1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <net/busy_poll.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (rwlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a rwlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 66 * It is also acquired when inserting an epoll fd onto another epoll 67 * fd. We do this so that we walk the epoll tree and ensure that this 68 * insertion does not create a cycle of epoll file descriptors, which 69 * could lead to deadlock. We need a global mutex to prevent two 70 * simultaneous inserts (A into B and B into A) from racing and 71 * constructing a cycle without either insert observing that it is 72 * going to. 73 * It is necessary to acquire multiple "ep->mtx"es at once in the 74 * case when one epoll fd is added to another. In this case, we 75 * always acquire the locks in the order of nesting (i.e. after 76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 77 * before e2->mtx). Since we disallow cycles of epoll file 78 * descriptors, this ensures that the mutexes are well-ordered. In 79 * order to communicate this nesting to lockdep, when walking a tree 80 * of epoll file descriptors, we use the current recursion depth as 81 * the lockdep subkey. 82 * It is possible to drop the "ep->mtx" and to use the global 83 * mutex "epmutex" (together with "ep->lock") to have it working, 84 * but having "ep->mtx" will make the interface more scalable. 85 * Events that require holding "epmutex" are very rare, while for 86 * normal operations the epoll private "ep->mtx" will guarantee 87 * a better scalability. 88 */ 89 90 /* Epoll private bits inside the event mask */ 91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 92 93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 94 95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 97 98 /* Maximum number of nesting allowed inside epoll sets */ 99 #define EP_MAX_NESTS 4 100 101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 102 103 #define EP_UNACTIVE_PTR ((void *) -1L) 104 105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 106 107 struct epoll_filefd { 108 struct file *file; 109 int fd; 110 } __packed; 111 112 /* 113 * Structure used to track possible nested calls, for too deep recursions 114 * and loop cycles. 115 */ 116 struct nested_call_node { 117 struct list_head llink; 118 void *cookie; 119 void *ctx; 120 }; 121 122 /* 123 * This structure is used as collector for nested calls, to check for 124 * maximum recursion dept and loop cycles. 125 */ 126 struct nested_calls { 127 struct list_head tasks_call_list; 128 spinlock_t lock; 129 }; 130 131 /* 132 * Each file descriptor added to the eventpoll interface will 133 * have an entry of this type linked to the "rbr" RB tree. 134 * Avoid increasing the size of this struct, there can be many thousands 135 * of these on a server and we do not want this to take another cache line. 136 */ 137 struct epitem { 138 union { 139 /* RB tree node links this structure to the eventpoll RB tree */ 140 struct rb_node rbn; 141 /* Used to free the struct epitem */ 142 struct rcu_head rcu; 143 }; 144 145 /* List header used to link this structure to the eventpoll ready list */ 146 struct list_head rdllink; 147 148 /* 149 * Works together "struct eventpoll"->ovflist in keeping the 150 * single linked chain of items. 151 */ 152 struct epitem *next; 153 154 /* The file descriptor information this item refers to */ 155 struct epoll_filefd ffd; 156 157 /* Number of active wait queue attached to poll operations */ 158 int nwait; 159 160 /* List containing poll wait queues */ 161 struct list_head pwqlist; 162 163 /* The "container" of this item */ 164 struct eventpoll *ep; 165 166 /* List header used to link this item to the "struct file" items list */ 167 struct list_head fllink; 168 169 /* wakeup_source used when EPOLLWAKEUP is set */ 170 struct wakeup_source __rcu *ws; 171 172 /* The structure that describe the interested events and the source fd */ 173 struct epoll_event event; 174 }; 175 176 /* 177 * This structure is stored inside the "private_data" member of the file 178 * structure and represents the main data structure for the eventpoll 179 * interface. 180 */ 181 struct eventpoll { 182 /* 183 * This mutex is used to ensure that files are not removed 184 * while epoll is using them. This is held during the event 185 * collection loop, the file cleanup path, the epoll file exit 186 * code and the ctl operations. 187 */ 188 struct mutex mtx; 189 190 /* Wait queue used by sys_epoll_wait() */ 191 wait_queue_head_t wq; 192 193 /* Wait queue used by file->poll() */ 194 wait_queue_head_t poll_wait; 195 196 /* List of ready file descriptors */ 197 struct list_head rdllist; 198 199 /* Lock which protects rdllist and ovflist */ 200 rwlock_t lock; 201 202 /* RB tree root used to store monitored fd structs */ 203 struct rb_root_cached rbr; 204 205 /* 206 * This is a single linked list that chains all the "struct epitem" that 207 * happened while transferring ready events to userspace w/out 208 * holding ->lock. 209 */ 210 struct epitem *ovflist; 211 212 /* wakeup_source used when ep_scan_ready_list is running */ 213 struct wakeup_source *ws; 214 215 /* The user that created the eventpoll descriptor */ 216 struct user_struct *user; 217 218 struct file *file; 219 220 /* used to optimize loop detection check */ 221 u64 gen; 222 223 #ifdef CONFIG_NET_RX_BUSY_POLL 224 /* used to track busy poll napi_id */ 225 unsigned int napi_id; 226 #endif 227 228 #ifdef CONFIG_DEBUG_LOCK_ALLOC 229 /* tracks wakeup nests for lockdep validation */ 230 u8 nests; 231 #endif 232 }; 233 234 /* Wait structure used by the poll hooks */ 235 struct eppoll_entry { 236 /* List header used to link this structure to the "struct epitem" */ 237 struct list_head llink; 238 239 /* The "base" pointer is set to the container "struct epitem" */ 240 struct epitem *base; 241 242 /* 243 * Wait queue item that will be linked to the target file wait 244 * queue head. 245 */ 246 wait_queue_entry_t wait; 247 248 /* The wait queue head that linked the "wait" wait queue item */ 249 wait_queue_head_t *whead; 250 }; 251 252 /* Wrapper struct used by poll queueing */ 253 struct ep_pqueue { 254 poll_table pt; 255 struct epitem *epi; 256 }; 257 258 /* Used by the ep_send_events() function as callback private data */ 259 struct ep_send_events_data { 260 int maxevents; 261 struct epoll_event __user *events; 262 int res; 263 }; 264 265 /* 266 * Configuration options available inside /proc/sys/fs/epoll/ 267 */ 268 /* Maximum number of epoll watched descriptors, per user */ 269 static long max_user_watches __read_mostly; 270 271 /* 272 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 273 */ 274 static DEFINE_MUTEX(epmutex); 275 276 static u64 loop_check_gen = 0; 277 278 /* Used to check for epoll file descriptor inclusion loops */ 279 static struct nested_calls poll_loop_ncalls; 280 281 /* Slab cache used to allocate "struct epitem" */ 282 static struct kmem_cache *epi_cache __read_mostly; 283 284 /* Slab cache used to allocate "struct eppoll_entry" */ 285 static struct kmem_cache *pwq_cache __read_mostly; 286 287 /* 288 * List of files with newly added links, where we may need to limit the number 289 * of emanating paths. Protected by the epmutex. 290 */ 291 static LIST_HEAD(tfile_check_list); 292 293 #ifdef CONFIG_SYSCTL 294 295 #include <linux/sysctl.h> 296 297 static long long_zero; 298 static long long_max = LONG_MAX; 299 300 struct ctl_table epoll_table[] = { 301 { 302 .procname = "max_user_watches", 303 .data = &max_user_watches, 304 .maxlen = sizeof(max_user_watches), 305 .mode = 0644, 306 .proc_handler = proc_doulongvec_minmax, 307 .extra1 = &long_zero, 308 .extra2 = &long_max, 309 }, 310 { } 311 }; 312 #endif /* CONFIG_SYSCTL */ 313 314 static const struct file_operations eventpoll_fops; 315 316 static inline int is_file_epoll(struct file *f) 317 { 318 return f->f_op == &eventpoll_fops; 319 } 320 321 /* Setup the structure that is used as key for the RB tree */ 322 static inline void ep_set_ffd(struct epoll_filefd *ffd, 323 struct file *file, int fd) 324 { 325 ffd->file = file; 326 ffd->fd = fd; 327 } 328 329 /* Compare RB tree keys */ 330 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 331 struct epoll_filefd *p2) 332 { 333 return (p1->file > p2->file ? +1: 334 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 335 } 336 337 /* Tells us if the item is currently linked */ 338 static inline int ep_is_linked(struct epitem *epi) 339 { 340 return !list_empty(&epi->rdllink); 341 } 342 343 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 344 { 345 return container_of(p, struct eppoll_entry, wait); 346 } 347 348 /* Get the "struct epitem" from a wait queue pointer */ 349 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 350 { 351 return container_of(p, struct eppoll_entry, wait)->base; 352 } 353 354 /* Get the "struct epitem" from an epoll queue wrapper */ 355 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 356 { 357 return container_of(p, struct ep_pqueue, pt)->epi; 358 } 359 360 /* Initialize the poll safe wake up structure */ 361 static void ep_nested_calls_init(struct nested_calls *ncalls) 362 { 363 INIT_LIST_HEAD(&ncalls->tasks_call_list); 364 spin_lock_init(&ncalls->lock); 365 } 366 367 /** 368 * ep_events_available - Checks if ready events might be available. 369 * 370 * @ep: Pointer to the eventpoll context. 371 * 372 * Returns: Returns a value different than zero if ready events are available, 373 * or zero otherwise. 374 */ 375 static inline int ep_events_available(struct eventpoll *ep) 376 { 377 return !list_empty_careful(&ep->rdllist) || 378 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 379 } 380 381 #ifdef CONFIG_NET_RX_BUSY_POLL 382 static bool ep_busy_loop_end(void *p, unsigned long start_time) 383 { 384 struct eventpoll *ep = p; 385 386 return ep_events_available(ep) || busy_loop_timeout(start_time); 387 } 388 389 /* 390 * Busy poll if globally on and supporting sockets found && no events, 391 * busy loop will return if need_resched or ep_events_available. 392 * 393 * we must do our busy polling with irqs enabled 394 */ 395 static void ep_busy_loop(struct eventpoll *ep, int nonblock) 396 { 397 unsigned int napi_id = READ_ONCE(ep->napi_id); 398 399 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) 400 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep); 401 } 402 403 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 404 { 405 if (ep->napi_id) 406 ep->napi_id = 0; 407 } 408 409 /* 410 * Set epoll busy poll NAPI ID from sk. 411 */ 412 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 413 { 414 struct eventpoll *ep; 415 unsigned int napi_id; 416 struct socket *sock; 417 struct sock *sk; 418 int err; 419 420 if (!net_busy_loop_on()) 421 return; 422 423 sock = sock_from_file(epi->ffd.file, &err); 424 if (!sock) 425 return; 426 427 sk = sock->sk; 428 if (!sk) 429 return; 430 431 napi_id = READ_ONCE(sk->sk_napi_id); 432 ep = epi->ep; 433 434 /* Non-NAPI IDs can be rejected 435 * or 436 * Nothing to do if we already have this ID 437 */ 438 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 439 return; 440 441 /* record NAPI ID for use in next busy poll */ 442 ep->napi_id = napi_id; 443 } 444 445 #else 446 447 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock) 448 { 449 } 450 451 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 452 { 453 } 454 455 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 456 { 457 } 458 459 #endif /* CONFIG_NET_RX_BUSY_POLL */ 460 461 /** 462 * ep_call_nested - Perform a bound (possibly) nested call, by checking 463 * that the recursion limit is not exceeded, and that 464 * the same nested call (by the meaning of same cookie) is 465 * no re-entered. 466 * 467 * @ncalls: Pointer to the nested_calls structure to be used for this call. 468 * @nproc: Nested call core function pointer. 469 * @priv: Opaque data to be passed to the @nproc callback. 470 * @cookie: Cookie to be used to identify this nested call. 471 * @ctx: This instance context. 472 * 473 * Returns: Returns the code returned by the @nproc callback, or -1 if 474 * the maximum recursion limit has been exceeded. 475 */ 476 static int ep_call_nested(struct nested_calls *ncalls, 477 int (*nproc)(void *, void *, int), void *priv, 478 void *cookie, void *ctx) 479 { 480 int error, call_nests = 0; 481 unsigned long flags; 482 struct list_head *lsthead = &ncalls->tasks_call_list; 483 struct nested_call_node *tncur; 484 struct nested_call_node tnode; 485 486 spin_lock_irqsave(&ncalls->lock, flags); 487 488 /* 489 * Try to see if the current task is already inside this wakeup call. 490 * We use a list here, since the population inside this set is always 491 * very much limited. 492 */ 493 list_for_each_entry(tncur, lsthead, llink) { 494 if (tncur->ctx == ctx && 495 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) { 496 /* 497 * Ops ... loop detected or maximum nest level reached. 498 * We abort this wake by breaking the cycle itself. 499 */ 500 error = -1; 501 goto out_unlock; 502 } 503 } 504 505 /* Add the current task and cookie to the list */ 506 tnode.ctx = ctx; 507 tnode.cookie = cookie; 508 list_add(&tnode.llink, lsthead); 509 510 spin_unlock_irqrestore(&ncalls->lock, flags); 511 512 /* Call the nested function */ 513 error = (*nproc)(priv, cookie, call_nests); 514 515 /* Remove the current task from the list */ 516 spin_lock_irqsave(&ncalls->lock, flags); 517 list_del(&tnode.llink); 518 out_unlock: 519 spin_unlock_irqrestore(&ncalls->lock, flags); 520 521 return error; 522 } 523 524 /* 525 * As described in commit 0ccf831cb lockdep: annotate epoll 526 * the use of wait queues used by epoll is done in a very controlled 527 * manner. Wake ups can nest inside each other, but are never done 528 * with the same locking. For example: 529 * 530 * dfd = socket(...); 531 * efd1 = epoll_create(); 532 * efd2 = epoll_create(); 533 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 534 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 535 * 536 * When a packet arrives to the device underneath "dfd", the net code will 537 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 538 * callback wakeup entry on that queue, and the wake_up() performed by the 539 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 540 * (efd1) notices that it may have some event ready, so it needs to wake up 541 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 542 * that ends up in another wake_up(), after having checked about the 543 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 544 * avoid stack blasting. 545 * 546 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 547 * this special case of epoll. 548 */ 549 #ifdef CONFIG_DEBUG_LOCK_ALLOC 550 551 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi) 552 { 553 struct eventpoll *ep_src; 554 unsigned long flags; 555 u8 nests = 0; 556 557 /* 558 * To set the subclass or nesting level for spin_lock_irqsave_nested() 559 * it might be natural to create a per-cpu nest count. However, since 560 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 561 * schedule() in the -rt kernel, the per-cpu variable are no longer 562 * protected. Thus, we are introducing a per eventpoll nest field. 563 * If we are not being call from ep_poll_callback(), epi is NULL and 564 * we are at the first level of nesting, 0. Otherwise, we are being 565 * called from ep_poll_callback() and if a previous wakeup source is 566 * not an epoll file itself, we are at depth 1 since the wakeup source 567 * is depth 0. If the wakeup source is a previous epoll file in the 568 * wakeup chain then we use its nests value and record ours as 569 * nests + 1. The previous epoll file nests value is stable since its 570 * already holding its own poll_wait.lock. 571 */ 572 if (epi) { 573 if ((is_file_epoll(epi->ffd.file))) { 574 ep_src = epi->ffd.file->private_data; 575 nests = ep_src->nests; 576 } else { 577 nests = 1; 578 } 579 } 580 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 581 ep->nests = nests + 1; 582 wake_up_locked_poll(&ep->poll_wait, EPOLLIN); 583 ep->nests = 0; 584 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 585 } 586 587 #else 588 589 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi) 590 { 591 wake_up_poll(&ep->poll_wait, EPOLLIN); 592 } 593 594 #endif 595 596 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 597 { 598 wait_queue_head_t *whead; 599 600 rcu_read_lock(); 601 /* 602 * If it is cleared by POLLFREE, it should be rcu-safe. 603 * If we read NULL we need a barrier paired with 604 * smp_store_release() in ep_poll_callback(), otherwise 605 * we rely on whead->lock. 606 */ 607 whead = smp_load_acquire(&pwq->whead); 608 if (whead) 609 remove_wait_queue(whead, &pwq->wait); 610 rcu_read_unlock(); 611 } 612 613 /* 614 * This function unregisters poll callbacks from the associated file 615 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 616 * ep_free). 617 */ 618 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 619 { 620 struct list_head *lsthead = &epi->pwqlist; 621 struct eppoll_entry *pwq; 622 623 while (!list_empty(lsthead)) { 624 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 625 626 list_del(&pwq->llink); 627 ep_remove_wait_queue(pwq); 628 kmem_cache_free(pwq_cache, pwq); 629 } 630 } 631 632 /* call only when ep->mtx is held */ 633 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 634 { 635 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 636 } 637 638 /* call only when ep->mtx is held */ 639 static inline void ep_pm_stay_awake(struct epitem *epi) 640 { 641 struct wakeup_source *ws = ep_wakeup_source(epi); 642 643 if (ws) 644 __pm_stay_awake(ws); 645 } 646 647 static inline bool ep_has_wakeup_source(struct epitem *epi) 648 { 649 return rcu_access_pointer(epi->ws) ? true : false; 650 } 651 652 /* call when ep->mtx cannot be held (ep_poll_callback) */ 653 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 654 { 655 struct wakeup_source *ws; 656 657 rcu_read_lock(); 658 ws = rcu_dereference(epi->ws); 659 if (ws) 660 __pm_stay_awake(ws); 661 rcu_read_unlock(); 662 } 663 664 /** 665 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 666 * the scan code, to call f_op->poll(). Also allows for 667 * O(NumReady) performance. 668 * 669 * @ep: Pointer to the epoll private data structure. 670 * @sproc: Pointer to the scan callback. 671 * @priv: Private opaque data passed to the @sproc callback. 672 * @depth: The current depth of recursive f_op->poll calls. 673 * @ep_locked: caller already holds ep->mtx 674 * 675 * Returns: The same integer error code returned by the @sproc callback. 676 */ 677 static __poll_t ep_scan_ready_list(struct eventpoll *ep, 678 __poll_t (*sproc)(struct eventpoll *, 679 struct list_head *, void *), 680 void *priv, int depth, bool ep_locked) 681 { 682 __poll_t res; 683 struct epitem *epi, *nepi; 684 LIST_HEAD(txlist); 685 686 lockdep_assert_irqs_enabled(); 687 688 /* 689 * We need to lock this because we could be hit by 690 * eventpoll_release_file() and epoll_ctl(). 691 */ 692 693 if (!ep_locked) 694 mutex_lock_nested(&ep->mtx, depth); 695 696 /* 697 * Steal the ready list, and re-init the original one to the 698 * empty list. Also, set ep->ovflist to NULL so that events 699 * happening while looping w/out locks, are not lost. We cannot 700 * have the poll callback to queue directly on ep->rdllist, 701 * because we want the "sproc" callback to be able to do it 702 * in a lockless way. 703 */ 704 write_lock_irq(&ep->lock); 705 list_splice_init(&ep->rdllist, &txlist); 706 WRITE_ONCE(ep->ovflist, NULL); 707 write_unlock_irq(&ep->lock); 708 709 /* 710 * Now call the callback function. 711 */ 712 res = (*sproc)(ep, &txlist, priv); 713 714 write_lock_irq(&ep->lock); 715 /* 716 * During the time we spent inside the "sproc" callback, some 717 * other events might have been queued by the poll callback. 718 * We re-insert them inside the main ready-list here. 719 */ 720 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 721 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 722 /* 723 * We need to check if the item is already in the list. 724 * During the "sproc" callback execution time, items are 725 * queued into ->ovflist but the "txlist" might already 726 * contain them, and the list_splice() below takes care of them. 727 */ 728 if (!ep_is_linked(epi)) { 729 /* 730 * ->ovflist is LIFO, so we have to reverse it in order 731 * to keep in FIFO. 732 */ 733 list_add(&epi->rdllink, &ep->rdllist); 734 ep_pm_stay_awake(epi); 735 } 736 } 737 /* 738 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 739 * releasing the lock, events will be queued in the normal way inside 740 * ep->rdllist. 741 */ 742 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 743 744 /* 745 * Quickly re-inject items left on "txlist". 746 */ 747 list_splice(&txlist, &ep->rdllist); 748 __pm_relax(ep->ws); 749 write_unlock_irq(&ep->lock); 750 751 if (!ep_locked) 752 mutex_unlock(&ep->mtx); 753 754 return res; 755 } 756 757 static void epi_rcu_free(struct rcu_head *head) 758 { 759 struct epitem *epi = container_of(head, struct epitem, rcu); 760 kmem_cache_free(epi_cache, epi); 761 } 762 763 /* 764 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 765 * all the associated resources. Must be called with "mtx" held. 766 */ 767 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 768 { 769 struct file *file = epi->ffd.file; 770 771 lockdep_assert_irqs_enabled(); 772 773 /* 774 * Removes poll wait queue hooks. 775 */ 776 ep_unregister_pollwait(ep, epi); 777 778 /* Remove the current item from the list of epoll hooks */ 779 spin_lock(&file->f_lock); 780 list_del_rcu(&epi->fllink); 781 spin_unlock(&file->f_lock); 782 783 rb_erase_cached(&epi->rbn, &ep->rbr); 784 785 write_lock_irq(&ep->lock); 786 if (ep_is_linked(epi)) 787 list_del_init(&epi->rdllink); 788 write_unlock_irq(&ep->lock); 789 790 wakeup_source_unregister(ep_wakeup_source(epi)); 791 /* 792 * At this point it is safe to free the eventpoll item. Use the union 793 * field epi->rcu, since we are trying to minimize the size of 794 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 795 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 796 * use of the rbn field. 797 */ 798 call_rcu(&epi->rcu, epi_rcu_free); 799 800 atomic_long_dec(&ep->user->epoll_watches); 801 802 return 0; 803 } 804 805 static void ep_free(struct eventpoll *ep) 806 { 807 struct rb_node *rbp; 808 struct epitem *epi; 809 810 /* We need to release all tasks waiting for these file */ 811 if (waitqueue_active(&ep->poll_wait)) 812 ep_poll_safewake(ep, NULL); 813 814 /* 815 * We need to lock this because we could be hit by 816 * eventpoll_release_file() while we're freeing the "struct eventpoll". 817 * We do not need to hold "ep->mtx" here because the epoll file 818 * is on the way to be removed and no one has references to it 819 * anymore. The only hit might come from eventpoll_release_file() but 820 * holding "epmutex" is sufficient here. 821 */ 822 mutex_lock(&epmutex); 823 824 /* 825 * Walks through the whole tree by unregistering poll callbacks. 826 */ 827 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 828 epi = rb_entry(rbp, struct epitem, rbn); 829 830 ep_unregister_pollwait(ep, epi); 831 cond_resched(); 832 } 833 834 /* 835 * Walks through the whole tree by freeing each "struct epitem". At this 836 * point we are sure no poll callbacks will be lingering around, and also by 837 * holding "epmutex" we can be sure that no file cleanup code will hit 838 * us during this operation. So we can avoid the lock on "ep->lock". 839 * We do not need to lock ep->mtx, either, we only do it to prevent 840 * a lockdep warning. 841 */ 842 mutex_lock(&ep->mtx); 843 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 844 epi = rb_entry(rbp, struct epitem, rbn); 845 ep_remove(ep, epi); 846 cond_resched(); 847 } 848 mutex_unlock(&ep->mtx); 849 850 mutex_unlock(&epmutex); 851 mutex_destroy(&ep->mtx); 852 free_uid(ep->user); 853 wakeup_source_unregister(ep->ws); 854 kfree(ep); 855 } 856 857 static int ep_eventpoll_release(struct inode *inode, struct file *file) 858 { 859 struct eventpoll *ep = file->private_data; 860 861 if (ep) 862 ep_free(ep); 863 864 return 0; 865 } 866 867 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 868 void *priv); 869 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 870 poll_table *pt); 871 872 /* 873 * Differs from ep_eventpoll_poll() in that internal callers already have 874 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 875 * is correctly annotated. 876 */ 877 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 878 int depth) 879 { 880 struct eventpoll *ep; 881 bool locked; 882 883 pt->_key = epi->event.events; 884 if (!is_file_epoll(epi->ffd.file)) 885 return vfs_poll(epi->ffd.file, pt) & epi->event.events; 886 887 ep = epi->ffd.file->private_data; 888 poll_wait(epi->ffd.file, &ep->poll_wait, pt); 889 locked = pt && (pt->_qproc == ep_ptable_queue_proc); 890 891 return ep_scan_ready_list(epi->ffd.file->private_data, 892 ep_read_events_proc, &depth, depth, 893 locked) & epi->event.events; 894 } 895 896 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 897 void *priv) 898 { 899 struct epitem *epi, *tmp; 900 poll_table pt; 901 int depth = *(int *)priv; 902 903 init_poll_funcptr(&pt, NULL); 904 depth++; 905 906 list_for_each_entry_safe(epi, tmp, head, rdllink) { 907 if (ep_item_poll(epi, &pt, depth)) { 908 return EPOLLIN | EPOLLRDNORM; 909 } else { 910 /* 911 * Item has been dropped into the ready list by the poll 912 * callback, but it's not actually ready, as far as 913 * caller requested events goes. We can remove it here. 914 */ 915 __pm_relax(ep_wakeup_source(epi)); 916 list_del_init(&epi->rdllink); 917 } 918 } 919 920 return 0; 921 } 922 923 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 924 { 925 struct eventpoll *ep = file->private_data; 926 int depth = 0; 927 928 /* Insert inside our poll wait queue */ 929 poll_wait(file, &ep->poll_wait, wait); 930 931 /* 932 * Proceed to find out if wanted events are really available inside 933 * the ready list. 934 */ 935 return ep_scan_ready_list(ep, ep_read_events_proc, 936 &depth, depth, false); 937 } 938 939 #ifdef CONFIG_PROC_FS 940 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 941 { 942 struct eventpoll *ep = f->private_data; 943 struct rb_node *rbp; 944 945 mutex_lock(&ep->mtx); 946 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 947 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 948 struct inode *inode = file_inode(epi->ffd.file); 949 950 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 951 " pos:%lli ino:%lx sdev:%x\n", 952 epi->ffd.fd, epi->event.events, 953 (long long)epi->event.data, 954 (long long)epi->ffd.file->f_pos, 955 inode->i_ino, inode->i_sb->s_dev); 956 if (seq_has_overflowed(m)) 957 break; 958 } 959 mutex_unlock(&ep->mtx); 960 } 961 #endif 962 963 /* File callbacks that implement the eventpoll file behaviour */ 964 static const struct file_operations eventpoll_fops = { 965 #ifdef CONFIG_PROC_FS 966 .show_fdinfo = ep_show_fdinfo, 967 #endif 968 .release = ep_eventpoll_release, 969 .poll = ep_eventpoll_poll, 970 .llseek = noop_llseek, 971 }; 972 973 /* 974 * This is called from eventpoll_release() to unlink files from the eventpoll 975 * interface. We need to have this facility to cleanup correctly files that are 976 * closed without being removed from the eventpoll interface. 977 */ 978 void eventpoll_release_file(struct file *file) 979 { 980 struct eventpoll *ep; 981 struct epitem *epi, *next; 982 983 /* 984 * We don't want to get "file->f_lock" because it is not 985 * necessary. It is not necessary because we're in the "struct file" 986 * cleanup path, and this means that no one is using this file anymore. 987 * So, for example, epoll_ctl() cannot hit here since if we reach this 988 * point, the file counter already went to zero and fget() would fail. 989 * The only hit might come from ep_free() but by holding the mutex 990 * will correctly serialize the operation. We do need to acquire 991 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 992 * from anywhere but ep_free(). 993 * 994 * Besides, ep_remove() acquires the lock, so we can't hold it here. 995 */ 996 mutex_lock(&epmutex); 997 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 998 ep = epi->ep; 999 mutex_lock_nested(&ep->mtx, 0); 1000 ep_remove(ep, epi); 1001 mutex_unlock(&ep->mtx); 1002 } 1003 mutex_unlock(&epmutex); 1004 } 1005 1006 static int ep_alloc(struct eventpoll **pep) 1007 { 1008 int error; 1009 struct user_struct *user; 1010 struct eventpoll *ep; 1011 1012 user = get_current_user(); 1013 error = -ENOMEM; 1014 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1015 if (unlikely(!ep)) 1016 goto free_uid; 1017 1018 mutex_init(&ep->mtx); 1019 rwlock_init(&ep->lock); 1020 init_waitqueue_head(&ep->wq); 1021 init_waitqueue_head(&ep->poll_wait); 1022 INIT_LIST_HEAD(&ep->rdllist); 1023 ep->rbr = RB_ROOT_CACHED; 1024 ep->ovflist = EP_UNACTIVE_PTR; 1025 ep->user = user; 1026 1027 *pep = ep; 1028 1029 return 0; 1030 1031 free_uid: 1032 free_uid(user); 1033 return error; 1034 } 1035 1036 /* 1037 * Search the file inside the eventpoll tree. The RB tree operations 1038 * are protected by the "mtx" mutex, and ep_find() must be called with 1039 * "mtx" held. 1040 */ 1041 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1042 { 1043 int kcmp; 1044 struct rb_node *rbp; 1045 struct epitem *epi, *epir = NULL; 1046 struct epoll_filefd ffd; 1047 1048 ep_set_ffd(&ffd, file, fd); 1049 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1050 epi = rb_entry(rbp, struct epitem, rbn); 1051 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1052 if (kcmp > 0) 1053 rbp = rbp->rb_right; 1054 else if (kcmp < 0) 1055 rbp = rbp->rb_left; 1056 else { 1057 epir = epi; 1058 break; 1059 } 1060 } 1061 1062 return epir; 1063 } 1064 1065 #ifdef CONFIG_CHECKPOINT_RESTORE 1066 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1067 { 1068 struct rb_node *rbp; 1069 struct epitem *epi; 1070 1071 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1072 epi = rb_entry(rbp, struct epitem, rbn); 1073 if (epi->ffd.fd == tfd) { 1074 if (toff == 0) 1075 return epi; 1076 else 1077 toff--; 1078 } 1079 cond_resched(); 1080 } 1081 1082 return NULL; 1083 } 1084 1085 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1086 unsigned long toff) 1087 { 1088 struct file *file_raw; 1089 struct eventpoll *ep; 1090 struct epitem *epi; 1091 1092 if (!is_file_epoll(file)) 1093 return ERR_PTR(-EINVAL); 1094 1095 ep = file->private_data; 1096 1097 mutex_lock(&ep->mtx); 1098 epi = ep_find_tfd(ep, tfd, toff); 1099 if (epi) 1100 file_raw = epi->ffd.file; 1101 else 1102 file_raw = ERR_PTR(-ENOENT); 1103 mutex_unlock(&ep->mtx); 1104 1105 return file_raw; 1106 } 1107 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1108 1109 /** 1110 * Adds a new entry to the tail of the list in a lockless way, i.e. 1111 * multiple CPUs are allowed to call this function concurrently. 1112 * 1113 * Beware: it is necessary to prevent any other modifications of the 1114 * existing list until all changes are completed, in other words 1115 * concurrent list_add_tail_lockless() calls should be protected 1116 * with a read lock, where write lock acts as a barrier which 1117 * makes sure all list_add_tail_lockless() calls are fully 1118 * completed. 1119 * 1120 * Also an element can be locklessly added to the list only in one 1121 * direction i.e. either to the tail either to the head, otherwise 1122 * concurrent access will corrupt the list. 1123 * 1124 * Returns %false if element has been already added to the list, %true 1125 * otherwise. 1126 */ 1127 static inline bool list_add_tail_lockless(struct list_head *new, 1128 struct list_head *head) 1129 { 1130 struct list_head *prev; 1131 1132 /* 1133 * This is simple 'new->next = head' operation, but cmpxchg() 1134 * is used in order to detect that same element has been just 1135 * added to the list from another CPU: the winner observes 1136 * new->next == new. 1137 */ 1138 if (cmpxchg(&new->next, new, head) != new) 1139 return false; 1140 1141 /* 1142 * Initially ->next of a new element must be updated with the head 1143 * (we are inserting to the tail) and only then pointers are atomically 1144 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1145 * updated before pointers are actually swapped and pointers are 1146 * swapped before prev->next is updated. 1147 */ 1148 1149 prev = xchg(&head->prev, new); 1150 1151 /* 1152 * It is safe to modify prev->next and new->prev, because a new element 1153 * is added only to the tail and new->next is updated before XCHG. 1154 */ 1155 1156 prev->next = new; 1157 new->prev = prev; 1158 1159 return true; 1160 } 1161 1162 /** 1163 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1164 * i.e. multiple CPUs are allowed to call this function concurrently. 1165 * 1166 * Returns %false if epi element has been already chained, %true otherwise. 1167 */ 1168 static inline bool chain_epi_lockless(struct epitem *epi) 1169 { 1170 struct eventpoll *ep = epi->ep; 1171 1172 /* Fast preliminary check */ 1173 if (epi->next != EP_UNACTIVE_PTR) 1174 return false; 1175 1176 /* Check that the same epi has not been just chained from another CPU */ 1177 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1178 return false; 1179 1180 /* Atomically exchange tail */ 1181 epi->next = xchg(&ep->ovflist, epi); 1182 1183 return true; 1184 } 1185 1186 /* 1187 * This is the callback that is passed to the wait queue wakeup 1188 * mechanism. It is called by the stored file descriptors when they 1189 * have events to report. 1190 * 1191 * This callback takes a read lock in order not to content with concurrent 1192 * events from another file descriptors, thus all modifications to ->rdllist 1193 * or ->ovflist are lockless. Read lock is paired with the write lock from 1194 * ep_scan_ready_list(), which stops all list modifications and guarantees 1195 * that lists state is seen correctly. 1196 * 1197 * Another thing worth to mention is that ep_poll_callback() can be called 1198 * concurrently for the same @epi from different CPUs if poll table was inited 1199 * with several wait queues entries. Plural wakeup from different CPUs of a 1200 * single wait queue is serialized by wq.lock, but the case when multiple wait 1201 * queues are used should be detected accordingly. This is detected using 1202 * cmpxchg() operation. 1203 */ 1204 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1205 { 1206 int pwake = 0; 1207 struct epitem *epi = ep_item_from_wait(wait); 1208 struct eventpoll *ep = epi->ep; 1209 __poll_t pollflags = key_to_poll(key); 1210 unsigned long flags; 1211 int ewake = 0; 1212 1213 read_lock_irqsave(&ep->lock, flags); 1214 1215 ep_set_busy_poll_napi_id(epi); 1216 1217 /* 1218 * If the event mask does not contain any poll(2) event, we consider the 1219 * descriptor to be disabled. This condition is likely the effect of the 1220 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1221 * until the next EPOLL_CTL_MOD will be issued. 1222 */ 1223 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1224 goto out_unlock; 1225 1226 /* 1227 * Check the events coming with the callback. At this stage, not 1228 * every device reports the events in the "key" parameter of the 1229 * callback. We need to be able to handle both cases here, hence the 1230 * test for "key" != NULL before the event match test. 1231 */ 1232 if (pollflags && !(pollflags & epi->event.events)) 1233 goto out_unlock; 1234 1235 /* 1236 * If we are transferring events to userspace, we can hold no locks 1237 * (because we're accessing user memory, and because of linux f_op->poll() 1238 * semantics). All the events that happen during that period of time are 1239 * chained in ep->ovflist and requeued later on. 1240 */ 1241 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1242 if (chain_epi_lockless(epi)) 1243 ep_pm_stay_awake_rcu(epi); 1244 } else if (!ep_is_linked(epi)) { 1245 /* In the usual case, add event to ready list. */ 1246 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1247 ep_pm_stay_awake_rcu(epi); 1248 } 1249 1250 /* 1251 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1252 * wait list. 1253 */ 1254 if (waitqueue_active(&ep->wq)) { 1255 if ((epi->event.events & EPOLLEXCLUSIVE) && 1256 !(pollflags & POLLFREE)) { 1257 switch (pollflags & EPOLLINOUT_BITS) { 1258 case EPOLLIN: 1259 if (epi->event.events & EPOLLIN) 1260 ewake = 1; 1261 break; 1262 case EPOLLOUT: 1263 if (epi->event.events & EPOLLOUT) 1264 ewake = 1; 1265 break; 1266 case 0: 1267 ewake = 1; 1268 break; 1269 } 1270 } 1271 wake_up(&ep->wq); 1272 } 1273 if (waitqueue_active(&ep->poll_wait)) 1274 pwake++; 1275 1276 out_unlock: 1277 read_unlock_irqrestore(&ep->lock, flags); 1278 1279 /* We have to call this outside the lock */ 1280 if (pwake) 1281 ep_poll_safewake(ep, epi); 1282 1283 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1284 ewake = 1; 1285 1286 if (pollflags & POLLFREE) { 1287 /* 1288 * If we race with ep_remove_wait_queue() it can miss 1289 * ->whead = NULL and do another remove_wait_queue() after 1290 * us, so we can't use __remove_wait_queue(). 1291 */ 1292 list_del_init(&wait->entry); 1293 /* 1294 * ->whead != NULL protects us from the race with ep_free() 1295 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1296 * held by the caller. Once we nullify it, nothing protects 1297 * ep/epi or even wait. 1298 */ 1299 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1300 } 1301 1302 return ewake; 1303 } 1304 1305 /* 1306 * This is the callback that is used to add our wait queue to the 1307 * target file wakeup lists. 1308 */ 1309 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1310 poll_table *pt) 1311 { 1312 struct epitem *epi = ep_item_from_epqueue(pt); 1313 struct eppoll_entry *pwq; 1314 1315 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1316 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1317 pwq->whead = whead; 1318 pwq->base = epi; 1319 if (epi->event.events & EPOLLEXCLUSIVE) 1320 add_wait_queue_exclusive(whead, &pwq->wait); 1321 else 1322 add_wait_queue(whead, &pwq->wait); 1323 list_add_tail(&pwq->llink, &epi->pwqlist); 1324 epi->nwait++; 1325 } else { 1326 /* We have to signal that an error occurred */ 1327 epi->nwait = -1; 1328 } 1329 } 1330 1331 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1332 { 1333 int kcmp; 1334 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1335 struct epitem *epic; 1336 bool leftmost = true; 1337 1338 while (*p) { 1339 parent = *p; 1340 epic = rb_entry(parent, struct epitem, rbn); 1341 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1342 if (kcmp > 0) { 1343 p = &parent->rb_right; 1344 leftmost = false; 1345 } else 1346 p = &parent->rb_left; 1347 } 1348 rb_link_node(&epi->rbn, parent, p); 1349 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1350 } 1351 1352 1353 1354 #define PATH_ARR_SIZE 5 1355 /* 1356 * These are the number paths of length 1 to 5, that we are allowing to emanate 1357 * from a single file of interest. For example, we allow 1000 paths of length 1358 * 1, to emanate from each file of interest. This essentially represents the 1359 * potential wakeup paths, which need to be limited in order to avoid massive 1360 * uncontrolled wakeup storms. The common use case should be a single ep which 1361 * is connected to n file sources. In this case each file source has 1 path 1362 * of length 1. Thus, the numbers below should be more than sufficient. These 1363 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1364 * and delete can't add additional paths. Protected by the epmutex. 1365 */ 1366 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1367 static int path_count[PATH_ARR_SIZE]; 1368 1369 static int path_count_inc(int nests) 1370 { 1371 /* Allow an arbitrary number of depth 1 paths */ 1372 if (nests == 0) 1373 return 0; 1374 1375 if (++path_count[nests] > path_limits[nests]) 1376 return -1; 1377 return 0; 1378 } 1379 1380 static void path_count_init(void) 1381 { 1382 int i; 1383 1384 for (i = 0; i < PATH_ARR_SIZE; i++) 1385 path_count[i] = 0; 1386 } 1387 1388 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1389 { 1390 int error = 0; 1391 struct file *file = priv; 1392 struct file *child_file; 1393 struct epitem *epi; 1394 1395 /* CTL_DEL can remove links here, but that can't increase our count */ 1396 rcu_read_lock(); 1397 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1398 child_file = epi->ep->file; 1399 if (is_file_epoll(child_file)) { 1400 if (list_empty(&child_file->f_ep_links)) { 1401 if (path_count_inc(call_nests)) { 1402 error = -1; 1403 break; 1404 } 1405 } else { 1406 error = ep_call_nested(&poll_loop_ncalls, 1407 reverse_path_check_proc, 1408 child_file, child_file, 1409 current); 1410 } 1411 if (error != 0) 1412 break; 1413 } else { 1414 printk(KERN_ERR "reverse_path_check_proc: " 1415 "file is not an ep!\n"); 1416 } 1417 } 1418 rcu_read_unlock(); 1419 return error; 1420 } 1421 1422 /** 1423 * reverse_path_check - The tfile_check_list is list of file *, which have 1424 * links that are proposed to be newly added. We need to 1425 * make sure that those added links don't add too many 1426 * paths such that we will spend all our time waking up 1427 * eventpoll objects. 1428 * 1429 * Returns: Returns zero if the proposed links don't create too many paths, 1430 * -1 otherwise. 1431 */ 1432 static int reverse_path_check(void) 1433 { 1434 int error = 0; 1435 struct file *current_file; 1436 1437 /* let's call this for all tfiles */ 1438 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1439 path_count_init(); 1440 error = ep_call_nested(&poll_loop_ncalls, 1441 reverse_path_check_proc, current_file, 1442 current_file, current); 1443 if (error) 1444 break; 1445 } 1446 return error; 1447 } 1448 1449 static int ep_create_wakeup_source(struct epitem *epi) 1450 { 1451 struct name_snapshot n; 1452 struct wakeup_source *ws; 1453 1454 if (!epi->ep->ws) { 1455 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1456 if (!epi->ep->ws) 1457 return -ENOMEM; 1458 } 1459 1460 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1461 ws = wakeup_source_register(NULL, n.name.name); 1462 release_dentry_name_snapshot(&n); 1463 1464 if (!ws) 1465 return -ENOMEM; 1466 rcu_assign_pointer(epi->ws, ws); 1467 1468 return 0; 1469 } 1470 1471 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1472 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1473 { 1474 struct wakeup_source *ws = ep_wakeup_source(epi); 1475 1476 RCU_INIT_POINTER(epi->ws, NULL); 1477 1478 /* 1479 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1480 * used internally by wakeup_source_remove, too (called by 1481 * wakeup_source_unregister), so we cannot use call_rcu 1482 */ 1483 synchronize_rcu(); 1484 wakeup_source_unregister(ws); 1485 } 1486 1487 /* 1488 * Must be called with "mtx" held. 1489 */ 1490 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1491 struct file *tfile, int fd, int full_check) 1492 { 1493 int error, pwake = 0; 1494 __poll_t revents; 1495 long user_watches; 1496 struct epitem *epi; 1497 struct ep_pqueue epq; 1498 1499 lockdep_assert_irqs_enabled(); 1500 1501 user_watches = atomic_long_read(&ep->user->epoll_watches); 1502 if (unlikely(user_watches >= max_user_watches)) 1503 return -ENOSPC; 1504 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1505 return -ENOMEM; 1506 1507 /* Item initialization follow here ... */ 1508 INIT_LIST_HEAD(&epi->rdllink); 1509 INIT_LIST_HEAD(&epi->fllink); 1510 INIT_LIST_HEAD(&epi->pwqlist); 1511 epi->ep = ep; 1512 ep_set_ffd(&epi->ffd, tfile, fd); 1513 epi->event = *event; 1514 epi->nwait = 0; 1515 epi->next = EP_UNACTIVE_PTR; 1516 if (epi->event.events & EPOLLWAKEUP) { 1517 error = ep_create_wakeup_source(epi); 1518 if (error) 1519 goto error_create_wakeup_source; 1520 } else { 1521 RCU_INIT_POINTER(epi->ws, NULL); 1522 } 1523 1524 /* Add the current item to the list of active epoll hook for this file */ 1525 spin_lock(&tfile->f_lock); 1526 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); 1527 spin_unlock(&tfile->f_lock); 1528 1529 /* 1530 * Add the current item to the RB tree. All RB tree operations are 1531 * protected by "mtx", and ep_insert() is called with "mtx" held. 1532 */ 1533 ep_rbtree_insert(ep, epi); 1534 1535 /* now check if we've created too many backpaths */ 1536 error = -EINVAL; 1537 if (full_check && reverse_path_check()) 1538 goto error_remove_epi; 1539 1540 /* Initialize the poll table using the queue callback */ 1541 epq.epi = epi; 1542 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1543 1544 /* 1545 * Attach the item to the poll hooks and get current event bits. 1546 * We can safely use the file* here because its usage count has 1547 * been increased by the caller of this function. Note that after 1548 * this operation completes, the poll callback can start hitting 1549 * the new item. 1550 */ 1551 revents = ep_item_poll(epi, &epq.pt, 1); 1552 1553 /* 1554 * We have to check if something went wrong during the poll wait queue 1555 * install process. Namely an allocation for a wait queue failed due 1556 * high memory pressure. 1557 */ 1558 error = -ENOMEM; 1559 if (epi->nwait < 0) 1560 goto error_unregister; 1561 1562 /* We have to drop the new item inside our item list to keep track of it */ 1563 write_lock_irq(&ep->lock); 1564 1565 /* record NAPI ID of new item if present */ 1566 ep_set_busy_poll_napi_id(epi); 1567 1568 /* If the file is already "ready" we drop it inside the ready list */ 1569 if (revents && !ep_is_linked(epi)) { 1570 list_add_tail(&epi->rdllink, &ep->rdllist); 1571 ep_pm_stay_awake(epi); 1572 1573 /* Notify waiting tasks that events are available */ 1574 if (waitqueue_active(&ep->wq)) 1575 wake_up(&ep->wq); 1576 if (waitqueue_active(&ep->poll_wait)) 1577 pwake++; 1578 } 1579 1580 write_unlock_irq(&ep->lock); 1581 1582 atomic_long_inc(&ep->user->epoll_watches); 1583 1584 /* We have to call this outside the lock */ 1585 if (pwake) 1586 ep_poll_safewake(ep, NULL); 1587 1588 return 0; 1589 1590 error_unregister: 1591 ep_unregister_pollwait(ep, epi); 1592 error_remove_epi: 1593 spin_lock(&tfile->f_lock); 1594 list_del_rcu(&epi->fllink); 1595 spin_unlock(&tfile->f_lock); 1596 1597 rb_erase_cached(&epi->rbn, &ep->rbr); 1598 1599 /* 1600 * We need to do this because an event could have been arrived on some 1601 * allocated wait queue. Note that we don't care about the ep->ovflist 1602 * list, since that is used/cleaned only inside a section bound by "mtx". 1603 * And ep_insert() is called with "mtx" held. 1604 */ 1605 write_lock_irq(&ep->lock); 1606 if (ep_is_linked(epi)) 1607 list_del_init(&epi->rdllink); 1608 write_unlock_irq(&ep->lock); 1609 1610 wakeup_source_unregister(ep_wakeup_source(epi)); 1611 1612 error_create_wakeup_source: 1613 kmem_cache_free(epi_cache, epi); 1614 1615 return error; 1616 } 1617 1618 /* 1619 * Modify the interest event mask by dropping an event if the new mask 1620 * has a match in the current file status. Must be called with "mtx" held. 1621 */ 1622 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1623 const struct epoll_event *event) 1624 { 1625 int pwake = 0; 1626 poll_table pt; 1627 1628 lockdep_assert_irqs_enabled(); 1629 1630 init_poll_funcptr(&pt, NULL); 1631 1632 /* 1633 * Set the new event interest mask before calling f_op->poll(); 1634 * otherwise we might miss an event that happens between the 1635 * f_op->poll() call and the new event set registering. 1636 */ 1637 epi->event.events = event->events; /* need barrier below */ 1638 epi->event.data = event->data; /* protected by mtx */ 1639 if (epi->event.events & EPOLLWAKEUP) { 1640 if (!ep_has_wakeup_source(epi)) 1641 ep_create_wakeup_source(epi); 1642 } else if (ep_has_wakeup_source(epi)) { 1643 ep_destroy_wakeup_source(epi); 1644 } 1645 1646 /* 1647 * The following barrier has two effects: 1648 * 1649 * 1) Flush epi changes above to other CPUs. This ensures 1650 * we do not miss events from ep_poll_callback if an 1651 * event occurs immediately after we call f_op->poll(). 1652 * We need this because we did not take ep->lock while 1653 * changing epi above (but ep_poll_callback does take 1654 * ep->lock). 1655 * 1656 * 2) We also need to ensure we do not miss _past_ events 1657 * when calling f_op->poll(). This barrier also 1658 * pairs with the barrier in wq_has_sleeper (see 1659 * comments for wq_has_sleeper). 1660 * 1661 * This barrier will now guarantee ep_poll_callback or f_op->poll 1662 * (or both) will notice the readiness of an item. 1663 */ 1664 smp_mb(); 1665 1666 /* 1667 * Get current event bits. We can safely use the file* here because 1668 * its usage count has been increased by the caller of this function. 1669 * If the item is "hot" and it is not registered inside the ready 1670 * list, push it inside. 1671 */ 1672 if (ep_item_poll(epi, &pt, 1)) { 1673 write_lock_irq(&ep->lock); 1674 if (!ep_is_linked(epi)) { 1675 list_add_tail(&epi->rdllink, &ep->rdllist); 1676 ep_pm_stay_awake(epi); 1677 1678 /* Notify waiting tasks that events are available */ 1679 if (waitqueue_active(&ep->wq)) 1680 wake_up(&ep->wq); 1681 if (waitqueue_active(&ep->poll_wait)) 1682 pwake++; 1683 } 1684 write_unlock_irq(&ep->lock); 1685 } 1686 1687 /* We have to call this outside the lock */ 1688 if (pwake) 1689 ep_poll_safewake(ep, NULL); 1690 1691 return 0; 1692 } 1693 1694 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1695 void *priv) 1696 { 1697 struct ep_send_events_data *esed = priv; 1698 __poll_t revents; 1699 struct epitem *epi, *tmp; 1700 struct epoll_event __user *uevent = esed->events; 1701 struct wakeup_source *ws; 1702 poll_table pt; 1703 1704 init_poll_funcptr(&pt, NULL); 1705 esed->res = 0; 1706 1707 /* 1708 * We can loop without lock because we are passed a task private list. 1709 * Items cannot vanish during the loop because ep_scan_ready_list() is 1710 * holding "mtx" during this call. 1711 */ 1712 lockdep_assert_held(&ep->mtx); 1713 1714 list_for_each_entry_safe(epi, tmp, head, rdllink) { 1715 if (esed->res >= esed->maxevents) 1716 break; 1717 1718 /* 1719 * Activate ep->ws before deactivating epi->ws to prevent 1720 * triggering auto-suspend here (in case we reactive epi->ws 1721 * below). 1722 * 1723 * This could be rearranged to delay the deactivation of epi->ws 1724 * instead, but then epi->ws would temporarily be out of sync 1725 * with ep_is_linked(). 1726 */ 1727 ws = ep_wakeup_source(epi); 1728 if (ws) { 1729 if (ws->active) 1730 __pm_stay_awake(ep->ws); 1731 __pm_relax(ws); 1732 } 1733 1734 list_del_init(&epi->rdllink); 1735 1736 /* 1737 * If the event mask intersect the caller-requested one, 1738 * deliver the event to userspace. Again, ep_scan_ready_list() 1739 * is holding ep->mtx, so no operations coming from userspace 1740 * can change the item. 1741 */ 1742 revents = ep_item_poll(epi, &pt, 1); 1743 if (!revents) 1744 continue; 1745 1746 if (__put_user(revents, &uevent->events) || 1747 __put_user(epi->event.data, &uevent->data)) { 1748 list_add(&epi->rdllink, head); 1749 ep_pm_stay_awake(epi); 1750 if (!esed->res) 1751 esed->res = -EFAULT; 1752 return 0; 1753 } 1754 esed->res++; 1755 uevent++; 1756 if (epi->event.events & EPOLLONESHOT) 1757 epi->event.events &= EP_PRIVATE_BITS; 1758 else if (!(epi->event.events & EPOLLET)) { 1759 /* 1760 * If this file has been added with Level 1761 * Trigger mode, we need to insert back inside 1762 * the ready list, so that the next call to 1763 * epoll_wait() will check again the events 1764 * availability. At this point, no one can insert 1765 * into ep->rdllist besides us. The epoll_ctl() 1766 * callers are locked out by 1767 * ep_scan_ready_list() holding "mtx" and the 1768 * poll callback will queue them in ep->ovflist. 1769 */ 1770 list_add_tail(&epi->rdllink, &ep->rdllist); 1771 ep_pm_stay_awake(epi); 1772 } 1773 } 1774 1775 return 0; 1776 } 1777 1778 static int ep_send_events(struct eventpoll *ep, 1779 struct epoll_event __user *events, int maxevents) 1780 { 1781 struct ep_send_events_data esed; 1782 1783 esed.maxevents = maxevents; 1784 esed.events = events; 1785 1786 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1787 return esed.res; 1788 } 1789 1790 static inline struct timespec64 ep_set_mstimeout(long ms) 1791 { 1792 struct timespec64 now, ts = { 1793 .tv_sec = ms / MSEC_PER_SEC, 1794 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1795 }; 1796 1797 ktime_get_ts64(&now); 1798 return timespec64_add_safe(now, ts); 1799 } 1800 1801 /** 1802 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1803 * event buffer. 1804 * 1805 * @ep: Pointer to the eventpoll context. 1806 * @events: Pointer to the userspace buffer where the ready events should be 1807 * stored. 1808 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1809 * @timeout: Maximum timeout for the ready events fetch operation, in 1810 * milliseconds. If the @timeout is zero, the function will not block, 1811 * while if the @timeout is less than zero, the function will block 1812 * until at least one event has been retrieved (or an error 1813 * occurred). 1814 * 1815 * Returns: Returns the number of ready events which have been fetched, or an 1816 * error code, in case of error. 1817 */ 1818 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1819 int maxevents, long timeout) 1820 { 1821 int res = 0, eavail, timed_out = 0; 1822 u64 slack = 0; 1823 wait_queue_entry_t wait; 1824 ktime_t expires, *to = NULL; 1825 1826 lockdep_assert_irqs_enabled(); 1827 1828 if (timeout > 0) { 1829 struct timespec64 end_time = ep_set_mstimeout(timeout); 1830 1831 slack = select_estimate_accuracy(&end_time); 1832 to = &expires; 1833 *to = timespec64_to_ktime(end_time); 1834 } else if (timeout == 0) { 1835 /* 1836 * Avoid the unnecessary trip to the wait queue loop, if the 1837 * caller specified a non blocking operation. We still need 1838 * lock because we could race and not see an epi being added 1839 * to the ready list while in irq callback. Thus incorrectly 1840 * returning 0 back to userspace. 1841 */ 1842 timed_out = 1; 1843 1844 write_lock_irq(&ep->lock); 1845 eavail = ep_events_available(ep); 1846 write_unlock_irq(&ep->lock); 1847 1848 goto send_events; 1849 } 1850 1851 fetch_events: 1852 1853 if (!ep_events_available(ep)) 1854 ep_busy_loop(ep, timed_out); 1855 1856 eavail = ep_events_available(ep); 1857 if (eavail) 1858 goto send_events; 1859 1860 /* 1861 * Busy poll timed out. Drop NAPI ID for now, we can add 1862 * it back in when we have moved a socket with a valid NAPI 1863 * ID onto the ready list. 1864 */ 1865 ep_reset_busy_poll_napi_id(ep); 1866 1867 do { 1868 /* 1869 * Internally init_wait() uses autoremove_wake_function(), 1870 * thus wait entry is removed from the wait queue on each 1871 * wakeup. Why it is important? In case of several waiters 1872 * each new wakeup will hit the next waiter, giving it the 1873 * chance to harvest new event. Otherwise wakeup can be 1874 * lost. This is also good performance-wise, because on 1875 * normal wakeup path no need to call __remove_wait_queue() 1876 * explicitly, thus ep->lock is not taken, which halts the 1877 * event delivery. 1878 */ 1879 init_wait(&wait); 1880 1881 write_lock_irq(&ep->lock); 1882 /* 1883 * Barrierless variant, waitqueue_active() is called under 1884 * the same lock on wakeup ep_poll_callback() side, so it 1885 * is safe to avoid an explicit barrier. 1886 */ 1887 __set_current_state(TASK_INTERRUPTIBLE); 1888 1889 /* 1890 * Do the final check under the lock. ep_scan_ready_list() 1891 * plays with two lists (->rdllist and ->ovflist) and there 1892 * is always a race when both lists are empty for short 1893 * period of time although events are pending, so lock is 1894 * important. 1895 */ 1896 eavail = ep_events_available(ep); 1897 if (!eavail) { 1898 if (signal_pending(current)) 1899 res = -EINTR; 1900 else 1901 __add_wait_queue_exclusive(&ep->wq, &wait); 1902 } 1903 write_unlock_irq(&ep->lock); 1904 1905 if (eavail || res) 1906 break; 1907 1908 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) { 1909 timed_out = 1; 1910 break; 1911 } 1912 1913 /* We were woken up, thus go and try to harvest some events */ 1914 eavail = 1; 1915 1916 } while (0); 1917 1918 __set_current_state(TASK_RUNNING); 1919 1920 if (!list_empty_careful(&wait.entry)) { 1921 write_lock_irq(&ep->lock); 1922 __remove_wait_queue(&ep->wq, &wait); 1923 write_unlock_irq(&ep->lock); 1924 } 1925 1926 send_events: 1927 if (fatal_signal_pending(current)) { 1928 /* 1929 * Always short-circuit for fatal signals to allow 1930 * threads to make a timely exit without the chance of 1931 * finding more events available and fetching 1932 * repeatedly. 1933 */ 1934 res = -EINTR; 1935 } 1936 /* 1937 * Try to transfer events to user space. In case we get 0 events and 1938 * there's still timeout left over, we go trying again in search of 1939 * more luck. 1940 */ 1941 if (!res && eavail && 1942 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1943 goto fetch_events; 1944 1945 return res; 1946 } 1947 1948 /** 1949 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1950 * API, to verify that adding an epoll file inside another 1951 * epoll structure, does not violate the constraints, in 1952 * terms of closed loops, or too deep chains (which can 1953 * result in excessive stack usage). 1954 * 1955 * @priv: Pointer to the epoll file to be currently checked. 1956 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1957 * data structure pointer. 1958 * @call_nests: Current dept of the @ep_call_nested() call stack. 1959 * 1960 * Returns: Returns zero if adding the epoll @file inside current epoll 1961 * structure @ep does not violate the constraints, or -1 otherwise. 1962 */ 1963 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1964 { 1965 int error = 0; 1966 struct file *file = priv; 1967 struct eventpoll *ep = file->private_data; 1968 struct eventpoll *ep_tovisit; 1969 struct rb_node *rbp; 1970 struct epitem *epi; 1971 1972 mutex_lock_nested(&ep->mtx, call_nests + 1); 1973 ep->gen = loop_check_gen; 1974 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1975 epi = rb_entry(rbp, struct epitem, rbn); 1976 if (unlikely(is_file_epoll(epi->ffd.file))) { 1977 ep_tovisit = epi->ffd.file->private_data; 1978 if (ep_tovisit->gen == loop_check_gen) 1979 continue; 1980 error = ep_call_nested(&poll_loop_ncalls, 1981 ep_loop_check_proc, epi->ffd.file, 1982 ep_tovisit, current); 1983 if (error != 0) 1984 break; 1985 } else { 1986 /* 1987 * If we've reached a file that is not associated with 1988 * an ep, then we need to check if the newly added 1989 * links are going to add too many wakeup paths. We do 1990 * this by adding it to the tfile_check_list, if it's 1991 * not already there, and calling reverse_path_check() 1992 * during ep_insert(). 1993 */ 1994 if (list_empty(&epi->ffd.file->f_tfile_llink)) { 1995 if (get_file_rcu(epi->ffd.file)) 1996 list_add(&epi->ffd.file->f_tfile_llink, 1997 &tfile_check_list); 1998 } 1999 } 2000 } 2001 mutex_unlock(&ep->mtx); 2002 2003 return error; 2004 } 2005 2006 /** 2007 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 2008 * another epoll file (represented by @ep) does not create 2009 * closed loops or too deep chains. 2010 * 2011 * @ep: Pointer to the epoll private data structure. 2012 * @file: Pointer to the epoll file to be checked. 2013 * 2014 * Returns: Returns zero if adding the epoll @file inside current epoll 2015 * structure @ep does not violate the constraints, or -1 otherwise. 2016 */ 2017 static int ep_loop_check(struct eventpoll *ep, struct file *file) 2018 { 2019 return ep_call_nested(&poll_loop_ncalls, 2020 ep_loop_check_proc, file, ep, current); 2021 } 2022 2023 static void clear_tfile_check_list(void) 2024 { 2025 struct file *file; 2026 2027 /* first clear the tfile_check_list */ 2028 while (!list_empty(&tfile_check_list)) { 2029 file = list_first_entry(&tfile_check_list, struct file, 2030 f_tfile_llink); 2031 list_del_init(&file->f_tfile_llink); 2032 fput(file); 2033 } 2034 INIT_LIST_HEAD(&tfile_check_list); 2035 } 2036 2037 /* 2038 * Open an eventpoll file descriptor. 2039 */ 2040 static int do_epoll_create(int flags) 2041 { 2042 int error, fd; 2043 struct eventpoll *ep = NULL; 2044 struct file *file; 2045 2046 /* Check the EPOLL_* constant for consistency. */ 2047 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2048 2049 if (flags & ~EPOLL_CLOEXEC) 2050 return -EINVAL; 2051 /* 2052 * Create the internal data structure ("struct eventpoll"). 2053 */ 2054 error = ep_alloc(&ep); 2055 if (error < 0) 2056 return error; 2057 /* 2058 * Creates all the items needed to setup an eventpoll file. That is, 2059 * a file structure and a free file descriptor. 2060 */ 2061 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2062 if (fd < 0) { 2063 error = fd; 2064 goto out_free_ep; 2065 } 2066 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2067 O_RDWR | (flags & O_CLOEXEC)); 2068 if (IS_ERR(file)) { 2069 error = PTR_ERR(file); 2070 goto out_free_fd; 2071 } 2072 ep->file = file; 2073 fd_install(fd, file); 2074 return fd; 2075 2076 out_free_fd: 2077 put_unused_fd(fd); 2078 out_free_ep: 2079 ep_free(ep); 2080 return error; 2081 } 2082 2083 SYSCALL_DEFINE1(epoll_create1, int, flags) 2084 { 2085 return do_epoll_create(flags); 2086 } 2087 2088 SYSCALL_DEFINE1(epoll_create, int, size) 2089 { 2090 if (size <= 0) 2091 return -EINVAL; 2092 2093 return do_epoll_create(0); 2094 } 2095 2096 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2097 bool nonblock) 2098 { 2099 if (!nonblock) { 2100 mutex_lock_nested(mutex, depth); 2101 return 0; 2102 } 2103 if (mutex_trylock(mutex)) 2104 return 0; 2105 return -EAGAIN; 2106 } 2107 2108 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2109 bool nonblock) 2110 { 2111 int error; 2112 int full_check = 0; 2113 struct fd f, tf; 2114 struct eventpoll *ep; 2115 struct epitem *epi; 2116 struct eventpoll *tep = NULL; 2117 2118 error = -EBADF; 2119 f = fdget(epfd); 2120 if (!f.file) 2121 goto error_return; 2122 2123 /* Get the "struct file *" for the target file */ 2124 tf = fdget(fd); 2125 if (!tf.file) 2126 goto error_fput; 2127 2128 /* The target file descriptor must support poll */ 2129 error = -EPERM; 2130 if (!file_can_poll(tf.file)) 2131 goto error_tgt_fput; 2132 2133 /* Check if EPOLLWAKEUP is allowed */ 2134 if (ep_op_has_event(op)) 2135 ep_take_care_of_epollwakeup(epds); 2136 2137 /* 2138 * We have to check that the file structure underneath the file descriptor 2139 * the user passed to us _is_ an eventpoll file. And also we do not permit 2140 * adding an epoll file descriptor inside itself. 2141 */ 2142 error = -EINVAL; 2143 if (f.file == tf.file || !is_file_epoll(f.file)) 2144 goto error_tgt_fput; 2145 2146 /* 2147 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2148 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2149 * Also, we do not currently supported nested exclusive wakeups. 2150 */ 2151 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2152 if (op == EPOLL_CTL_MOD) 2153 goto error_tgt_fput; 2154 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2155 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2156 goto error_tgt_fput; 2157 } 2158 2159 /* 2160 * At this point it is safe to assume that the "private_data" contains 2161 * our own data structure. 2162 */ 2163 ep = f.file->private_data; 2164 2165 /* 2166 * When we insert an epoll file descriptor, inside another epoll file 2167 * descriptor, there is the change of creating closed loops, which are 2168 * better be handled here, than in more critical paths. While we are 2169 * checking for loops we also determine the list of files reachable 2170 * and hang them on the tfile_check_list, so we can check that we 2171 * haven't created too many possible wakeup paths. 2172 * 2173 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2174 * the epoll file descriptor is attaching directly to a wakeup source, 2175 * unless the epoll file descriptor is nested. The purpose of taking the 2176 * 'epmutex' on add is to prevent complex toplogies such as loops and 2177 * deep wakeup paths from forming in parallel through multiple 2178 * EPOLL_CTL_ADD operations. 2179 */ 2180 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2181 if (error) 2182 goto error_tgt_fput; 2183 if (op == EPOLL_CTL_ADD) { 2184 if (!list_empty(&f.file->f_ep_links) || 2185 ep->gen == loop_check_gen || 2186 is_file_epoll(tf.file)) { 2187 mutex_unlock(&ep->mtx); 2188 error = epoll_mutex_lock(&epmutex, 0, nonblock); 2189 if (error) 2190 goto error_tgt_fput; 2191 loop_check_gen++; 2192 full_check = 1; 2193 if (is_file_epoll(tf.file)) { 2194 error = -ELOOP; 2195 if (ep_loop_check(ep, tf.file) != 0) 2196 goto error_tgt_fput; 2197 } else { 2198 get_file(tf.file); 2199 list_add(&tf.file->f_tfile_llink, 2200 &tfile_check_list); 2201 } 2202 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2203 if (error) 2204 goto error_tgt_fput; 2205 if (is_file_epoll(tf.file)) { 2206 tep = tf.file->private_data; 2207 error = epoll_mutex_lock(&tep->mtx, 1, nonblock); 2208 if (error) { 2209 mutex_unlock(&ep->mtx); 2210 goto error_tgt_fput; 2211 } 2212 } 2213 } 2214 } 2215 2216 /* 2217 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 2218 * above, we can be sure to be able to use the item looked up by 2219 * ep_find() till we release the mutex. 2220 */ 2221 epi = ep_find(ep, tf.file, fd); 2222 2223 error = -EINVAL; 2224 switch (op) { 2225 case EPOLL_CTL_ADD: 2226 if (!epi) { 2227 epds->events |= EPOLLERR | EPOLLHUP; 2228 error = ep_insert(ep, epds, tf.file, fd, full_check); 2229 } else 2230 error = -EEXIST; 2231 break; 2232 case EPOLL_CTL_DEL: 2233 if (epi) 2234 error = ep_remove(ep, epi); 2235 else 2236 error = -ENOENT; 2237 break; 2238 case EPOLL_CTL_MOD: 2239 if (epi) { 2240 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2241 epds->events |= EPOLLERR | EPOLLHUP; 2242 error = ep_modify(ep, epi, epds); 2243 } 2244 } else 2245 error = -ENOENT; 2246 break; 2247 } 2248 if (tep != NULL) 2249 mutex_unlock(&tep->mtx); 2250 mutex_unlock(&ep->mtx); 2251 2252 error_tgt_fput: 2253 if (full_check) { 2254 clear_tfile_check_list(); 2255 loop_check_gen++; 2256 mutex_unlock(&epmutex); 2257 } 2258 2259 fdput(tf); 2260 error_fput: 2261 fdput(f); 2262 error_return: 2263 2264 return error; 2265 } 2266 2267 /* 2268 * The following function implements the controller interface for 2269 * the eventpoll file that enables the insertion/removal/change of 2270 * file descriptors inside the interest set. 2271 */ 2272 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2273 struct epoll_event __user *, event) 2274 { 2275 struct epoll_event epds; 2276 2277 if (ep_op_has_event(op) && 2278 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2279 return -EFAULT; 2280 2281 return do_epoll_ctl(epfd, op, fd, &epds, false); 2282 } 2283 2284 /* 2285 * Implement the event wait interface for the eventpoll file. It is the kernel 2286 * part of the user space epoll_wait(2). 2287 */ 2288 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2289 int maxevents, int timeout) 2290 { 2291 int error; 2292 struct fd f; 2293 struct eventpoll *ep; 2294 2295 /* The maximum number of event must be greater than zero */ 2296 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2297 return -EINVAL; 2298 2299 /* Verify that the area passed by the user is writeable */ 2300 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2301 return -EFAULT; 2302 2303 /* Get the "struct file *" for the eventpoll file */ 2304 f = fdget(epfd); 2305 if (!f.file) 2306 return -EBADF; 2307 2308 /* 2309 * We have to check that the file structure underneath the fd 2310 * the user passed to us _is_ an eventpoll file. 2311 */ 2312 error = -EINVAL; 2313 if (!is_file_epoll(f.file)) 2314 goto error_fput; 2315 2316 /* 2317 * At this point it is safe to assume that the "private_data" contains 2318 * our own data structure. 2319 */ 2320 ep = f.file->private_data; 2321 2322 /* Time to fish for events ... */ 2323 error = ep_poll(ep, events, maxevents, timeout); 2324 2325 error_fput: 2326 fdput(f); 2327 return error; 2328 } 2329 2330 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2331 int, maxevents, int, timeout) 2332 { 2333 return do_epoll_wait(epfd, events, maxevents, timeout); 2334 } 2335 2336 /* 2337 * Implement the event wait interface for the eventpoll file. It is the kernel 2338 * part of the user space epoll_pwait(2). 2339 */ 2340 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2341 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2342 size_t, sigsetsize) 2343 { 2344 int error; 2345 2346 /* 2347 * If the caller wants a certain signal mask to be set during the wait, 2348 * we apply it here. 2349 */ 2350 error = set_user_sigmask(sigmask, sigsetsize); 2351 if (error) 2352 return error; 2353 2354 error = do_epoll_wait(epfd, events, maxevents, timeout); 2355 restore_saved_sigmask_unless(error == -EINTR); 2356 2357 return error; 2358 } 2359 2360 #ifdef CONFIG_COMPAT 2361 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2362 struct epoll_event __user *, events, 2363 int, maxevents, int, timeout, 2364 const compat_sigset_t __user *, sigmask, 2365 compat_size_t, sigsetsize) 2366 { 2367 long err; 2368 2369 /* 2370 * If the caller wants a certain signal mask to be set during the wait, 2371 * we apply it here. 2372 */ 2373 err = set_compat_user_sigmask(sigmask, sigsetsize); 2374 if (err) 2375 return err; 2376 2377 err = do_epoll_wait(epfd, events, maxevents, timeout); 2378 restore_saved_sigmask_unless(err == -EINTR); 2379 2380 return err; 2381 } 2382 #endif 2383 2384 static int __init eventpoll_init(void) 2385 { 2386 struct sysinfo si; 2387 2388 si_meminfo(&si); 2389 /* 2390 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2391 */ 2392 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2393 EP_ITEM_COST; 2394 BUG_ON(max_user_watches < 0); 2395 2396 /* 2397 * Initialize the structure used to perform epoll file descriptor 2398 * inclusion loops checks. 2399 */ 2400 ep_nested_calls_init(&poll_loop_ncalls); 2401 2402 /* 2403 * We can have many thousands of epitems, so prevent this from 2404 * using an extra cache line on 64-bit (and smaller) CPUs 2405 */ 2406 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2407 2408 /* Allocates slab cache used to allocate "struct epitem" items */ 2409 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2410 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2411 2412 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2413 pwq_cache = kmem_cache_create("eventpoll_pwq", 2414 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2415 2416 return 0; 2417 } 2418 fs_initcall(eventpoll_init); 2419