kunmap(kmapped_page); 451 put_arg_page(kmapped_page); 452 } 453 kmapped_page = page; 454 kaddr = kmap(kmapped_page); 455 kpos = pos & PAGE_MASK; 456 flush_arg_page(bprm, kpos, kmapped_page); 457 } 458 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 459 ret = -EFAULT; 460 goto out; 461 } 462 } 463 } 464 ret = 0; 465 out: 466 if (kmapped_page) { 467 flush_kernel_dcache_page(kmapped_page); 468 kunmap(kmapped_page); 469 put_arg_page(kmapped_page); 470 } 471 return ret; 472 } 473 474 /* 475 * Like copy_strings, but get argv and its values from kernel memory. 476 */ 477 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) 478 { 479 int r; 480 mm_segment_t oldfs = get_fs(); 481 set_fs(KERNEL_DS); 482 r = copy_strings(argc, (char __user * __user *)argv, bprm); 483 set_fs(oldfs); 484 return r; 485 } 486 EXPORT_SYMBOL(copy_strings_kernel); 487 488 #ifdef CONFIG_MMU 489 490 /* 491 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 492 * the binfmt code determines where the new stack should reside, we shift it to 493 * its final location. The process proceeds as follows: 494 * 495 * 1) Use shift to calculate the new vma endpoints. 496 * 2) Extend vma to cover both the old and new ranges. This ensures the 497 * arguments passed to subsequent functions are consistent. 498 * 3) Move vma's page tables to the new range. 499 * 4) Free up any cleared pgd range. 500 * 5) Shrink the vma to cover only the new range. 501 */ 502 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 503 { 504 struct mm_struct *mm = vma->vm_mm; 505 unsigned long old_start = vma->vm_start; 506 unsigned long old_end = vma->vm_end; 507 unsigned long length = old_end - old_start; 508 unsigned long new_start = old_start - shift; 509 unsigned long new_end = old_end - shift; 510 struct mmu_gather *tlb; 511 512 BUG_ON(new_start > new_end); 513 514 /* 515 * ensure there are no vmas between where we want to go 516 * and where we are 517 */ 518 if (vma != find_vma(mm, new_start)) 519 return -EFAULT; 520 521 /* 522 * cover the whole range: [new_start, old_end) 523 */ 524 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); 525 526 /* 527 * move the page tables downwards, on failure we rely on 528 * process cleanup to remove whatever mess we made. 529 */ 530 if (length != move_page_tables(vma, old_start, 531 vma, new_start, length)) 532 return -ENOMEM; 533 534 lru_add_drain(); 535 tlb = tlb_gather_mmu(mm, 0); 536 if (new_end > old_start) { 537 /* 538 * when the old and new regions overlap clear from new_end. 539 */ 540 free_pgd_range(&tlb, new_end, old_end, new_end, 541 vma->vm_next ? vma->vm_next->vm_start : 0); 542 } else { 543 /* 544 * otherwise, clean from old_start; this is done to not touch 545 * the address space in [new_end, old_start) some architectures 546 * have constraints on va-space that make this illegal (IA64) - 547 * for the others its just a little faster. 548 */ 549 free_pgd_range(&tlb, old_start, old_end, new_end, 550 vma->vm_next ? vma->vm_next->vm_start : 0); 551 } 552 tlb_finish_mmu(tlb, new_end, old_end); 553 554 /* 555 * shrink the vma to just the new range. 556 */ 557 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 558 559 return 0; 560 } 561 562 #define EXTRA_STACK_VM_PAGES 20 /* random */ 563 564 /* 565 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 566 * the stack is optionally relocated, and some extra space is added. 567 */ 568 int setup_arg_pages(struct linux_binprm *bprm, 569 unsigned long stack_top, 570 int executable_stack) 571 { 572 unsigned long ret; 573 unsigned long stack_shift; 574 struct mm_struct *mm = current->mm; 575 struct vm_area_struct *vma = bprm->vma; 576 struct vm_area_struct *prev = NULL; 577 unsigned long vm_flags; 578 unsigned long stack_base; 579 580 #ifdef CONFIG_STACK_GROWSUP 581 /* Limit stack size to 1GB */ 582 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; 583 if (stack_base > (1 << 30)) 584 stack_base = 1 << 30; 585 586 /* Make sure we didn't let the argument array grow too large. */ 587 if (vma->vm_end - vma->vm_start > stack_base) 588 return -ENOMEM; 589 590 stack_base = PAGE_ALIGN(stack_top - stack_base); 591 592 stack_shift = vma->vm_start - stack_base; 593 mm->arg_start = bprm->p - stack_shift; 594 bprm->p = vma->vm_end - stack_shift; 595 #else 596 stack_top = arch_align_stack(stack_top); 597 stack_top = PAGE_ALIGN(stack_top); 598 stack_shift = vma->vm_end - stack_top; 599 600 bprm->p -= stack_shift; 601 mm->arg_start = bprm->p; 602 #endif 603 604 if (bprm->loader) 605 bprm->loader -= stack_shift; 606 bprm->exec -= stack_shift; 607 608 down_write(&mm->mmap_sem); 609 vm_flags = vma->vm_flags; 610 611 /* 612 * Adjust stack execute permissions; explicitly enable for 613 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 614 * (arch default) otherwise. 615 */ 616 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 617 vm_flags |= VM_EXEC; 618 else if (executable_stack == EXSTACK_DISABLE_X) 619 vm_flags &= ~VM_EXEC; 620 vm_flags |= mm->def_flags; 621 622 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 623 vm_flags); 624 if (ret) 625 goto out_unlock; 626 BUG_ON(prev != vma); 627 628 /* Move stack pages down in memory. */ 629 if (stack_shift) { 630 ret = shift_arg_pages(vma, stack_shift); 631 if (ret) { 632 up_write(&mm->mmap_sem); 633 return ret; 634 } 635 } 636 637 #ifdef CONFIG_STACK_GROWSUP 638 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; 639 #else 640 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; 641 #endif 642 ret = expand_stack(vma, stack_base); 643 if (ret) 644 ret = -EFAULT; 645 646 out_unlock: 647 up_write(&mm->mmap_sem); 648 return 0; 649 } 650 EXPORT_SYMBOL(setup_arg_pages); 651 652 #endif /* CONFIG_MMU */ 653 654 struct file *open_exec(const char *name) 655 { 656 struct nameidata nd; 657 int err; 658 struct file *file; 659 660 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC); 661 file = ERR_PTR(err); 662 663 if (!err) { 664 struct inode *inode = nd.path.dentry->d_inode; 665 file = ERR_PTR(-EACCES); 666 if (S_ISREG(inode->i_mode)) { 667 int err = vfs_permission(&nd, MAY_EXEC); 668 file = ERR_PTR(err); 669 if (!err) { 670 file = nameidata_to_filp(&nd, 671 O_RDONLY|O_LARGEFILE); 672 if (!IS_ERR(file)) { 673 err = deny_write_access(file); 674 if (err) { 675 fput(file); 676 file = ERR_PTR(err); 677 } 678 } 679 out: 680 return file; 681 } 682 } 683 release_open_intent(&nd); 684 path_put(&nd.path); 685 } 686 goto out; 687 } 688 689 EXPORT_SYMBOL(open_exec); 690 691 int kernel_read(struct file *file, unsigned long offset, 692 char *addr, unsigned long count) 693 { 694 mm_segment_t old_fs; 695 loff_t pos = offset; 696 int result; 697 698 old_fs = get_fs(); 699 set_fs(get_ds()); 700 /* The cast to a user pointer is valid due to the set_fs() */ 701 result = vfs_read(file, (void __user *)addr, count, &pos); 702 set_fs(old_fs); 703 return result; 704 } 705 706 EXPORT_SYMBOL(kernel_read); 707 708 static int exec_mmap(struct mm_struct *mm) 709 { 710 struct task_struct *tsk; 711 struct mm_struct * old_mm, *active_mm; 712 713 /* Notify parent that we're no longer interested in the old VM */ 714 tsk = current; 715 old_mm = current->mm; 716 mm_release(tsk, old_mm); 717 718 if (old_mm) { 719 /* 720 * Make sure that if there is a core dump in progress 721 * for the old mm, we get out and die instead of going 722 * through with the exec. We must hold mmap_sem around 723 * checking core_waiters and changing tsk->mm. The 724 * core-inducing thread will increment core_waiters for 725 * each thread whose ->mm == old_mm. 726 */ 727 down_read(&old_mm->mmap_sem); 728 if (unlikely(old_mm->core_waiters)) { 729 up_read(&old_mm->mmap_sem); 730 return -EINTR; 731 } 732 } 733 task_lock(tsk); 734 active_mm = tsk->active_mm; 735 tsk->mm = mm; 736 tsk->active_mm = mm; 737 activate_mm(active_mm, mm); 738 task_unlock(tsk); 739 mm_update_next_owner(old_mm); 740 arch_pick_mmap_layout(mm); 741 if (old_mm) { 742 up_read(&old_mm->mmap_sem); 743 BUG_ON(active_mm != old_mm); 744 mmput(old_mm); 745 return 0; 746 } 747 mmdrop(active_mm); 748 return 0; 749 } 750 751 /* 752 * This function makes sure the current process has its own signal table, 753 * so that flush_signal_handlers can later reset the handlers without 754 * disturbing other processes. (Other processes might share the signal 755 * table via the CLONE_SIGHAND option to clone().) 756 */ 757 static int de_thread(struct task_struct *tsk) 758 { 759 struct signal_struct *sig = tsk->signal; 760 struct sighand_struct *oldsighand = tsk->sighand; 761 spinlock_t *lock = &oldsighand->siglock; 762 struct task_struct *leader = NULL; 763 int count; 764 765 if (thread_group_empty(tsk)) 766 goto no_thread_group; 767 768 /* 769 * Kill all other threads in the thread group. 770 */ 771 spin_lock_irq(lock); 772 if (signal_group_exit(sig)) { 773 /* 774 * Another group action in progress, just 775 * return so that the signal is processed. 776 */ 777 spin_unlock_irq(lock); 778 return -EAGAIN; 779 } 780 sig->group_exit_task = tsk; 781 zap_other_threads(tsk); 782 783 /* Account for the thread group leader hanging around: */ 784 count = thread_group_leader(tsk) ? 1 : 2; 785 sig->notify_count = count; 786 while (atomic_read(&sig->count) > count) { 787 __set_current_state(TASK_UNINTERRUPTIBLE); 788 spin_unlock_irq(lock); 789 schedule(); 790 spin_lock_irq(lock); 791 } 792 spin_unlock_irq(lock); 793 794 /* 795 * At this point all other threads have exited, all we have to 796 * do is to wait for the thread group leader to become inactive, 797 * and to assume its PID: 798 */ 799 if (!thread_group_leader(tsk)) { 800 leader = tsk->group_leader; 801 802 sig->notify_count = -1; /* for exit_notify() */ 803 for (;;) { 804 write_lock_irq(&tasklist_lock); 805 if (likely(leader->exit_state)) 806 break; 807 __set_current_state(TASK_UNINTERRUPTIBLE); 808 write_unlock_irq(&tasklist_lock); 809 schedule(); 810 } 811 812 if (unlikely(task_child_reaper(tsk) == leader)) 813 task_active_pid_ns(tsk)->child_reaper = tsk; 814 /* 815 * The only record we have of the real-time age of a 816 * process, regardless of execs it's done, is start_time. 817 * All the past CPU time is accumulated in signal_struct 818 * from sister threads now dead. But in this non-leader 819 * exec, nothing survives from the original leader thread, 820 * whose birth marks the true age of this process now. 821 * When we take on its identity by switching to its PID, we 822 * also take its birthdate (always earlier than our own). 823 */ 824 tsk->start_time = leader->start_time; 825 826 BUG_ON(!same_thread_group(leader, tsk)); 827 BUG_ON(has_group_leader_pid(tsk)); 828 /* 829 * An exec() starts a new thread group with the 830 * TGID of the previous thread group. Rehash the 831 * two threads with a switched PID, and release 832 * the former thread group leader: 833 */ 834 835 /* Become a process group leader with the old leader's pid. 836 * The old leader becomes a thread of the this thread group. 837 * Note: The old leader also uses this pid until release_task 838 * is called. Odd but simple and correct. 839 */ 840 detach_pid(tsk, PIDTYPE_PID); 841 tsk->pid = leader->pid; 842 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 843 transfer_pid(leader, tsk, PIDTYPE_PGID); 844 transfer_pid(leader, tsk, PIDTYPE_SID); 845 list_replace_rcu(&leader->tasks, &tsk->tasks); 846 847 tsk->group_leader = tsk; 848 leader->group_leader = tsk; 849 850 tsk->exit_signal = SIGCHLD; 851 852 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 853 leader->exit_state = EXIT_DEAD; 854 855 write_unlock_irq(&tasklist_lock); 856 } 857 858 sig->group_exit_task = NULL; 859 sig->notify_count = 0; 860 861 no_thread_group: 862 exit_itimers(sig); 863 if (leader) 864 release_task(leader); 865 866 if (atomic_read(&oldsighand->count) != 1) { 867 struct sighand_struct *newsighand; 868 /* 869 * This ->sighand is shared with the CLONE_SIGHAND 870 * but not CLONE_THREAD task, switch to the new one. 871 */ 872 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 873 if (!newsighand) 874 return -ENOMEM; 875 876 atomic_set(&newsighand->count, 1); 877 memcpy(newsighand->action, oldsighand->action, 878 sizeof(newsighand->action)); 879 880 write_lock_irq(&tasklist_lock); 881 spin_lock(&oldsighand->siglock); 882 rcu_assign_pointer(tsk->sighand, newsighand); 883 spin_unlock(&oldsighand->siglock); 884 write_unlock_irq(&tasklist_lock); 885 886 __cleanup_sighand(oldsighand); 887 } 888 889 BUG_ON(!thread_group_leader(tsk)); 890 return 0; 891 } 892 893 /* 894 * These functions flushes out all traces of the currently running executable 895 * so that a new one can be started 896 */ 897 static void flush_old_files(struct files_struct * files) 898 { 899 long j = -1; 900 struct fdtable *fdt; 901 902 spin_lock(&files->file_lock); 903 for (;;) { 904 unsigned long set, i; 905 906 j++; 907 i = j * __NFDBITS; 908 fdt = files_fdtable(files); 909 if (i >= fdt->max_fds) 910 break; 911 set = fdt->close_on_exec->fds_bits[j]; 912 if (!set) 913 continue; 914 fdt->close_on_exec->fds_bits[j] = 0; 915 spin_unlock(&files->file_lock); 916 for ( ; set ; i++,set >>= 1) { 917 if (set & 1) { 918 sys_close(i); 919 } 920 } 921 spin_lock(&files->file_lock); 922 923 } 924 spin_unlock(&files->file_lock); 925 } 926 927 char *get_task_comm(char *buf, struct task_struct *tsk) 928 { 929 /* buf must be at least sizeof(tsk->comm) in size */ 930 task_lock(tsk); 931 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 932 task_unlock(tsk); 933 return buf; 934 } 935 936 void set_task_comm(struct task_struct *tsk, char *buf) 937 { 938 task_lock(tsk); 939 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 940 task_unlock(tsk); 941 } 942 943 int flush_old_exec(struct linux_binprm * bprm) 944 { 945 char * name; 946 int i, ch, retval; 947 char tcomm[sizeof(current->comm)]; 948 949 /* 950 * Make sure we have a private signal table and that 951 * we are unassociated from the previous thread group. 952 */ 953 retval = de_thread(current); 954 if (retval) 955 goto out; 956 957 set_mm_exe_file(bprm->mm, bprm->file); 958 959 /* 960 * Release all of the old mmap stuff 961 */ 962 retval = exec_mmap(bprm->mm); 963 if (retval) 964 goto out; 965 966 bprm->mm = NULL; /* We're using it now */ 967 968 /* This is the point of no return */ 969 current->sas_ss_sp = current->sas_ss_size = 0; 970 971 if (current->euid == current->uid && current->egid == current->gid) 972 set_dumpable(current->mm, 1); 973 else 974 set_dumpable(current->mm, suid_dumpable); 975 976 name = bprm->filename; 977 978 /* Copies the binary name from after last slash */ 979 for (i=0; (ch = *(name++)) != '\0';) { 980 if (ch == '/') 981 i = 0; /* overwrite what we wrote */ 982 else 983 if (i < (sizeof(tcomm) - 1)) 984 tcomm[i++] = ch; 985 } 986 tcomm[i] = '\0'; 987 set_task_comm(current, tcomm); 988 989 current->flags &= ~PF_RANDOMIZE; 990 flush_thread(); 991 992 /* Set the new mm task size. We have to do that late because it may 993 * depend on TIF_32BIT which is only updated in flush_thread() on 994 * some architectures like powerpc 995 */ 996 current->mm->task_size = TASK_SIZE; 997 998 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) { 999 suid_keys(current); 1000 set_dumpable(current->mm, suid_dumpable); 1001 current->pdeath_signal = 0; 1002 } else if (file_permission(bprm->file, MAY_READ) || 1003 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { 1004 suid_keys(current); 1005 set_dumpable(current->mm, suid_dumpable); 1006 } 1007 1008 /* An exec changes our domain. We are no longer part of the thread 1009 group */ 1010 1011 current->self_exec_id++; 1012 1013 flush_signal_handlers(current, 0); 1014 flush_old_files(current->files); 1015 1016 return 0; 1017 1018 out: 1019 return retval; 1020 } 1021 1022 EXPORT_SYMBOL(flush_old_exec); 1023 1024 /* 1025 * Fill the binprm structure from the inode. 1026 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1027 */ 1028 int prepare_binprm(struct linux_binprm *bprm) 1029 { 1030 int mode; 1031 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1032 int retval; 1033 1034 mode = inode->i_mode; 1035 if (bprm->file->f_op == NULL) 1036 return -EACCES; 1037 1038 bprm->e_uid = current->euid; 1039 bprm->e_gid = current->egid; 1040 1041 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { 1042 /* Set-uid? */ 1043 if (mode & S_ISUID) { 1044 current->personality &= ~PER_CLEAR_ON_SETID; 1045 bprm->e_uid = inode->i_uid; 1046 } 1047 1048 /* Set-gid? */ 1049 /* 1050 * If setgid is set but no group execute bit then this 1051 * is a candidate for mandatory locking, not a setgid 1052 * executable. 1053 */ 1054 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1055 current->personality &= ~PER_CLEAR_ON_SETID; 1056 bprm->e_gid = inode->i_gid; 1057 } 1058 } 1059 1060 /* fill in binprm security blob */ 1061 retval = security_bprm_set(bprm); 1062 if (retval) 1063 return retval; 1064 1065 memset(bprm->buf,0,BINPRM_BUF_SIZE); 1066 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); 1067 } 1068 1069 EXPORT_SYMBOL(prepare_binprm); 1070 1071 static int unsafe_exec(struct task_struct *p) 1072 { 1073 int unsafe = 0; 1074 if (p->ptrace & PT_PTRACED) { 1075 if (p->ptrace & PT_PTRACE_CAP) 1076 unsafe |= LSM_UNSAFE_PTRACE_CAP; 1077 else 1078 unsafe |= LSM_UNSAFE_PTRACE; 1079 } 1080 if (atomic_read(&p->fs->count) > 1 || 1081 atomic_read(&p->files->count) > 1 || 1082 atomic_read(&p->sighand->count) > 1) 1083 unsafe |= LSM_UNSAFE_SHARE; 1084 1085 return unsafe; 1086 } 1087 1088 void compute_creds(struct linux_binprm *bprm) 1089 { 1090 int unsafe; 1091 1092 if (bprm->e_uid != current->uid) { 1093 suid_keys(current); 1094 current->pdeath_signal = 0; 1095 } 1096 exec_keys(current); 1097 1098 task_lock(current); 1099 unsafe = unsafe_exec(current); 1100 security_bprm_apply_creds(bprm, unsafe); 1101 task_unlock(current); 1102 security_bprm_post_apply_creds(bprm); 1103 } 1104 EXPORT_SYMBOL(compute_creds); 1105 1106 /* 1107 * Arguments are '\0' separated strings found at the location bprm->p 1108 * points to; chop off the first by relocating brpm->p to right after 1109 * the first '\0' encountered. 1110 */ 1111 int remove_arg_zero(struct linux_binprm *bprm) 1112 { 1113 int ret = 0; 1114 unsigned long offset; 1115 char *kaddr; 1116 struct page *page; 1117 1118 if (!bprm->argc) 1119 return 0; 1120 1121 do { 1122 offset = bprm->p & ~PAGE_MASK; 1123 page = get_arg_page(bprm, bprm->p, 0); 1124 if (!page) { 1125 ret = -EFAULT; 1126 goto out; 1127 } 1128 kaddr = kmap_atomic(page, KM_USER0); 1129 1130 for (; offset < PAGE_SIZE && kaddr[offset]; 1131 offset++, bprm->p++) 1132 ; 1133 1134 kunmap_atomic(kaddr, KM_USER0); 1135 put_arg_page(page); 1136 1137 if (offset == PAGE_SIZE) 1138 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1139 } while (offset == PAGE_SIZE); 1140 1141 bprm->p++; 1142 bprm->argc--; 1143 ret = 0; 1144 1145 out: 1146 return ret; 1147 } 1148 EXPORT_SYMBOL(remove_arg_zero); 1149 1150 /* 1151 * cycle the list of binary formats handler, until one recognizes the image 1152 */ 1153 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1154 { 1155 int try,retval; 1156 struct linux_binfmt *fmt; 1157 #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT) 1158 /* handle /sbin/loader.. */ 1159 { 1160 struct exec * eh = (struct exec *) bprm->buf; 1161 1162 if (!bprm->loader && eh->fh.f_magic == 0x183 && 1163 (eh->fh.f_flags & 0x3000) == 0x3000) 1164 { 1165 struct file * file; 1166 unsigned long loader; 1167 1168 allow_write_access(bprm->file); 1169 fput(bprm->file); 1170 bprm->file = NULL; 1171 1172 loader = bprm->vma->vm_end - sizeof(void *); 1173 1174 file = open_exec("/sbin/loader"); 1175 retval = PTR_ERR(file); 1176 if (IS_ERR(file)) 1177 return retval; 1178 1179 /* Remember if the application is TASO. */ 1180 bprm->sh_bang = eh->ah.entry < 0x100000000UL; 1181 1182 bprm->file = file; 1183 bprm->loader = loader; 1184 retval = prepare_binprm(bprm); 1185 if (retval<0) 1186 return retval; 1187 /* should call search_binary_handler recursively here, 1188 but it does not matter */ 1189 } 1190 } 1191 #endif 1192 retval = security_bprm_check(bprm); 1193 if (retval) 1194 return retval; 1195 1196 /* kernel module loader fixup */ 1197 /* so we don't try to load run modprobe in kernel space. */ 1198 set_fs(USER_DS); 1199 1200 retval = audit_bprm(bprm); 1201 if (retval) 1202 return retval; 1203 1204 retval = -ENOENT; 1205 for (try=0; try<2; try++) { 1206 read_lock(&binfmt_lock); 1207 list_for_each_entry(fmt, &formats, lh) { 1208 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1209 if (!fn) 1210 continue; 1211 if (!try_module_get(fmt->module)) 1212 continue; 1213 read_unlock(&binfmt_lock); 1214 retval = fn(bprm, regs); 1215 if (retval >= 0) { 1216 put_binfmt(fmt); 1217 allow_write_access(bprm->file); 1218 if (bprm->file) 1219 fput(bprm->file); 1220 bprm->file = NULL; 1221 current->did_exec = 1; 1222 proc_exec_connector(current); 1223 return retval; 1224 } 1225 read_lock(&binfmt_lock); 1226 put_binfmt(fmt); 1227 if (retval != -ENOEXEC || bprm->mm == NULL) 1228 break; 1229 if (!bprm->file) { 1230 read_unlock(&binfmt_lock); 1231 return retval; 1232 } 1233 } 1234 read_unlock(&binfmt_lock); 1235 if (retval != -ENOEXEC || bprm->mm == NULL) { 1236 break; 1237 #ifdef CONFIG_KMOD 1238 }else{ 1239 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1240 if (printable(bprm->buf[0]) && 1241 printable(bprm->buf[1]) && 1242 printable(bprm->buf[2]) && 1243 printable(bprm->buf[3])) 1244 break; /* -ENOEXEC */ 1245 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1246 #endif 1247 } 1248 } 1249 return retval; 1250 } 1251 1252 EXPORT_SYMBOL(search_binary_handler); 1253 1254 /* 1255 * sys_execve() executes a new program. 1256 */ 1257 int do_execve(char * filename, 1258 char __user *__user *argv, 1259 char __user *__user *envp, 1260 struct pt_regs * regs) 1261 { 1262 struct linux_binprm *bprm; 1263 struct file *file; 1264 struct files_struct *displaced; 1265 int retval; 1266 1267 retval = unshare_files(&displaced); 1268 if (retval) 1269 goto out_ret; 1270 1271 retval = -ENOMEM; 1272 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1273 if (!bprm) 1274 goto out_files; 1275 1276 file = open_exec(filename); 1277 retval = PTR_ERR(file); 1278 if (IS_ERR(file)) 1279 goto out_kfree; 1280 1281 sched_exec(); 1282 1283 bprm->file = file; 1284 bprm->filename = filename; 1285 bprm->interp = filename; 1286 1287 retval = bprm_mm_init(bprm); 1288 if (retval) 1289 goto out_file; 1290 1291 bprm->argc = count(argv, MAX_ARG_STRINGS); 1292 if ((retval = bprm->argc) < 0) 1293 goto out_mm; 1294 1295 bprm->envc = count(envp, MAX_ARG_STRINGS); 1296 if ((retval = bprm->envc) < 0) 1297 goto out_mm; 1298 1299 retval = security_bprm_alloc(bprm); 1300 if (retval) 1301 goto out; 1302 1303 retval = prepare_binprm(bprm); 1304 if (retval < 0) 1305 goto out; 1306 1307 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1308 if (retval < 0) 1309 goto out; 1310 1311 bprm->exec = bprm->p; 1312 retval = copy_strings(bprm->envc, envp, bprm); 1313 if (retval < 0) 1314 goto out; 1315 1316 retval = copy_strings(bprm->argc, argv, bprm); 1317 if (retval < 0) 1318 goto out; 1319 1320 retval = search_binary_handler(bprm,regs); 1321 if (retval >= 0) { 1322 /* execve success */ 1323 free_arg_pages(bprm); 1324 security_bprm_free(bprm); 1325 acct_update_integrals(current); 1326 kfree(bprm); 1327 if (displaced) 1328 put_files_struct(displaced); 1329 return retval; 1330 } 1331 1332 out: 1333 free_arg_pages(bprm); 1334 if (bprm->security) 1335 security_bprm_free(bprm); 1336 1337 out_mm: 1338 if (bprm->mm) 1339 mmput (bprm->mm); 1340 1341 out_file: 1342 if (bprm->file) { 1343 allow_write_access(bprm->file); 1344 fput(bprm->file); 1345 } 1346 out_kfree: 1347 kfree(bprm); 1348 1349 out_files: 1350 if (displaced) 1351 reset_files_struct(displaced); 1352 out_ret: 1353 return retval; 1354 } 1355 1356 int set_binfmt(struct linux_binfmt *new) 1357 { 1358 struct linux_binfmt *old = current->binfmt; 1359 1360 if (new) { 1361 if (!try_module_get(new->module)) 1362 return -1; 1363 } 1364 current->binfmt = new; 1365 if (old) 1366 module_put(old->module); 1367 return 0; 1368 } 1369 1370 EXPORT_SYMBOL(set_binfmt); 1371 1372 /* format_corename will inspect the pattern parameter, and output a 1373 * name into corename, which must have space for at least 1374 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. 1375 */ 1376 static int format_corename(char *corename, const char *pattern, long signr) 1377 { 1378 const char *pat_ptr = pattern; 1379 char *out_ptr = corename; 1380 char *const out_end = corename + CORENAME_MAX_SIZE; 1381 int rc; 1382 int pid_in_pattern = 0; 1383 int ispipe = 0; 1384 1385 if (*pattern == '|') 1386 ispipe = 1; 1387 1388 /* Repeat as long as we have more pattern to process and more output 1389 space */ 1390 while (*pat_ptr) { 1391 if (*pat_ptr != '%') { 1392 if (out_ptr == out_end) 1393 goto out; 1394 *out_ptr++ = *pat_ptr++; 1395 } else { 1396 switch (*++pat_ptr) { 1397 case 0: 1398 goto out; 1399 /* Double percent, output one percent */ 1400 case '%': 1401 if (out_ptr == out_end) 1402 goto out; 1403 *out_ptr++ = '%'; 1404 break; 1405 /* pid */ 1406 case 'p': 1407 pid_in_pattern = 1; 1408 rc = snprintf(out_ptr, out_end - out_ptr, 1409 "%d", task_tgid_vnr(current)); 1410 if (rc > out_end - out_ptr) 1411 goto out; 1412 out_ptr += rc; 1413 break; 1414 /* uid */ 1415 case 'u': 1416 rc = snprintf(out_ptr, out_end - out_ptr, 1417 "%d", current->uid); 1418 if (rc > out_end - out_ptr) 1419 goto out; 1420 out_ptr += rc; 1421 break; 1422 /* gid */ 1423 case 'g': 1424 rc = snprintf(out_ptr, out_end - out_ptr, 1425 "%d", current->gid); 1426 if (rc > out_end - out_ptr) 1427 goto out; 1428 out_ptr += rc; 1429 break; 1430 /* signal that caused the coredump */ 1431 case 's': 1432 rc = snprintf(out_ptr, out_end - out_ptr, 1433 "%ld", signr); 1434 if (rc > out_end - out_ptr) 1435 goto out; 1436 out_ptr += rc; 1437 break; 1438 /* UNIX time of coredump */ 1439 case 't': { 1440 struct timeval tv; 1441 do_gettimeofday(&tv); 1442 rc = snprintf(out_ptr, out_end - out_ptr, 1443 "%lu", tv.tv_sec); 1444 if (rc > out_end - out_ptr) 1445 goto out; 1446 out_ptr += rc; 1447 break; 1448 } 1449 /* hostname */ 1450 case 'h': 1451 down_read(&uts_sem); 1452 rc = snprintf(out_ptr, out_end - out_ptr, 1453 "%s", utsname()->nodename); 1454 up_read(&uts_sem); 1455 if (rc > out_end - out_ptr) 1456 goto out; 1457 out_ptr += rc; 1458 break; 1459 /* executable */ 1460 case 'e': 1461 rc = snprintf(out_ptr, out_end - out_ptr, 1462 "%s", current->comm); 1463 if (rc > out_end - out_ptr) 1464 goto out; 1465 out_ptr += rc; 1466 break; 1467 /* core limit size */ 1468 case 'c': 1469 rc = snprintf(out_ptr, out_end - out_ptr, 1470 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); 1471 if (rc > out_end - out_ptr) 1472 goto out; 1473 out_ptr += rc; 1474 break; 1475 default: 1476 break; 1477 } 1478 ++pat_ptr; 1479 } 1480 } 1481 /* Backward compatibility with core_uses_pid: 1482 * 1483 * If core_pattern does not include a %p (as is the default) 1484 * and core_uses_pid is set, then .%pid will be appended to 1485 * the filename. Do not do this for piped commands. */ 1486 if (!ispipe && !pid_in_pattern 1487 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) { 1488 rc = snprintf(out_ptr, out_end - out_ptr, 1489 ".%d", task_tgid_vnr(current)); 1490 if (rc > out_end - out_ptr) 1491 goto out; 1492 out_ptr += rc; 1493 } 1494 out: 1495 *out_ptr = 0; 1496 return ispipe; 1497 } 1498 1499 static void zap_process(struct task_struct *start) 1500 { 1501 struct task_struct *t; 1502 1503 start->signal->flags = SIGNAL_GROUP_EXIT; 1504 start->signal->group_stop_count = 0; 1505 1506 t = start; 1507 do { 1508 if (t != current && t->mm) { 1509 t->mm->core_waiters++; 1510 sigaddset(&t->pending.signal, SIGKILL); 1511 signal_wake_up(t, 1); 1512 } 1513 } while ((t = next_thread(t)) != start); 1514 } 1515 1516 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, 1517 int exit_code) 1518 { 1519 struct task_struct *g, *p; 1520 unsigned long flags; 1521 int err = -EAGAIN; 1522 1523 spin_lock_irq(&tsk->sighand->siglock); 1524 if (!signal_group_exit(tsk->signal)) { 1525 tsk->signal->group_exit_code = exit_code; 1526 zap_process(tsk); 1527 err = 0; 1528 } 1529 spin_unlock_irq(&tsk->sighand->siglock); 1530 if (err) 1531 return err; 1532 1533 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1) 1534 goto done; 1535 1536 rcu_read_lock(); 1537 for_each_process(g) { 1538 if (g == tsk->group_leader) 1539 continue; 1540 1541 p = g; 1542 do { 1543 if (p->mm) { 1544 if (p->mm == mm) { 1545 /* 1546 * p->sighand can't disappear, but 1547 * may be changed by de_thread() 1548 */ 1549 lock_task_sighand(p, &flags); 1550 zap_process(p); 1551 unlock_task_sighand(p, &flags); 1552 } 1553 break; 1554 } 1555 } while ((p = next_thread(p)) != g); 1556 } 1557 rcu_read_unlock(); 1558 done: 1559 return mm->core_waiters; 1560 } 1561 1562 static int coredump_wait(int exit_code) 1563 { 1564 struct task_struct *tsk = current; 1565 struct mm_struct *mm = tsk->mm; 1566 struct completion startup_done; 1567 struct completion *vfork_done; 1568 int core_waiters; 1569 1570 init_completion(&mm->core_done); 1571 init_completion(&startup_done); 1572 mm->core_startup_done = &startup_done; 1573 1574 core_waiters = zap_threads(tsk, mm, exit_code); 1575 up_write(&mm->mmap_sem); 1576 1577 if (unlikely(core_waiters < 0)) 1578 goto fail; 1579 1580 /* 1581 * Make sure nobody is waiting for us to release the VM, 1582 * otherwise we can deadlock when we wait on each other 1583 */ 1584 vfork_done = tsk->vfork_done; 1585 if (vfork_done) { 1586 tsk->vfork_done = NULL; 1587 complete(vfork_done); 1588 } 1589 1590 if (core_waiters) 1591 wait_for_completion(&startup_done); 1592 fail: 1593 BUG_ON(mm->core_waiters); 1594 return core_waiters; 1595 } 1596 1597 /* 1598 * set_dumpable converts traditional three-value dumpable to two flags and 1599 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1600 * these bits are not changed atomically. So get_dumpable can observe the 1601 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1602 * return either old dumpable or new one by paying attention to the order of 1603 * modifying the bits. 1604 * 1605 * dumpable | mm->flags (binary) 1606 * old new | initial interim final 1607 * ---------+----------------------- 1608 * 0 1 | 00 01 01 1609 * 0 2 | 00 10(*) 11 1610 * 1 0 | 01 00 00 1611 * 1 2 | 01 11 11 1612 * 2 0 | 11 10(*) 00 1613 * 2 1 | 11 11 01 1614 * 1615 * (*) get_dumpable regards interim value of 10 as 11. 1616 */ 1617 void set_dumpable(struct mm_struct *mm, int value) 1618 { 1619 switch (value) { 1620 case 0: 1621 clear_bit(MMF_DUMPABLE, &mm->flags); 1622 smp_wmb(); 1623 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1624 break; 1625 case 1: 1626 set_bit(MMF_DUMPABLE, &mm->flags); 1627 smp_wmb(); 1628 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1629 break; 1630 case 2: 1631 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1632 smp_wmb(); 1633 set_bit(MMF_DUMPABLE, &mm->flags); 1634 break; 1635 } 1636 } 1637 1638 int get_dumpable(struct mm_struct *mm) 1639 { 1640 int ret; 1641 1642 ret = mm->flags & 0x3; 1643 return (ret >= 2) ? 2 : ret; 1644 } 1645 1646 int do_coredump(long signr, int exit_code, struct pt_regs * regs) 1647 { 1648 char corename[CORENAME_MAX_SIZE + 1]; 1649 struct mm_struct *mm = current->mm; 1650 struct linux_binfmt * binfmt; 1651 struct inode * inode; 1652 struct file * file; 1653 int retval = 0; 1654 int fsuid = current->fsuid; 1655 int flag = 0; 1656 int ispipe = 0; 1657 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; 1658 char **helper_argv = NULL; 1659 int helper_argc = 0; 1660 char *delimit; 1661 1662 audit_core_dumps(signr); 1663 1664 binfmt = current->binfmt; 1665 if (!binfmt || !binfmt->core_dump) 1666 goto fail; 1667 down_write(&mm->mmap_sem); 1668 /* 1669 * If another thread got here first, or we are not dumpable, bail out. 1670 */ 1671 if (mm->core_waiters || !get_dumpable(mm)) { 1672 up_write(&mm->mmap_sem); 1673 goto fail; 1674 } 1675 1676 /* 1677 * We cannot trust fsuid as being the "true" uid of the 1678 * process nor do we know its entire history. We only know it 1679 * was tainted so we dump it as root in mode 2. 1680 */ 1681 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ 1682 flag = O_EXCL; /* Stop rewrite attacks */ 1683 current->fsuid = 0; /* Dump root private */ 1684 } 1685 1686 retval = coredump_wait(exit_code); 1687 if (retval < 0) 1688 goto fail; 1689 1690 /* 1691 * Clear any false indication of pending signals that might 1692 * be seen by the filesystem code called to write the core file. 1693 */ 1694 clear_thread_flag(TIF_SIGPENDING); 1695 1696 /* 1697 * lock_kernel() because format_corename() is controlled by sysctl, which 1698 * uses lock_kernel() 1699 */ 1700 lock_kernel(); 1701 ispipe = format_corename(corename, core_pattern, signr); 1702 unlock_kernel(); 1703 /* 1704 * Don't bother to check the RLIMIT_CORE value if core_pattern points 1705 * to a pipe. Since we're not writing directly to the filesystem 1706 * RLIMIT_CORE doesn't really apply, as no actual core file will be 1707 * created unless the pipe reader choses to write out the core file 1708 * at which point file size limits and permissions will be imposed 1709 * as it does with any other process 1710 */ 1711 if ((!ispipe) && (core_limit < binfmt->min_coredump)) 1712 goto fail_unlock; 1713 1714 if (ispipe) { 1715 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); 1716 /* Terminate the string before the first option */ 1717 delimit = strchr(corename, ' '); 1718 if (delimit) 1719 *delimit = '\0'; 1720 delimit = strrchr(helper_argv[0], '/'); 1721 if (delimit) 1722 delimit++; 1723 else 1724 delimit = helper_argv[0]; 1725 if (!strcmp(delimit, current->comm)) { 1726 printk(KERN_NOTICE "Recursive core dump detected, " 1727 "aborting\n"); 1728 goto fail_unlock; 1729 } 1730 1731 core_limit = RLIM_INFINITY; 1732 1733 /* SIGPIPE can happen, but it's just never processed */ 1734 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL, 1735 &file)) { 1736 printk(KERN_INFO "Core dump to %s pipe failed\n", 1737 corename); 1738 goto fail_unlock; 1739 } 1740 } else 1741 file = filp_open(corename, 1742 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 1743 0600); 1744 if (IS_ERR(file)) 1745 goto fail_unlock; 1746 inode = file->f_path.dentry->d_inode; 1747 if (inode->i_nlink > 1) 1748 goto close_fail; /* multiple links - don't dump */ 1749 if (!ispipe && d_unhashed(file->f_path.dentry)) 1750 goto close_fail; 1751 1752 /* AK: actually i see no reason to not allow this for named pipes etc., 1753 but keep the previous behaviour for now. */ 1754 if (!ispipe && !S_ISREG(inode->i_mode)) 1755 goto close_fail; 1756 /* 1757 * Dont allow local users get cute and trick others to coredump 1758 * into their pre-created files: 1759 */ 1760 if (inode->i_uid != current->fsuid) 1761 goto close_fail; 1762 if (!file->f_op) 1763 goto close_fail; 1764 if (!file->f_op->write) 1765 goto close_fail; 1766 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) 1767 goto close_fail; 1768 1769 retval = binfmt->core_dump(signr, regs, file, core_limit); 1770 1771 if (retval) 1772 current->signal->group_exit_code |= 0x80; 1773 close_fail: 1774 filp_close(file, NULL); 1775 fail_unlock: 1776 if (helper_argv) 1777 argv_free(helper_argv); 1778 1779 current->fsuid = fsuid; 1780 complete_all(&mm->core_done); 1781 fail: 1782 return retval; 1783 } 1784