1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/vmacache.h> 30 #include <linux/stat.h> 31 #include <linux/fcntl.h> 32 #include <linux/swap.h> 33 #include <linux/string.h> 34 #include <linux/init.h> 35 #include <linux/sched/mm.h> 36 #include <linux/sched/coredump.h> 37 #include <linux/sched/signal.h> 38 #include <linux/sched/numa_balancing.h> 39 #include <linux/pagemap.h> 40 #include <linux/perf_event.h> 41 #include <linux/highmem.h> 42 #include <linux/spinlock.h> 43 #include <linux/key.h> 44 #include <linux/personality.h> 45 #include <linux/binfmts.h> 46 #include <linux/utsname.h> 47 #include <linux/pid_namespace.h> 48 #include <linux/module.h> 49 #include <linux/namei.h> 50 #include <linux/mount.h> 51 #include <linux/security.h> 52 #include <linux/syscalls.h> 53 #include <linux/tsacct_kern.h> 54 #include <linux/cn_proc.h> 55 #include <linux/audit.h> 56 #include <linux/tracehook.h> 57 #include <linux/kmod.h> 58 #include <linux/fsnotify.h> 59 #include <linux/fs_struct.h> 60 #include <linux/pipe_fs_i.h> 61 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 65 #include <linux/uaccess.h> 66 #include <asm/mmu_context.h> 67 #include <asm/tlb.h> 68 69 #include <trace/events/task.h> 70 #include "internal.h" 71 72 #include <trace/events/sched.h> 73 74 int suid_dumpable = 0; 75 76 static LIST_HEAD(formats); 77 static DEFINE_RWLOCK(binfmt_lock); 78 79 void __register_binfmt(struct linux_binfmt * fmt, int insert) 80 { 81 BUG_ON(!fmt); 82 if (WARN_ON(!fmt->load_binary)) 83 return; 84 write_lock(&binfmt_lock); 85 insert ? list_add(&fmt->lh, &formats) : 86 list_add_tail(&fmt->lh, &formats); 87 write_unlock(&binfmt_lock); 88 } 89 90 EXPORT_SYMBOL(__register_binfmt); 91 92 void unregister_binfmt(struct linux_binfmt * fmt) 93 { 94 write_lock(&binfmt_lock); 95 list_del(&fmt->lh); 96 write_unlock(&binfmt_lock); 97 } 98 99 EXPORT_SYMBOL(unregister_binfmt); 100 101 static inline void put_binfmt(struct linux_binfmt * fmt) 102 { 103 module_put(fmt->module); 104 } 105 106 bool path_noexec(const struct path *path) 107 { 108 return (path->mnt->mnt_flags & MNT_NOEXEC) || 109 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 110 } 111 112 #ifdef CONFIG_USELIB 113 /* 114 * Note that a shared library must be both readable and executable due to 115 * security reasons. 116 * 117 * Also note that we take the address to load from from the file itself. 118 */ 119 SYSCALL_DEFINE1(uselib, const char __user *, library) 120 { 121 struct linux_binfmt *fmt; 122 struct file *file; 123 struct filename *tmp = getname(library); 124 int error = PTR_ERR(tmp); 125 static const struct open_flags uselib_flags = { 126 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 127 .acc_mode = MAY_READ | MAY_EXEC, 128 .intent = LOOKUP_OPEN, 129 .lookup_flags = LOOKUP_FOLLOW, 130 }; 131 132 if (IS_ERR(tmp)) 133 goto out; 134 135 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 136 putname(tmp); 137 error = PTR_ERR(file); 138 if (IS_ERR(file)) 139 goto out; 140 141 error = -EINVAL; 142 if (!S_ISREG(file_inode(file)->i_mode)) 143 goto exit; 144 145 error = -EACCES; 146 if (path_noexec(&file->f_path)) 147 goto exit; 148 149 fsnotify_open(file); 150 151 error = -ENOEXEC; 152 153 read_lock(&binfmt_lock); 154 list_for_each_entry(fmt, &formats, lh) { 155 if (!fmt->load_shlib) 156 continue; 157 if (!try_module_get(fmt->module)) 158 continue; 159 read_unlock(&binfmt_lock); 160 error = fmt->load_shlib(file); 161 read_lock(&binfmt_lock); 162 put_binfmt(fmt); 163 if (error != -ENOEXEC) 164 break; 165 } 166 read_unlock(&binfmt_lock); 167 exit: 168 fput(file); 169 out: 170 return error; 171 } 172 #endif /* #ifdef CONFIG_USELIB */ 173 174 #ifdef CONFIG_MMU 175 /* 176 * The nascent bprm->mm is not visible until exec_mmap() but it can 177 * use a lot of memory, account these pages in current->mm temporary 178 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 179 * change the counter back via acct_arg_size(0). 180 */ 181 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 182 { 183 struct mm_struct *mm = current->mm; 184 long diff = (long)(pages - bprm->vma_pages); 185 186 if (!mm || !diff) 187 return; 188 189 bprm->vma_pages = pages; 190 add_mm_counter(mm, MM_ANONPAGES, diff); 191 } 192 193 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 194 int write) 195 { 196 struct page *page; 197 int ret; 198 unsigned int gup_flags = FOLL_FORCE; 199 200 #ifdef CONFIG_STACK_GROWSUP 201 if (write) { 202 ret = expand_downwards(bprm->vma, pos); 203 if (ret < 0) 204 return NULL; 205 } 206 #endif 207 208 if (write) 209 gup_flags |= FOLL_WRITE; 210 211 /* 212 * We are doing an exec(). 'current' is the process 213 * doing the exec and bprm->mm is the new process's mm. 214 */ 215 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags, 216 &page, NULL, NULL); 217 if (ret <= 0) 218 return NULL; 219 220 if (write) { 221 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 222 struct rlimit *rlim; 223 224 acct_arg_size(bprm, size / PAGE_SIZE); 225 226 /* 227 * We've historically supported up to 32 pages (ARG_MAX) 228 * of argument strings even with small stacks 229 */ 230 if (size <= ARG_MAX) 231 return page; 232 233 /* 234 * Limit to 1/4-th the stack size for the argv+env strings. 235 * This ensures that: 236 * - the remaining binfmt code will not run out of stack space, 237 * - the program will have a reasonable amount of stack left 238 * to work from. 239 */ 240 rlim = current->signal->rlim; 241 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 242 put_page(page); 243 return NULL; 244 } 245 } 246 247 return page; 248 } 249 250 static void put_arg_page(struct page *page) 251 { 252 put_page(page); 253 } 254 255 static void free_arg_pages(struct linux_binprm *bprm) 256 { 257 } 258 259 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 260 struct page *page) 261 { 262 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 263 } 264 265 static int __bprm_mm_init(struct linux_binprm *bprm) 266 { 267 int err; 268 struct vm_area_struct *vma = NULL; 269 struct mm_struct *mm = bprm->mm; 270 271 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 272 if (!vma) 273 return -ENOMEM; 274 275 if (down_write_killable(&mm->mmap_sem)) { 276 err = -EINTR; 277 goto err_free; 278 } 279 vma->vm_mm = mm; 280 281 /* 282 * Place the stack at the largest stack address the architecture 283 * supports. Later, we'll move this to an appropriate place. We don't 284 * use STACK_TOP because that can depend on attributes which aren't 285 * configured yet. 286 */ 287 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 288 vma->vm_end = STACK_TOP_MAX; 289 vma->vm_start = vma->vm_end - PAGE_SIZE; 290 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 291 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 292 INIT_LIST_HEAD(&vma->anon_vma_chain); 293 294 err = insert_vm_struct(mm, vma); 295 if (err) 296 goto err; 297 298 mm->stack_vm = mm->total_vm = 1; 299 arch_bprm_mm_init(mm, vma); 300 up_write(&mm->mmap_sem); 301 bprm->p = vma->vm_end - sizeof(void *); 302 return 0; 303 err: 304 up_write(&mm->mmap_sem); 305 err_free: 306 bprm->vma = NULL; 307 kmem_cache_free(vm_area_cachep, vma); 308 return err; 309 } 310 311 static bool valid_arg_len(struct linux_binprm *bprm, long len) 312 { 313 return len <= MAX_ARG_STRLEN; 314 } 315 316 #else 317 318 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 319 { 320 } 321 322 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 323 int write) 324 { 325 struct page *page; 326 327 page = bprm->page[pos / PAGE_SIZE]; 328 if (!page && write) { 329 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 330 if (!page) 331 return NULL; 332 bprm->page[pos / PAGE_SIZE] = page; 333 } 334 335 return page; 336 } 337 338 static void put_arg_page(struct page *page) 339 { 340 } 341 342 static void free_arg_page(struct linux_binprm *bprm, int i) 343 { 344 if (bprm->page[i]) { 345 __free_page(bprm->page[i]); 346 bprm->page[i] = NULL; 347 } 348 } 349 350 static void free_arg_pages(struct linux_binprm *bprm) 351 { 352 int i; 353 354 for (i = 0; i < MAX_ARG_PAGES; i++) 355 free_arg_page(bprm, i); 356 } 357 358 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 359 struct page *page) 360 { 361 } 362 363 static int __bprm_mm_init(struct linux_binprm *bprm) 364 { 365 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 366 return 0; 367 } 368 369 static bool valid_arg_len(struct linux_binprm *bprm, long len) 370 { 371 return len <= bprm->p; 372 } 373 374 #endif /* CONFIG_MMU */ 375 376 /* 377 * Create a new mm_struct and populate it with a temporary stack 378 * vm_area_struct. We don't have enough context at this point to set the stack 379 * flags, permissions, and offset, so we use temporary values. We'll update 380 * them later in setup_arg_pages(). 381 */ 382 static int bprm_mm_init(struct linux_binprm *bprm) 383 { 384 int err; 385 struct mm_struct *mm = NULL; 386 387 bprm->mm = mm = mm_alloc(); 388 err = -ENOMEM; 389 if (!mm) 390 goto err; 391 392 err = __bprm_mm_init(bprm); 393 if (err) 394 goto err; 395 396 return 0; 397 398 err: 399 if (mm) { 400 bprm->mm = NULL; 401 mmdrop(mm); 402 } 403 404 return err; 405 } 406 407 struct user_arg_ptr { 408 #ifdef CONFIG_COMPAT 409 bool is_compat; 410 #endif 411 union { 412 const char __user *const __user *native; 413 #ifdef CONFIG_COMPAT 414 const compat_uptr_t __user *compat; 415 #endif 416 } ptr; 417 }; 418 419 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 420 { 421 const char __user *native; 422 423 #ifdef CONFIG_COMPAT 424 if (unlikely(argv.is_compat)) { 425 compat_uptr_t compat; 426 427 if (get_user(compat, argv.ptr.compat + nr)) 428 return ERR_PTR(-EFAULT); 429 430 return compat_ptr(compat); 431 } 432 #endif 433 434 if (get_user(native, argv.ptr.native + nr)) 435 return ERR_PTR(-EFAULT); 436 437 return native; 438 } 439 440 /* 441 * count() counts the number of strings in array ARGV. 442 */ 443 static int count(struct user_arg_ptr argv, int max) 444 { 445 int i = 0; 446 447 if (argv.ptr.native != NULL) { 448 for (;;) { 449 const char __user *p = get_user_arg_ptr(argv, i); 450 451 if (!p) 452 break; 453 454 if (IS_ERR(p)) 455 return -EFAULT; 456 457 if (i >= max) 458 return -E2BIG; 459 ++i; 460 461 if (fatal_signal_pending(current)) 462 return -ERESTARTNOHAND; 463 cond_resched(); 464 } 465 } 466 return i; 467 } 468 469 /* 470 * 'copy_strings()' copies argument/environment strings from the old 471 * processes's memory to the new process's stack. The call to get_user_pages() 472 * ensures the destination page is created and not swapped out. 473 */ 474 static int copy_strings(int argc, struct user_arg_ptr argv, 475 struct linux_binprm *bprm) 476 { 477 struct page *kmapped_page = NULL; 478 char *kaddr = NULL; 479 unsigned long kpos = 0; 480 int ret; 481 482 while (argc-- > 0) { 483 const char __user *str; 484 int len; 485 unsigned long pos; 486 487 ret = -EFAULT; 488 str = get_user_arg_ptr(argv, argc); 489 if (IS_ERR(str)) 490 goto out; 491 492 len = strnlen_user(str, MAX_ARG_STRLEN); 493 if (!len) 494 goto out; 495 496 ret = -E2BIG; 497 if (!valid_arg_len(bprm, len)) 498 goto out; 499 500 /* We're going to work our way backwords. */ 501 pos = bprm->p; 502 str += len; 503 bprm->p -= len; 504 505 while (len > 0) { 506 int offset, bytes_to_copy; 507 508 if (fatal_signal_pending(current)) { 509 ret = -ERESTARTNOHAND; 510 goto out; 511 } 512 cond_resched(); 513 514 offset = pos % PAGE_SIZE; 515 if (offset == 0) 516 offset = PAGE_SIZE; 517 518 bytes_to_copy = offset; 519 if (bytes_to_copy > len) 520 bytes_to_copy = len; 521 522 offset -= bytes_to_copy; 523 pos -= bytes_to_copy; 524 str -= bytes_to_copy; 525 len -= bytes_to_copy; 526 527 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 528 struct page *page; 529 530 page = get_arg_page(bprm, pos, 1); 531 if (!page) { 532 ret = -E2BIG; 533 goto out; 534 } 535 536 if (kmapped_page) { 537 flush_kernel_dcache_page(kmapped_page); 538 kunmap(kmapped_page); 539 put_arg_page(kmapped_page); 540 } 541 kmapped_page = page; 542 kaddr = kmap(kmapped_page); 543 kpos = pos & PAGE_MASK; 544 flush_arg_page(bprm, kpos, kmapped_page); 545 } 546 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 547 ret = -EFAULT; 548 goto out; 549 } 550 } 551 } 552 ret = 0; 553 out: 554 if (kmapped_page) { 555 flush_kernel_dcache_page(kmapped_page); 556 kunmap(kmapped_page); 557 put_arg_page(kmapped_page); 558 } 559 return ret; 560 } 561 562 /* 563 * Like copy_strings, but get argv and its values from kernel memory. 564 */ 565 int copy_strings_kernel(int argc, const char *const *__argv, 566 struct linux_binprm *bprm) 567 { 568 int r; 569 mm_segment_t oldfs = get_fs(); 570 struct user_arg_ptr argv = { 571 .ptr.native = (const char __user *const __user *)__argv, 572 }; 573 574 set_fs(KERNEL_DS); 575 r = copy_strings(argc, argv, bprm); 576 set_fs(oldfs); 577 578 return r; 579 } 580 EXPORT_SYMBOL(copy_strings_kernel); 581 582 #ifdef CONFIG_MMU 583 584 /* 585 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 586 * the binfmt code determines where the new stack should reside, we shift it to 587 * its final location. The process proceeds as follows: 588 * 589 * 1) Use shift to calculate the new vma endpoints. 590 * 2) Extend vma to cover both the old and new ranges. This ensures the 591 * arguments passed to subsequent functions are consistent. 592 * 3) Move vma's page tables to the new range. 593 * 4) Free up any cleared pgd range. 594 * 5) Shrink the vma to cover only the new range. 595 */ 596 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 597 { 598 struct mm_struct *mm = vma->vm_mm; 599 unsigned long old_start = vma->vm_start; 600 unsigned long old_end = vma->vm_end; 601 unsigned long length = old_end - old_start; 602 unsigned long new_start = old_start - shift; 603 unsigned long new_end = old_end - shift; 604 struct mmu_gather tlb; 605 606 BUG_ON(new_start > new_end); 607 608 /* 609 * ensure there are no vmas between where we want to go 610 * and where we are 611 */ 612 if (vma != find_vma(mm, new_start)) 613 return -EFAULT; 614 615 /* 616 * cover the whole range: [new_start, old_end) 617 */ 618 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 619 return -ENOMEM; 620 621 /* 622 * move the page tables downwards, on failure we rely on 623 * process cleanup to remove whatever mess we made. 624 */ 625 if (length != move_page_tables(vma, old_start, 626 vma, new_start, length, false)) 627 return -ENOMEM; 628 629 lru_add_drain(); 630 tlb_gather_mmu(&tlb, mm, old_start, old_end); 631 if (new_end > old_start) { 632 /* 633 * when the old and new regions overlap clear from new_end. 634 */ 635 free_pgd_range(&tlb, new_end, old_end, new_end, 636 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 637 } else { 638 /* 639 * otherwise, clean from old_start; this is done to not touch 640 * the address space in [new_end, old_start) some architectures 641 * have constraints on va-space that make this illegal (IA64) - 642 * for the others its just a little faster. 643 */ 644 free_pgd_range(&tlb, old_start, old_end, new_end, 645 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 646 } 647 tlb_finish_mmu(&tlb, old_start, old_end); 648 649 /* 650 * Shrink the vma to just the new range. Always succeeds. 651 */ 652 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 653 654 return 0; 655 } 656 657 /* 658 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 659 * the stack is optionally relocated, and some extra space is added. 660 */ 661 int setup_arg_pages(struct linux_binprm *bprm, 662 unsigned long stack_top, 663 int executable_stack) 664 { 665 unsigned long ret; 666 unsigned long stack_shift; 667 struct mm_struct *mm = current->mm; 668 struct vm_area_struct *vma = bprm->vma; 669 struct vm_area_struct *prev = NULL; 670 unsigned long vm_flags; 671 unsigned long stack_base; 672 unsigned long stack_size; 673 unsigned long stack_expand; 674 unsigned long rlim_stack; 675 676 #ifdef CONFIG_STACK_GROWSUP 677 /* Limit stack size */ 678 stack_base = rlimit_max(RLIMIT_STACK); 679 if (stack_base > STACK_SIZE_MAX) 680 stack_base = STACK_SIZE_MAX; 681 682 /* Add space for stack randomization. */ 683 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 684 685 /* Make sure we didn't let the argument array grow too large. */ 686 if (vma->vm_end - vma->vm_start > stack_base) 687 return -ENOMEM; 688 689 stack_base = PAGE_ALIGN(stack_top - stack_base); 690 691 stack_shift = vma->vm_start - stack_base; 692 mm->arg_start = bprm->p - stack_shift; 693 bprm->p = vma->vm_end - stack_shift; 694 #else 695 stack_top = arch_align_stack(stack_top); 696 stack_top = PAGE_ALIGN(stack_top); 697 698 if (unlikely(stack_top < mmap_min_addr) || 699 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 700 return -ENOMEM; 701 702 stack_shift = vma->vm_end - stack_top; 703 704 bprm->p -= stack_shift; 705 mm->arg_start = bprm->p; 706 #endif 707 708 if (bprm->loader) 709 bprm->loader -= stack_shift; 710 bprm->exec -= stack_shift; 711 712 if (down_write_killable(&mm->mmap_sem)) 713 return -EINTR; 714 715 vm_flags = VM_STACK_FLAGS; 716 717 /* 718 * Adjust stack execute permissions; explicitly enable for 719 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 720 * (arch default) otherwise. 721 */ 722 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 723 vm_flags |= VM_EXEC; 724 else if (executable_stack == EXSTACK_DISABLE_X) 725 vm_flags &= ~VM_EXEC; 726 vm_flags |= mm->def_flags; 727 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 728 729 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 730 vm_flags); 731 if (ret) 732 goto out_unlock; 733 BUG_ON(prev != vma); 734 735 /* Move stack pages down in memory. */ 736 if (stack_shift) { 737 ret = shift_arg_pages(vma, stack_shift); 738 if (ret) 739 goto out_unlock; 740 } 741 742 /* mprotect_fixup is overkill to remove the temporary stack flags */ 743 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 744 745 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 746 stack_size = vma->vm_end - vma->vm_start; 747 /* 748 * Align this down to a page boundary as expand_stack 749 * will align it up. 750 */ 751 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 752 #ifdef CONFIG_STACK_GROWSUP 753 if (stack_size + stack_expand > rlim_stack) 754 stack_base = vma->vm_start + rlim_stack; 755 else 756 stack_base = vma->vm_end + stack_expand; 757 #else 758 if (stack_size + stack_expand > rlim_stack) 759 stack_base = vma->vm_end - rlim_stack; 760 else 761 stack_base = vma->vm_start - stack_expand; 762 #endif 763 current->mm->start_stack = bprm->p; 764 ret = expand_stack(vma, stack_base); 765 if (ret) 766 ret = -EFAULT; 767 768 out_unlock: 769 up_write(&mm->mmap_sem); 770 return ret; 771 } 772 EXPORT_SYMBOL(setup_arg_pages); 773 774 #else 775 776 /* 777 * Transfer the program arguments and environment from the holding pages 778 * onto the stack. The provided stack pointer is adjusted accordingly. 779 */ 780 int transfer_args_to_stack(struct linux_binprm *bprm, 781 unsigned long *sp_location) 782 { 783 unsigned long index, stop, sp; 784 int ret = 0; 785 786 stop = bprm->p >> PAGE_SHIFT; 787 sp = *sp_location; 788 789 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 790 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 791 char *src = kmap(bprm->page[index]) + offset; 792 sp -= PAGE_SIZE - offset; 793 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 794 ret = -EFAULT; 795 kunmap(bprm->page[index]); 796 if (ret) 797 goto out; 798 } 799 800 *sp_location = sp; 801 802 out: 803 return ret; 804 } 805 EXPORT_SYMBOL(transfer_args_to_stack); 806 807 #endif /* CONFIG_MMU */ 808 809 static struct file *do_open_execat(int fd, struct filename *name, int flags) 810 { 811 struct file *file; 812 int err; 813 struct open_flags open_exec_flags = { 814 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 815 .acc_mode = MAY_EXEC, 816 .intent = LOOKUP_OPEN, 817 .lookup_flags = LOOKUP_FOLLOW, 818 }; 819 820 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 821 return ERR_PTR(-EINVAL); 822 if (flags & AT_SYMLINK_NOFOLLOW) 823 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 824 if (flags & AT_EMPTY_PATH) 825 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 826 827 file = do_filp_open(fd, name, &open_exec_flags); 828 if (IS_ERR(file)) 829 goto out; 830 831 err = -EACCES; 832 if (!S_ISREG(file_inode(file)->i_mode)) 833 goto exit; 834 835 if (path_noexec(&file->f_path)) 836 goto exit; 837 838 err = deny_write_access(file); 839 if (err) 840 goto exit; 841 842 if (name->name[0] != '\0') 843 fsnotify_open(file); 844 845 out: 846 return file; 847 848 exit: 849 fput(file); 850 return ERR_PTR(err); 851 } 852 853 struct file *open_exec(const char *name) 854 { 855 struct filename *filename = getname_kernel(name); 856 struct file *f = ERR_CAST(filename); 857 858 if (!IS_ERR(filename)) { 859 f = do_open_execat(AT_FDCWD, filename, 0); 860 putname(filename); 861 } 862 return f; 863 } 864 EXPORT_SYMBOL(open_exec); 865 866 int kernel_read(struct file *file, loff_t offset, 867 char *addr, unsigned long count) 868 { 869 mm_segment_t old_fs; 870 loff_t pos = offset; 871 int result; 872 873 old_fs = get_fs(); 874 set_fs(get_ds()); 875 /* The cast to a user pointer is valid due to the set_fs() */ 876 result = vfs_read(file, (void __user *)addr, count, &pos); 877 set_fs(old_fs); 878 return result; 879 } 880 881 EXPORT_SYMBOL(kernel_read); 882 883 int kernel_read_file(struct file *file, void **buf, loff_t *size, 884 loff_t max_size, enum kernel_read_file_id id) 885 { 886 loff_t i_size, pos; 887 ssize_t bytes = 0; 888 int ret; 889 890 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) 891 return -EINVAL; 892 893 ret = security_kernel_read_file(file, id); 894 if (ret) 895 return ret; 896 897 ret = deny_write_access(file); 898 if (ret) 899 return ret; 900 901 i_size = i_size_read(file_inode(file)); 902 if (max_size > 0 && i_size > max_size) { 903 ret = -EFBIG; 904 goto out; 905 } 906 if (i_size <= 0) { 907 ret = -EINVAL; 908 goto out; 909 } 910 911 if (id != READING_FIRMWARE_PREALLOC_BUFFER) 912 *buf = vmalloc(i_size); 913 if (!*buf) { 914 ret = -ENOMEM; 915 goto out; 916 } 917 918 pos = 0; 919 while (pos < i_size) { 920 bytes = kernel_read(file, pos, (char *)(*buf) + pos, 921 i_size - pos); 922 if (bytes < 0) { 923 ret = bytes; 924 goto out; 925 } 926 927 if (bytes == 0) 928 break; 929 pos += bytes; 930 } 931 932 if (pos != i_size) { 933 ret = -EIO; 934 goto out_free; 935 } 936 937 ret = security_kernel_post_read_file(file, *buf, i_size, id); 938 if (!ret) 939 *size = pos; 940 941 out_free: 942 if (ret < 0) { 943 if (id != READING_FIRMWARE_PREALLOC_BUFFER) { 944 vfree(*buf); 945 *buf = NULL; 946 } 947 } 948 949 out: 950 allow_write_access(file); 951 return ret; 952 } 953 EXPORT_SYMBOL_GPL(kernel_read_file); 954 955 int kernel_read_file_from_path(char *path, void **buf, loff_t *size, 956 loff_t max_size, enum kernel_read_file_id id) 957 { 958 struct file *file; 959 int ret; 960 961 if (!path || !*path) 962 return -EINVAL; 963 964 file = filp_open(path, O_RDONLY, 0); 965 if (IS_ERR(file)) 966 return PTR_ERR(file); 967 968 ret = kernel_read_file(file, buf, size, max_size, id); 969 fput(file); 970 return ret; 971 } 972 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); 973 974 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, 975 enum kernel_read_file_id id) 976 { 977 struct fd f = fdget(fd); 978 int ret = -EBADF; 979 980 if (!f.file) 981 goto out; 982 983 ret = kernel_read_file(f.file, buf, size, max_size, id); 984 out: 985 fdput(f); 986 return ret; 987 } 988 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); 989 990 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 991 { 992 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 993 if (res > 0) 994 flush_icache_range(addr, addr + len); 995 return res; 996 } 997 EXPORT_SYMBOL(read_code); 998 999 static int exec_mmap(struct mm_struct *mm) 1000 { 1001 struct task_struct *tsk; 1002 struct mm_struct *old_mm, *active_mm; 1003 1004 /* Notify parent that we're no longer interested in the old VM */ 1005 tsk = current; 1006 old_mm = current->mm; 1007 mm_release(tsk, old_mm); 1008 1009 if (old_mm) { 1010 sync_mm_rss(old_mm); 1011 /* 1012 * Make sure that if there is a core dump in progress 1013 * for the old mm, we get out and die instead of going 1014 * through with the exec. We must hold mmap_sem around 1015 * checking core_state and changing tsk->mm. 1016 */ 1017 down_read(&old_mm->mmap_sem); 1018 if (unlikely(old_mm->core_state)) { 1019 up_read(&old_mm->mmap_sem); 1020 return -EINTR; 1021 } 1022 } 1023 task_lock(tsk); 1024 active_mm = tsk->active_mm; 1025 tsk->mm = mm; 1026 tsk->active_mm = mm; 1027 activate_mm(active_mm, mm); 1028 tsk->mm->vmacache_seqnum = 0; 1029 vmacache_flush(tsk); 1030 task_unlock(tsk); 1031 if (old_mm) { 1032 up_read(&old_mm->mmap_sem); 1033 BUG_ON(active_mm != old_mm); 1034 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1035 mm_update_next_owner(old_mm); 1036 mmput(old_mm); 1037 return 0; 1038 } 1039 mmdrop(active_mm); 1040 return 0; 1041 } 1042 1043 /* 1044 * This function makes sure the current process has its own signal table, 1045 * so that flush_signal_handlers can later reset the handlers without 1046 * disturbing other processes. (Other processes might share the signal 1047 * table via the CLONE_SIGHAND option to clone().) 1048 */ 1049 static int de_thread(struct task_struct *tsk) 1050 { 1051 struct signal_struct *sig = tsk->signal; 1052 struct sighand_struct *oldsighand = tsk->sighand; 1053 spinlock_t *lock = &oldsighand->siglock; 1054 1055 if (thread_group_empty(tsk)) 1056 goto no_thread_group; 1057 1058 /* 1059 * Kill all other threads in the thread group. 1060 */ 1061 spin_lock_irq(lock); 1062 if (signal_group_exit(sig)) { 1063 /* 1064 * Another group action in progress, just 1065 * return so that the signal is processed. 1066 */ 1067 spin_unlock_irq(lock); 1068 return -EAGAIN; 1069 } 1070 1071 sig->group_exit_task = tsk; 1072 sig->notify_count = zap_other_threads(tsk); 1073 if (!thread_group_leader(tsk)) 1074 sig->notify_count--; 1075 1076 while (sig->notify_count) { 1077 __set_current_state(TASK_KILLABLE); 1078 spin_unlock_irq(lock); 1079 schedule(); 1080 if (unlikely(__fatal_signal_pending(tsk))) 1081 goto killed; 1082 spin_lock_irq(lock); 1083 } 1084 spin_unlock_irq(lock); 1085 1086 /* 1087 * At this point all other threads have exited, all we have to 1088 * do is to wait for the thread group leader to become inactive, 1089 * and to assume its PID: 1090 */ 1091 if (!thread_group_leader(tsk)) { 1092 struct task_struct *leader = tsk->group_leader; 1093 1094 for (;;) { 1095 cgroup_threadgroup_change_begin(tsk); 1096 write_lock_irq(&tasklist_lock); 1097 /* 1098 * Do this under tasklist_lock to ensure that 1099 * exit_notify() can't miss ->group_exit_task 1100 */ 1101 sig->notify_count = -1; 1102 if (likely(leader->exit_state)) 1103 break; 1104 __set_current_state(TASK_KILLABLE); 1105 write_unlock_irq(&tasklist_lock); 1106 cgroup_threadgroup_change_end(tsk); 1107 schedule(); 1108 if (unlikely(__fatal_signal_pending(tsk))) 1109 goto killed; 1110 } 1111 1112 /* 1113 * The only record we have of the real-time age of a 1114 * process, regardless of execs it's done, is start_time. 1115 * All the past CPU time is accumulated in signal_struct 1116 * from sister threads now dead. But in this non-leader 1117 * exec, nothing survives from the original leader thread, 1118 * whose birth marks the true age of this process now. 1119 * When we take on its identity by switching to its PID, we 1120 * also take its birthdate (always earlier than our own). 1121 */ 1122 tsk->start_time = leader->start_time; 1123 tsk->real_start_time = leader->real_start_time; 1124 1125 BUG_ON(!same_thread_group(leader, tsk)); 1126 BUG_ON(has_group_leader_pid(tsk)); 1127 /* 1128 * An exec() starts a new thread group with the 1129 * TGID of the previous thread group. Rehash the 1130 * two threads with a switched PID, and release 1131 * the former thread group leader: 1132 */ 1133 1134 /* Become a process group leader with the old leader's pid. 1135 * The old leader becomes a thread of the this thread group. 1136 * Note: The old leader also uses this pid until release_task 1137 * is called. Odd but simple and correct. 1138 */ 1139 tsk->pid = leader->pid; 1140 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 1141 transfer_pid(leader, tsk, PIDTYPE_PGID); 1142 transfer_pid(leader, tsk, PIDTYPE_SID); 1143 1144 list_replace_rcu(&leader->tasks, &tsk->tasks); 1145 list_replace_init(&leader->sibling, &tsk->sibling); 1146 1147 tsk->group_leader = tsk; 1148 leader->group_leader = tsk; 1149 1150 tsk->exit_signal = SIGCHLD; 1151 leader->exit_signal = -1; 1152 1153 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1154 leader->exit_state = EXIT_DEAD; 1155 1156 /* 1157 * We are going to release_task()->ptrace_unlink() silently, 1158 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1159 * the tracer wont't block again waiting for this thread. 1160 */ 1161 if (unlikely(leader->ptrace)) 1162 __wake_up_parent(leader, leader->parent); 1163 write_unlock_irq(&tasklist_lock); 1164 cgroup_threadgroup_change_end(tsk); 1165 1166 release_task(leader); 1167 } 1168 1169 sig->group_exit_task = NULL; 1170 sig->notify_count = 0; 1171 1172 no_thread_group: 1173 /* we have changed execution domain */ 1174 tsk->exit_signal = SIGCHLD; 1175 1176 #ifdef CONFIG_POSIX_TIMERS 1177 exit_itimers(sig); 1178 flush_itimer_signals(); 1179 #endif 1180 1181 if (atomic_read(&oldsighand->count) != 1) { 1182 struct sighand_struct *newsighand; 1183 /* 1184 * This ->sighand is shared with the CLONE_SIGHAND 1185 * but not CLONE_THREAD task, switch to the new one. 1186 */ 1187 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1188 if (!newsighand) 1189 return -ENOMEM; 1190 1191 atomic_set(&newsighand->count, 1); 1192 memcpy(newsighand->action, oldsighand->action, 1193 sizeof(newsighand->action)); 1194 1195 write_lock_irq(&tasklist_lock); 1196 spin_lock(&oldsighand->siglock); 1197 rcu_assign_pointer(tsk->sighand, newsighand); 1198 spin_unlock(&oldsighand->siglock); 1199 write_unlock_irq(&tasklist_lock); 1200 1201 __cleanup_sighand(oldsighand); 1202 } 1203 1204 BUG_ON(!thread_group_leader(tsk)); 1205 return 0; 1206 1207 killed: 1208 /* protects against exit_notify() and __exit_signal() */ 1209 read_lock(&tasklist_lock); 1210 sig->group_exit_task = NULL; 1211 sig->notify_count = 0; 1212 read_unlock(&tasklist_lock); 1213 return -EAGAIN; 1214 } 1215 1216 char *get_task_comm(char *buf, struct task_struct *tsk) 1217 { 1218 /* buf must be at least sizeof(tsk->comm) in size */ 1219 task_lock(tsk); 1220 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1221 task_unlock(tsk); 1222 return buf; 1223 } 1224 EXPORT_SYMBOL_GPL(get_task_comm); 1225 1226 /* 1227 * These functions flushes out all traces of the currently running executable 1228 * so that a new one can be started 1229 */ 1230 1231 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1232 { 1233 task_lock(tsk); 1234 trace_task_rename(tsk, buf); 1235 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1236 task_unlock(tsk); 1237 perf_event_comm(tsk, exec); 1238 } 1239 1240 int flush_old_exec(struct linux_binprm * bprm) 1241 { 1242 int retval; 1243 1244 /* 1245 * Make sure we have a private signal table and that 1246 * we are unassociated from the previous thread group. 1247 */ 1248 retval = de_thread(current); 1249 if (retval) 1250 goto out; 1251 1252 /* 1253 * Must be called _before_ exec_mmap() as bprm->mm is 1254 * not visibile until then. This also enables the update 1255 * to be lockless. 1256 */ 1257 set_mm_exe_file(bprm->mm, bprm->file); 1258 1259 /* 1260 * Release all of the old mmap stuff 1261 */ 1262 acct_arg_size(bprm, 0); 1263 retval = exec_mmap(bprm->mm); 1264 if (retval) 1265 goto out; 1266 1267 bprm->mm = NULL; /* We're using it now */ 1268 1269 set_fs(USER_DS); 1270 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1271 PF_NOFREEZE | PF_NO_SETAFFINITY); 1272 flush_thread(); 1273 current->personality &= ~bprm->per_clear; 1274 1275 /* 1276 * We have to apply CLOEXEC before we change whether the process is 1277 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1278 * trying to access the should-be-closed file descriptors of a process 1279 * undergoing exec(2). 1280 */ 1281 do_close_on_exec(current->files); 1282 return 0; 1283 1284 out: 1285 return retval; 1286 } 1287 EXPORT_SYMBOL(flush_old_exec); 1288 1289 void would_dump(struct linux_binprm *bprm, struct file *file) 1290 { 1291 struct inode *inode = file_inode(file); 1292 if (inode_permission(inode, MAY_READ) < 0) { 1293 struct user_namespace *old, *user_ns; 1294 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1295 1296 /* Ensure mm->user_ns contains the executable */ 1297 user_ns = old = bprm->mm->user_ns; 1298 while ((user_ns != &init_user_ns) && 1299 !privileged_wrt_inode_uidgid(user_ns, inode)) 1300 user_ns = user_ns->parent; 1301 1302 if (old != user_ns) { 1303 bprm->mm->user_ns = get_user_ns(user_ns); 1304 put_user_ns(old); 1305 } 1306 } 1307 } 1308 EXPORT_SYMBOL(would_dump); 1309 1310 void setup_new_exec(struct linux_binprm * bprm) 1311 { 1312 arch_pick_mmap_layout(current->mm); 1313 1314 /* This is the point of no return */ 1315 current->sas_ss_sp = current->sas_ss_size = 0; 1316 1317 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid())) 1318 set_dumpable(current->mm, SUID_DUMP_USER); 1319 else 1320 set_dumpable(current->mm, suid_dumpable); 1321 1322 perf_event_exec(); 1323 __set_task_comm(current, kbasename(bprm->filename), true); 1324 1325 /* Set the new mm task size. We have to do that late because it may 1326 * depend on TIF_32BIT which is only updated in flush_thread() on 1327 * some architectures like powerpc 1328 */ 1329 current->mm->task_size = TASK_SIZE; 1330 1331 /* install the new credentials */ 1332 if (!uid_eq(bprm->cred->uid, current_euid()) || 1333 !gid_eq(bprm->cred->gid, current_egid())) { 1334 current->pdeath_signal = 0; 1335 } else { 1336 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) 1337 set_dumpable(current->mm, suid_dumpable); 1338 } 1339 1340 /* An exec changes our domain. We are no longer part of the thread 1341 group */ 1342 current->self_exec_id++; 1343 flush_signal_handlers(current, 0); 1344 } 1345 EXPORT_SYMBOL(setup_new_exec); 1346 1347 /* 1348 * Prepare credentials and lock ->cred_guard_mutex. 1349 * install_exec_creds() commits the new creds and drops the lock. 1350 * Or, if exec fails before, free_bprm() should release ->cred and 1351 * and unlock. 1352 */ 1353 int prepare_bprm_creds(struct linux_binprm *bprm) 1354 { 1355 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1356 return -ERESTARTNOINTR; 1357 1358 bprm->cred = prepare_exec_creds(); 1359 if (likely(bprm->cred)) 1360 return 0; 1361 1362 mutex_unlock(¤t->signal->cred_guard_mutex); 1363 return -ENOMEM; 1364 } 1365 1366 static void free_bprm(struct linux_binprm *bprm) 1367 { 1368 free_arg_pages(bprm); 1369 if (bprm->cred) { 1370 mutex_unlock(¤t->signal->cred_guard_mutex); 1371 abort_creds(bprm->cred); 1372 } 1373 if (bprm->file) { 1374 allow_write_access(bprm->file); 1375 fput(bprm->file); 1376 } 1377 /* If a binfmt changed the interp, free it. */ 1378 if (bprm->interp != bprm->filename) 1379 kfree(bprm->interp); 1380 kfree(bprm); 1381 } 1382 1383 int bprm_change_interp(char *interp, struct linux_binprm *bprm) 1384 { 1385 /* If a binfmt changed the interp, free it first. */ 1386 if (bprm->interp != bprm->filename) 1387 kfree(bprm->interp); 1388 bprm->interp = kstrdup(interp, GFP_KERNEL); 1389 if (!bprm->interp) 1390 return -ENOMEM; 1391 return 0; 1392 } 1393 EXPORT_SYMBOL(bprm_change_interp); 1394 1395 /* 1396 * install the new credentials for this executable 1397 */ 1398 void install_exec_creds(struct linux_binprm *bprm) 1399 { 1400 security_bprm_committing_creds(bprm); 1401 1402 commit_creds(bprm->cred); 1403 bprm->cred = NULL; 1404 1405 /* 1406 * Disable monitoring for regular users 1407 * when executing setuid binaries. Must 1408 * wait until new credentials are committed 1409 * by commit_creds() above 1410 */ 1411 if (get_dumpable(current->mm) != SUID_DUMP_USER) 1412 perf_event_exit_task(current); 1413 /* 1414 * cred_guard_mutex must be held at least to this point to prevent 1415 * ptrace_attach() from altering our determination of the task's 1416 * credentials; any time after this it may be unlocked. 1417 */ 1418 security_bprm_committed_creds(bprm); 1419 mutex_unlock(¤t->signal->cred_guard_mutex); 1420 } 1421 EXPORT_SYMBOL(install_exec_creds); 1422 1423 /* 1424 * determine how safe it is to execute the proposed program 1425 * - the caller must hold ->cred_guard_mutex to protect against 1426 * PTRACE_ATTACH or seccomp thread-sync 1427 */ 1428 static void check_unsafe_exec(struct linux_binprm *bprm) 1429 { 1430 struct task_struct *p = current, *t; 1431 unsigned n_fs; 1432 1433 if (p->ptrace) 1434 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1435 1436 /* 1437 * This isn't strictly necessary, but it makes it harder for LSMs to 1438 * mess up. 1439 */ 1440 if (task_no_new_privs(current)) 1441 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1442 1443 t = p; 1444 n_fs = 1; 1445 spin_lock(&p->fs->lock); 1446 rcu_read_lock(); 1447 while_each_thread(p, t) { 1448 if (t->fs == p->fs) 1449 n_fs++; 1450 } 1451 rcu_read_unlock(); 1452 1453 if (p->fs->users > n_fs) 1454 bprm->unsafe |= LSM_UNSAFE_SHARE; 1455 else 1456 p->fs->in_exec = 1; 1457 spin_unlock(&p->fs->lock); 1458 } 1459 1460 static void bprm_fill_uid(struct linux_binprm *bprm) 1461 { 1462 struct inode *inode; 1463 unsigned int mode; 1464 kuid_t uid; 1465 kgid_t gid; 1466 1467 /* 1468 * Since this can be called multiple times (via prepare_binprm), 1469 * we must clear any previous work done when setting set[ug]id 1470 * bits from any earlier bprm->file uses (for example when run 1471 * first for a setuid script then again for its interpreter). 1472 */ 1473 bprm->cred->euid = current_euid(); 1474 bprm->cred->egid = current_egid(); 1475 1476 if (!mnt_may_suid(bprm->file->f_path.mnt)) 1477 return; 1478 1479 if (task_no_new_privs(current)) 1480 return; 1481 1482 inode = bprm->file->f_path.dentry->d_inode; 1483 mode = READ_ONCE(inode->i_mode); 1484 if (!(mode & (S_ISUID|S_ISGID))) 1485 return; 1486 1487 /* Be careful if suid/sgid is set */ 1488 inode_lock(inode); 1489 1490 /* reload atomically mode/uid/gid now that lock held */ 1491 mode = inode->i_mode; 1492 uid = inode->i_uid; 1493 gid = inode->i_gid; 1494 inode_unlock(inode); 1495 1496 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1497 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1498 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1499 return; 1500 1501 if (mode & S_ISUID) { 1502 bprm->per_clear |= PER_CLEAR_ON_SETID; 1503 bprm->cred->euid = uid; 1504 } 1505 1506 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1507 bprm->per_clear |= PER_CLEAR_ON_SETID; 1508 bprm->cred->egid = gid; 1509 } 1510 } 1511 1512 /* 1513 * Fill the binprm structure from the inode. 1514 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1515 * 1516 * This may be called multiple times for binary chains (scripts for example). 1517 */ 1518 int prepare_binprm(struct linux_binprm *bprm) 1519 { 1520 int retval; 1521 1522 bprm_fill_uid(bprm); 1523 1524 /* fill in binprm security blob */ 1525 retval = security_bprm_set_creds(bprm); 1526 if (retval) 1527 return retval; 1528 bprm->cred_prepared = 1; 1529 1530 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1531 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1532 } 1533 1534 EXPORT_SYMBOL(prepare_binprm); 1535 1536 /* 1537 * Arguments are '\0' separated strings found at the location bprm->p 1538 * points to; chop off the first by relocating brpm->p to right after 1539 * the first '\0' encountered. 1540 */ 1541 int remove_arg_zero(struct linux_binprm *bprm) 1542 { 1543 int ret = 0; 1544 unsigned long offset; 1545 char *kaddr; 1546 struct page *page; 1547 1548 if (!bprm->argc) 1549 return 0; 1550 1551 do { 1552 offset = bprm->p & ~PAGE_MASK; 1553 page = get_arg_page(bprm, bprm->p, 0); 1554 if (!page) { 1555 ret = -EFAULT; 1556 goto out; 1557 } 1558 kaddr = kmap_atomic(page); 1559 1560 for (; offset < PAGE_SIZE && kaddr[offset]; 1561 offset++, bprm->p++) 1562 ; 1563 1564 kunmap_atomic(kaddr); 1565 put_arg_page(page); 1566 } while (offset == PAGE_SIZE); 1567 1568 bprm->p++; 1569 bprm->argc--; 1570 ret = 0; 1571 1572 out: 1573 return ret; 1574 } 1575 EXPORT_SYMBOL(remove_arg_zero); 1576 1577 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1578 /* 1579 * cycle the list of binary formats handler, until one recognizes the image 1580 */ 1581 int search_binary_handler(struct linux_binprm *bprm) 1582 { 1583 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1584 struct linux_binfmt *fmt; 1585 int retval; 1586 1587 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1588 if (bprm->recursion_depth > 5) 1589 return -ELOOP; 1590 1591 retval = security_bprm_check(bprm); 1592 if (retval) 1593 return retval; 1594 1595 retval = -ENOENT; 1596 retry: 1597 read_lock(&binfmt_lock); 1598 list_for_each_entry(fmt, &formats, lh) { 1599 if (!try_module_get(fmt->module)) 1600 continue; 1601 read_unlock(&binfmt_lock); 1602 bprm->recursion_depth++; 1603 retval = fmt->load_binary(bprm); 1604 read_lock(&binfmt_lock); 1605 put_binfmt(fmt); 1606 bprm->recursion_depth--; 1607 if (retval < 0 && !bprm->mm) { 1608 /* we got to flush_old_exec() and failed after it */ 1609 read_unlock(&binfmt_lock); 1610 force_sigsegv(SIGSEGV, current); 1611 return retval; 1612 } 1613 if (retval != -ENOEXEC || !bprm->file) { 1614 read_unlock(&binfmt_lock); 1615 return retval; 1616 } 1617 } 1618 read_unlock(&binfmt_lock); 1619 1620 if (need_retry) { 1621 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1622 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1623 return retval; 1624 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1625 return retval; 1626 need_retry = false; 1627 goto retry; 1628 } 1629 1630 return retval; 1631 } 1632 EXPORT_SYMBOL(search_binary_handler); 1633 1634 static int exec_binprm(struct linux_binprm *bprm) 1635 { 1636 pid_t old_pid, old_vpid; 1637 int ret; 1638 1639 /* Need to fetch pid before load_binary changes it */ 1640 old_pid = current->pid; 1641 rcu_read_lock(); 1642 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1643 rcu_read_unlock(); 1644 1645 ret = search_binary_handler(bprm); 1646 if (ret >= 0) { 1647 audit_bprm(bprm); 1648 trace_sched_process_exec(current, old_pid, bprm); 1649 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1650 proc_exec_connector(current); 1651 } 1652 1653 return ret; 1654 } 1655 1656 /* 1657 * sys_execve() executes a new program. 1658 */ 1659 static int do_execveat_common(int fd, struct filename *filename, 1660 struct user_arg_ptr argv, 1661 struct user_arg_ptr envp, 1662 int flags) 1663 { 1664 char *pathbuf = NULL; 1665 struct linux_binprm *bprm; 1666 struct file *file; 1667 struct files_struct *displaced; 1668 int retval; 1669 1670 if (IS_ERR(filename)) 1671 return PTR_ERR(filename); 1672 1673 /* 1674 * We move the actual failure in case of RLIMIT_NPROC excess from 1675 * set*uid() to execve() because too many poorly written programs 1676 * don't check setuid() return code. Here we additionally recheck 1677 * whether NPROC limit is still exceeded. 1678 */ 1679 if ((current->flags & PF_NPROC_EXCEEDED) && 1680 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1681 retval = -EAGAIN; 1682 goto out_ret; 1683 } 1684 1685 /* We're below the limit (still or again), so we don't want to make 1686 * further execve() calls fail. */ 1687 current->flags &= ~PF_NPROC_EXCEEDED; 1688 1689 retval = unshare_files(&displaced); 1690 if (retval) 1691 goto out_ret; 1692 1693 retval = -ENOMEM; 1694 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1695 if (!bprm) 1696 goto out_files; 1697 1698 retval = prepare_bprm_creds(bprm); 1699 if (retval) 1700 goto out_free; 1701 1702 check_unsafe_exec(bprm); 1703 current->in_execve = 1; 1704 1705 file = do_open_execat(fd, filename, flags); 1706 retval = PTR_ERR(file); 1707 if (IS_ERR(file)) 1708 goto out_unmark; 1709 1710 sched_exec(); 1711 1712 bprm->file = file; 1713 if (fd == AT_FDCWD || filename->name[0] == '/') { 1714 bprm->filename = filename->name; 1715 } else { 1716 if (filename->name[0] == '\0') 1717 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd); 1718 else 1719 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s", 1720 fd, filename->name); 1721 if (!pathbuf) { 1722 retval = -ENOMEM; 1723 goto out_unmark; 1724 } 1725 /* 1726 * Record that a name derived from an O_CLOEXEC fd will be 1727 * inaccessible after exec. Relies on having exclusive access to 1728 * current->files (due to unshare_files above). 1729 */ 1730 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) 1731 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1732 bprm->filename = pathbuf; 1733 } 1734 bprm->interp = bprm->filename; 1735 1736 retval = bprm_mm_init(bprm); 1737 if (retval) 1738 goto out_unmark; 1739 1740 bprm->argc = count(argv, MAX_ARG_STRINGS); 1741 if ((retval = bprm->argc) < 0) 1742 goto out; 1743 1744 bprm->envc = count(envp, MAX_ARG_STRINGS); 1745 if ((retval = bprm->envc) < 0) 1746 goto out; 1747 1748 retval = prepare_binprm(bprm); 1749 if (retval < 0) 1750 goto out; 1751 1752 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1753 if (retval < 0) 1754 goto out; 1755 1756 bprm->exec = bprm->p; 1757 retval = copy_strings(bprm->envc, envp, bprm); 1758 if (retval < 0) 1759 goto out; 1760 1761 retval = copy_strings(bprm->argc, argv, bprm); 1762 if (retval < 0) 1763 goto out; 1764 1765 would_dump(bprm, bprm->file); 1766 1767 retval = exec_binprm(bprm); 1768 if (retval < 0) 1769 goto out; 1770 1771 /* execve succeeded */ 1772 current->fs->in_exec = 0; 1773 current->in_execve = 0; 1774 acct_update_integrals(current); 1775 task_numa_free(current); 1776 free_bprm(bprm); 1777 kfree(pathbuf); 1778 putname(filename); 1779 if (displaced) 1780 put_files_struct(displaced); 1781 return retval; 1782 1783 out: 1784 if (bprm->mm) { 1785 acct_arg_size(bprm, 0); 1786 mmput(bprm->mm); 1787 } 1788 1789 out_unmark: 1790 current->fs->in_exec = 0; 1791 current->in_execve = 0; 1792 1793 out_free: 1794 free_bprm(bprm); 1795 kfree(pathbuf); 1796 1797 out_files: 1798 if (displaced) 1799 reset_files_struct(displaced); 1800 out_ret: 1801 putname(filename); 1802 return retval; 1803 } 1804 1805 int do_execve(struct filename *filename, 1806 const char __user *const __user *__argv, 1807 const char __user *const __user *__envp) 1808 { 1809 struct user_arg_ptr argv = { .ptr.native = __argv }; 1810 struct user_arg_ptr envp = { .ptr.native = __envp }; 1811 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1812 } 1813 1814 int do_execveat(int fd, struct filename *filename, 1815 const char __user *const __user *__argv, 1816 const char __user *const __user *__envp, 1817 int flags) 1818 { 1819 struct user_arg_ptr argv = { .ptr.native = __argv }; 1820 struct user_arg_ptr envp = { .ptr.native = __envp }; 1821 1822 return do_execveat_common(fd, filename, argv, envp, flags); 1823 } 1824 1825 #ifdef CONFIG_COMPAT 1826 static int compat_do_execve(struct filename *filename, 1827 const compat_uptr_t __user *__argv, 1828 const compat_uptr_t __user *__envp) 1829 { 1830 struct user_arg_ptr argv = { 1831 .is_compat = true, 1832 .ptr.compat = __argv, 1833 }; 1834 struct user_arg_ptr envp = { 1835 .is_compat = true, 1836 .ptr.compat = __envp, 1837 }; 1838 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 1839 } 1840 1841 static int compat_do_execveat(int fd, struct filename *filename, 1842 const compat_uptr_t __user *__argv, 1843 const compat_uptr_t __user *__envp, 1844 int flags) 1845 { 1846 struct user_arg_ptr argv = { 1847 .is_compat = true, 1848 .ptr.compat = __argv, 1849 }; 1850 struct user_arg_ptr envp = { 1851 .is_compat = true, 1852 .ptr.compat = __envp, 1853 }; 1854 return do_execveat_common(fd, filename, argv, envp, flags); 1855 } 1856 #endif 1857 1858 void set_binfmt(struct linux_binfmt *new) 1859 { 1860 struct mm_struct *mm = current->mm; 1861 1862 if (mm->binfmt) 1863 module_put(mm->binfmt->module); 1864 1865 mm->binfmt = new; 1866 if (new) 1867 __module_get(new->module); 1868 } 1869 EXPORT_SYMBOL(set_binfmt); 1870 1871 /* 1872 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 1873 */ 1874 void set_dumpable(struct mm_struct *mm, int value) 1875 { 1876 unsigned long old, new; 1877 1878 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 1879 return; 1880 1881 do { 1882 old = ACCESS_ONCE(mm->flags); 1883 new = (old & ~MMF_DUMPABLE_MASK) | value; 1884 } while (cmpxchg(&mm->flags, old, new) != old); 1885 } 1886 1887 SYSCALL_DEFINE3(execve, 1888 const char __user *, filename, 1889 const char __user *const __user *, argv, 1890 const char __user *const __user *, envp) 1891 { 1892 return do_execve(getname(filename), argv, envp); 1893 } 1894 1895 SYSCALL_DEFINE5(execveat, 1896 int, fd, const char __user *, filename, 1897 const char __user *const __user *, argv, 1898 const char __user *const __user *, envp, 1899 int, flags) 1900 { 1901 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1902 1903 return do_execveat(fd, 1904 getname_flags(filename, lookup_flags, NULL), 1905 argv, envp, flags); 1906 } 1907 1908 #ifdef CONFIG_COMPAT 1909 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 1910 const compat_uptr_t __user *, argv, 1911 const compat_uptr_t __user *, envp) 1912 { 1913 return compat_do_execve(getname(filename), argv, envp); 1914 } 1915 1916 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 1917 const char __user *, filename, 1918 const compat_uptr_t __user *, argv, 1919 const compat_uptr_t __user *, envp, 1920 int, flags) 1921 { 1922 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 1923 1924 return compat_do_execveat(fd, 1925 getname_flags(filename, lookup_flags, NULL), 1926 argv, envp, flags); 1927 } 1928 #endif 1929