1 /* 2 * linux/fs/exec.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * #!-checking implemented by tytso. 9 */ 10 /* 11 * Demand-loading implemented 01.12.91 - no need to read anything but 12 * the header into memory. The inode of the executable is put into 13 * "current->executable", and page faults do the actual loading. Clean. 14 * 15 * Once more I can proudly say that linux stood up to being changed: it 16 * was less than 2 hours work to get demand-loading completely implemented. 17 * 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 19 * current->executable is only used by the procfs. This allows a dispatch 20 * table to check for several different types of binary formats. We keep 21 * trying until we recognize the file or we run out of supported binary 22 * formats. 23 */ 24 25 #include <linux/slab.h> 26 #include <linux/file.h> 27 #include <linux/fdtable.h> 28 #include <linux/mm.h> 29 #include <linux/stat.h> 30 #include <linux/fcntl.h> 31 #include <linux/swap.h> 32 #include <linux/string.h> 33 #include <linux/init.h> 34 #include <linux/pagemap.h> 35 #include <linux/perf_event.h> 36 #include <linux/highmem.h> 37 #include <linux/spinlock.h> 38 #include <linux/key.h> 39 #include <linux/personality.h> 40 #include <linux/binfmts.h> 41 #include <linux/utsname.h> 42 #include <linux/pid_namespace.h> 43 #include <linux/module.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/security.h> 47 #include <linux/syscalls.h> 48 #include <linux/tsacct_kern.h> 49 #include <linux/cn_proc.h> 50 #include <linux/audit.h> 51 #include <linux/tracehook.h> 52 #include <linux/kmod.h> 53 #include <linux/fsnotify.h> 54 #include <linux/fs_struct.h> 55 #include <linux/pipe_fs_i.h> 56 #include <linux/oom.h> 57 #include <linux/compat.h> 58 59 #include <asm/uaccess.h> 60 #include <asm/mmu_context.h> 61 #include <asm/tlb.h> 62 63 #include <trace/events/task.h> 64 #include "internal.h" 65 #include "coredump.h" 66 67 #include <trace/events/sched.h> 68 69 int suid_dumpable = 0; 70 71 static LIST_HEAD(formats); 72 static DEFINE_RWLOCK(binfmt_lock); 73 74 void __register_binfmt(struct linux_binfmt * fmt, int insert) 75 { 76 BUG_ON(!fmt); 77 write_lock(&binfmt_lock); 78 insert ? list_add(&fmt->lh, &formats) : 79 list_add_tail(&fmt->lh, &formats); 80 write_unlock(&binfmt_lock); 81 } 82 83 EXPORT_SYMBOL(__register_binfmt); 84 85 void unregister_binfmt(struct linux_binfmt * fmt) 86 { 87 write_lock(&binfmt_lock); 88 list_del(&fmt->lh); 89 write_unlock(&binfmt_lock); 90 } 91 92 EXPORT_SYMBOL(unregister_binfmt); 93 94 static inline void put_binfmt(struct linux_binfmt * fmt) 95 { 96 module_put(fmt->module); 97 } 98 99 /* 100 * Note that a shared library must be both readable and executable due to 101 * security reasons. 102 * 103 * Also note that we take the address to load from from the file itself. 104 */ 105 SYSCALL_DEFINE1(uselib, const char __user *, library) 106 { 107 struct file *file; 108 struct filename *tmp = getname(library); 109 int error = PTR_ERR(tmp); 110 static const struct open_flags uselib_flags = { 111 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 112 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN, 113 .intent = LOOKUP_OPEN 114 }; 115 116 if (IS_ERR(tmp)) 117 goto out; 118 119 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW); 120 putname(tmp); 121 error = PTR_ERR(file); 122 if (IS_ERR(file)) 123 goto out; 124 125 error = -EINVAL; 126 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 127 goto exit; 128 129 error = -EACCES; 130 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 131 goto exit; 132 133 fsnotify_open(file); 134 135 error = -ENOEXEC; 136 if(file->f_op) { 137 struct linux_binfmt * fmt; 138 139 read_lock(&binfmt_lock); 140 list_for_each_entry(fmt, &formats, lh) { 141 if (!fmt->load_shlib) 142 continue; 143 if (!try_module_get(fmt->module)) 144 continue; 145 read_unlock(&binfmt_lock); 146 error = fmt->load_shlib(file); 147 read_lock(&binfmt_lock); 148 put_binfmt(fmt); 149 if (error != -ENOEXEC) 150 break; 151 } 152 read_unlock(&binfmt_lock); 153 } 154 exit: 155 fput(file); 156 out: 157 return error; 158 } 159 160 #ifdef CONFIG_MMU 161 /* 162 * The nascent bprm->mm is not visible until exec_mmap() but it can 163 * use a lot of memory, account these pages in current->mm temporary 164 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 165 * change the counter back via acct_arg_size(0). 166 */ 167 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 168 { 169 struct mm_struct *mm = current->mm; 170 long diff = (long)(pages - bprm->vma_pages); 171 172 if (!mm || !diff) 173 return; 174 175 bprm->vma_pages = pages; 176 add_mm_counter(mm, MM_ANONPAGES, diff); 177 } 178 179 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 180 int write) 181 { 182 struct page *page; 183 int ret; 184 185 #ifdef CONFIG_STACK_GROWSUP 186 if (write) { 187 ret = expand_downwards(bprm->vma, pos); 188 if (ret < 0) 189 return NULL; 190 } 191 #endif 192 ret = get_user_pages(current, bprm->mm, pos, 193 1, write, 1, &page, NULL); 194 if (ret <= 0) 195 return NULL; 196 197 if (write) { 198 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; 199 struct rlimit *rlim; 200 201 acct_arg_size(bprm, size / PAGE_SIZE); 202 203 /* 204 * We've historically supported up to 32 pages (ARG_MAX) 205 * of argument strings even with small stacks 206 */ 207 if (size <= ARG_MAX) 208 return page; 209 210 /* 211 * Limit to 1/4-th the stack size for the argv+env strings. 212 * This ensures that: 213 * - the remaining binfmt code will not run out of stack space, 214 * - the program will have a reasonable amount of stack left 215 * to work from. 216 */ 217 rlim = current->signal->rlim; 218 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { 219 put_page(page); 220 return NULL; 221 } 222 } 223 224 return page; 225 } 226 227 static void put_arg_page(struct page *page) 228 { 229 put_page(page); 230 } 231 232 static void free_arg_page(struct linux_binprm *bprm, int i) 233 { 234 } 235 236 static void free_arg_pages(struct linux_binprm *bprm) 237 { 238 } 239 240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 241 struct page *page) 242 { 243 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 244 } 245 246 static int __bprm_mm_init(struct linux_binprm *bprm) 247 { 248 int err; 249 struct vm_area_struct *vma = NULL; 250 struct mm_struct *mm = bprm->mm; 251 252 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 253 if (!vma) 254 return -ENOMEM; 255 256 down_write(&mm->mmap_sem); 257 vma->vm_mm = mm; 258 259 /* 260 * Place the stack at the largest stack address the architecture 261 * supports. Later, we'll move this to an appropriate place. We don't 262 * use STACK_TOP because that can depend on attributes which aren't 263 * configured yet. 264 */ 265 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 266 vma->vm_end = STACK_TOP_MAX; 267 vma->vm_start = vma->vm_end - PAGE_SIZE; 268 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 269 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 270 INIT_LIST_HEAD(&vma->anon_vma_chain); 271 272 err = insert_vm_struct(mm, vma); 273 if (err) 274 goto err; 275 276 mm->stack_vm = mm->total_vm = 1; 277 up_write(&mm->mmap_sem); 278 bprm->p = vma->vm_end - sizeof(void *); 279 return 0; 280 err: 281 up_write(&mm->mmap_sem); 282 bprm->vma = NULL; 283 kmem_cache_free(vm_area_cachep, vma); 284 return err; 285 } 286 287 static bool valid_arg_len(struct linux_binprm *bprm, long len) 288 { 289 return len <= MAX_ARG_STRLEN; 290 } 291 292 #else 293 294 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 295 { 296 } 297 298 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 299 int write) 300 { 301 struct page *page; 302 303 page = bprm->page[pos / PAGE_SIZE]; 304 if (!page && write) { 305 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 306 if (!page) 307 return NULL; 308 bprm->page[pos / PAGE_SIZE] = page; 309 } 310 311 return page; 312 } 313 314 static void put_arg_page(struct page *page) 315 { 316 } 317 318 static void free_arg_page(struct linux_binprm *bprm, int i) 319 { 320 if (bprm->page[i]) { 321 __free_page(bprm->page[i]); 322 bprm->page[i] = NULL; 323 } 324 } 325 326 static void free_arg_pages(struct linux_binprm *bprm) 327 { 328 int i; 329 330 for (i = 0; i < MAX_ARG_PAGES; i++) 331 free_arg_page(bprm, i); 332 } 333 334 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 335 struct page *page) 336 { 337 } 338 339 static int __bprm_mm_init(struct linux_binprm *bprm) 340 { 341 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 342 return 0; 343 } 344 345 static bool valid_arg_len(struct linux_binprm *bprm, long len) 346 { 347 return len <= bprm->p; 348 } 349 350 #endif /* CONFIG_MMU */ 351 352 /* 353 * Create a new mm_struct and populate it with a temporary stack 354 * vm_area_struct. We don't have enough context at this point to set the stack 355 * flags, permissions, and offset, so we use temporary values. We'll update 356 * them later in setup_arg_pages(). 357 */ 358 int bprm_mm_init(struct linux_binprm *bprm) 359 { 360 int err; 361 struct mm_struct *mm = NULL; 362 363 bprm->mm = mm = mm_alloc(); 364 err = -ENOMEM; 365 if (!mm) 366 goto err; 367 368 err = init_new_context(current, mm); 369 if (err) 370 goto err; 371 372 err = __bprm_mm_init(bprm); 373 if (err) 374 goto err; 375 376 return 0; 377 378 err: 379 if (mm) { 380 bprm->mm = NULL; 381 mmdrop(mm); 382 } 383 384 return err; 385 } 386 387 struct user_arg_ptr { 388 #ifdef CONFIG_COMPAT 389 bool is_compat; 390 #endif 391 union { 392 const char __user *const __user *native; 393 #ifdef CONFIG_COMPAT 394 const compat_uptr_t __user *compat; 395 #endif 396 } ptr; 397 }; 398 399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 400 { 401 const char __user *native; 402 403 #ifdef CONFIG_COMPAT 404 if (unlikely(argv.is_compat)) { 405 compat_uptr_t compat; 406 407 if (get_user(compat, argv.ptr.compat + nr)) 408 return ERR_PTR(-EFAULT); 409 410 return compat_ptr(compat); 411 } 412 #endif 413 414 if (get_user(native, argv.ptr.native + nr)) 415 return ERR_PTR(-EFAULT); 416 417 return native; 418 } 419 420 /* 421 * count() counts the number of strings in array ARGV. 422 */ 423 static int count(struct user_arg_ptr argv, int max) 424 { 425 int i = 0; 426 427 if (argv.ptr.native != NULL) { 428 for (;;) { 429 const char __user *p = get_user_arg_ptr(argv, i); 430 431 if (!p) 432 break; 433 434 if (IS_ERR(p)) 435 return -EFAULT; 436 437 if (i++ >= max) 438 return -E2BIG; 439 440 if (fatal_signal_pending(current)) 441 return -ERESTARTNOHAND; 442 cond_resched(); 443 } 444 } 445 return i; 446 } 447 448 /* 449 * 'copy_strings()' copies argument/environment strings from the old 450 * processes's memory to the new process's stack. The call to get_user_pages() 451 * ensures the destination page is created and not swapped out. 452 */ 453 static int copy_strings(int argc, struct user_arg_ptr argv, 454 struct linux_binprm *bprm) 455 { 456 struct page *kmapped_page = NULL; 457 char *kaddr = NULL; 458 unsigned long kpos = 0; 459 int ret; 460 461 while (argc-- > 0) { 462 const char __user *str; 463 int len; 464 unsigned long pos; 465 466 ret = -EFAULT; 467 str = get_user_arg_ptr(argv, argc); 468 if (IS_ERR(str)) 469 goto out; 470 471 len = strnlen_user(str, MAX_ARG_STRLEN); 472 if (!len) 473 goto out; 474 475 ret = -E2BIG; 476 if (!valid_arg_len(bprm, len)) 477 goto out; 478 479 /* We're going to work our way backwords. */ 480 pos = bprm->p; 481 str += len; 482 bprm->p -= len; 483 484 while (len > 0) { 485 int offset, bytes_to_copy; 486 487 if (fatal_signal_pending(current)) { 488 ret = -ERESTARTNOHAND; 489 goto out; 490 } 491 cond_resched(); 492 493 offset = pos % PAGE_SIZE; 494 if (offset == 0) 495 offset = PAGE_SIZE; 496 497 bytes_to_copy = offset; 498 if (bytes_to_copy > len) 499 bytes_to_copy = len; 500 501 offset -= bytes_to_copy; 502 pos -= bytes_to_copy; 503 str -= bytes_to_copy; 504 len -= bytes_to_copy; 505 506 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 507 struct page *page; 508 509 page = get_arg_page(bprm, pos, 1); 510 if (!page) { 511 ret = -E2BIG; 512 goto out; 513 } 514 515 if (kmapped_page) { 516 flush_kernel_dcache_page(kmapped_page); 517 kunmap(kmapped_page); 518 put_arg_page(kmapped_page); 519 } 520 kmapped_page = page; 521 kaddr = kmap(kmapped_page); 522 kpos = pos & PAGE_MASK; 523 flush_arg_page(bprm, kpos, kmapped_page); 524 } 525 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 526 ret = -EFAULT; 527 goto out; 528 } 529 } 530 } 531 ret = 0; 532 out: 533 if (kmapped_page) { 534 flush_kernel_dcache_page(kmapped_page); 535 kunmap(kmapped_page); 536 put_arg_page(kmapped_page); 537 } 538 return ret; 539 } 540 541 /* 542 * Like copy_strings, but get argv and its values from kernel memory. 543 */ 544 int copy_strings_kernel(int argc, const char *const *__argv, 545 struct linux_binprm *bprm) 546 { 547 int r; 548 mm_segment_t oldfs = get_fs(); 549 struct user_arg_ptr argv = { 550 .ptr.native = (const char __user *const __user *)__argv, 551 }; 552 553 set_fs(KERNEL_DS); 554 r = copy_strings(argc, argv, bprm); 555 set_fs(oldfs); 556 557 return r; 558 } 559 EXPORT_SYMBOL(copy_strings_kernel); 560 561 #ifdef CONFIG_MMU 562 563 /* 564 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 565 * the binfmt code determines where the new stack should reside, we shift it to 566 * its final location. The process proceeds as follows: 567 * 568 * 1) Use shift to calculate the new vma endpoints. 569 * 2) Extend vma to cover both the old and new ranges. This ensures the 570 * arguments passed to subsequent functions are consistent. 571 * 3) Move vma's page tables to the new range. 572 * 4) Free up any cleared pgd range. 573 * 5) Shrink the vma to cover only the new range. 574 */ 575 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 576 { 577 struct mm_struct *mm = vma->vm_mm; 578 unsigned long old_start = vma->vm_start; 579 unsigned long old_end = vma->vm_end; 580 unsigned long length = old_end - old_start; 581 unsigned long new_start = old_start - shift; 582 unsigned long new_end = old_end - shift; 583 struct mmu_gather tlb; 584 585 BUG_ON(new_start > new_end); 586 587 /* 588 * ensure there are no vmas between where we want to go 589 * and where we are 590 */ 591 if (vma != find_vma(mm, new_start)) 592 return -EFAULT; 593 594 /* 595 * cover the whole range: [new_start, old_end) 596 */ 597 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 598 return -ENOMEM; 599 600 /* 601 * move the page tables downwards, on failure we rely on 602 * process cleanup to remove whatever mess we made. 603 */ 604 if (length != move_page_tables(vma, old_start, 605 vma, new_start, length, false)) 606 return -ENOMEM; 607 608 lru_add_drain(); 609 tlb_gather_mmu(&tlb, mm, 0); 610 if (new_end > old_start) { 611 /* 612 * when the old and new regions overlap clear from new_end. 613 */ 614 free_pgd_range(&tlb, new_end, old_end, new_end, 615 vma->vm_next ? vma->vm_next->vm_start : 0); 616 } else { 617 /* 618 * otherwise, clean from old_start; this is done to not touch 619 * the address space in [new_end, old_start) some architectures 620 * have constraints on va-space that make this illegal (IA64) - 621 * for the others its just a little faster. 622 */ 623 free_pgd_range(&tlb, old_start, old_end, new_end, 624 vma->vm_next ? vma->vm_next->vm_start : 0); 625 } 626 tlb_finish_mmu(&tlb, new_end, old_end); 627 628 /* 629 * Shrink the vma to just the new range. Always succeeds. 630 */ 631 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 632 633 return 0; 634 } 635 636 /* 637 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 638 * the stack is optionally relocated, and some extra space is added. 639 */ 640 int setup_arg_pages(struct linux_binprm *bprm, 641 unsigned long stack_top, 642 int executable_stack) 643 { 644 unsigned long ret; 645 unsigned long stack_shift; 646 struct mm_struct *mm = current->mm; 647 struct vm_area_struct *vma = bprm->vma; 648 struct vm_area_struct *prev = NULL; 649 unsigned long vm_flags; 650 unsigned long stack_base; 651 unsigned long stack_size; 652 unsigned long stack_expand; 653 unsigned long rlim_stack; 654 655 #ifdef CONFIG_STACK_GROWSUP 656 /* Limit stack size to 1GB */ 657 stack_base = rlimit_max(RLIMIT_STACK); 658 if (stack_base > (1 << 30)) 659 stack_base = 1 << 30; 660 661 /* Make sure we didn't let the argument array grow too large. */ 662 if (vma->vm_end - vma->vm_start > stack_base) 663 return -ENOMEM; 664 665 stack_base = PAGE_ALIGN(stack_top - stack_base); 666 667 stack_shift = vma->vm_start - stack_base; 668 mm->arg_start = bprm->p - stack_shift; 669 bprm->p = vma->vm_end - stack_shift; 670 #else 671 stack_top = arch_align_stack(stack_top); 672 stack_top = PAGE_ALIGN(stack_top); 673 674 if (unlikely(stack_top < mmap_min_addr) || 675 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 676 return -ENOMEM; 677 678 stack_shift = vma->vm_end - stack_top; 679 680 bprm->p -= stack_shift; 681 mm->arg_start = bprm->p; 682 #endif 683 684 if (bprm->loader) 685 bprm->loader -= stack_shift; 686 bprm->exec -= stack_shift; 687 688 down_write(&mm->mmap_sem); 689 vm_flags = VM_STACK_FLAGS; 690 691 /* 692 * Adjust stack execute permissions; explicitly enable for 693 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 694 * (arch default) otherwise. 695 */ 696 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 697 vm_flags |= VM_EXEC; 698 else if (executable_stack == EXSTACK_DISABLE_X) 699 vm_flags &= ~VM_EXEC; 700 vm_flags |= mm->def_flags; 701 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 702 703 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 704 vm_flags); 705 if (ret) 706 goto out_unlock; 707 BUG_ON(prev != vma); 708 709 /* Move stack pages down in memory. */ 710 if (stack_shift) { 711 ret = shift_arg_pages(vma, stack_shift); 712 if (ret) 713 goto out_unlock; 714 } 715 716 /* mprotect_fixup is overkill to remove the temporary stack flags */ 717 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 718 719 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 720 stack_size = vma->vm_end - vma->vm_start; 721 /* 722 * Align this down to a page boundary as expand_stack 723 * will align it up. 724 */ 725 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 726 #ifdef CONFIG_STACK_GROWSUP 727 if (stack_size + stack_expand > rlim_stack) 728 stack_base = vma->vm_start + rlim_stack; 729 else 730 stack_base = vma->vm_end + stack_expand; 731 #else 732 if (stack_size + stack_expand > rlim_stack) 733 stack_base = vma->vm_end - rlim_stack; 734 else 735 stack_base = vma->vm_start - stack_expand; 736 #endif 737 current->mm->start_stack = bprm->p; 738 ret = expand_stack(vma, stack_base); 739 if (ret) 740 ret = -EFAULT; 741 742 out_unlock: 743 up_write(&mm->mmap_sem); 744 return ret; 745 } 746 EXPORT_SYMBOL(setup_arg_pages); 747 748 #endif /* CONFIG_MMU */ 749 750 struct file *open_exec(const char *name) 751 { 752 struct file *file; 753 int err; 754 struct filename tmp = { .name = name }; 755 static const struct open_flags open_exec_flags = { 756 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 757 .acc_mode = MAY_EXEC | MAY_OPEN, 758 .intent = LOOKUP_OPEN 759 }; 760 761 file = do_filp_open(AT_FDCWD, &tmp, &open_exec_flags, LOOKUP_FOLLOW); 762 if (IS_ERR(file)) 763 goto out; 764 765 err = -EACCES; 766 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) 767 goto exit; 768 769 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) 770 goto exit; 771 772 fsnotify_open(file); 773 774 err = deny_write_access(file); 775 if (err) 776 goto exit; 777 778 out: 779 return file; 780 781 exit: 782 fput(file); 783 return ERR_PTR(err); 784 } 785 EXPORT_SYMBOL(open_exec); 786 787 int kernel_read(struct file *file, loff_t offset, 788 char *addr, unsigned long count) 789 { 790 mm_segment_t old_fs; 791 loff_t pos = offset; 792 int result; 793 794 old_fs = get_fs(); 795 set_fs(get_ds()); 796 /* The cast to a user pointer is valid due to the set_fs() */ 797 result = vfs_read(file, (void __user *)addr, count, &pos); 798 set_fs(old_fs); 799 return result; 800 } 801 802 EXPORT_SYMBOL(kernel_read); 803 804 static int exec_mmap(struct mm_struct *mm) 805 { 806 struct task_struct *tsk; 807 struct mm_struct * old_mm, *active_mm; 808 809 /* Notify parent that we're no longer interested in the old VM */ 810 tsk = current; 811 old_mm = current->mm; 812 mm_release(tsk, old_mm); 813 814 if (old_mm) { 815 sync_mm_rss(old_mm); 816 /* 817 * Make sure that if there is a core dump in progress 818 * for the old mm, we get out and die instead of going 819 * through with the exec. We must hold mmap_sem around 820 * checking core_state and changing tsk->mm. 821 */ 822 down_read(&old_mm->mmap_sem); 823 if (unlikely(old_mm->core_state)) { 824 up_read(&old_mm->mmap_sem); 825 return -EINTR; 826 } 827 } 828 task_lock(tsk); 829 active_mm = tsk->active_mm; 830 tsk->mm = mm; 831 tsk->active_mm = mm; 832 activate_mm(active_mm, mm); 833 task_unlock(tsk); 834 arch_pick_mmap_layout(mm); 835 if (old_mm) { 836 up_read(&old_mm->mmap_sem); 837 BUG_ON(active_mm != old_mm); 838 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 839 mm_update_next_owner(old_mm); 840 mmput(old_mm); 841 return 0; 842 } 843 mmdrop(active_mm); 844 return 0; 845 } 846 847 /* 848 * This function makes sure the current process has its own signal table, 849 * so that flush_signal_handlers can later reset the handlers without 850 * disturbing other processes. (Other processes might share the signal 851 * table via the CLONE_SIGHAND option to clone().) 852 */ 853 static int de_thread(struct task_struct *tsk) 854 { 855 struct signal_struct *sig = tsk->signal; 856 struct sighand_struct *oldsighand = tsk->sighand; 857 spinlock_t *lock = &oldsighand->siglock; 858 859 if (thread_group_empty(tsk)) 860 goto no_thread_group; 861 862 /* 863 * Kill all other threads in the thread group. 864 */ 865 spin_lock_irq(lock); 866 if (signal_group_exit(sig)) { 867 /* 868 * Another group action in progress, just 869 * return so that the signal is processed. 870 */ 871 spin_unlock_irq(lock); 872 return -EAGAIN; 873 } 874 875 sig->group_exit_task = tsk; 876 sig->notify_count = zap_other_threads(tsk); 877 if (!thread_group_leader(tsk)) 878 sig->notify_count--; 879 880 while (sig->notify_count) { 881 __set_current_state(TASK_KILLABLE); 882 spin_unlock_irq(lock); 883 schedule(); 884 if (unlikely(__fatal_signal_pending(tsk))) 885 goto killed; 886 spin_lock_irq(lock); 887 } 888 spin_unlock_irq(lock); 889 890 /* 891 * At this point all other threads have exited, all we have to 892 * do is to wait for the thread group leader to become inactive, 893 * and to assume its PID: 894 */ 895 if (!thread_group_leader(tsk)) { 896 struct task_struct *leader = tsk->group_leader; 897 898 sig->notify_count = -1; /* for exit_notify() */ 899 for (;;) { 900 write_lock_irq(&tasklist_lock); 901 if (likely(leader->exit_state)) 902 break; 903 __set_current_state(TASK_KILLABLE); 904 write_unlock_irq(&tasklist_lock); 905 schedule(); 906 if (unlikely(__fatal_signal_pending(tsk))) 907 goto killed; 908 } 909 910 /* 911 * The only record we have of the real-time age of a 912 * process, regardless of execs it's done, is start_time. 913 * All the past CPU time is accumulated in signal_struct 914 * from sister threads now dead. But in this non-leader 915 * exec, nothing survives from the original leader thread, 916 * whose birth marks the true age of this process now. 917 * When we take on its identity by switching to its PID, we 918 * also take its birthdate (always earlier than our own). 919 */ 920 tsk->start_time = leader->start_time; 921 922 BUG_ON(!same_thread_group(leader, tsk)); 923 BUG_ON(has_group_leader_pid(tsk)); 924 /* 925 * An exec() starts a new thread group with the 926 * TGID of the previous thread group. Rehash the 927 * two threads with a switched PID, and release 928 * the former thread group leader: 929 */ 930 931 /* Become a process group leader with the old leader's pid. 932 * The old leader becomes a thread of the this thread group. 933 * Note: The old leader also uses this pid until release_task 934 * is called. Odd but simple and correct. 935 */ 936 detach_pid(tsk, PIDTYPE_PID); 937 tsk->pid = leader->pid; 938 attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); 939 transfer_pid(leader, tsk, PIDTYPE_PGID); 940 transfer_pid(leader, tsk, PIDTYPE_SID); 941 942 list_replace_rcu(&leader->tasks, &tsk->tasks); 943 list_replace_init(&leader->sibling, &tsk->sibling); 944 945 tsk->group_leader = tsk; 946 leader->group_leader = tsk; 947 948 tsk->exit_signal = SIGCHLD; 949 leader->exit_signal = -1; 950 951 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 952 leader->exit_state = EXIT_DEAD; 953 954 /* 955 * We are going to release_task()->ptrace_unlink() silently, 956 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 957 * the tracer wont't block again waiting for this thread. 958 */ 959 if (unlikely(leader->ptrace)) 960 __wake_up_parent(leader, leader->parent); 961 write_unlock_irq(&tasklist_lock); 962 963 release_task(leader); 964 } 965 966 sig->group_exit_task = NULL; 967 sig->notify_count = 0; 968 969 no_thread_group: 970 /* we have changed execution domain */ 971 tsk->exit_signal = SIGCHLD; 972 973 exit_itimers(sig); 974 flush_itimer_signals(); 975 976 if (atomic_read(&oldsighand->count) != 1) { 977 struct sighand_struct *newsighand; 978 /* 979 * This ->sighand is shared with the CLONE_SIGHAND 980 * but not CLONE_THREAD task, switch to the new one. 981 */ 982 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 983 if (!newsighand) 984 return -ENOMEM; 985 986 atomic_set(&newsighand->count, 1); 987 memcpy(newsighand->action, oldsighand->action, 988 sizeof(newsighand->action)); 989 990 write_lock_irq(&tasklist_lock); 991 spin_lock(&oldsighand->siglock); 992 rcu_assign_pointer(tsk->sighand, newsighand); 993 spin_unlock(&oldsighand->siglock); 994 write_unlock_irq(&tasklist_lock); 995 996 __cleanup_sighand(oldsighand); 997 } 998 999 BUG_ON(!thread_group_leader(tsk)); 1000 return 0; 1001 1002 killed: 1003 /* protects against exit_notify() and __exit_signal() */ 1004 read_lock(&tasklist_lock); 1005 sig->group_exit_task = NULL; 1006 sig->notify_count = 0; 1007 read_unlock(&tasklist_lock); 1008 return -EAGAIN; 1009 } 1010 1011 char *get_task_comm(char *buf, struct task_struct *tsk) 1012 { 1013 /* buf must be at least sizeof(tsk->comm) in size */ 1014 task_lock(tsk); 1015 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1016 task_unlock(tsk); 1017 return buf; 1018 } 1019 EXPORT_SYMBOL_GPL(get_task_comm); 1020 1021 /* 1022 * These functions flushes out all traces of the currently running executable 1023 * so that a new one can be started 1024 */ 1025 1026 void set_task_comm(struct task_struct *tsk, char *buf) 1027 { 1028 task_lock(tsk); 1029 1030 trace_task_rename(tsk, buf); 1031 1032 /* 1033 * Threads may access current->comm without holding 1034 * the task lock, so write the string carefully. 1035 * Readers without a lock may see incomplete new 1036 * names but are safe from non-terminating string reads. 1037 */ 1038 memset(tsk->comm, 0, TASK_COMM_LEN); 1039 wmb(); 1040 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1041 task_unlock(tsk); 1042 perf_event_comm(tsk); 1043 } 1044 1045 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len) 1046 { 1047 int i, ch; 1048 1049 /* Copies the binary name from after last slash */ 1050 for (i = 0; (ch = *(fn++)) != '\0';) { 1051 if (ch == '/') 1052 i = 0; /* overwrite what we wrote */ 1053 else 1054 if (i < len - 1) 1055 tcomm[i++] = ch; 1056 } 1057 tcomm[i] = '\0'; 1058 } 1059 1060 int flush_old_exec(struct linux_binprm * bprm) 1061 { 1062 int retval; 1063 1064 /* 1065 * Make sure we have a private signal table and that 1066 * we are unassociated from the previous thread group. 1067 */ 1068 retval = de_thread(current); 1069 if (retval) 1070 goto out; 1071 1072 set_mm_exe_file(bprm->mm, bprm->file); 1073 1074 filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm)); 1075 /* 1076 * Release all of the old mmap stuff 1077 */ 1078 acct_arg_size(bprm, 0); 1079 retval = exec_mmap(bprm->mm); 1080 if (retval) 1081 goto out; 1082 1083 bprm->mm = NULL; /* We're using it now */ 1084 1085 set_fs(USER_DS); 1086 current->flags &= 1087 ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | PF_NOFREEZE); 1088 flush_thread(); 1089 current->personality &= ~bprm->per_clear; 1090 1091 return 0; 1092 1093 out: 1094 return retval; 1095 } 1096 EXPORT_SYMBOL(flush_old_exec); 1097 1098 void would_dump(struct linux_binprm *bprm, struct file *file) 1099 { 1100 if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0) 1101 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1102 } 1103 EXPORT_SYMBOL(would_dump); 1104 1105 void setup_new_exec(struct linux_binprm * bprm) 1106 { 1107 arch_pick_mmap_layout(current->mm); 1108 1109 /* This is the point of no return */ 1110 current->sas_ss_sp = current->sas_ss_size = 0; 1111 1112 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid())) 1113 set_dumpable(current->mm, SUID_DUMPABLE_ENABLED); 1114 else 1115 set_dumpable(current->mm, suid_dumpable); 1116 1117 set_task_comm(current, bprm->tcomm); 1118 1119 /* Set the new mm task size. We have to do that late because it may 1120 * depend on TIF_32BIT which is only updated in flush_thread() on 1121 * some architectures like powerpc 1122 */ 1123 current->mm->task_size = TASK_SIZE; 1124 1125 /* install the new credentials */ 1126 if (!uid_eq(bprm->cred->uid, current_euid()) || 1127 !gid_eq(bprm->cred->gid, current_egid())) { 1128 current->pdeath_signal = 0; 1129 } else { 1130 would_dump(bprm, bprm->file); 1131 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) 1132 set_dumpable(current->mm, suid_dumpable); 1133 } 1134 1135 /* 1136 * Flush performance counters when crossing a 1137 * security domain: 1138 */ 1139 if (!get_dumpable(current->mm)) 1140 perf_event_exit_task(current); 1141 1142 /* An exec changes our domain. We are no longer part of the thread 1143 group */ 1144 1145 current->self_exec_id++; 1146 1147 flush_signal_handlers(current, 0); 1148 do_close_on_exec(current->files); 1149 } 1150 EXPORT_SYMBOL(setup_new_exec); 1151 1152 /* 1153 * Prepare credentials and lock ->cred_guard_mutex. 1154 * install_exec_creds() commits the new creds and drops the lock. 1155 * Or, if exec fails before, free_bprm() should release ->cred and 1156 * and unlock. 1157 */ 1158 int prepare_bprm_creds(struct linux_binprm *bprm) 1159 { 1160 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1161 return -ERESTARTNOINTR; 1162 1163 bprm->cred = prepare_exec_creds(); 1164 if (likely(bprm->cred)) 1165 return 0; 1166 1167 mutex_unlock(¤t->signal->cred_guard_mutex); 1168 return -ENOMEM; 1169 } 1170 1171 void free_bprm(struct linux_binprm *bprm) 1172 { 1173 free_arg_pages(bprm); 1174 if (bprm->cred) { 1175 mutex_unlock(¤t->signal->cred_guard_mutex); 1176 abort_creds(bprm->cred); 1177 } 1178 kfree(bprm); 1179 } 1180 1181 /* 1182 * install the new credentials for this executable 1183 */ 1184 void install_exec_creds(struct linux_binprm *bprm) 1185 { 1186 security_bprm_committing_creds(bprm); 1187 1188 commit_creds(bprm->cred); 1189 bprm->cred = NULL; 1190 /* 1191 * cred_guard_mutex must be held at least to this point to prevent 1192 * ptrace_attach() from altering our determination of the task's 1193 * credentials; any time after this it may be unlocked. 1194 */ 1195 security_bprm_committed_creds(bprm); 1196 mutex_unlock(¤t->signal->cred_guard_mutex); 1197 } 1198 EXPORT_SYMBOL(install_exec_creds); 1199 1200 /* 1201 * determine how safe it is to execute the proposed program 1202 * - the caller must hold ->cred_guard_mutex to protect against 1203 * PTRACE_ATTACH 1204 */ 1205 static int check_unsafe_exec(struct linux_binprm *bprm) 1206 { 1207 struct task_struct *p = current, *t; 1208 unsigned n_fs; 1209 int res = 0; 1210 1211 if (p->ptrace) { 1212 if (p->ptrace & PT_PTRACE_CAP) 1213 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP; 1214 else 1215 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1216 } 1217 1218 /* 1219 * This isn't strictly necessary, but it makes it harder for LSMs to 1220 * mess up. 1221 */ 1222 if (current->no_new_privs) 1223 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1224 1225 n_fs = 1; 1226 spin_lock(&p->fs->lock); 1227 rcu_read_lock(); 1228 for (t = next_thread(p); t != p; t = next_thread(t)) { 1229 if (t->fs == p->fs) 1230 n_fs++; 1231 } 1232 rcu_read_unlock(); 1233 1234 if (p->fs->users > n_fs) { 1235 bprm->unsafe |= LSM_UNSAFE_SHARE; 1236 } else { 1237 res = -EAGAIN; 1238 if (!p->fs->in_exec) { 1239 p->fs->in_exec = 1; 1240 res = 1; 1241 } 1242 } 1243 spin_unlock(&p->fs->lock); 1244 1245 return res; 1246 } 1247 1248 /* 1249 * Fill the binprm structure from the inode. 1250 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1251 * 1252 * This may be called multiple times for binary chains (scripts for example). 1253 */ 1254 int prepare_binprm(struct linux_binprm *bprm) 1255 { 1256 umode_t mode; 1257 struct inode * inode = bprm->file->f_path.dentry->d_inode; 1258 int retval; 1259 1260 mode = inode->i_mode; 1261 if (bprm->file->f_op == NULL) 1262 return -EACCES; 1263 1264 /* clear any previous set[ug]id data from a previous binary */ 1265 bprm->cred->euid = current_euid(); 1266 bprm->cred->egid = current_egid(); 1267 1268 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) && 1269 !current->no_new_privs) { 1270 /* Set-uid? */ 1271 if (mode & S_ISUID) { 1272 if (!kuid_has_mapping(bprm->cred->user_ns, inode->i_uid)) 1273 return -EPERM; 1274 bprm->per_clear |= PER_CLEAR_ON_SETID; 1275 bprm->cred->euid = inode->i_uid; 1276 1277 } 1278 1279 /* Set-gid? */ 1280 /* 1281 * If setgid is set but no group execute bit then this 1282 * is a candidate for mandatory locking, not a setgid 1283 * executable. 1284 */ 1285 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1286 if (!kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) 1287 return -EPERM; 1288 bprm->per_clear |= PER_CLEAR_ON_SETID; 1289 bprm->cred->egid = inode->i_gid; 1290 } 1291 } 1292 1293 /* fill in binprm security blob */ 1294 retval = security_bprm_set_creds(bprm); 1295 if (retval) 1296 return retval; 1297 bprm->cred_prepared = 1; 1298 1299 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1300 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1301 } 1302 1303 EXPORT_SYMBOL(prepare_binprm); 1304 1305 /* 1306 * Arguments are '\0' separated strings found at the location bprm->p 1307 * points to; chop off the first by relocating brpm->p to right after 1308 * the first '\0' encountered. 1309 */ 1310 int remove_arg_zero(struct linux_binprm *bprm) 1311 { 1312 int ret = 0; 1313 unsigned long offset; 1314 char *kaddr; 1315 struct page *page; 1316 1317 if (!bprm->argc) 1318 return 0; 1319 1320 do { 1321 offset = bprm->p & ~PAGE_MASK; 1322 page = get_arg_page(bprm, bprm->p, 0); 1323 if (!page) { 1324 ret = -EFAULT; 1325 goto out; 1326 } 1327 kaddr = kmap_atomic(page); 1328 1329 for (; offset < PAGE_SIZE && kaddr[offset]; 1330 offset++, bprm->p++) 1331 ; 1332 1333 kunmap_atomic(kaddr); 1334 put_arg_page(page); 1335 1336 if (offset == PAGE_SIZE) 1337 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); 1338 } while (offset == PAGE_SIZE); 1339 1340 bprm->p++; 1341 bprm->argc--; 1342 ret = 0; 1343 1344 out: 1345 return ret; 1346 } 1347 EXPORT_SYMBOL(remove_arg_zero); 1348 1349 /* 1350 * cycle the list of binary formats handler, until one recognizes the image 1351 */ 1352 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) 1353 { 1354 unsigned int depth = bprm->recursion_depth; 1355 int try,retval; 1356 struct linux_binfmt *fmt; 1357 pid_t old_pid, old_vpid; 1358 1359 retval = security_bprm_check(bprm); 1360 if (retval) 1361 return retval; 1362 1363 retval = audit_bprm(bprm); 1364 if (retval) 1365 return retval; 1366 1367 /* Need to fetch pid before load_binary changes it */ 1368 old_pid = current->pid; 1369 rcu_read_lock(); 1370 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1371 rcu_read_unlock(); 1372 1373 retval = -ENOENT; 1374 for (try=0; try<2; try++) { 1375 read_lock(&binfmt_lock); 1376 list_for_each_entry(fmt, &formats, lh) { 1377 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; 1378 if (!fn) 1379 continue; 1380 if (!try_module_get(fmt->module)) 1381 continue; 1382 read_unlock(&binfmt_lock); 1383 retval = fn(bprm, regs); 1384 /* 1385 * Restore the depth counter to its starting value 1386 * in this call, so we don't have to rely on every 1387 * load_binary function to restore it on return. 1388 */ 1389 bprm->recursion_depth = depth; 1390 if (retval >= 0) { 1391 if (depth == 0) { 1392 trace_sched_process_exec(current, old_pid, bprm); 1393 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1394 } 1395 put_binfmt(fmt); 1396 allow_write_access(bprm->file); 1397 if (bprm->file) 1398 fput(bprm->file); 1399 bprm->file = NULL; 1400 current->did_exec = 1; 1401 proc_exec_connector(current); 1402 return retval; 1403 } 1404 read_lock(&binfmt_lock); 1405 put_binfmt(fmt); 1406 if (retval != -ENOEXEC || bprm->mm == NULL) 1407 break; 1408 if (!bprm->file) { 1409 read_unlock(&binfmt_lock); 1410 return retval; 1411 } 1412 } 1413 read_unlock(&binfmt_lock); 1414 #ifdef CONFIG_MODULES 1415 if (retval != -ENOEXEC || bprm->mm == NULL) { 1416 break; 1417 } else { 1418 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1419 if (printable(bprm->buf[0]) && 1420 printable(bprm->buf[1]) && 1421 printable(bprm->buf[2]) && 1422 printable(bprm->buf[3])) 1423 break; /* -ENOEXEC */ 1424 if (try) 1425 break; /* -ENOEXEC */ 1426 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); 1427 } 1428 #else 1429 break; 1430 #endif 1431 } 1432 return retval; 1433 } 1434 1435 EXPORT_SYMBOL(search_binary_handler); 1436 1437 /* 1438 * sys_execve() executes a new program. 1439 */ 1440 static int do_execve_common(const char *filename, 1441 struct user_arg_ptr argv, 1442 struct user_arg_ptr envp, 1443 struct pt_regs *regs) 1444 { 1445 struct linux_binprm *bprm; 1446 struct file *file; 1447 struct files_struct *displaced; 1448 bool clear_in_exec; 1449 int retval; 1450 const struct cred *cred = current_cred(); 1451 1452 /* 1453 * We move the actual failure in case of RLIMIT_NPROC excess from 1454 * set*uid() to execve() because too many poorly written programs 1455 * don't check setuid() return code. Here we additionally recheck 1456 * whether NPROC limit is still exceeded. 1457 */ 1458 if ((current->flags & PF_NPROC_EXCEEDED) && 1459 atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) { 1460 retval = -EAGAIN; 1461 goto out_ret; 1462 } 1463 1464 /* We're below the limit (still or again), so we don't want to make 1465 * further execve() calls fail. */ 1466 current->flags &= ~PF_NPROC_EXCEEDED; 1467 1468 retval = unshare_files(&displaced); 1469 if (retval) 1470 goto out_ret; 1471 1472 retval = -ENOMEM; 1473 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1474 if (!bprm) 1475 goto out_files; 1476 1477 retval = prepare_bprm_creds(bprm); 1478 if (retval) 1479 goto out_free; 1480 1481 retval = check_unsafe_exec(bprm); 1482 if (retval < 0) 1483 goto out_free; 1484 clear_in_exec = retval; 1485 current->in_execve = 1; 1486 1487 file = open_exec(filename); 1488 retval = PTR_ERR(file); 1489 if (IS_ERR(file)) 1490 goto out_unmark; 1491 1492 sched_exec(); 1493 1494 bprm->file = file; 1495 bprm->filename = filename; 1496 bprm->interp = filename; 1497 1498 retval = bprm_mm_init(bprm); 1499 if (retval) 1500 goto out_file; 1501 1502 bprm->argc = count(argv, MAX_ARG_STRINGS); 1503 if ((retval = bprm->argc) < 0) 1504 goto out; 1505 1506 bprm->envc = count(envp, MAX_ARG_STRINGS); 1507 if ((retval = bprm->envc) < 0) 1508 goto out; 1509 1510 retval = prepare_binprm(bprm); 1511 if (retval < 0) 1512 goto out; 1513 1514 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1515 if (retval < 0) 1516 goto out; 1517 1518 bprm->exec = bprm->p; 1519 retval = copy_strings(bprm->envc, envp, bprm); 1520 if (retval < 0) 1521 goto out; 1522 1523 retval = copy_strings(bprm->argc, argv, bprm); 1524 if (retval < 0) 1525 goto out; 1526 1527 retval = search_binary_handler(bprm,regs); 1528 if (retval < 0) 1529 goto out; 1530 1531 /* execve succeeded */ 1532 current->fs->in_exec = 0; 1533 current->in_execve = 0; 1534 acct_update_integrals(current); 1535 free_bprm(bprm); 1536 if (displaced) 1537 put_files_struct(displaced); 1538 return retval; 1539 1540 out: 1541 if (bprm->mm) { 1542 acct_arg_size(bprm, 0); 1543 mmput(bprm->mm); 1544 } 1545 1546 out_file: 1547 if (bprm->file) { 1548 allow_write_access(bprm->file); 1549 fput(bprm->file); 1550 } 1551 1552 out_unmark: 1553 if (clear_in_exec) 1554 current->fs->in_exec = 0; 1555 current->in_execve = 0; 1556 1557 out_free: 1558 free_bprm(bprm); 1559 1560 out_files: 1561 if (displaced) 1562 reset_files_struct(displaced); 1563 out_ret: 1564 return retval; 1565 } 1566 1567 int do_execve(const char *filename, 1568 const char __user *const __user *__argv, 1569 const char __user *const __user *__envp, 1570 struct pt_regs *regs) 1571 { 1572 struct user_arg_ptr argv = { .ptr.native = __argv }; 1573 struct user_arg_ptr envp = { .ptr.native = __envp }; 1574 return do_execve_common(filename, argv, envp, regs); 1575 } 1576 1577 #ifdef CONFIG_COMPAT 1578 int compat_do_execve(const char *filename, 1579 const compat_uptr_t __user *__argv, 1580 const compat_uptr_t __user *__envp, 1581 struct pt_regs *regs) 1582 { 1583 struct user_arg_ptr argv = { 1584 .is_compat = true, 1585 .ptr.compat = __argv, 1586 }; 1587 struct user_arg_ptr envp = { 1588 .is_compat = true, 1589 .ptr.compat = __envp, 1590 }; 1591 return do_execve_common(filename, argv, envp, regs); 1592 } 1593 #endif 1594 1595 void set_binfmt(struct linux_binfmt *new) 1596 { 1597 struct mm_struct *mm = current->mm; 1598 1599 if (mm->binfmt) 1600 module_put(mm->binfmt->module); 1601 1602 mm->binfmt = new; 1603 if (new) 1604 __module_get(new->module); 1605 } 1606 1607 EXPORT_SYMBOL(set_binfmt); 1608 1609 /* 1610 * set_dumpable converts traditional three-value dumpable to two flags and 1611 * stores them into mm->flags. It modifies lower two bits of mm->flags, but 1612 * these bits are not changed atomically. So get_dumpable can observe the 1613 * intermediate state. To avoid doing unexpected behavior, get get_dumpable 1614 * return either old dumpable or new one by paying attention to the order of 1615 * modifying the bits. 1616 * 1617 * dumpable | mm->flags (binary) 1618 * old new | initial interim final 1619 * ---------+----------------------- 1620 * 0 1 | 00 01 01 1621 * 0 2 | 00 10(*) 11 1622 * 1 0 | 01 00 00 1623 * 1 2 | 01 11 11 1624 * 2 0 | 11 10(*) 00 1625 * 2 1 | 11 11 01 1626 * 1627 * (*) get_dumpable regards interim value of 10 as 11. 1628 */ 1629 void set_dumpable(struct mm_struct *mm, int value) 1630 { 1631 switch (value) { 1632 case SUID_DUMPABLE_DISABLED: 1633 clear_bit(MMF_DUMPABLE, &mm->flags); 1634 smp_wmb(); 1635 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1636 break; 1637 case SUID_DUMPABLE_ENABLED: 1638 set_bit(MMF_DUMPABLE, &mm->flags); 1639 smp_wmb(); 1640 clear_bit(MMF_DUMP_SECURELY, &mm->flags); 1641 break; 1642 case SUID_DUMPABLE_SAFE: 1643 set_bit(MMF_DUMP_SECURELY, &mm->flags); 1644 smp_wmb(); 1645 set_bit(MMF_DUMPABLE, &mm->flags); 1646 break; 1647 } 1648 } 1649 1650 int __get_dumpable(unsigned long mm_flags) 1651 { 1652 int ret; 1653 1654 ret = mm_flags & MMF_DUMPABLE_MASK; 1655 return (ret > SUID_DUMPABLE_ENABLED) ? SUID_DUMPABLE_SAFE : ret; 1656 } 1657 1658 int get_dumpable(struct mm_struct *mm) 1659 { 1660 return __get_dumpable(mm->flags); 1661 } 1662 1663 #ifdef __ARCH_WANT_SYS_EXECVE 1664 SYSCALL_DEFINE3(execve, 1665 const char __user *, filename, 1666 const char __user *const __user *, argv, 1667 const char __user *const __user *, envp) 1668 { 1669 struct filename *path = getname(filename); 1670 int error = PTR_ERR(path); 1671 if (!IS_ERR(path)) { 1672 error = do_execve(path->name, argv, envp, current_pt_regs()); 1673 putname(path); 1674 } 1675 return error; 1676 } 1677 #ifdef CONFIG_COMPAT 1678 asmlinkage long compat_sys_execve(const char __user * filename, 1679 const compat_uptr_t __user * argv, 1680 const compat_uptr_t __user * envp) 1681 { 1682 struct filename *path = getname(filename); 1683 int error = PTR_ERR(path); 1684 if (!IS_ERR(path)) { 1685 error = compat_do_execve(path->name, argv, envp, 1686 current_pt_regs()); 1687 putname(path); 1688 } 1689 return error; 1690 } 1691 #endif 1692 #endif 1693 1694 #ifdef __ARCH_WANT_KERNEL_EXECVE 1695 int kernel_execve(const char *filename, 1696 const char *const argv[], 1697 const char *const envp[]) 1698 { 1699 struct pt_regs *p = current_pt_regs(); 1700 int ret; 1701 1702 ret = do_execve(filename, 1703 (const char __user *const __user *)argv, 1704 (const char __user *const __user *)envp, p); 1705 if (ret < 0) 1706 return ret; 1707 1708 /* 1709 * We were successful. We won't be returning to our caller, but 1710 * instead to user space by manipulating the kernel stack. 1711 */ 1712 ret_from_kernel_execve(p); 1713 } 1714 #endif 1715