xref: /openbmc/linux/fs/exec.c (revision 1fa6ac37)
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/proc_fs.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56 #include <linux/fs_struct.h>
57 #include <linux/pipe_fs_i.h>
58 
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62 #include "internal.h"
63 
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 unsigned int core_pipe_limit;
67 int suid_dumpable = 0;
68 
69 /* The maximal length of core_pattern is also specified in sysctl.c */
70 
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73 
74 int __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 	if (!fmt)
77 		return -EINVAL;
78 	write_lock(&binfmt_lock);
79 	insert ? list_add(&fmt->lh, &formats) :
80 		 list_add_tail(&fmt->lh, &formats);
81 	write_unlock(&binfmt_lock);
82 	return 0;
83 }
84 
85 EXPORT_SYMBOL(__register_binfmt);
86 
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89 	write_lock(&binfmt_lock);
90 	list_del(&fmt->lh);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(unregister_binfmt);
95 
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98 	module_put(fmt->module);
99 }
100 
101 /*
102  * Note that a shared library must be both readable and executable due to
103  * security reasons.
104  *
105  * Also note that we take the address to load from from the file itself.
106  */
107 SYSCALL_DEFINE1(uselib, const char __user *, library)
108 {
109 	struct file *file;
110 	char *tmp = getname(library);
111 	int error = PTR_ERR(tmp);
112 
113 	if (IS_ERR(tmp))
114 		goto out;
115 
116 	file = do_filp_open(AT_FDCWD, tmp,
117 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
118 				MAY_READ | MAY_EXEC | MAY_OPEN);
119 	putname(tmp);
120 	error = PTR_ERR(file);
121 	if (IS_ERR(file))
122 		goto out;
123 
124 	error = -EINVAL;
125 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
126 		goto exit;
127 
128 	error = -EACCES;
129 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
130 		goto exit;
131 
132 	fsnotify_open(file->f_path.dentry);
133 
134 	error = -ENOEXEC;
135 	if(file->f_op) {
136 		struct linux_binfmt * fmt;
137 
138 		read_lock(&binfmt_lock);
139 		list_for_each_entry(fmt, &formats, lh) {
140 			if (!fmt->load_shlib)
141 				continue;
142 			if (!try_module_get(fmt->module))
143 				continue;
144 			read_unlock(&binfmt_lock);
145 			error = fmt->load_shlib(file);
146 			read_lock(&binfmt_lock);
147 			put_binfmt(fmt);
148 			if (error != -ENOEXEC)
149 				break;
150 		}
151 		read_unlock(&binfmt_lock);
152 	}
153 exit:
154 	fput(file);
155 out:
156   	return error;
157 }
158 
159 #ifdef CONFIG_MMU
160 
161 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
162 		int write)
163 {
164 	struct page *page;
165 	int ret;
166 
167 #ifdef CONFIG_STACK_GROWSUP
168 	if (write) {
169 		ret = expand_stack_downwards(bprm->vma, pos);
170 		if (ret < 0)
171 			return NULL;
172 	}
173 #endif
174 	ret = get_user_pages(current, bprm->mm, pos,
175 			1, write, 1, &page, NULL);
176 	if (ret <= 0)
177 		return NULL;
178 
179 	if (write) {
180 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
181 		struct rlimit *rlim;
182 
183 		/*
184 		 * We've historically supported up to 32 pages (ARG_MAX)
185 		 * of argument strings even with small stacks
186 		 */
187 		if (size <= ARG_MAX)
188 			return page;
189 
190 		/*
191 		 * Limit to 1/4-th the stack size for the argv+env strings.
192 		 * This ensures that:
193 		 *  - the remaining binfmt code will not run out of stack space,
194 		 *  - the program will have a reasonable amount of stack left
195 		 *    to work from.
196 		 */
197 		rlim = current->signal->rlim;
198 		if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
199 			put_page(page);
200 			return NULL;
201 		}
202 	}
203 
204 	return page;
205 }
206 
207 static void put_arg_page(struct page *page)
208 {
209 	put_page(page);
210 }
211 
212 static void free_arg_page(struct linux_binprm *bprm, int i)
213 {
214 }
215 
216 static void free_arg_pages(struct linux_binprm *bprm)
217 {
218 }
219 
220 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
221 		struct page *page)
222 {
223 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
224 }
225 
226 static int __bprm_mm_init(struct linux_binprm *bprm)
227 {
228 	int err;
229 	struct vm_area_struct *vma = NULL;
230 	struct mm_struct *mm = bprm->mm;
231 
232 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
233 	if (!vma)
234 		return -ENOMEM;
235 
236 	down_write(&mm->mmap_sem);
237 	vma->vm_mm = mm;
238 
239 	/*
240 	 * Place the stack at the largest stack address the architecture
241 	 * supports. Later, we'll move this to an appropriate place. We don't
242 	 * use STACK_TOP because that can depend on attributes which aren't
243 	 * configured yet.
244 	 */
245 	BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
246 	vma->vm_end = STACK_TOP_MAX;
247 	vma->vm_start = vma->vm_end - PAGE_SIZE;
248 	vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
249 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
250 	INIT_LIST_HEAD(&vma->anon_vma_chain);
251 	err = insert_vm_struct(mm, vma);
252 	if (err)
253 		goto err;
254 
255 	mm->stack_vm = mm->total_vm = 1;
256 	up_write(&mm->mmap_sem);
257 	bprm->p = vma->vm_end - sizeof(void *);
258 	return 0;
259 err:
260 	up_write(&mm->mmap_sem);
261 	bprm->vma = NULL;
262 	kmem_cache_free(vm_area_cachep, vma);
263 	return err;
264 }
265 
266 static bool valid_arg_len(struct linux_binprm *bprm, long len)
267 {
268 	return len <= MAX_ARG_STRLEN;
269 }
270 
271 #else
272 
273 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
274 		int write)
275 {
276 	struct page *page;
277 
278 	page = bprm->page[pos / PAGE_SIZE];
279 	if (!page && write) {
280 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
281 		if (!page)
282 			return NULL;
283 		bprm->page[pos / PAGE_SIZE] = page;
284 	}
285 
286 	return page;
287 }
288 
289 static void put_arg_page(struct page *page)
290 {
291 }
292 
293 static void free_arg_page(struct linux_binprm *bprm, int i)
294 {
295 	if (bprm->page[i]) {
296 		__free_page(bprm->page[i]);
297 		bprm->page[i] = NULL;
298 	}
299 }
300 
301 static void free_arg_pages(struct linux_binprm *bprm)
302 {
303 	int i;
304 
305 	for (i = 0; i < MAX_ARG_PAGES; i++)
306 		free_arg_page(bprm, i);
307 }
308 
309 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
310 		struct page *page)
311 {
312 }
313 
314 static int __bprm_mm_init(struct linux_binprm *bprm)
315 {
316 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
317 	return 0;
318 }
319 
320 static bool valid_arg_len(struct linux_binprm *bprm, long len)
321 {
322 	return len <= bprm->p;
323 }
324 
325 #endif /* CONFIG_MMU */
326 
327 /*
328  * Create a new mm_struct and populate it with a temporary stack
329  * vm_area_struct.  We don't have enough context at this point to set the stack
330  * flags, permissions, and offset, so we use temporary values.  We'll update
331  * them later in setup_arg_pages().
332  */
333 int bprm_mm_init(struct linux_binprm *bprm)
334 {
335 	int err;
336 	struct mm_struct *mm = NULL;
337 
338 	bprm->mm = mm = mm_alloc();
339 	err = -ENOMEM;
340 	if (!mm)
341 		goto err;
342 
343 	err = init_new_context(current, mm);
344 	if (err)
345 		goto err;
346 
347 	err = __bprm_mm_init(bprm);
348 	if (err)
349 		goto err;
350 
351 	return 0;
352 
353 err:
354 	if (mm) {
355 		bprm->mm = NULL;
356 		mmdrop(mm);
357 	}
358 
359 	return err;
360 }
361 
362 /*
363  * count() counts the number of strings in array ARGV.
364  */
365 static int count(char __user * __user * argv, int max)
366 {
367 	int i = 0;
368 
369 	if (argv != NULL) {
370 		for (;;) {
371 			char __user * p;
372 
373 			if (get_user(p, argv))
374 				return -EFAULT;
375 			if (!p)
376 				break;
377 			argv++;
378 			if (i++ >= max)
379 				return -E2BIG;
380 			cond_resched();
381 		}
382 	}
383 	return i;
384 }
385 
386 /*
387  * 'copy_strings()' copies argument/environment strings from the old
388  * processes's memory to the new process's stack.  The call to get_user_pages()
389  * ensures the destination page is created and not swapped out.
390  */
391 static int copy_strings(int argc, char __user * __user * argv,
392 			struct linux_binprm *bprm)
393 {
394 	struct page *kmapped_page = NULL;
395 	char *kaddr = NULL;
396 	unsigned long kpos = 0;
397 	int ret;
398 
399 	while (argc-- > 0) {
400 		char __user *str;
401 		int len;
402 		unsigned long pos;
403 
404 		if (get_user(str, argv+argc) ||
405 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
406 			ret = -EFAULT;
407 			goto out;
408 		}
409 
410 		if (!valid_arg_len(bprm, len)) {
411 			ret = -E2BIG;
412 			goto out;
413 		}
414 
415 		/* We're going to work our way backwords. */
416 		pos = bprm->p;
417 		str += len;
418 		bprm->p -= len;
419 
420 		while (len > 0) {
421 			int offset, bytes_to_copy;
422 
423 			offset = pos % PAGE_SIZE;
424 			if (offset == 0)
425 				offset = PAGE_SIZE;
426 
427 			bytes_to_copy = offset;
428 			if (bytes_to_copy > len)
429 				bytes_to_copy = len;
430 
431 			offset -= bytes_to_copy;
432 			pos -= bytes_to_copy;
433 			str -= bytes_to_copy;
434 			len -= bytes_to_copy;
435 
436 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
437 				struct page *page;
438 
439 				page = get_arg_page(bprm, pos, 1);
440 				if (!page) {
441 					ret = -E2BIG;
442 					goto out;
443 				}
444 
445 				if (kmapped_page) {
446 					flush_kernel_dcache_page(kmapped_page);
447 					kunmap(kmapped_page);
448 					put_arg_page(kmapped_page);
449 				}
450 				kmapped_page = page;
451 				kaddr = kmap(kmapped_page);
452 				kpos = pos & PAGE_MASK;
453 				flush_arg_page(bprm, kpos, kmapped_page);
454 			}
455 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
456 				ret = -EFAULT;
457 				goto out;
458 			}
459 		}
460 	}
461 	ret = 0;
462 out:
463 	if (kmapped_page) {
464 		flush_kernel_dcache_page(kmapped_page);
465 		kunmap(kmapped_page);
466 		put_arg_page(kmapped_page);
467 	}
468 	return ret;
469 }
470 
471 /*
472  * Like copy_strings, but get argv and its values from kernel memory.
473  */
474 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
475 {
476 	int r;
477 	mm_segment_t oldfs = get_fs();
478 	set_fs(KERNEL_DS);
479 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
480 	set_fs(oldfs);
481 	return r;
482 }
483 EXPORT_SYMBOL(copy_strings_kernel);
484 
485 #ifdef CONFIG_MMU
486 
487 /*
488  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
489  * the binfmt code determines where the new stack should reside, we shift it to
490  * its final location.  The process proceeds as follows:
491  *
492  * 1) Use shift to calculate the new vma endpoints.
493  * 2) Extend vma to cover both the old and new ranges.  This ensures the
494  *    arguments passed to subsequent functions are consistent.
495  * 3) Move vma's page tables to the new range.
496  * 4) Free up any cleared pgd range.
497  * 5) Shrink the vma to cover only the new range.
498  */
499 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
500 {
501 	struct mm_struct *mm = vma->vm_mm;
502 	unsigned long old_start = vma->vm_start;
503 	unsigned long old_end = vma->vm_end;
504 	unsigned long length = old_end - old_start;
505 	unsigned long new_start = old_start - shift;
506 	unsigned long new_end = old_end - shift;
507 	struct mmu_gather *tlb;
508 
509 	BUG_ON(new_start > new_end);
510 
511 	/*
512 	 * ensure there are no vmas between where we want to go
513 	 * and where we are
514 	 */
515 	if (vma != find_vma(mm, new_start))
516 		return -EFAULT;
517 
518 	/*
519 	 * cover the whole range: [new_start, old_end)
520 	 */
521 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
522 		return -ENOMEM;
523 
524 	/*
525 	 * move the page tables downwards, on failure we rely on
526 	 * process cleanup to remove whatever mess we made.
527 	 */
528 	if (length != move_page_tables(vma, old_start,
529 				       vma, new_start, length))
530 		return -ENOMEM;
531 
532 	lru_add_drain();
533 	tlb = tlb_gather_mmu(mm, 0);
534 	if (new_end > old_start) {
535 		/*
536 		 * when the old and new regions overlap clear from new_end.
537 		 */
538 		free_pgd_range(tlb, new_end, old_end, new_end,
539 			vma->vm_next ? vma->vm_next->vm_start : 0);
540 	} else {
541 		/*
542 		 * otherwise, clean from old_start; this is done to not touch
543 		 * the address space in [new_end, old_start) some architectures
544 		 * have constraints on va-space that make this illegal (IA64) -
545 		 * for the others its just a little faster.
546 		 */
547 		free_pgd_range(tlb, old_start, old_end, new_end,
548 			vma->vm_next ? vma->vm_next->vm_start : 0);
549 	}
550 	tlb_finish_mmu(tlb, new_end, old_end);
551 
552 	/*
553 	 * Shrink the vma to just the new range.  Always succeeds.
554 	 */
555 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
556 
557 	return 0;
558 }
559 
560 /*
561  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
562  * the stack is optionally relocated, and some extra space is added.
563  */
564 int setup_arg_pages(struct linux_binprm *bprm,
565 		    unsigned long stack_top,
566 		    int executable_stack)
567 {
568 	unsigned long ret;
569 	unsigned long stack_shift;
570 	struct mm_struct *mm = current->mm;
571 	struct vm_area_struct *vma = bprm->vma;
572 	struct vm_area_struct *prev = NULL;
573 	unsigned long vm_flags;
574 	unsigned long stack_base;
575 	unsigned long stack_size;
576 	unsigned long stack_expand;
577 	unsigned long rlim_stack;
578 
579 #ifdef CONFIG_STACK_GROWSUP
580 	/* Limit stack size to 1GB */
581 	stack_base = rlimit_max(RLIMIT_STACK);
582 	if (stack_base > (1 << 30))
583 		stack_base = 1 << 30;
584 
585 	/* Make sure we didn't let the argument array grow too large. */
586 	if (vma->vm_end - vma->vm_start > stack_base)
587 		return -ENOMEM;
588 
589 	stack_base = PAGE_ALIGN(stack_top - stack_base);
590 
591 	stack_shift = vma->vm_start - stack_base;
592 	mm->arg_start = bprm->p - stack_shift;
593 	bprm->p = vma->vm_end - stack_shift;
594 #else
595 	stack_top = arch_align_stack(stack_top);
596 	stack_top = PAGE_ALIGN(stack_top);
597 	stack_shift = vma->vm_end - stack_top;
598 
599 	bprm->p -= stack_shift;
600 	mm->arg_start = bprm->p;
601 #endif
602 
603 	if (bprm->loader)
604 		bprm->loader -= stack_shift;
605 	bprm->exec -= stack_shift;
606 
607 	down_write(&mm->mmap_sem);
608 	vm_flags = VM_STACK_FLAGS;
609 
610 	/*
611 	 * Adjust stack execute permissions; explicitly enable for
612 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
613 	 * (arch default) otherwise.
614 	 */
615 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
616 		vm_flags |= VM_EXEC;
617 	else if (executable_stack == EXSTACK_DISABLE_X)
618 		vm_flags &= ~VM_EXEC;
619 	vm_flags |= mm->def_flags;
620 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
621 
622 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
623 			vm_flags);
624 	if (ret)
625 		goto out_unlock;
626 	BUG_ON(prev != vma);
627 
628 	/* Move stack pages down in memory. */
629 	if (stack_shift) {
630 		ret = shift_arg_pages(vma, stack_shift);
631 		if (ret)
632 			goto out_unlock;
633 	}
634 
635 	/* mprotect_fixup is overkill to remove the temporary stack flags */
636 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
637 
638 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
639 	stack_size = vma->vm_end - vma->vm_start;
640 	/*
641 	 * Align this down to a page boundary as expand_stack
642 	 * will align it up.
643 	 */
644 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
645 #ifdef CONFIG_STACK_GROWSUP
646 	if (stack_size + stack_expand > rlim_stack)
647 		stack_base = vma->vm_start + rlim_stack;
648 	else
649 		stack_base = vma->vm_end + stack_expand;
650 #else
651 	if (stack_size + stack_expand > rlim_stack)
652 		stack_base = vma->vm_end - rlim_stack;
653 	else
654 		stack_base = vma->vm_start - stack_expand;
655 #endif
656 	ret = expand_stack(vma, stack_base);
657 	if (ret)
658 		ret = -EFAULT;
659 
660 out_unlock:
661 	up_write(&mm->mmap_sem);
662 	return ret;
663 }
664 EXPORT_SYMBOL(setup_arg_pages);
665 
666 #endif /* CONFIG_MMU */
667 
668 struct file *open_exec(const char *name)
669 {
670 	struct file *file;
671 	int err;
672 
673 	file = do_filp_open(AT_FDCWD, name,
674 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
675 				MAY_EXEC | MAY_OPEN);
676 	if (IS_ERR(file))
677 		goto out;
678 
679 	err = -EACCES;
680 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
681 		goto exit;
682 
683 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
684 		goto exit;
685 
686 	fsnotify_open(file->f_path.dentry);
687 
688 	err = deny_write_access(file);
689 	if (err)
690 		goto exit;
691 
692 out:
693 	return file;
694 
695 exit:
696 	fput(file);
697 	return ERR_PTR(err);
698 }
699 EXPORT_SYMBOL(open_exec);
700 
701 int kernel_read(struct file *file, loff_t offset,
702 		char *addr, unsigned long count)
703 {
704 	mm_segment_t old_fs;
705 	loff_t pos = offset;
706 	int result;
707 
708 	old_fs = get_fs();
709 	set_fs(get_ds());
710 	/* The cast to a user pointer is valid due to the set_fs() */
711 	result = vfs_read(file, (void __user *)addr, count, &pos);
712 	set_fs(old_fs);
713 	return result;
714 }
715 
716 EXPORT_SYMBOL(kernel_read);
717 
718 static int exec_mmap(struct mm_struct *mm)
719 {
720 	struct task_struct *tsk;
721 	struct mm_struct * old_mm, *active_mm;
722 
723 	/* Notify parent that we're no longer interested in the old VM */
724 	tsk = current;
725 	old_mm = current->mm;
726 	sync_mm_rss(tsk, old_mm);
727 	mm_release(tsk, old_mm);
728 
729 	if (old_mm) {
730 		/*
731 		 * Make sure that if there is a core dump in progress
732 		 * for the old mm, we get out and die instead of going
733 		 * through with the exec.  We must hold mmap_sem around
734 		 * checking core_state and changing tsk->mm.
735 		 */
736 		down_read(&old_mm->mmap_sem);
737 		if (unlikely(old_mm->core_state)) {
738 			up_read(&old_mm->mmap_sem);
739 			return -EINTR;
740 		}
741 	}
742 	task_lock(tsk);
743 	active_mm = tsk->active_mm;
744 	tsk->mm = mm;
745 	tsk->active_mm = mm;
746 	activate_mm(active_mm, mm);
747 	task_unlock(tsk);
748 	arch_pick_mmap_layout(mm);
749 	if (old_mm) {
750 		up_read(&old_mm->mmap_sem);
751 		BUG_ON(active_mm != old_mm);
752 		mm_update_next_owner(old_mm);
753 		mmput(old_mm);
754 		return 0;
755 	}
756 	mmdrop(active_mm);
757 	return 0;
758 }
759 
760 /*
761  * This function makes sure the current process has its own signal table,
762  * so that flush_signal_handlers can later reset the handlers without
763  * disturbing other processes.  (Other processes might share the signal
764  * table via the CLONE_SIGHAND option to clone().)
765  */
766 static int de_thread(struct task_struct *tsk)
767 {
768 	struct signal_struct *sig = tsk->signal;
769 	struct sighand_struct *oldsighand = tsk->sighand;
770 	spinlock_t *lock = &oldsighand->siglock;
771 
772 	if (thread_group_empty(tsk))
773 		goto no_thread_group;
774 
775 	/*
776 	 * Kill all other threads in the thread group.
777 	 */
778 	spin_lock_irq(lock);
779 	if (signal_group_exit(sig)) {
780 		/*
781 		 * Another group action in progress, just
782 		 * return so that the signal is processed.
783 		 */
784 		spin_unlock_irq(lock);
785 		return -EAGAIN;
786 	}
787 
788 	sig->group_exit_task = tsk;
789 	sig->notify_count = zap_other_threads(tsk);
790 	if (!thread_group_leader(tsk))
791 		sig->notify_count--;
792 
793 	while (sig->notify_count) {
794 		__set_current_state(TASK_UNINTERRUPTIBLE);
795 		spin_unlock_irq(lock);
796 		schedule();
797 		spin_lock_irq(lock);
798 	}
799 	spin_unlock_irq(lock);
800 
801 	/*
802 	 * At this point all other threads have exited, all we have to
803 	 * do is to wait for the thread group leader to become inactive,
804 	 * and to assume its PID:
805 	 */
806 	if (!thread_group_leader(tsk)) {
807 		struct task_struct *leader = tsk->group_leader;
808 
809 		sig->notify_count = -1;	/* for exit_notify() */
810 		for (;;) {
811 			write_lock_irq(&tasklist_lock);
812 			if (likely(leader->exit_state))
813 				break;
814 			__set_current_state(TASK_UNINTERRUPTIBLE);
815 			write_unlock_irq(&tasklist_lock);
816 			schedule();
817 		}
818 
819 		/*
820 		 * The only record we have of the real-time age of a
821 		 * process, regardless of execs it's done, is start_time.
822 		 * All the past CPU time is accumulated in signal_struct
823 		 * from sister threads now dead.  But in this non-leader
824 		 * exec, nothing survives from the original leader thread,
825 		 * whose birth marks the true age of this process now.
826 		 * When we take on its identity by switching to its PID, we
827 		 * also take its birthdate (always earlier than our own).
828 		 */
829 		tsk->start_time = leader->start_time;
830 
831 		BUG_ON(!same_thread_group(leader, tsk));
832 		BUG_ON(has_group_leader_pid(tsk));
833 		/*
834 		 * An exec() starts a new thread group with the
835 		 * TGID of the previous thread group. Rehash the
836 		 * two threads with a switched PID, and release
837 		 * the former thread group leader:
838 		 */
839 
840 		/* Become a process group leader with the old leader's pid.
841 		 * The old leader becomes a thread of the this thread group.
842 		 * Note: The old leader also uses this pid until release_task
843 		 *       is called.  Odd but simple and correct.
844 		 */
845 		detach_pid(tsk, PIDTYPE_PID);
846 		tsk->pid = leader->pid;
847 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
848 		transfer_pid(leader, tsk, PIDTYPE_PGID);
849 		transfer_pid(leader, tsk, PIDTYPE_SID);
850 
851 		list_replace_rcu(&leader->tasks, &tsk->tasks);
852 		list_replace_init(&leader->sibling, &tsk->sibling);
853 
854 		tsk->group_leader = tsk;
855 		leader->group_leader = tsk;
856 
857 		tsk->exit_signal = SIGCHLD;
858 
859 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
860 		leader->exit_state = EXIT_DEAD;
861 		write_unlock_irq(&tasklist_lock);
862 
863 		release_task(leader);
864 	}
865 
866 	sig->group_exit_task = NULL;
867 	sig->notify_count = 0;
868 
869 no_thread_group:
870 	if (current->mm)
871 		setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
872 
873 	exit_itimers(sig);
874 	flush_itimer_signals();
875 
876 	if (atomic_read(&oldsighand->count) != 1) {
877 		struct sighand_struct *newsighand;
878 		/*
879 		 * This ->sighand is shared with the CLONE_SIGHAND
880 		 * but not CLONE_THREAD task, switch to the new one.
881 		 */
882 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
883 		if (!newsighand)
884 			return -ENOMEM;
885 
886 		atomic_set(&newsighand->count, 1);
887 		memcpy(newsighand->action, oldsighand->action,
888 		       sizeof(newsighand->action));
889 
890 		write_lock_irq(&tasklist_lock);
891 		spin_lock(&oldsighand->siglock);
892 		rcu_assign_pointer(tsk->sighand, newsighand);
893 		spin_unlock(&oldsighand->siglock);
894 		write_unlock_irq(&tasklist_lock);
895 
896 		__cleanup_sighand(oldsighand);
897 	}
898 
899 	BUG_ON(!thread_group_leader(tsk));
900 	return 0;
901 }
902 
903 /*
904  * These functions flushes out all traces of the currently running executable
905  * so that a new one can be started
906  */
907 static void flush_old_files(struct files_struct * files)
908 {
909 	long j = -1;
910 	struct fdtable *fdt;
911 
912 	spin_lock(&files->file_lock);
913 	for (;;) {
914 		unsigned long set, i;
915 
916 		j++;
917 		i = j * __NFDBITS;
918 		fdt = files_fdtable(files);
919 		if (i >= fdt->max_fds)
920 			break;
921 		set = fdt->close_on_exec->fds_bits[j];
922 		if (!set)
923 			continue;
924 		fdt->close_on_exec->fds_bits[j] = 0;
925 		spin_unlock(&files->file_lock);
926 		for ( ; set ; i++,set >>= 1) {
927 			if (set & 1) {
928 				sys_close(i);
929 			}
930 		}
931 		spin_lock(&files->file_lock);
932 
933 	}
934 	spin_unlock(&files->file_lock);
935 }
936 
937 char *get_task_comm(char *buf, struct task_struct *tsk)
938 {
939 	/* buf must be at least sizeof(tsk->comm) in size */
940 	task_lock(tsk);
941 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
942 	task_unlock(tsk);
943 	return buf;
944 }
945 
946 void set_task_comm(struct task_struct *tsk, char *buf)
947 {
948 	task_lock(tsk);
949 
950 	/*
951 	 * Threads may access current->comm without holding
952 	 * the task lock, so write the string carefully.
953 	 * Readers without a lock may see incomplete new
954 	 * names but are safe from non-terminating string reads.
955 	 */
956 	memset(tsk->comm, 0, TASK_COMM_LEN);
957 	wmb();
958 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
959 	task_unlock(tsk);
960 	perf_event_comm(tsk);
961 }
962 
963 int flush_old_exec(struct linux_binprm * bprm)
964 {
965 	int retval;
966 
967 	/*
968 	 * Make sure we have a private signal table and that
969 	 * we are unassociated from the previous thread group.
970 	 */
971 	retval = de_thread(current);
972 	if (retval)
973 		goto out;
974 
975 	set_mm_exe_file(bprm->mm, bprm->file);
976 
977 	/*
978 	 * Release all of the old mmap stuff
979 	 */
980 	retval = exec_mmap(bprm->mm);
981 	if (retval)
982 		goto out;
983 
984 	bprm->mm = NULL;		/* We're using it now */
985 
986 	current->flags &= ~PF_RANDOMIZE;
987 	flush_thread();
988 	current->personality &= ~bprm->per_clear;
989 
990 	return 0;
991 
992 out:
993 	return retval;
994 }
995 EXPORT_SYMBOL(flush_old_exec);
996 
997 void setup_new_exec(struct linux_binprm * bprm)
998 {
999 	int i, ch;
1000 	char * name;
1001 	char tcomm[sizeof(current->comm)];
1002 
1003 	arch_pick_mmap_layout(current->mm);
1004 
1005 	/* This is the point of no return */
1006 	current->sas_ss_sp = current->sas_ss_size = 0;
1007 
1008 	if (current_euid() == current_uid() && current_egid() == current_gid())
1009 		set_dumpable(current->mm, 1);
1010 	else
1011 		set_dumpable(current->mm, suid_dumpable);
1012 
1013 	name = bprm->filename;
1014 
1015 	/* Copies the binary name from after last slash */
1016 	for (i=0; (ch = *(name++)) != '\0';) {
1017 		if (ch == '/')
1018 			i = 0; /* overwrite what we wrote */
1019 		else
1020 			if (i < (sizeof(tcomm) - 1))
1021 				tcomm[i++] = ch;
1022 	}
1023 	tcomm[i] = '\0';
1024 	set_task_comm(current, tcomm);
1025 
1026 	/* Set the new mm task size. We have to do that late because it may
1027 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1028 	 * some architectures like powerpc
1029 	 */
1030 	current->mm->task_size = TASK_SIZE;
1031 
1032 	/* install the new credentials */
1033 	if (bprm->cred->uid != current_euid() ||
1034 	    bprm->cred->gid != current_egid()) {
1035 		current->pdeath_signal = 0;
1036 	} else if (file_permission(bprm->file, MAY_READ) ||
1037 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1038 		set_dumpable(current->mm, suid_dumpable);
1039 	}
1040 
1041 	/*
1042 	 * Flush performance counters when crossing a
1043 	 * security domain:
1044 	 */
1045 	if (!get_dumpable(current->mm))
1046 		perf_event_exit_task(current);
1047 
1048 	/* An exec changes our domain. We are no longer part of the thread
1049 	   group */
1050 
1051 	current->self_exec_id++;
1052 
1053 	flush_signal_handlers(current, 0);
1054 	flush_old_files(current->files);
1055 }
1056 EXPORT_SYMBOL(setup_new_exec);
1057 
1058 /*
1059  * Prepare credentials and lock ->cred_guard_mutex.
1060  * install_exec_creds() commits the new creds and drops the lock.
1061  * Or, if exec fails before, free_bprm() should release ->cred and
1062  * and unlock.
1063  */
1064 int prepare_bprm_creds(struct linux_binprm *bprm)
1065 {
1066 	if (mutex_lock_interruptible(&current->cred_guard_mutex))
1067 		return -ERESTARTNOINTR;
1068 
1069 	bprm->cred = prepare_exec_creds();
1070 	if (likely(bprm->cred))
1071 		return 0;
1072 
1073 	mutex_unlock(&current->cred_guard_mutex);
1074 	return -ENOMEM;
1075 }
1076 
1077 void free_bprm(struct linux_binprm *bprm)
1078 {
1079 	free_arg_pages(bprm);
1080 	if (bprm->cred) {
1081 		mutex_unlock(&current->cred_guard_mutex);
1082 		abort_creds(bprm->cred);
1083 	}
1084 	kfree(bprm);
1085 }
1086 
1087 /*
1088  * install the new credentials for this executable
1089  */
1090 void install_exec_creds(struct linux_binprm *bprm)
1091 {
1092 	security_bprm_committing_creds(bprm);
1093 
1094 	commit_creds(bprm->cred);
1095 	bprm->cred = NULL;
1096 	/*
1097 	 * cred_guard_mutex must be held at least to this point to prevent
1098 	 * ptrace_attach() from altering our determination of the task's
1099 	 * credentials; any time after this it may be unlocked.
1100 	 */
1101 	security_bprm_committed_creds(bprm);
1102 	mutex_unlock(&current->cred_guard_mutex);
1103 }
1104 EXPORT_SYMBOL(install_exec_creds);
1105 
1106 /*
1107  * determine how safe it is to execute the proposed program
1108  * - the caller must hold current->cred_guard_mutex to protect against
1109  *   PTRACE_ATTACH
1110  */
1111 int check_unsafe_exec(struct linux_binprm *bprm)
1112 {
1113 	struct task_struct *p = current, *t;
1114 	unsigned n_fs;
1115 	int res = 0;
1116 
1117 	bprm->unsafe = tracehook_unsafe_exec(p);
1118 
1119 	n_fs = 1;
1120 	write_lock(&p->fs->lock);
1121 	rcu_read_lock();
1122 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1123 		if (t->fs == p->fs)
1124 			n_fs++;
1125 	}
1126 	rcu_read_unlock();
1127 
1128 	if (p->fs->users > n_fs) {
1129 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1130 	} else {
1131 		res = -EAGAIN;
1132 		if (!p->fs->in_exec) {
1133 			p->fs->in_exec = 1;
1134 			res = 1;
1135 		}
1136 	}
1137 	write_unlock(&p->fs->lock);
1138 
1139 	return res;
1140 }
1141 
1142 /*
1143  * Fill the binprm structure from the inode.
1144  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1145  *
1146  * This may be called multiple times for binary chains (scripts for example).
1147  */
1148 int prepare_binprm(struct linux_binprm *bprm)
1149 {
1150 	umode_t mode;
1151 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1152 	int retval;
1153 
1154 	mode = inode->i_mode;
1155 	if (bprm->file->f_op == NULL)
1156 		return -EACCES;
1157 
1158 	/* clear any previous set[ug]id data from a previous binary */
1159 	bprm->cred->euid = current_euid();
1160 	bprm->cred->egid = current_egid();
1161 
1162 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1163 		/* Set-uid? */
1164 		if (mode & S_ISUID) {
1165 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1166 			bprm->cred->euid = inode->i_uid;
1167 		}
1168 
1169 		/* Set-gid? */
1170 		/*
1171 		 * If setgid is set but no group execute bit then this
1172 		 * is a candidate for mandatory locking, not a setgid
1173 		 * executable.
1174 		 */
1175 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1176 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1177 			bprm->cred->egid = inode->i_gid;
1178 		}
1179 	}
1180 
1181 	/* fill in binprm security blob */
1182 	retval = security_bprm_set_creds(bprm);
1183 	if (retval)
1184 		return retval;
1185 	bprm->cred_prepared = 1;
1186 
1187 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1188 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1189 }
1190 
1191 EXPORT_SYMBOL(prepare_binprm);
1192 
1193 /*
1194  * Arguments are '\0' separated strings found at the location bprm->p
1195  * points to; chop off the first by relocating brpm->p to right after
1196  * the first '\0' encountered.
1197  */
1198 int remove_arg_zero(struct linux_binprm *bprm)
1199 {
1200 	int ret = 0;
1201 	unsigned long offset;
1202 	char *kaddr;
1203 	struct page *page;
1204 
1205 	if (!bprm->argc)
1206 		return 0;
1207 
1208 	do {
1209 		offset = bprm->p & ~PAGE_MASK;
1210 		page = get_arg_page(bprm, bprm->p, 0);
1211 		if (!page) {
1212 			ret = -EFAULT;
1213 			goto out;
1214 		}
1215 		kaddr = kmap_atomic(page, KM_USER0);
1216 
1217 		for (; offset < PAGE_SIZE && kaddr[offset];
1218 				offset++, bprm->p++)
1219 			;
1220 
1221 		kunmap_atomic(kaddr, KM_USER0);
1222 		put_arg_page(page);
1223 
1224 		if (offset == PAGE_SIZE)
1225 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1226 	} while (offset == PAGE_SIZE);
1227 
1228 	bprm->p++;
1229 	bprm->argc--;
1230 	ret = 0;
1231 
1232 out:
1233 	return ret;
1234 }
1235 EXPORT_SYMBOL(remove_arg_zero);
1236 
1237 /*
1238  * cycle the list of binary formats handler, until one recognizes the image
1239  */
1240 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1241 {
1242 	unsigned int depth = bprm->recursion_depth;
1243 	int try,retval;
1244 	struct linux_binfmt *fmt;
1245 
1246 	retval = security_bprm_check(bprm);
1247 	if (retval)
1248 		return retval;
1249 
1250 	/* kernel module loader fixup */
1251 	/* so we don't try to load run modprobe in kernel space. */
1252 	set_fs(USER_DS);
1253 
1254 	retval = audit_bprm(bprm);
1255 	if (retval)
1256 		return retval;
1257 
1258 	retval = -ENOENT;
1259 	for (try=0; try<2; try++) {
1260 		read_lock(&binfmt_lock);
1261 		list_for_each_entry(fmt, &formats, lh) {
1262 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1263 			if (!fn)
1264 				continue;
1265 			if (!try_module_get(fmt->module))
1266 				continue;
1267 			read_unlock(&binfmt_lock);
1268 			retval = fn(bprm, regs);
1269 			/*
1270 			 * Restore the depth counter to its starting value
1271 			 * in this call, so we don't have to rely on every
1272 			 * load_binary function to restore it on return.
1273 			 */
1274 			bprm->recursion_depth = depth;
1275 			if (retval >= 0) {
1276 				if (depth == 0)
1277 					tracehook_report_exec(fmt, bprm, regs);
1278 				put_binfmt(fmt);
1279 				allow_write_access(bprm->file);
1280 				if (bprm->file)
1281 					fput(bprm->file);
1282 				bprm->file = NULL;
1283 				current->did_exec = 1;
1284 				proc_exec_connector(current);
1285 				return retval;
1286 			}
1287 			read_lock(&binfmt_lock);
1288 			put_binfmt(fmt);
1289 			if (retval != -ENOEXEC || bprm->mm == NULL)
1290 				break;
1291 			if (!bprm->file) {
1292 				read_unlock(&binfmt_lock);
1293 				return retval;
1294 			}
1295 		}
1296 		read_unlock(&binfmt_lock);
1297 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1298 			break;
1299 #ifdef CONFIG_MODULES
1300 		} else {
1301 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1302 			if (printable(bprm->buf[0]) &&
1303 			    printable(bprm->buf[1]) &&
1304 			    printable(bprm->buf[2]) &&
1305 			    printable(bprm->buf[3]))
1306 				break; /* -ENOEXEC */
1307 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1308 #endif
1309 		}
1310 	}
1311 	return retval;
1312 }
1313 
1314 EXPORT_SYMBOL(search_binary_handler);
1315 
1316 /*
1317  * sys_execve() executes a new program.
1318  */
1319 int do_execve(char * filename,
1320 	char __user *__user *argv,
1321 	char __user *__user *envp,
1322 	struct pt_regs * regs)
1323 {
1324 	struct linux_binprm *bprm;
1325 	struct file *file;
1326 	struct files_struct *displaced;
1327 	bool clear_in_exec;
1328 	int retval;
1329 
1330 	retval = unshare_files(&displaced);
1331 	if (retval)
1332 		goto out_ret;
1333 
1334 	retval = -ENOMEM;
1335 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1336 	if (!bprm)
1337 		goto out_files;
1338 
1339 	retval = prepare_bprm_creds(bprm);
1340 	if (retval)
1341 		goto out_free;
1342 
1343 	retval = check_unsafe_exec(bprm);
1344 	if (retval < 0)
1345 		goto out_free;
1346 	clear_in_exec = retval;
1347 	current->in_execve = 1;
1348 
1349 	file = open_exec(filename);
1350 	retval = PTR_ERR(file);
1351 	if (IS_ERR(file))
1352 		goto out_unmark;
1353 
1354 	sched_exec();
1355 
1356 	bprm->file = file;
1357 	bprm->filename = filename;
1358 	bprm->interp = filename;
1359 
1360 	retval = bprm_mm_init(bprm);
1361 	if (retval)
1362 		goto out_file;
1363 
1364 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1365 	if ((retval = bprm->argc) < 0)
1366 		goto out;
1367 
1368 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1369 	if ((retval = bprm->envc) < 0)
1370 		goto out;
1371 
1372 	retval = prepare_binprm(bprm);
1373 	if (retval < 0)
1374 		goto out;
1375 
1376 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1377 	if (retval < 0)
1378 		goto out;
1379 
1380 	bprm->exec = bprm->p;
1381 	retval = copy_strings(bprm->envc, envp, bprm);
1382 	if (retval < 0)
1383 		goto out;
1384 
1385 	retval = copy_strings(bprm->argc, argv, bprm);
1386 	if (retval < 0)
1387 		goto out;
1388 
1389 	current->flags &= ~PF_KTHREAD;
1390 	retval = search_binary_handler(bprm,regs);
1391 	if (retval < 0)
1392 		goto out;
1393 
1394 	/* execve succeeded */
1395 	current->fs->in_exec = 0;
1396 	current->in_execve = 0;
1397 	acct_update_integrals(current);
1398 	free_bprm(bprm);
1399 	if (displaced)
1400 		put_files_struct(displaced);
1401 	return retval;
1402 
1403 out:
1404 	if (bprm->mm)
1405 		mmput (bprm->mm);
1406 
1407 out_file:
1408 	if (bprm->file) {
1409 		allow_write_access(bprm->file);
1410 		fput(bprm->file);
1411 	}
1412 
1413 out_unmark:
1414 	if (clear_in_exec)
1415 		current->fs->in_exec = 0;
1416 	current->in_execve = 0;
1417 
1418 out_free:
1419 	free_bprm(bprm);
1420 
1421 out_files:
1422 	if (displaced)
1423 		reset_files_struct(displaced);
1424 out_ret:
1425 	return retval;
1426 }
1427 
1428 void set_binfmt(struct linux_binfmt *new)
1429 {
1430 	struct mm_struct *mm = current->mm;
1431 
1432 	if (mm->binfmt)
1433 		module_put(mm->binfmt->module);
1434 
1435 	mm->binfmt = new;
1436 	if (new)
1437 		__module_get(new->module);
1438 }
1439 
1440 EXPORT_SYMBOL(set_binfmt);
1441 
1442 /* format_corename will inspect the pattern parameter, and output a
1443  * name into corename, which must have space for at least
1444  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1445  */
1446 static int format_corename(char *corename, long signr)
1447 {
1448 	const struct cred *cred = current_cred();
1449 	const char *pat_ptr = core_pattern;
1450 	int ispipe = (*pat_ptr == '|');
1451 	char *out_ptr = corename;
1452 	char *const out_end = corename + CORENAME_MAX_SIZE;
1453 	int rc;
1454 	int pid_in_pattern = 0;
1455 
1456 	/* Repeat as long as we have more pattern to process and more output
1457 	   space */
1458 	while (*pat_ptr) {
1459 		if (*pat_ptr != '%') {
1460 			if (out_ptr == out_end)
1461 				goto out;
1462 			*out_ptr++ = *pat_ptr++;
1463 		} else {
1464 			switch (*++pat_ptr) {
1465 			case 0:
1466 				goto out;
1467 			/* Double percent, output one percent */
1468 			case '%':
1469 				if (out_ptr == out_end)
1470 					goto out;
1471 				*out_ptr++ = '%';
1472 				break;
1473 			/* pid */
1474 			case 'p':
1475 				pid_in_pattern = 1;
1476 				rc = snprintf(out_ptr, out_end - out_ptr,
1477 					      "%d", task_tgid_vnr(current));
1478 				if (rc > out_end - out_ptr)
1479 					goto out;
1480 				out_ptr += rc;
1481 				break;
1482 			/* uid */
1483 			case 'u':
1484 				rc = snprintf(out_ptr, out_end - out_ptr,
1485 					      "%d", cred->uid);
1486 				if (rc > out_end - out_ptr)
1487 					goto out;
1488 				out_ptr += rc;
1489 				break;
1490 			/* gid */
1491 			case 'g':
1492 				rc = snprintf(out_ptr, out_end - out_ptr,
1493 					      "%d", cred->gid);
1494 				if (rc > out_end - out_ptr)
1495 					goto out;
1496 				out_ptr += rc;
1497 				break;
1498 			/* signal that caused the coredump */
1499 			case 's':
1500 				rc = snprintf(out_ptr, out_end - out_ptr,
1501 					      "%ld", signr);
1502 				if (rc > out_end - out_ptr)
1503 					goto out;
1504 				out_ptr += rc;
1505 				break;
1506 			/* UNIX time of coredump */
1507 			case 't': {
1508 				struct timeval tv;
1509 				do_gettimeofday(&tv);
1510 				rc = snprintf(out_ptr, out_end - out_ptr,
1511 					      "%lu", tv.tv_sec);
1512 				if (rc > out_end - out_ptr)
1513 					goto out;
1514 				out_ptr += rc;
1515 				break;
1516 			}
1517 			/* hostname */
1518 			case 'h':
1519 				down_read(&uts_sem);
1520 				rc = snprintf(out_ptr, out_end - out_ptr,
1521 					      "%s", utsname()->nodename);
1522 				up_read(&uts_sem);
1523 				if (rc > out_end - out_ptr)
1524 					goto out;
1525 				out_ptr += rc;
1526 				break;
1527 			/* executable */
1528 			case 'e':
1529 				rc = snprintf(out_ptr, out_end - out_ptr,
1530 					      "%s", current->comm);
1531 				if (rc > out_end - out_ptr)
1532 					goto out;
1533 				out_ptr += rc;
1534 				break;
1535 			/* core limit size */
1536 			case 'c':
1537 				rc = snprintf(out_ptr, out_end - out_ptr,
1538 					      "%lu", rlimit(RLIMIT_CORE));
1539 				if (rc > out_end - out_ptr)
1540 					goto out;
1541 				out_ptr += rc;
1542 				break;
1543 			default:
1544 				break;
1545 			}
1546 			++pat_ptr;
1547 		}
1548 	}
1549 	/* Backward compatibility with core_uses_pid:
1550 	 *
1551 	 * If core_pattern does not include a %p (as is the default)
1552 	 * and core_uses_pid is set, then .%pid will be appended to
1553 	 * the filename. Do not do this for piped commands. */
1554 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1555 		rc = snprintf(out_ptr, out_end - out_ptr,
1556 			      ".%d", task_tgid_vnr(current));
1557 		if (rc > out_end - out_ptr)
1558 			goto out;
1559 		out_ptr += rc;
1560 	}
1561 out:
1562 	*out_ptr = 0;
1563 	return ispipe;
1564 }
1565 
1566 static int zap_process(struct task_struct *start, int exit_code)
1567 {
1568 	struct task_struct *t;
1569 	int nr = 0;
1570 
1571 	start->signal->flags = SIGNAL_GROUP_EXIT;
1572 	start->signal->group_exit_code = exit_code;
1573 	start->signal->group_stop_count = 0;
1574 
1575 	t = start;
1576 	do {
1577 		if (t != current && t->mm) {
1578 			sigaddset(&t->pending.signal, SIGKILL);
1579 			signal_wake_up(t, 1);
1580 			nr++;
1581 		}
1582 	} while_each_thread(start, t);
1583 
1584 	return nr;
1585 }
1586 
1587 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1588 				struct core_state *core_state, int exit_code)
1589 {
1590 	struct task_struct *g, *p;
1591 	unsigned long flags;
1592 	int nr = -EAGAIN;
1593 
1594 	spin_lock_irq(&tsk->sighand->siglock);
1595 	if (!signal_group_exit(tsk->signal)) {
1596 		mm->core_state = core_state;
1597 		nr = zap_process(tsk, exit_code);
1598 	}
1599 	spin_unlock_irq(&tsk->sighand->siglock);
1600 	if (unlikely(nr < 0))
1601 		return nr;
1602 
1603 	if (atomic_read(&mm->mm_users) == nr + 1)
1604 		goto done;
1605 	/*
1606 	 * We should find and kill all tasks which use this mm, and we should
1607 	 * count them correctly into ->nr_threads. We don't take tasklist
1608 	 * lock, but this is safe wrt:
1609 	 *
1610 	 * fork:
1611 	 *	None of sub-threads can fork after zap_process(leader). All
1612 	 *	processes which were created before this point should be
1613 	 *	visible to zap_threads() because copy_process() adds the new
1614 	 *	process to the tail of init_task.tasks list, and lock/unlock
1615 	 *	of ->siglock provides a memory barrier.
1616 	 *
1617 	 * do_exit:
1618 	 *	The caller holds mm->mmap_sem. This means that the task which
1619 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1620 	 *	its ->mm.
1621 	 *
1622 	 * de_thread:
1623 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1624 	 *	we must see either old or new leader, this does not matter.
1625 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1626 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1627 	 *	it can't fail.
1628 	 *
1629 	 *	Note also that "g" can be the old leader with ->mm == NULL
1630 	 *	and already unhashed and thus removed from ->thread_group.
1631 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1632 	 *	clear the ->next pointer, we will find the new leader via
1633 	 *	next_thread().
1634 	 */
1635 	rcu_read_lock();
1636 	for_each_process(g) {
1637 		if (g == tsk->group_leader)
1638 			continue;
1639 		if (g->flags & PF_KTHREAD)
1640 			continue;
1641 		p = g;
1642 		do {
1643 			if (p->mm) {
1644 				if (unlikely(p->mm == mm)) {
1645 					lock_task_sighand(p, &flags);
1646 					nr += zap_process(p, exit_code);
1647 					unlock_task_sighand(p, &flags);
1648 				}
1649 				break;
1650 			}
1651 		} while_each_thread(g, p);
1652 	}
1653 	rcu_read_unlock();
1654 done:
1655 	atomic_set(&core_state->nr_threads, nr);
1656 	return nr;
1657 }
1658 
1659 static int coredump_wait(int exit_code, struct core_state *core_state)
1660 {
1661 	struct task_struct *tsk = current;
1662 	struct mm_struct *mm = tsk->mm;
1663 	struct completion *vfork_done;
1664 	int core_waiters = -EBUSY;
1665 
1666 	init_completion(&core_state->startup);
1667 	core_state->dumper.task = tsk;
1668 	core_state->dumper.next = NULL;
1669 
1670 	down_write(&mm->mmap_sem);
1671 	if (!mm->core_state)
1672 		core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1673 	up_write(&mm->mmap_sem);
1674 
1675 	if (unlikely(core_waiters < 0))
1676 		goto fail;
1677 
1678 	/*
1679 	 * Make sure nobody is waiting for us to release the VM,
1680 	 * otherwise we can deadlock when we wait on each other
1681 	 */
1682 	vfork_done = tsk->vfork_done;
1683 	if (vfork_done) {
1684 		tsk->vfork_done = NULL;
1685 		complete(vfork_done);
1686 	}
1687 
1688 	if (core_waiters)
1689 		wait_for_completion(&core_state->startup);
1690 fail:
1691 	return core_waiters;
1692 }
1693 
1694 static void coredump_finish(struct mm_struct *mm)
1695 {
1696 	struct core_thread *curr, *next;
1697 	struct task_struct *task;
1698 
1699 	next = mm->core_state->dumper.next;
1700 	while ((curr = next) != NULL) {
1701 		next = curr->next;
1702 		task = curr->task;
1703 		/*
1704 		 * see exit_mm(), curr->task must not see
1705 		 * ->task == NULL before we read ->next.
1706 		 */
1707 		smp_mb();
1708 		curr->task = NULL;
1709 		wake_up_process(task);
1710 	}
1711 
1712 	mm->core_state = NULL;
1713 }
1714 
1715 /*
1716  * set_dumpable converts traditional three-value dumpable to two flags and
1717  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1718  * these bits are not changed atomically.  So get_dumpable can observe the
1719  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1720  * return either old dumpable or new one by paying attention to the order of
1721  * modifying the bits.
1722  *
1723  * dumpable |   mm->flags (binary)
1724  * old  new | initial interim  final
1725  * ---------+-----------------------
1726  *  0    1  |   00      01      01
1727  *  0    2  |   00      10(*)   11
1728  *  1    0  |   01      00      00
1729  *  1    2  |   01      11      11
1730  *  2    0  |   11      10(*)   00
1731  *  2    1  |   11      11      01
1732  *
1733  * (*) get_dumpable regards interim value of 10 as 11.
1734  */
1735 void set_dumpable(struct mm_struct *mm, int value)
1736 {
1737 	switch (value) {
1738 	case 0:
1739 		clear_bit(MMF_DUMPABLE, &mm->flags);
1740 		smp_wmb();
1741 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1742 		break;
1743 	case 1:
1744 		set_bit(MMF_DUMPABLE, &mm->flags);
1745 		smp_wmb();
1746 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1747 		break;
1748 	case 2:
1749 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1750 		smp_wmb();
1751 		set_bit(MMF_DUMPABLE, &mm->flags);
1752 		break;
1753 	}
1754 }
1755 
1756 static int __get_dumpable(unsigned long mm_flags)
1757 {
1758 	int ret;
1759 
1760 	ret = mm_flags & MMF_DUMPABLE_MASK;
1761 	return (ret >= 2) ? 2 : ret;
1762 }
1763 
1764 int get_dumpable(struct mm_struct *mm)
1765 {
1766 	return __get_dumpable(mm->flags);
1767 }
1768 
1769 static void wait_for_dump_helpers(struct file *file)
1770 {
1771 	struct pipe_inode_info *pipe;
1772 
1773 	pipe = file->f_path.dentry->d_inode->i_pipe;
1774 
1775 	pipe_lock(pipe);
1776 	pipe->readers++;
1777 	pipe->writers--;
1778 
1779 	while ((pipe->readers > 1) && (!signal_pending(current))) {
1780 		wake_up_interruptible_sync(&pipe->wait);
1781 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1782 		pipe_wait(pipe);
1783 	}
1784 
1785 	pipe->readers--;
1786 	pipe->writers++;
1787 	pipe_unlock(pipe);
1788 
1789 }
1790 
1791 
1792 /*
1793  * uhm_pipe_setup
1794  * helper function to customize the process used
1795  * to collect the core in userspace.  Specifically
1796  * it sets up a pipe and installs it as fd 0 (stdin)
1797  * for the process.  Returns 0 on success, or
1798  * PTR_ERR on failure.
1799  * Note that it also sets the core limit to 1.  This
1800  * is a special value that we use to trap recursive
1801  * core dumps
1802  */
1803 static int umh_pipe_setup(struct subprocess_info *info)
1804 {
1805 	struct file *rp, *wp;
1806 	struct fdtable *fdt;
1807 	struct coredump_params *cp = (struct coredump_params *)info->data;
1808 	struct files_struct *cf = current->files;
1809 
1810 	wp = create_write_pipe(0);
1811 	if (IS_ERR(wp))
1812 		return PTR_ERR(wp);
1813 
1814 	rp = create_read_pipe(wp, 0);
1815 	if (IS_ERR(rp)) {
1816 		free_write_pipe(wp);
1817 		return PTR_ERR(rp);
1818 	}
1819 
1820 	cp->file = wp;
1821 
1822 	sys_close(0);
1823 	fd_install(0, rp);
1824 	spin_lock(&cf->file_lock);
1825 	fdt = files_fdtable(cf);
1826 	FD_SET(0, fdt->open_fds);
1827 	FD_CLR(0, fdt->close_on_exec);
1828 	spin_unlock(&cf->file_lock);
1829 
1830 	/* and disallow core files too */
1831 	current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1832 
1833 	return 0;
1834 }
1835 
1836 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1837 {
1838 	struct core_state core_state;
1839 	char corename[CORENAME_MAX_SIZE + 1];
1840 	struct mm_struct *mm = current->mm;
1841 	struct linux_binfmt * binfmt;
1842 	const struct cred *old_cred;
1843 	struct cred *cred;
1844 	int retval = 0;
1845 	int flag = 0;
1846 	int ispipe;
1847 	static atomic_t core_dump_count = ATOMIC_INIT(0);
1848 	struct coredump_params cprm = {
1849 		.signr = signr,
1850 		.regs = regs,
1851 		.limit = rlimit(RLIMIT_CORE),
1852 		/*
1853 		 * We must use the same mm->flags while dumping core to avoid
1854 		 * inconsistency of bit flags, since this flag is not protected
1855 		 * by any locks.
1856 		 */
1857 		.mm_flags = mm->flags,
1858 	};
1859 
1860 	audit_core_dumps(signr);
1861 
1862 	binfmt = mm->binfmt;
1863 	if (!binfmt || !binfmt->core_dump)
1864 		goto fail;
1865 	if (!__get_dumpable(cprm.mm_flags))
1866 		goto fail;
1867 
1868 	cred = prepare_creds();
1869 	if (!cred)
1870 		goto fail;
1871 	/*
1872 	 *	We cannot trust fsuid as being the "true" uid of the
1873 	 *	process nor do we know its entire history. We only know it
1874 	 *	was tainted so we dump it as root in mode 2.
1875 	 */
1876 	if (__get_dumpable(cprm.mm_flags) == 2) {
1877 		/* Setuid core dump mode */
1878 		flag = O_EXCL;		/* Stop rewrite attacks */
1879 		cred->fsuid = 0;	/* Dump root private */
1880 	}
1881 
1882 	retval = coredump_wait(exit_code, &core_state);
1883 	if (retval < 0)
1884 		goto fail_creds;
1885 
1886 	old_cred = override_creds(cred);
1887 
1888 	/*
1889 	 * Clear any false indication of pending signals that might
1890 	 * be seen by the filesystem code called to write the core file.
1891 	 */
1892 	clear_thread_flag(TIF_SIGPENDING);
1893 
1894 	/*
1895 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1896 	 * uses lock_kernel()
1897 	 */
1898  	lock_kernel();
1899 	ispipe = format_corename(corename, signr);
1900 	unlock_kernel();
1901 
1902  	if (ispipe) {
1903 		int dump_count;
1904 		char **helper_argv;
1905 
1906 		if (cprm.limit == 1) {
1907 			/*
1908 			 * Normally core limits are irrelevant to pipes, since
1909 			 * we're not writing to the file system, but we use
1910 			 * cprm.limit of 1 here as a speacial value. Any
1911 			 * non-1 limit gets set to RLIM_INFINITY below, but
1912 			 * a limit of 0 skips the dump.  This is a consistent
1913 			 * way to catch recursive crashes.  We can still crash
1914 			 * if the core_pattern binary sets RLIM_CORE =  !1
1915 			 * but it runs as root, and can do lots of stupid things
1916 			 * Note that we use task_tgid_vnr here to grab the pid
1917 			 * of the process group leader.  That way we get the
1918 			 * right pid if a thread in a multi-threaded
1919 			 * core_pattern process dies.
1920 			 */
1921 			printk(KERN_WARNING
1922 				"Process %d(%s) has RLIMIT_CORE set to 1\n",
1923 				task_tgid_vnr(current), current->comm);
1924 			printk(KERN_WARNING "Aborting core\n");
1925 			goto fail_unlock;
1926 		}
1927 		cprm.limit = RLIM_INFINITY;
1928 
1929 		dump_count = atomic_inc_return(&core_dump_count);
1930 		if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1931 			printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1932 			       task_tgid_vnr(current), current->comm);
1933 			printk(KERN_WARNING "Skipping core dump\n");
1934 			goto fail_dropcount;
1935 		}
1936 
1937 		helper_argv = argv_split(GFP_KERNEL, corename+1, NULL);
1938 		if (!helper_argv) {
1939 			printk(KERN_WARNING "%s failed to allocate memory\n",
1940 			       __func__);
1941 			goto fail_dropcount;
1942 		}
1943 
1944 		retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
1945 					NULL, UMH_WAIT_EXEC, umh_pipe_setup,
1946 					NULL, &cprm);
1947 		argv_free(helper_argv);
1948 		if (retval) {
1949  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1950 			       corename);
1951 			goto close_fail;
1952  		}
1953 	} else {
1954 		struct inode *inode;
1955 
1956 		if (cprm.limit < binfmt->min_coredump)
1957 			goto fail_unlock;
1958 
1959 		cprm.file = filp_open(corename,
1960 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1961 				 0600);
1962 		if (IS_ERR(cprm.file))
1963 			goto fail_unlock;
1964 
1965 		inode = cprm.file->f_path.dentry->d_inode;
1966 		if (inode->i_nlink > 1)
1967 			goto close_fail;
1968 		if (d_unhashed(cprm.file->f_path.dentry))
1969 			goto close_fail;
1970 		/*
1971 		 * AK: actually i see no reason to not allow this for named
1972 		 * pipes etc, but keep the previous behaviour for now.
1973 		 */
1974 		if (!S_ISREG(inode->i_mode))
1975 			goto close_fail;
1976 		/*
1977 		 * Dont allow local users get cute and trick others to coredump
1978 		 * into their pre-created files.
1979 		 */
1980 		if (inode->i_uid != current_fsuid())
1981 			goto close_fail;
1982 		if (!cprm.file->f_op || !cprm.file->f_op->write)
1983 			goto close_fail;
1984 		if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
1985 			goto close_fail;
1986 	}
1987 
1988 	retval = binfmt->core_dump(&cprm);
1989 	if (retval)
1990 		current->signal->group_exit_code |= 0x80;
1991 
1992 	if (ispipe && core_pipe_limit)
1993 		wait_for_dump_helpers(cprm.file);
1994 close_fail:
1995 	if (cprm.file)
1996 		filp_close(cprm.file, NULL);
1997 fail_dropcount:
1998 	if (ispipe)
1999 		atomic_dec(&core_dump_count);
2000 fail_unlock:
2001 	coredump_finish(mm);
2002 	revert_creds(old_cred);
2003 fail_creds:
2004 	put_cred(cred);
2005 fail:
2006 	return;
2007 }
2008