xref: /openbmc/linux/fs/exec.c (revision 22246614)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/swap.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/ptrace.h>
48 #include <linux/mount.h>
49 #include <linux/security.h>
50 #include <linux/syscalls.h>
51 #include <linux/rmap.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/cn_proc.h>
54 #include <linux/audit.h>
55 
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
58 #include <asm/tlb.h>
59 
60 #ifdef CONFIG_KMOD
61 #include <linux/kmod.h>
62 #endif
63 
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 int suid_dumpable = 0;
67 
68 /* The maximal length of core_pattern is also specified in sysctl.c */
69 
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72 
73 int register_binfmt(struct linux_binfmt * fmt)
74 {
75 	if (!fmt)
76 		return -EINVAL;
77 	write_lock(&binfmt_lock);
78 	list_add(&fmt->lh, &formats);
79 	write_unlock(&binfmt_lock);
80 	return 0;
81 }
82 
83 EXPORT_SYMBOL(register_binfmt);
84 
85 void unregister_binfmt(struct linux_binfmt * fmt)
86 {
87 	write_lock(&binfmt_lock);
88 	list_del(&fmt->lh);
89 	write_unlock(&binfmt_lock);
90 }
91 
92 EXPORT_SYMBOL(unregister_binfmt);
93 
94 static inline void put_binfmt(struct linux_binfmt * fmt)
95 {
96 	module_put(fmt->module);
97 }
98 
99 /*
100  * Note that a shared library must be both readable and executable due to
101  * security reasons.
102  *
103  * Also note that we take the address to load from from the file itself.
104  */
105 asmlinkage long sys_uselib(const char __user * library)
106 {
107 	struct file * file;
108 	struct nameidata nd;
109 	int error;
110 
111 	error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
112 	if (error)
113 		goto out;
114 
115 	error = -EINVAL;
116 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
117 		goto exit;
118 
119 	error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
120 	if (error)
121 		goto exit;
122 
123 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
124 	error = PTR_ERR(file);
125 	if (IS_ERR(file))
126 		goto out;
127 
128 	error = -ENOEXEC;
129 	if(file->f_op) {
130 		struct linux_binfmt * fmt;
131 
132 		read_lock(&binfmt_lock);
133 		list_for_each_entry(fmt, &formats, lh) {
134 			if (!fmt->load_shlib)
135 				continue;
136 			if (!try_module_get(fmt->module))
137 				continue;
138 			read_unlock(&binfmt_lock);
139 			error = fmt->load_shlib(file);
140 			read_lock(&binfmt_lock);
141 			put_binfmt(fmt);
142 			if (error != -ENOEXEC)
143 				break;
144 		}
145 		read_unlock(&binfmt_lock);
146 	}
147 	fput(file);
148 out:
149   	return error;
150 exit:
151 	release_open_intent(&nd);
152 	path_put(&nd.path);
153 	goto out;
154 }
155 
156 #ifdef CONFIG_MMU
157 
158 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
159 		int write)
160 {
161 	struct page *page;
162 	int ret;
163 
164 #ifdef CONFIG_STACK_GROWSUP
165 	if (write) {
166 		ret = expand_stack_downwards(bprm->vma, pos);
167 		if (ret < 0)
168 			return NULL;
169 	}
170 #endif
171 	ret = get_user_pages(current, bprm->mm, pos,
172 			1, write, 1, &page, NULL);
173 	if (ret <= 0)
174 		return NULL;
175 
176 	if (write) {
177 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
178 		struct rlimit *rlim;
179 
180 		/*
181 		 * We've historically supported up to 32 pages (ARG_MAX)
182 		 * of argument strings even with small stacks
183 		 */
184 		if (size <= ARG_MAX)
185 			return page;
186 
187 		/*
188 		 * Limit to 1/4-th the stack size for the argv+env strings.
189 		 * This ensures that:
190 		 *  - the remaining binfmt code will not run out of stack space,
191 		 *  - the program will have a reasonable amount of stack left
192 		 *    to work from.
193 		 */
194 		rlim = current->signal->rlim;
195 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
196 			put_page(page);
197 			return NULL;
198 		}
199 	}
200 
201 	return page;
202 }
203 
204 static void put_arg_page(struct page *page)
205 {
206 	put_page(page);
207 }
208 
209 static void free_arg_page(struct linux_binprm *bprm, int i)
210 {
211 }
212 
213 static void free_arg_pages(struct linux_binprm *bprm)
214 {
215 }
216 
217 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
218 		struct page *page)
219 {
220 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
221 }
222 
223 static int __bprm_mm_init(struct linux_binprm *bprm)
224 {
225 	int err = -ENOMEM;
226 	struct vm_area_struct *vma = NULL;
227 	struct mm_struct *mm = bprm->mm;
228 
229 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
230 	if (!vma)
231 		goto err;
232 
233 	down_write(&mm->mmap_sem);
234 	vma->vm_mm = mm;
235 
236 	/*
237 	 * Place the stack at the largest stack address the architecture
238 	 * supports. Later, we'll move this to an appropriate place. We don't
239 	 * use STACK_TOP because that can depend on attributes which aren't
240 	 * configured yet.
241 	 */
242 	vma->vm_end = STACK_TOP_MAX;
243 	vma->vm_start = vma->vm_end - PAGE_SIZE;
244 
245 	vma->vm_flags = VM_STACK_FLAGS;
246 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
247 	err = insert_vm_struct(mm, vma);
248 	if (err) {
249 		up_write(&mm->mmap_sem);
250 		goto err;
251 	}
252 
253 	mm->stack_vm = mm->total_vm = 1;
254 	up_write(&mm->mmap_sem);
255 
256 	bprm->p = vma->vm_end - sizeof(void *);
257 
258 	return 0;
259 
260 err:
261 	if (vma) {
262 		bprm->vma = NULL;
263 		kmem_cache_free(vm_area_cachep, vma);
264 	}
265 
266 	return err;
267 }
268 
269 static bool valid_arg_len(struct linux_binprm *bprm, long len)
270 {
271 	return len <= MAX_ARG_STRLEN;
272 }
273 
274 #else
275 
276 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
277 		int write)
278 {
279 	struct page *page;
280 
281 	page = bprm->page[pos / PAGE_SIZE];
282 	if (!page && write) {
283 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
284 		if (!page)
285 			return NULL;
286 		bprm->page[pos / PAGE_SIZE] = page;
287 	}
288 
289 	return page;
290 }
291 
292 static void put_arg_page(struct page *page)
293 {
294 }
295 
296 static void free_arg_page(struct linux_binprm *bprm, int i)
297 {
298 	if (bprm->page[i]) {
299 		__free_page(bprm->page[i]);
300 		bprm->page[i] = NULL;
301 	}
302 }
303 
304 static void free_arg_pages(struct linux_binprm *bprm)
305 {
306 	int i;
307 
308 	for (i = 0; i < MAX_ARG_PAGES; i++)
309 		free_arg_page(bprm, i);
310 }
311 
312 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
313 		struct page *page)
314 {
315 }
316 
317 static int __bprm_mm_init(struct linux_binprm *bprm)
318 {
319 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
320 	return 0;
321 }
322 
323 static bool valid_arg_len(struct linux_binprm *bprm, long len)
324 {
325 	return len <= bprm->p;
326 }
327 
328 #endif /* CONFIG_MMU */
329 
330 /*
331  * Create a new mm_struct and populate it with a temporary stack
332  * vm_area_struct.  We don't have enough context at this point to set the stack
333  * flags, permissions, and offset, so we use temporary values.  We'll update
334  * them later in setup_arg_pages().
335  */
336 int bprm_mm_init(struct linux_binprm *bprm)
337 {
338 	int err;
339 	struct mm_struct *mm = NULL;
340 
341 	bprm->mm = mm = mm_alloc();
342 	err = -ENOMEM;
343 	if (!mm)
344 		goto err;
345 
346 	err = init_new_context(current, mm);
347 	if (err)
348 		goto err;
349 
350 	err = __bprm_mm_init(bprm);
351 	if (err)
352 		goto err;
353 
354 	return 0;
355 
356 err:
357 	if (mm) {
358 		bprm->mm = NULL;
359 		mmdrop(mm);
360 	}
361 
362 	return err;
363 }
364 
365 /*
366  * count() counts the number of strings in array ARGV.
367  */
368 static int count(char __user * __user * argv, int max)
369 {
370 	int i = 0;
371 
372 	if (argv != NULL) {
373 		for (;;) {
374 			char __user * p;
375 
376 			if (get_user(p, argv))
377 				return -EFAULT;
378 			if (!p)
379 				break;
380 			argv++;
381 			if(++i > max)
382 				return -E2BIG;
383 			cond_resched();
384 		}
385 	}
386 	return i;
387 }
388 
389 /*
390  * 'copy_strings()' copies argument/environment strings from the old
391  * processes's memory to the new process's stack.  The call to get_user_pages()
392  * ensures the destination page is created and not swapped out.
393  */
394 static int copy_strings(int argc, char __user * __user * argv,
395 			struct linux_binprm *bprm)
396 {
397 	struct page *kmapped_page = NULL;
398 	char *kaddr = NULL;
399 	unsigned long kpos = 0;
400 	int ret;
401 
402 	while (argc-- > 0) {
403 		char __user *str;
404 		int len;
405 		unsigned long pos;
406 
407 		if (get_user(str, argv+argc) ||
408 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
409 			ret = -EFAULT;
410 			goto out;
411 		}
412 
413 		if (!valid_arg_len(bprm, len)) {
414 			ret = -E2BIG;
415 			goto out;
416 		}
417 
418 		/* We're going to work our way backwords. */
419 		pos = bprm->p;
420 		str += len;
421 		bprm->p -= len;
422 
423 		while (len > 0) {
424 			int offset, bytes_to_copy;
425 
426 			offset = pos % PAGE_SIZE;
427 			if (offset == 0)
428 				offset = PAGE_SIZE;
429 
430 			bytes_to_copy = offset;
431 			if (bytes_to_copy > len)
432 				bytes_to_copy = len;
433 
434 			offset -= bytes_to_copy;
435 			pos -= bytes_to_copy;
436 			str -= bytes_to_copy;
437 			len -= bytes_to_copy;
438 
439 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
440 				struct page *page;
441 
442 				page = get_arg_page(bprm, pos, 1);
443 				if (!page) {
444 					ret = -E2BIG;
445 					goto out;
446 				}
447 
448 				if (kmapped_page) {
449 					flush_kernel_dcache_page(kmapped_page);
450 					kunmap(kmapped_page);
451 					put_arg_page(kmapped_page);
452 				}
453 				kmapped_page = page;
454 				kaddr = kmap(kmapped_page);
455 				kpos = pos & PAGE_MASK;
456 				flush_arg_page(bprm, kpos, kmapped_page);
457 			}
458 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
459 				ret = -EFAULT;
460 				goto out;
461 			}
462 		}
463 	}
464 	ret = 0;
465 out:
466 	if (kmapped_page) {
467 		flush_kernel_dcache_page(kmapped_page);
468 		kunmap(kmapped_page);
469 		put_arg_page(kmapped_page);
470 	}
471 	return ret;
472 }
473 
474 /*
475  * Like copy_strings, but get argv and its values from kernel memory.
476  */
477 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
478 {
479 	int r;
480 	mm_segment_t oldfs = get_fs();
481 	set_fs(KERNEL_DS);
482 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
483 	set_fs(oldfs);
484 	return r;
485 }
486 EXPORT_SYMBOL(copy_strings_kernel);
487 
488 #ifdef CONFIG_MMU
489 
490 /*
491  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
492  * the binfmt code determines where the new stack should reside, we shift it to
493  * its final location.  The process proceeds as follows:
494  *
495  * 1) Use shift to calculate the new vma endpoints.
496  * 2) Extend vma to cover both the old and new ranges.  This ensures the
497  *    arguments passed to subsequent functions are consistent.
498  * 3) Move vma's page tables to the new range.
499  * 4) Free up any cleared pgd range.
500  * 5) Shrink the vma to cover only the new range.
501  */
502 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
503 {
504 	struct mm_struct *mm = vma->vm_mm;
505 	unsigned long old_start = vma->vm_start;
506 	unsigned long old_end = vma->vm_end;
507 	unsigned long length = old_end - old_start;
508 	unsigned long new_start = old_start - shift;
509 	unsigned long new_end = old_end - shift;
510 	struct mmu_gather *tlb;
511 
512 	BUG_ON(new_start > new_end);
513 
514 	/*
515 	 * ensure there are no vmas between where we want to go
516 	 * and where we are
517 	 */
518 	if (vma != find_vma(mm, new_start))
519 		return -EFAULT;
520 
521 	/*
522 	 * cover the whole range: [new_start, old_end)
523 	 */
524 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
525 
526 	/*
527 	 * move the page tables downwards, on failure we rely on
528 	 * process cleanup to remove whatever mess we made.
529 	 */
530 	if (length != move_page_tables(vma, old_start,
531 				       vma, new_start, length))
532 		return -ENOMEM;
533 
534 	lru_add_drain();
535 	tlb = tlb_gather_mmu(mm, 0);
536 	if (new_end > old_start) {
537 		/*
538 		 * when the old and new regions overlap clear from new_end.
539 		 */
540 		free_pgd_range(&tlb, new_end, old_end, new_end,
541 			vma->vm_next ? vma->vm_next->vm_start : 0);
542 	} else {
543 		/*
544 		 * otherwise, clean from old_start; this is done to not touch
545 		 * the address space in [new_end, old_start) some architectures
546 		 * have constraints on va-space that make this illegal (IA64) -
547 		 * for the others its just a little faster.
548 		 */
549 		free_pgd_range(&tlb, old_start, old_end, new_end,
550 			vma->vm_next ? vma->vm_next->vm_start : 0);
551 	}
552 	tlb_finish_mmu(tlb, new_end, old_end);
553 
554 	/*
555 	 * shrink the vma to just the new range.
556 	 */
557 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
558 
559 	return 0;
560 }
561 
562 #define EXTRA_STACK_VM_PAGES	20	/* random */
563 
564 /*
565  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
566  * the stack is optionally relocated, and some extra space is added.
567  */
568 int setup_arg_pages(struct linux_binprm *bprm,
569 		    unsigned long stack_top,
570 		    int executable_stack)
571 {
572 	unsigned long ret;
573 	unsigned long stack_shift;
574 	struct mm_struct *mm = current->mm;
575 	struct vm_area_struct *vma = bprm->vma;
576 	struct vm_area_struct *prev = NULL;
577 	unsigned long vm_flags;
578 	unsigned long stack_base;
579 
580 #ifdef CONFIG_STACK_GROWSUP
581 	/* Limit stack size to 1GB */
582 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
583 	if (stack_base > (1 << 30))
584 		stack_base = 1 << 30;
585 
586 	/* Make sure we didn't let the argument array grow too large. */
587 	if (vma->vm_end - vma->vm_start > stack_base)
588 		return -ENOMEM;
589 
590 	stack_base = PAGE_ALIGN(stack_top - stack_base);
591 
592 	stack_shift = vma->vm_start - stack_base;
593 	mm->arg_start = bprm->p - stack_shift;
594 	bprm->p = vma->vm_end - stack_shift;
595 #else
596 	stack_top = arch_align_stack(stack_top);
597 	stack_top = PAGE_ALIGN(stack_top);
598 	stack_shift = vma->vm_end - stack_top;
599 
600 	bprm->p -= stack_shift;
601 	mm->arg_start = bprm->p;
602 #endif
603 
604 	if (bprm->loader)
605 		bprm->loader -= stack_shift;
606 	bprm->exec -= stack_shift;
607 
608 	down_write(&mm->mmap_sem);
609 	vm_flags = vma->vm_flags;
610 
611 	/*
612 	 * Adjust stack execute permissions; explicitly enable for
613 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
614 	 * (arch default) otherwise.
615 	 */
616 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
617 		vm_flags |= VM_EXEC;
618 	else if (executable_stack == EXSTACK_DISABLE_X)
619 		vm_flags &= ~VM_EXEC;
620 	vm_flags |= mm->def_flags;
621 
622 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
623 			vm_flags);
624 	if (ret)
625 		goto out_unlock;
626 	BUG_ON(prev != vma);
627 
628 	/* Move stack pages down in memory. */
629 	if (stack_shift) {
630 		ret = shift_arg_pages(vma, stack_shift);
631 		if (ret) {
632 			up_write(&mm->mmap_sem);
633 			return ret;
634 		}
635 	}
636 
637 #ifdef CONFIG_STACK_GROWSUP
638 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
639 #else
640 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
641 #endif
642 	ret = expand_stack(vma, stack_base);
643 	if (ret)
644 		ret = -EFAULT;
645 
646 out_unlock:
647 	up_write(&mm->mmap_sem);
648 	return 0;
649 }
650 EXPORT_SYMBOL(setup_arg_pages);
651 
652 #endif /* CONFIG_MMU */
653 
654 struct file *open_exec(const char *name)
655 {
656 	struct nameidata nd;
657 	int err;
658 	struct file *file;
659 
660 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
661 	file = ERR_PTR(err);
662 
663 	if (!err) {
664 		struct inode *inode = nd.path.dentry->d_inode;
665 		file = ERR_PTR(-EACCES);
666 		if (S_ISREG(inode->i_mode)) {
667 			int err = vfs_permission(&nd, MAY_EXEC);
668 			file = ERR_PTR(err);
669 			if (!err) {
670 				file = nameidata_to_filp(&nd,
671 							O_RDONLY|O_LARGEFILE);
672 				if (!IS_ERR(file)) {
673 					err = deny_write_access(file);
674 					if (err) {
675 						fput(file);
676 						file = ERR_PTR(err);
677 					}
678 				}
679 out:
680 				return file;
681 			}
682 		}
683 		release_open_intent(&nd);
684 		path_put(&nd.path);
685 	}
686 	goto out;
687 }
688 
689 EXPORT_SYMBOL(open_exec);
690 
691 int kernel_read(struct file *file, unsigned long offset,
692 	char *addr, unsigned long count)
693 {
694 	mm_segment_t old_fs;
695 	loff_t pos = offset;
696 	int result;
697 
698 	old_fs = get_fs();
699 	set_fs(get_ds());
700 	/* The cast to a user pointer is valid due to the set_fs() */
701 	result = vfs_read(file, (void __user *)addr, count, &pos);
702 	set_fs(old_fs);
703 	return result;
704 }
705 
706 EXPORT_SYMBOL(kernel_read);
707 
708 static int exec_mmap(struct mm_struct *mm)
709 {
710 	struct task_struct *tsk;
711 	struct mm_struct * old_mm, *active_mm;
712 
713 	/* Notify parent that we're no longer interested in the old VM */
714 	tsk = current;
715 	old_mm = current->mm;
716 	mm_release(tsk, old_mm);
717 
718 	if (old_mm) {
719 		/*
720 		 * Make sure that if there is a core dump in progress
721 		 * for the old mm, we get out and die instead of going
722 		 * through with the exec.  We must hold mmap_sem around
723 		 * checking core_waiters and changing tsk->mm.  The
724 		 * core-inducing thread will increment core_waiters for
725 		 * each thread whose ->mm == old_mm.
726 		 */
727 		down_read(&old_mm->mmap_sem);
728 		if (unlikely(old_mm->core_waiters)) {
729 			up_read(&old_mm->mmap_sem);
730 			return -EINTR;
731 		}
732 	}
733 	task_lock(tsk);
734 	active_mm = tsk->active_mm;
735 	tsk->mm = mm;
736 	tsk->active_mm = mm;
737 	activate_mm(active_mm, mm);
738 	task_unlock(tsk);
739 	mm_update_next_owner(old_mm);
740 	arch_pick_mmap_layout(mm);
741 	if (old_mm) {
742 		up_read(&old_mm->mmap_sem);
743 		BUG_ON(active_mm != old_mm);
744 		mmput(old_mm);
745 		return 0;
746 	}
747 	mmdrop(active_mm);
748 	return 0;
749 }
750 
751 /*
752  * This function makes sure the current process has its own signal table,
753  * so that flush_signal_handlers can later reset the handlers without
754  * disturbing other processes.  (Other processes might share the signal
755  * table via the CLONE_SIGHAND option to clone().)
756  */
757 static int de_thread(struct task_struct *tsk)
758 {
759 	struct signal_struct *sig = tsk->signal;
760 	struct sighand_struct *oldsighand = tsk->sighand;
761 	spinlock_t *lock = &oldsighand->siglock;
762 	struct task_struct *leader = NULL;
763 	int count;
764 
765 	if (thread_group_empty(tsk))
766 		goto no_thread_group;
767 
768 	/*
769 	 * Kill all other threads in the thread group.
770 	 */
771 	spin_lock_irq(lock);
772 	if (signal_group_exit(sig)) {
773 		/*
774 		 * Another group action in progress, just
775 		 * return so that the signal is processed.
776 		 */
777 		spin_unlock_irq(lock);
778 		return -EAGAIN;
779 	}
780 	sig->group_exit_task = tsk;
781 	zap_other_threads(tsk);
782 
783 	/* Account for the thread group leader hanging around: */
784 	count = thread_group_leader(tsk) ? 1 : 2;
785 	sig->notify_count = count;
786 	while (atomic_read(&sig->count) > count) {
787 		__set_current_state(TASK_UNINTERRUPTIBLE);
788 		spin_unlock_irq(lock);
789 		schedule();
790 		spin_lock_irq(lock);
791 	}
792 	spin_unlock_irq(lock);
793 
794 	/*
795 	 * At this point all other threads have exited, all we have to
796 	 * do is to wait for the thread group leader to become inactive,
797 	 * and to assume its PID:
798 	 */
799 	if (!thread_group_leader(tsk)) {
800 		leader = tsk->group_leader;
801 
802 		sig->notify_count = -1;	/* for exit_notify() */
803 		for (;;) {
804 			write_lock_irq(&tasklist_lock);
805 			if (likely(leader->exit_state))
806 				break;
807 			__set_current_state(TASK_UNINTERRUPTIBLE);
808 			write_unlock_irq(&tasklist_lock);
809 			schedule();
810 		}
811 
812 		if (unlikely(task_child_reaper(tsk) == leader))
813 			task_active_pid_ns(tsk)->child_reaper = tsk;
814 		/*
815 		 * The only record we have of the real-time age of a
816 		 * process, regardless of execs it's done, is start_time.
817 		 * All the past CPU time is accumulated in signal_struct
818 		 * from sister threads now dead.  But in this non-leader
819 		 * exec, nothing survives from the original leader thread,
820 		 * whose birth marks the true age of this process now.
821 		 * When we take on its identity by switching to its PID, we
822 		 * also take its birthdate (always earlier than our own).
823 		 */
824 		tsk->start_time = leader->start_time;
825 
826 		BUG_ON(!same_thread_group(leader, tsk));
827 		BUG_ON(has_group_leader_pid(tsk));
828 		/*
829 		 * An exec() starts a new thread group with the
830 		 * TGID of the previous thread group. Rehash the
831 		 * two threads with a switched PID, and release
832 		 * the former thread group leader:
833 		 */
834 
835 		/* Become a process group leader with the old leader's pid.
836 		 * The old leader becomes a thread of the this thread group.
837 		 * Note: The old leader also uses this pid until release_task
838 		 *       is called.  Odd but simple and correct.
839 		 */
840 		detach_pid(tsk, PIDTYPE_PID);
841 		tsk->pid = leader->pid;
842 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
843 		transfer_pid(leader, tsk, PIDTYPE_PGID);
844 		transfer_pid(leader, tsk, PIDTYPE_SID);
845 		list_replace_rcu(&leader->tasks, &tsk->tasks);
846 
847 		tsk->group_leader = tsk;
848 		leader->group_leader = tsk;
849 
850 		tsk->exit_signal = SIGCHLD;
851 
852 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
853 		leader->exit_state = EXIT_DEAD;
854 
855 		write_unlock_irq(&tasklist_lock);
856 	}
857 
858 	sig->group_exit_task = NULL;
859 	sig->notify_count = 0;
860 
861 no_thread_group:
862 	exit_itimers(sig);
863 	if (leader)
864 		release_task(leader);
865 
866 	if (atomic_read(&oldsighand->count) != 1) {
867 		struct sighand_struct *newsighand;
868 		/*
869 		 * This ->sighand is shared with the CLONE_SIGHAND
870 		 * but not CLONE_THREAD task, switch to the new one.
871 		 */
872 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
873 		if (!newsighand)
874 			return -ENOMEM;
875 
876 		atomic_set(&newsighand->count, 1);
877 		memcpy(newsighand->action, oldsighand->action,
878 		       sizeof(newsighand->action));
879 
880 		write_lock_irq(&tasklist_lock);
881 		spin_lock(&oldsighand->siglock);
882 		rcu_assign_pointer(tsk->sighand, newsighand);
883 		spin_unlock(&oldsighand->siglock);
884 		write_unlock_irq(&tasklist_lock);
885 
886 		__cleanup_sighand(oldsighand);
887 	}
888 
889 	BUG_ON(!thread_group_leader(tsk));
890 	return 0;
891 }
892 
893 /*
894  * These functions flushes out all traces of the currently running executable
895  * so that a new one can be started
896  */
897 static void flush_old_files(struct files_struct * files)
898 {
899 	long j = -1;
900 	struct fdtable *fdt;
901 
902 	spin_lock(&files->file_lock);
903 	for (;;) {
904 		unsigned long set, i;
905 
906 		j++;
907 		i = j * __NFDBITS;
908 		fdt = files_fdtable(files);
909 		if (i >= fdt->max_fds)
910 			break;
911 		set = fdt->close_on_exec->fds_bits[j];
912 		if (!set)
913 			continue;
914 		fdt->close_on_exec->fds_bits[j] = 0;
915 		spin_unlock(&files->file_lock);
916 		for ( ; set ; i++,set >>= 1) {
917 			if (set & 1) {
918 				sys_close(i);
919 			}
920 		}
921 		spin_lock(&files->file_lock);
922 
923 	}
924 	spin_unlock(&files->file_lock);
925 }
926 
927 char *get_task_comm(char *buf, struct task_struct *tsk)
928 {
929 	/* buf must be at least sizeof(tsk->comm) in size */
930 	task_lock(tsk);
931 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
932 	task_unlock(tsk);
933 	return buf;
934 }
935 
936 void set_task_comm(struct task_struct *tsk, char *buf)
937 {
938 	task_lock(tsk);
939 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
940 	task_unlock(tsk);
941 }
942 
943 int flush_old_exec(struct linux_binprm * bprm)
944 {
945 	char * name;
946 	int i, ch, retval;
947 	char tcomm[sizeof(current->comm)];
948 
949 	/*
950 	 * Make sure we have a private signal table and that
951 	 * we are unassociated from the previous thread group.
952 	 */
953 	retval = de_thread(current);
954 	if (retval)
955 		goto out;
956 
957 	set_mm_exe_file(bprm->mm, bprm->file);
958 
959 	/*
960 	 * Release all of the old mmap stuff
961 	 */
962 	retval = exec_mmap(bprm->mm);
963 	if (retval)
964 		goto out;
965 
966 	bprm->mm = NULL;		/* We're using it now */
967 
968 	/* This is the point of no return */
969 	current->sas_ss_sp = current->sas_ss_size = 0;
970 
971 	if (current->euid == current->uid && current->egid == current->gid)
972 		set_dumpable(current->mm, 1);
973 	else
974 		set_dumpable(current->mm, suid_dumpable);
975 
976 	name = bprm->filename;
977 
978 	/* Copies the binary name from after last slash */
979 	for (i=0; (ch = *(name++)) != '\0';) {
980 		if (ch == '/')
981 			i = 0; /* overwrite what we wrote */
982 		else
983 			if (i < (sizeof(tcomm) - 1))
984 				tcomm[i++] = ch;
985 	}
986 	tcomm[i] = '\0';
987 	set_task_comm(current, tcomm);
988 
989 	current->flags &= ~PF_RANDOMIZE;
990 	flush_thread();
991 
992 	/* Set the new mm task size. We have to do that late because it may
993 	 * depend on TIF_32BIT which is only updated in flush_thread() on
994 	 * some architectures like powerpc
995 	 */
996 	current->mm->task_size = TASK_SIZE;
997 
998 	if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
999 		suid_keys(current);
1000 		set_dumpable(current->mm, suid_dumpable);
1001 		current->pdeath_signal = 0;
1002 	} else if (file_permission(bprm->file, MAY_READ) ||
1003 			(bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
1004 		suid_keys(current);
1005 		set_dumpable(current->mm, suid_dumpable);
1006 	}
1007 
1008 	/* An exec changes our domain. We are no longer part of the thread
1009 	   group */
1010 
1011 	current->self_exec_id++;
1012 
1013 	flush_signal_handlers(current, 0);
1014 	flush_old_files(current->files);
1015 
1016 	return 0;
1017 
1018 out:
1019 	return retval;
1020 }
1021 
1022 EXPORT_SYMBOL(flush_old_exec);
1023 
1024 /*
1025  * Fill the binprm structure from the inode.
1026  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1027  */
1028 int prepare_binprm(struct linux_binprm *bprm)
1029 {
1030 	int mode;
1031 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1032 	int retval;
1033 
1034 	mode = inode->i_mode;
1035 	if (bprm->file->f_op == NULL)
1036 		return -EACCES;
1037 
1038 	bprm->e_uid = current->euid;
1039 	bprm->e_gid = current->egid;
1040 
1041 	if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1042 		/* Set-uid? */
1043 		if (mode & S_ISUID) {
1044 			current->personality &= ~PER_CLEAR_ON_SETID;
1045 			bprm->e_uid = inode->i_uid;
1046 		}
1047 
1048 		/* Set-gid? */
1049 		/*
1050 		 * If setgid is set but no group execute bit then this
1051 		 * is a candidate for mandatory locking, not a setgid
1052 		 * executable.
1053 		 */
1054 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1055 			current->personality &= ~PER_CLEAR_ON_SETID;
1056 			bprm->e_gid = inode->i_gid;
1057 		}
1058 	}
1059 
1060 	/* fill in binprm security blob */
1061 	retval = security_bprm_set(bprm);
1062 	if (retval)
1063 		return retval;
1064 
1065 	memset(bprm->buf,0,BINPRM_BUF_SIZE);
1066 	return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
1067 }
1068 
1069 EXPORT_SYMBOL(prepare_binprm);
1070 
1071 static int unsafe_exec(struct task_struct *p)
1072 {
1073 	int unsafe = 0;
1074 	if (p->ptrace & PT_PTRACED) {
1075 		if (p->ptrace & PT_PTRACE_CAP)
1076 			unsafe |= LSM_UNSAFE_PTRACE_CAP;
1077 		else
1078 			unsafe |= LSM_UNSAFE_PTRACE;
1079 	}
1080 	if (atomic_read(&p->fs->count) > 1 ||
1081 	    atomic_read(&p->files->count) > 1 ||
1082 	    atomic_read(&p->sighand->count) > 1)
1083 		unsafe |= LSM_UNSAFE_SHARE;
1084 
1085 	return unsafe;
1086 }
1087 
1088 void compute_creds(struct linux_binprm *bprm)
1089 {
1090 	int unsafe;
1091 
1092 	if (bprm->e_uid != current->uid) {
1093 		suid_keys(current);
1094 		current->pdeath_signal = 0;
1095 	}
1096 	exec_keys(current);
1097 
1098 	task_lock(current);
1099 	unsafe = unsafe_exec(current);
1100 	security_bprm_apply_creds(bprm, unsafe);
1101 	task_unlock(current);
1102 	security_bprm_post_apply_creds(bprm);
1103 }
1104 EXPORT_SYMBOL(compute_creds);
1105 
1106 /*
1107  * Arguments are '\0' separated strings found at the location bprm->p
1108  * points to; chop off the first by relocating brpm->p to right after
1109  * the first '\0' encountered.
1110  */
1111 int remove_arg_zero(struct linux_binprm *bprm)
1112 {
1113 	int ret = 0;
1114 	unsigned long offset;
1115 	char *kaddr;
1116 	struct page *page;
1117 
1118 	if (!bprm->argc)
1119 		return 0;
1120 
1121 	do {
1122 		offset = bprm->p & ~PAGE_MASK;
1123 		page = get_arg_page(bprm, bprm->p, 0);
1124 		if (!page) {
1125 			ret = -EFAULT;
1126 			goto out;
1127 		}
1128 		kaddr = kmap_atomic(page, KM_USER0);
1129 
1130 		for (; offset < PAGE_SIZE && kaddr[offset];
1131 				offset++, bprm->p++)
1132 			;
1133 
1134 		kunmap_atomic(kaddr, KM_USER0);
1135 		put_arg_page(page);
1136 
1137 		if (offset == PAGE_SIZE)
1138 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1139 	} while (offset == PAGE_SIZE);
1140 
1141 	bprm->p++;
1142 	bprm->argc--;
1143 	ret = 0;
1144 
1145 out:
1146 	return ret;
1147 }
1148 EXPORT_SYMBOL(remove_arg_zero);
1149 
1150 /*
1151  * cycle the list of binary formats handler, until one recognizes the image
1152  */
1153 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1154 {
1155 	int try,retval;
1156 	struct linux_binfmt *fmt;
1157 #if defined(__alpha__) && defined(CONFIG_ARCH_SUPPORTS_AOUT)
1158 	/* handle /sbin/loader.. */
1159 	{
1160 	    struct exec * eh = (struct exec *) bprm->buf;
1161 
1162 	    if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1163 		(eh->fh.f_flags & 0x3000) == 0x3000)
1164 	    {
1165 		struct file * file;
1166 		unsigned long loader;
1167 
1168 		allow_write_access(bprm->file);
1169 		fput(bprm->file);
1170 		bprm->file = NULL;
1171 
1172 		loader = bprm->vma->vm_end - sizeof(void *);
1173 
1174 		file = open_exec("/sbin/loader");
1175 		retval = PTR_ERR(file);
1176 		if (IS_ERR(file))
1177 			return retval;
1178 
1179 		/* Remember if the application is TASO.  */
1180 		bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1181 
1182 		bprm->file = file;
1183 		bprm->loader = loader;
1184 		retval = prepare_binprm(bprm);
1185 		if (retval<0)
1186 			return retval;
1187 		/* should call search_binary_handler recursively here,
1188 		   but it does not matter */
1189 	    }
1190 	}
1191 #endif
1192 	retval = security_bprm_check(bprm);
1193 	if (retval)
1194 		return retval;
1195 
1196 	/* kernel module loader fixup */
1197 	/* so we don't try to load run modprobe in kernel space. */
1198 	set_fs(USER_DS);
1199 
1200 	retval = audit_bprm(bprm);
1201 	if (retval)
1202 		return retval;
1203 
1204 	retval = -ENOENT;
1205 	for (try=0; try<2; try++) {
1206 		read_lock(&binfmt_lock);
1207 		list_for_each_entry(fmt, &formats, lh) {
1208 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1209 			if (!fn)
1210 				continue;
1211 			if (!try_module_get(fmt->module))
1212 				continue;
1213 			read_unlock(&binfmt_lock);
1214 			retval = fn(bprm, regs);
1215 			if (retval >= 0) {
1216 				put_binfmt(fmt);
1217 				allow_write_access(bprm->file);
1218 				if (bprm->file)
1219 					fput(bprm->file);
1220 				bprm->file = NULL;
1221 				current->did_exec = 1;
1222 				proc_exec_connector(current);
1223 				return retval;
1224 			}
1225 			read_lock(&binfmt_lock);
1226 			put_binfmt(fmt);
1227 			if (retval != -ENOEXEC || bprm->mm == NULL)
1228 				break;
1229 			if (!bprm->file) {
1230 				read_unlock(&binfmt_lock);
1231 				return retval;
1232 			}
1233 		}
1234 		read_unlock(&binfmt_lock);
1235 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1236 			break;
1237 #ifdef CONFIG_KMOD
1238 		}else{
1239 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1240 			if (printable(bprm->buf[0]) &&
1241 			    printable(bprm->buf[1]) &&
1242 			    printable(bprm->buf[2]) &&
1243 			    printable(bprm->buf[3]))
1244 				break; /* -ENOEXEC */
1245 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1246 #endif
1247 		}
1248 	}
1249 	return retval;
1250 }
1251 
1252 EXPORT_SYMBOL(search_binary_handler);
1253 
1254 /*
1255  * sys_execve() executes a new program.
1256  */
1257 int do_execve(char * filename,
1258 	char __user *__user *argv,
1259 	char __user *__user *envp,
1260 	struct pt_regs * regs)
1261 {
1262 	struct linux_binprm *bprm;
1263 	struct file *file;
1264 	struct files_struct *displaced;
1265 	int retval;
1266 
1267 	retval = unshare_files(&displaced);
1268 	if (retval)
1269 		goto out_ret;
1270 
1271 	retval = -ENOMEM;
1272 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1273 	if (!bprm)
1274 		goto out_files;
1275 
1276 	file = open_exec(filename);
1277 	retval = PTR_ERR(file);
1278 	if (IS_ERR(file))
1279 		goto out_kfree;
1280 
1281 	sched_exec();
1282 
1283 	bprm->file = file;
1284 	bprm->filename = filename;
1285 	bprm->interp = filename;
1286 
1287 	retval = bprm_mm_init(bprm);
1288 	if (retval)
1289 		goto out_file;
1290 
1291 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1292 	if ((retval = bprm->argc) < 0)
1293 		goto out_mm;
1294 
1295 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1296 	if ((retval = bprm->envc) < 0)
1297 		goto out_mm;
1298 
1299 	retval = security_bprm_alloc(bprm);
1300 	if (retval)
1301 		goto out;
1302 
1303 	retval = prepare_binprm(bprm);
1304 	if (retval < 0)
1305 		goto out;
1306 
1307 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1308 	if (retval < 0)
1309 		goto out;
1310 
1311 	bprm->exec = bprm->p;
1312 	retval = copy_strings(bprm->envc, envp, bprm);
1313 	if (retval < 0)
1314 		goto out;
1315 
1316 	retval = copy_strings(bprm->argc, argv, bprm);
1317 	if (retval < 0)
1318 		goto out;
1319 
1320 	retval = search_binary_handler(bprm,regs);
1321 	if (retval >= 0) {
1322 		/* execve success */
1323 		free_arg_pages(bprm);
1324 		security_bprm_free(bprm);
1325 		acct_update_integrals(current);
1326 		kfree(bprm);
1327 		if (displaced)
1328 			put_files_struct(displaced);
1329 		return retval;
1330 	}
1331 
1332 out:
1333 	free_arg_pages(bprm);
1334 	if (bprm->security)
1335 		security_bprm_free(bprm);
1336 
1337 out_mm:
1338 	if (bprm->mm)
1339 		mmput (bprm->mm);
1340 
1341 out_file:
1342 	if (bprm->file) {
1343 		allow_write_access(bprm->file);
1344 		fput(bprm->file);
1345 	}
1346 out_kfree:
1347 	kfree(bprm);
1348 
1349 out_files:
1350 	if (displaced)
1351 		reset_files_struct(displaced);
1352 out_ret:
1353 	return retval;
1354 }
1355 
1356 int set_binfmt(struct linux_binfmt *new)
1357 {
1358 	struct linux_binfmt *old = current->binfmt;
1359 
1360 	if (new) {
1361 		if (!try_module_get(new->module))
1362 			return -1;
1363 	}
1364 	current->binfmt = new;
1365 	if (old)
1366 		module_put(old->module);
1367 	return 0;
1368 }
1369 
1370 EXPORT_SYMBOL(set_binfmt);
1371 
1372 /* format_corename will inspect the pattern parameter, and output a
1373  * name into corename, which must have space for at least
1374  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1375  */
1376 static int format_corename(char *corename, const char *pattern, long signr)
1377 {
1378 	const char *pat_ptr = pattern;
1379 	char *out_ptr = corename;
1380 	char *const out_end = corename + CORENAME_MAX_SIZE;
1381 	int rc;
1382 	int pid_in_pattern = 0;
1383 	int ispipe = 0;
1384 
1385 	if (*pattern == '|')
1386 		ispipe = 1;
1387 
1388 	/* Repeat as long as we have more pattern to process and more output
1389 	   space */
1390 	while (*pat_ptr) {
1391 		if (*pat_ptr != '%') {
1392 			if (out_ptr == out_end)
1393 				goto out;
1394 			*out_ptr++ = *pat_ptr++;
1395 		} else {
1396 			switch (*++pat_ptr) {
1397 			case 0:
1398 				goto out;
1399 			/* Double percent, output one percent */
1400 			case '%':
1401 				if (out_ptr == out_end)
1402 					goto out;
1403 				*out_ptr++ = '%';
1404 				break;
1405 			/* pid */
1406 			case 'p':
1407 				pid_in_pattern = 1;
1408 				rc = snprintf(out_ptr, out_end - out_ptr,
1409 					      "%d", task_tgid_vnr(current));
1410 				if (rc > out_end - out_ptr)
1411 					goto out;
1412 				out_ptr += rc;
1413 				break;
1414 			/* uid */
1415 			case 'u':
1416 				rc = snprintf(out_ptr, out_end - out_ptr,
1417 					      "%d", current->uid);
1418 				if (rc > out_end - out_ptr)
1419 					goto out;
1420 				out_ptr += rc;
1421 				break;
1422 			/* gid */
1423 			case 'g':
1424 				rc = snprintf(out_ptr, out_end - out_ptr,
1425 					      "%d", current->gid);
1426 				if (rc > out_end - out_ptr)
1427 					goto out;
1428 				out_ptr += rc;
1429 				break;
1430 			/* signal that caused the coredump */
1431 			case 's':
1432 				rc = snprintf(out_ptr, out_end - out_ptr,
1433 					      "%ld", signr);
1434 				if (rc > out_end - out_ptr)
1435 					goto out;
1436 				out_ptr += rc;
1437 				break;
1438 			/* UNIX time of coredump */
1439 			case 't': {
1440 				struct timeval tv;
1441 				do_gettimeofday(&tv);
1442 				rc = snprintf(out_ptr, out_end - out_ptr,
1443 					      "%lu", tv.tv_sec);
1444 				if (rc > out_end - out_ptr)
1445 					goto out;
1446 				out_ptr += rc;
1447 				break;
1448 			}
1449 			/* hostname */
1450 			case 'h':
1451 				down_read(&uts_sem);
1452 				rc = snprintf(out_ptr, out_end - out_ptr,
1453 					      "%s", utsname()->nodename);
1454 				up_read(&uts_sem);
1455 				if (rc > out_end - out_ptr)
1456 					goto out;
1457 				out_ptr += rc;
1458 				break;
1459 			/* executable */
1460 			case 'e':
1461 				rc = snprintf(out_ptr, out_end - out_ptr,
1462 					      "%s", current->comm);
1463 				if (rc > out_end - out_ptr)
1464 					goto out;
1465 				out_ptr += rc;
1466 				break;
1467 			/* core limit size */
1468 			case 'c':
1469 				rc = snprintf(out_ptr, out_end - out_ptr,
1470 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1471 				if (rc > out_end - out_ptr)
1472 					goto out;
1473 				out_ptr += rc;
1474 				break;
1475 			default:
1476 				break;
1477 			}
1478 			++pat_ptr;
1479 		}
1480 	}
1481 	/* Backward compatibility with core_uses_pid:
1482 	 *
1483 	 * If core_pattern does not include a %p (as is the default)
1484 	 * and core_uses_pid is set, then .%pid will be appended to
1485 	 * the filename. Do not do this for piped commands. */
1486 	if (!ispipe && !pid_in_pattern
1487             && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1488 		rc = snprintf(out_ptr, out_end - out_ptr,
1489 			      ".%d", task_tgid_vnr(current));
1490 		if (rc > out_end - out_ptr)
1491 			goto out;
1492 		out_ptr += rc;
1493 	}
1494 out:
1495 	*out_ptr = 0;
1496 	return ispipe;
1497 }
1498 
1499 static void zap_process(struct task_struct *start)
1500 {
1501 	struct task_struct *t;
1502 
1503 	start->signal->flags = SIGNAL_GROUP_EXIT;
1504 	start->signal->group_stop_count = 0;
1505 
1506 	t = start;
1507 	do {
1508 		if (t != current && t->mm) {
1509 			t->mm->core_waiters++;
1510 			sigaddset(&t->pending.signal, SIGKILL);
1511 			signal_wake_up(t, 1);
1512 		}
1513 	} while ((t = next_thread(t)) != start);
1514 }
1515 
1516 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1517 				int exit_code)
1518 {
1519 	struct task_struct *g, *p;
1520 	unsigned long flags;
1521 	int err = -EAGAIN;
1522 
1523 	spin_lock_irq(&tsk->sighand->siglock);
1524 	if (!signal_group_exit(tsk->signal)) {
1525 		tsk->signal->group_exit_code = exit_code;
1526 		zap_process(tsk);
1527 		err = 0;
1528 	}
1529 	spin_unlock_irq(&tsk->sighand->siglock);
1530 	if (err)
1531 		return err;
1532 
1533 	if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1534 		goto done;
1535 
1536 	rcu_read_lock();
1537 	for_each_process(g) {
1538 		if (g == tsk->group_leader)
1539 			continue;
1540 
1541 		p = g;
1542 		do {
1543 			if (p->mm) {
1544 				if (p->mm == mm) {
1545 					/*
1546 					 * p->sighand can't disappear, but
1547 					 * may be changed by de_thread()
1548 					 */
1549 					lock_task_sighand(p, &flags);
1550 					zap_process(p);
1551 					unlock_task_sighand(p, &flags);
1552 				}
1553 				break;
1554 			}
1555 		} while ((p = next_thread(p)) != g);
1556 	}
1557 	rcu_read_unlock();
1558 done:
1559 	return mm->core_waiters;
1560 }
1561 
1562 static int coredump_wait(int exit_code)
1563 {
1564 	struct task_struct *tsk = current;
1565 	struct mm_struct *mm = tsk->mm;
1566 	struct completion startup_done;
1567 	struct completion *vfork_done;
1568 	int core_waiters;
1569 
1570 	init_completion(&mm->core_done);
1571 	init_completion(&startup_done);
1572 	mm->core_startup_done = &startup_done;
1573 
1574 	core_waiters = zap_threads(tsk, mm, exit_code);
1575 	up_write(&mm->mmap_sem);
1576 
1577 	if (unlikely(core_waiters < 0))
1578 		goto fail;
1579 
1580 	/*
1581 	 * Make sure nobody is waiting for us to release the VM,
1582 	 * otherwise we can deadlock when we wait on each other
1583 	 */
1584 	vfork_done = tsk->vfork_done;
1585 	if (vfork_done) {
1586 		tsk->vfork_done = NULL;
1587 		complete(vfork_done);
1588 	}
1589 
1590 	if (core_waiters)
1591 		wait_for_completion(&startup_done);
1592 fail:
1593 	BUG_ON(mm->core_waiters);
1594 	return core_waiters;
1595 }
1596 
1597 /*
1598  * set_dumpable converts traditional three-value dumpable to two flags and
1599  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1600  * these bits are not changed atomically.  So get_dumpable can observe the
1601  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1602  * return either old dumpable or new one by paying attention to the order of
1603  * modifying the bits.
1604  *
1605  * dumpable |   mm->flags (binary)
1606  * old  new | initial interim  final
1607  * ---------+-----------------------
1608  *  0    1  |   00      01      01
1609  *  0    2  |   00      10(*)   11
1610  *  1    0  |   01      00      00
1611  *  1    2  |   01      11      11
1612  *  2    0  |   11      10(*)   00
1613  *  2    1  |   11      11      01
1614  *
1615  * (*) get_dumpable regards interim value of 10 as 11.
1616  */
1617 void set_dumpable(struct mm_struct *mm, int value)
1618 {
1619 	switch (value) {
1620 	case 0:
1621 		clear_bit(MMF_DUMPABLE, &mm->flags);
1622 		smp_wmb();
1623 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1624 		break;
1625 	case 1:
1626 		set_bit(MMF_DUMPABLE, &mm->flags);
1627 		smp_wmb();
1628 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1629 		break;
1630 	case 2:
1631 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1632 		smp_wmb();
1633 		set_bit(MMF_DUMPABLE, &mm->flags);
1634 		break;
1635 	}
1636 }
1637 
1638 int get_dumpable(struct mm_struct *mm)
1639 {
1640 	int ret;
1641 
1642 	ret = mm->flags & 0x3;
1643 	return (ret >= 2) ? 2 : ret;
1644 }
1645 
1646 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1647 {
1648 	char corename[CORENAME_MAX_SIZE + 1];
1649 	struct mm_struct *mm = current->mm;
1650 	struct linux_binfmt * binfmt;
1651 	struct inode * inode;
1652 	struct file * file;
1653 	int retval = 0;
1654 	int fsuid = current->fsuid;
1655 	int flag = 0;
1656 	int ispipe = 0;
1657 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1658 	char **helper_argv = NULL;
1659 	int helper_argc = 0;
1660 	char *delimit;
1661 
1662 	audit_core_dumps(signr);
1663 
1664 	binfmt = current->binfmt;
1665 	if (!binfmt || !binfmt->core_dump)
1666 		goto fail;
1667 	down_write(&mm->mmap_sem);
1668 	/*
1669 	 * If another thread got here first, or we are not dumpable, bail out.
1670 	 */
1671 	if (mm->core_waiters || !get_dumpable(mm)) {
1672 		up_write(&mm->mmap_sem);
1673 		goto fail;
1674 	}
1675 
1676 	/*
1677 	 *	We cannot trust fsuid as being the "true" uid of the
1678 	 *	process nor do we know its entire history. We only know it
1679 	 *	was tainted so we dump it as root in mode 2.
1680 	 */
1681 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1682 		flag = O_EXCL;		/* Stop rewrite attacks */
1683 		current->fsuid = 0;	/* Dump root private */
1684 	}
1685 
1686 	retval = coredump_wait(exit_code);
1687 	if (retval < 0)
1688 		goto fail;
1689 
1690 	/*
1691 	 * Clear any false indication of pending signals that might
1692 	 * be seen by the filesystem code called to write the core file.
1693 	 */
1694 	clear_thread_flag(TIF_SIGPENDING);
1695 
1696 	/*
1697 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1698 	 * uses lock_kernel()
1699 	 */
1700  	lock_kernel();
1701 	ispipe = format_corename(corename, core_pattern, signr);
1702 	unlock_kernel();
1703 	/*
1704 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1705 	 * to a pipe.  Since we're not writing directly to the filesystem
1706 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1707 	 * created unless the pipe reader choses to write out the core file
1708 	 * at which point file size limits and permissions will be imposed
1709 	 * as it does with any other process
1710 	 */
1711 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1712 		goto fail_unlock;
1713 
1714  	if (ispipe) {
1715 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1716 		/* Terminate the string before the first option */
1717 		delimit = strchr(corename, ' ');
1718 		if (delimit)
1719 			*delimit = '\0';
1720 		delimit = strrchr(helper_argv[0], '/');
1721 		if (delimit)
1722 			delimit++;
1723 		else
1724 			delimit = helper_argv[0];
1725 		if (!strcmp(delimit, current->comm)) {
1726 			printk(KERN_NOTICE "Recursive core dump detected, "
1727 					"aborting\n");
1728 			goto fail_unlock;
1729 		}
1730 
1731 		core_limit = RLIM_INFINITY;
1732 
1733 		/* SIGPIPE can happen, but it's just never processed */
1734  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1735 				&file)) {
1736  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1737 			       corename);
1738  			goto fail_unlock;
1739  		}
1740  	} else
1741  		file = filp_open(corename,
1742 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1743 				 0600);
1744 	if (IS_ERR(file))
1745 		goto fail_unlock;
1746 	inode = file->f_path.dentry->d_inode;
1747 	if (inode->i_nlink > 1)
1748 		goto close_fail;	/* multiple links - don't dump */
1749 	if (!ispipe && d_unhashed(file->f_path.dentry))
1750 		goto close_fail;
1751 
1752 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1753 	   but keep the previous behaviour for now. */
1754 	if (!ispipe && !S_ISREG(inode->i_mode))
1755 		goto close_fail;
1756 	/*
1757 	 * Dont allow local users get cute and trick others to coredump
1758 	 * into their pre-created files:
1759 	 */
1760 	if (inode->i_uid != current->fsuid)
1761 		goto close_fail;
1762 	if (!file->f_op)
1763 		goto close_fail;
1764 	if (!file->f_op->write)
1765 		goto close_fail;
1766 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1767 		goto close_fail;
1768 
1769 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1770 
1771 	if (retval)
1772 		current->signal->group_exit_code |= 0x80;
1773 close_fail:
1774 	filp_close(file, NULL);
1775 fail_unlock:
1776 	if (helper_argv)
1777 		argv_free(helper_argv);
1778 
1779 	current->fsuid = fsuid;
1780 	complete_all(&mm->core_done);
1781 fail:
1782 	return retval;
1783 }
1784