xref: /openbmc/linux/fs/eventpoll.c (revision fa0dadde)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epnested_mutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (rwlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a rwlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * The epnested_mutex is acquired when inserting an epoll fd onto another
61  * epoll fd. We do this so that we walk the epoll tree and ensure that this
62  * insertion does not create a cycle of epoll file descriptors, which
63  * could lead to deadlock. We need a global mutex to prevent two
64  * simultaneous inserts (A into B and B into A) from racing and
65  * constructing a cycle without either insert observing that it is
66  * going to.
67  * It is necessary to acquire multiple "ep->mtx"es at once in the
68  * case when one epoll fd is added to another. In this case, we
69  * always acquire the locks in the order of nesting (i.e. after
70  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
71  * before e2->mtx). Since we disallow cycles of epoll file
72  * descriptors, this ensures that the mutexes are well-ordered. In
73  * order to communicate this nesting to lockdep, when walking a tree
74  * of epoll file descriptors, we use the current recursion depth as
75  * the lockdep subkey.
76  * It is possible to drop the "ep->mtx" and to use the global
77  * mutex "epnested_mutex" (together with "ep->lock") to have it working,
78  * but having "ep->mtx" will make the interface more scalable.
79  * Events that require holding "epnested_mutex" are very rare, while for
80  * normal operations the epoll private "ep->mtx" will guarantee
81  * a better scalability.
82  */
83 
84 /* Epoll private bits inside the event mask */
85 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
86 
87 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
88 
89 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
90 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
91 
92 /* Maximum number of nesting allowed inside epoll sets */
93 #define EP_MAX_NESTS 4
94 
95 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
96 
97 #define EP_UNACTIVE_PTR ((void *) -1L)
98 
99 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
100 
101 struct epoll_filefd {
102 	struct file *file;
103 	int fd;
104 } __packed;
105 
106 /* Wait structure used by the poll hooks */
107 struct eppoll_entry {
108 	/* List header used to link this structure to the "struct epitem" */
109 	struct eppoll_entry *next;
110 
111 	/* The "base" pointer is set to the container "struct epitem" */
112 	struct epitem *base;
113 
114 	/*
115 	 * Wait queue item that will be linked to the target file wait
116 	 * queue head.
117 	 */
118 	wait_queue_entry_t wait;
119 
120 	/* The wait queue head that linked the "wait" wait queue item */
121 	wait_queue_head_t *whead;
122 };
123 
124 /*
125  * Each file descriptor added to the eventpoll interface will
126  * have an entry of this type linked to the "rbr" RB tree.
127  * Avoid increasing the size of this struct, there can be many thousands
128  * of these on a server and we do not want this to take another cache line.
129  */
130 struct epitem {
131 	union {
132 		/* RB tree node links this structure to the eventpoll RB tree */
133 		struct rb_node rbn;
134 		/* Used to free the struct epitem */
135 		struct rcu_head rcu;
136 	};
137 
138 	/* List header used to link this structure to the eventpoll ready list */
139 	struct list_head rdllink;
140 
141 	/*
142 	 * Works together "struct eventpoll"->ovflist in keeping the
143 	 * single linked chain of items.
144 	 */
145 	struct epitem *next;
146 
147 	/* The file descriptor information this item refers to */
148 	struct epoll_filefd ffd;
149 
150 	/*
151 	 * Protected by file->f_lock, true for to-be-released epitem already
152 	 * removed from the "struct file" items list; together with
153 	 * eventpoll->refcount orchestrates "struct eventpoll" disposal
154 	 */
155 	bool dying;
156 
157 	/* List containing poll wait queues */
158 	struct eppoll_entry *pwqlist;
159 
160 	/* The "container" of this item */
161 	struct eventpoll *ep;
162 
163 	/* List header used to link this item to the "struct file" items list */
164 	struct hlist_node fllink;
165 
166 	/* wakeup_source used when EPOLLWAKEUP is set */
167 	struct wakeup_source __rcu *ws;
168 
169 	/* The structure that describe the interested events and the source fd */
170 	struct epoll_event event;
171 };
172 
173 /*
174  * This structure is stored inside the "private_data" member of the file
175  * structure and represents the main data structure for the eventpoll
176  * interface.
177  */
178 struct eventpoll {
179 	/*
180 	 * This mutex is used to ensure that files are not removed
181 	 * while epoll is using them. This is held during the event
182 	 * collection loop, the file cleanup path, the epoll file exit
183 	 * code and the ctl operations.
184 	 */
185 	struct mutex mtx;
186 
187 	/* Wait queue used by sys_epoll_wait() */
188 	wait_queue_head_t wq;
189 
190 	/* Wait queue used by file->poll() */
191 	wait_queue_head_t poll_wait;
192 
193 	/* List of ready file descriptors */
194 	struct list_head rdllist;
195 
196 	/* Lock which protects rdllist and ovflist */
197 	rwlock_t lock;
198 
199 	/* RB tree root used to store monitored fd structs */
200 	struct rb_root_cached rbr;
201 
202 	/*
203 	 * This is a single linked list that chains all the "struct epitem" that
204 	 * happened while transferring ready events to userspace w/out
205 	 * holding ->lock.
206 	 */
207 	struct epitem *ovflist;
208 
209 	/* wakeup_source used when ep_scan_ready_list is running */
210 	struct wakeup_source *ws;
211 
212 	/* The user that created the eventpoll descriptor */
213 	struct user_struct *user;
214 
215 	struct file *file;
216 
217 	/* used to optimize loop detection check */
218 	u64 gen;
219 	struct hlist_head refs;
220 
221 	/*
222 	 * usage count, used together with epitem->dying to
223 	 * orchestrate the disposal of this struct
224 	 */
225 	refcount_t refcount;
226 
227 #ifdef CONFIG_NET_RX_BUSY_POLL
228 	/* used to track busy poll napi_id */
229 	unsigned int napi_id;
230 #endif
231 
232 #ifdef CONFIG_DEBUG_LOCK_ALLOC
233 	/* tracks wakeup nests for lockdep validation */
234 	u8 nests;
235 #endif
236 };
237 
238 /* Wrapper struct used by poll queueing */
239 struct ep_pqueue {
240 	poll_table pt;
241 	struct epitem *epi;
242 };
243 
244 /*
245  * Configuration options available inside /proc/sys/fs/epoll/
246  */
247 /* Maximum number of epoll watched descriptors, per user */
248 static long max_user_watches __read_mostly;
249 
250 /* Used for cycles detection */
251 static DEFINE_MUTEX(epnested_mutex);
252 
253 static u64 loop_check_gen = 0;
254 
255 /* Used to check for epoll file descriptor inclusion loops */
256 static struct eventpoll *inserting_into;
257 
258 /* Slab cache used to allocate "struct epitem" */
259 static struct kmem_cache *epi_cache __read_mostly;
260 
261 /* Slab cache used to allocate "struct eppoll_entry" */
262 static struct kmem_cache *pwq_cache __read_mostly;
263 
264 /*
265  * List of files with newly added links, where we may need to limit the number
266  * of emanating paths. Protected by the epnested_mutex.
267  */
268 struct epitems_head {
269 	struct hlist_head epitems;
270 	struct epitems_head *next;
271 };
272 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
273 
274 static struct kmem_cache *ephead_cache __read_mostly;
275 
276 static inline void free_ephead(struct epitems_head *head)
277 {
278 	if (head)
279 		kmem_cache_free(ephead_cache, head);
280 }
281 
282 static void list_file(struct file *file)
283 {
284 	struct epitems_head *head;
285 
286 	head = container_of(file->f_ep, struct epitems_head, epitems);
287 	if (!head->next) {
288 		head->next = tfile_check_list;
289 		tfile_check_list = head;
290 	}
291 }
292 
293 static void unlist_file(struct epitems_head *head)
294 {
295 	struct epitems_head *to_free = head;
296 	struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
297 	if (p) {
298 		struct epitem *epi= container_of(p, struct epitem, fllink);
299 		spin_lock(&epi->ffd.file->f_lock);
300 		if (!hlist_empty(&head->epitems))
301 			to_free = NULL;
302 		head->next = NULL;
303 		spin_unlock(&epi->ffd.file->f_lock);
304 	}
305 	free_ephead(to_free);
306 }
307 
308 #ifdef CONFIG_SYSCTL
309 
310 #include <linux/sysctl.h>
311 
312 static long long_zero;
313 static long long_max = LONG_MAX;
314 
315 static struct ctl_table epoll_table[] = {
316 	{
317 		.procname	= "max_user_watches",
318 		.data		= &max_user_watches,
319 		.maxlen		= sizeof(max_user_watches),
320 		.mode		= 0644,
321 		.proc_handler	= proc_doulongvec_minmax,
322 		.extra1		= &long_zero,
323 		.extra2		= &long_max,
324 	},
325 	{ }
326 };
327 
328 static void __init epoll_sysctls_init(void)
329 {
330 	register_sysctl("fs/epoll", epoll_table);
331 }
332 #else
333 #define epoll_sysctls_init() do { } while (0)
334 #endif /* CONFIG_SYSCTL */
335 
336 static const struct file_operations eventpoll_fops;
337 
338 static inline int is_file_epoll(struct file *f)
339 {
340 	return f->f_op == &eventpoll_fops;
341 }
342 
343 /* Setup the structure that is used as key for the RB tree */
344 static inline void ep_set_ffd(struct epoll_filefd *ffd,
345 			      struct file *file, int fd)
346 {
347 	ffd->file = file;
348 	ffd->fd = fd;
349 }
350 
351 /* Compare RB tree keys */
352 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
353 			     struct epoll_filefd *p2)
354 {
355 	return (p1->file > p2->file ? +1:
356 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
357 }
358 
359 /* Tells us if the item is currently linked */
360 static inline int ep_is_linked(struct epitem *epi)
361 {
362 	return !list_empty(&epi->rdllink);
363 }
364 
365 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
366 {
367 	return container_of(p, struct eppoll_entry, wait);
368 }
369 
370 /* Get the "struct epitem" from a wait queue pointer */
371 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
372 {
373 	return container_of(p, struct eppoll_entry, wait)->base;
374 }
375 
376 /**
377  * ep_events_available - Checks if ready events might be available.
378  *
379  * @ep: Pointer to the eventpoll context.
380  *
381  * Return: a value different than %zero if ready events are available,
382  *          or %zero otherwise.
383  */
384 static inline int ep_events_available(struct eventpoll *ep)
385 {
386 	return !list_empty_careful(&ep->rdllist) ||
387 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
388 }
389 
390 #ifdef CONFIG_NET_RX_BUSY_POLL
391 static bool ep_busy_loop_end(void *p, unsigned long start_time)
392 {
393 	struct eventpoll *ep = p;
394 
395 	return ep_events_available(ep) || busy_loop_timeout(start_time);
396 }
397 
398 /*
399  * Busy poll if globally on and supporting sockets found && no events,
400  * busy loop will return if need_resched or ep_events_available.
401  *
402  * we must do our busy polling with irqs enabled
403  */
404 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
405 {
406 	unsigned int napi_id = READ_ONCE(ep->napi_id);
407 
408 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
409 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
410 			       BUSY_POLL_BUDGET);
411 		if (ep_events_available(ep))
412 			return true;
413 		/*
414 		 * Busy poll timed out.  Drop NAPI ID for now, we can add
415 		 * it back in when we have moved a socket with a valid NAPI
416 		 * ID onto the ready list.
417 		 */
418 		ep->napi_id = 0;
419 		return false;
420 	}
421 	return false;
422 }
423 
424 /*
425  * Set epoll busy poll NAPI ID from sk.
426  */
427 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
428 {
429 	struct eventpoll *ep;
430 	unsigned int napi_id;
431 	struct socket *sock;
432 	struct sock *sk;
433 
434 	if (!net_busy_loop_on())
435 		return;
436 
437 	sock = sock_from_file(epi->ffd.file);
438 	if (!sock)
439 		return;
440 
441 	sk = sock->sk;
442 	if (!sk)
443 		return;
444 
445 	napi_id = READ_ONCE(sk->sk_napi_id);
446 	ep = epi->ep;
447 
448 	/* Non-NAPI IDs can be rejected
449 	 *	or
450 	 * Nothing to do if we already have this ID
451 	 */
452 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
453 		return;
454 
455 	/* record NAPI ID for use in next busy poll */
456 	ep->napi_id = napi_id;
457 }
458 
459 #else
460 
461 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
462 {
463 	return false;
464 }
465 
466 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
467 {
468 }
469 
470 #endif /* CONFIG_NET_RX_BUSY_POLL */
471 
472 /*
473  * As described in commit 0ccf831cb lockdep: annotate epoll
474  * the use of wait queues used by epoll is done in a very controlled
475  * manner. Wake ups can nest inside each other, but are never done
476  * with the same locking. For example:
477  *
478  *   dfd = socket(...);
479  *   efd1 = epoll_create();
480  *   efd2 = epoll_create();
481  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
482  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
483  *
484  * When a packet arrives to the device underneath "dfd", the net code will
485  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
486  * callback wakeup entry on that queue, and the wake_up() performed by the
487  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
488  * (efd1) notices that it may have some event ready, so it needs to wake up
489  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
490  * that ends up in another wake_up(), after having checked about the
491  * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
492  * stack blasting.
493  *
494  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
495  * this special case of epoll.
496  */
497 #ifdef CONFIG_DEBUG_LOCK_ALLOC
498 
499 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
500 			     unsigned pollflags)
501 {
502 	struct eventpoll *ep_src;
503 	unsigned long flags;
504 	u8 nests = 0;
505 
506 	/*
507 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
508 	 * it might be natural to create a per-cpu nest count. However, since
509 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
510 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
511 	 * protected. Thus, we are introducing a per eventpoll nest field.
512 	 * If we are not being call from ep_poll_callback(), epi is NULL and
513 	 * we are at the first level of nesting, 0. Otherwise, we are being
514 	 * called from ep_poll_callback() and if a previous wakeup source is
515 	 * not an epoll file itself, we are at depth 1 since the wakeup source
516 	 * is depth 0. If the wakeup source is a previous epoll file in the
517 	 * wakeup chain then we use its nests value and record ours as
518 	 * nests + 1. The previous epoll file nests value is stable since its
519 	 * already holding its own poll_wait.lock.
520 	 */
521 	if (epi) {
522 		if ((is_file_epoll(epi->ffd.file))) {
523 			ep_src = epi->ffd.file->private_data;
524 			nests = ep_src->nests;
525 		} else {
526 			nests = 1;
527 		}
528 	}
529 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
530 	ep->nests = nests + 1;
531 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
532 	ep->nests = 0;
533 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
534 }
535 
536 #else
537 
538 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
539 			     unsigned pollflags)
540 {
541 	wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
542 }
543 
544 #endif
545 
546 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
547 {
548 	wait_queue_head_t *whead;
549 
550 	rcu_read_lock();
551 	/*
552 	 * If it is cleared by POLLFREE, it should be rcu-safe.
553 	 * If we read NULL we need a barrier paired with
554 	 * smp_store_release() in ep_poll_callback(), otherwise
555 	 * we rely on whead->lock.
556 	 */
557 	whead = smp_load_acquire(&pwq->whead);
558 	if (whead)
559 		remove_wait_queue(whead, &pwq->wait);
560 	rcu_read_unlock();
561 }
562 
563 /*
564  * This function unregisters poll callbacks from the associated file
565  * descriptor.  Must be called with "mtx" held.
566  */
567 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
568 {
569 	struct eppoll_entry **p = &epi->pwqlist;
570 	struct eppoll_entry *pwq;
571 
572 	while ((pwq = *p) != NULL) {
573 		*p = pwq->next;
574 		ep_remove_wait_queue(pwq);
575 		kmem_cache_free(pwq_cache, pwq);
576 	}
577 }
578 
579 /* call only when ep->mtx is held */
580 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
581 {
582 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
583 }
584 
585 /* call only when ep->mtx is held */
586 static inline void ep_pm_stay_awake(struct epitem *epi)
587 {
588 	struct wakeup_source *ws = ep_wakeup_source(epi);
589 
590 	if (ws)
591 		__pm_stay_awake(ws);
592 }
593 
594 static inline bool ep_has_wakeup_source(struct epitem *epi)
595 {
596 	return rcu_access_pointer(epi->ws) ? true : false;
597 }
598 
599 /* call when ep->mtx cannot be held (ep_poll_callback) */
600 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
601 {
602 	struct wakeup_source *ws;
603 
604 	rcu_read_lock();
605 	ws = rcu_dereference(epi->ws);
606 	if (ws)
607 		__pm_stay_awake(ws);
608 	rcu_read_unlock();
609 }
610 
611 
612 /*
613  * ep->mutex needs to be held because we could be hit by
614  * eventpoll_release_file() and epoll_ctl().
615  */
616 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
617 {
618 	/*
619 	 * Steal the ready list, and re-init the original one to the
620 	 * empty list. Also, set ep->ovflist to NULL so that events
621 	 * happening while looping w/out locks, are not lost. We cannot
622 	 * have the poll callback to queue directly on ep->rdllist,
623 	 * because we want the "sproc" callback to be able to do it
624 	 * in a lockless way.
625 	 */
626 	lockdep_assert_irqs_enabled();
627 	write_lock_irq(&ep->lock);
628 	list_splice_init(&ep->rdllist, txlist);
629 	WRITE_ONCE(ep->ovflist, NULL);
630 	write_unlock_irq(&ep->lock);
631 }
632 
633 static void ep_done_scan(struct eventpoll *ep,
634 			 struct list_head *txlist)
635 {
636 	struct epitem *epi, *nepi;
637 
638 	write_lock_irq(&ep->lock);
639 	/*
640 	 * During the time we spent inside the "sproc" callback, some
641 	 * other events might have been queued by the poll callback.
642 	 * We re-insert them inside the main ready-list here.
643 	 */
644 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
645 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
646 		/*
647 		 * We need to check if the item is already in the list.
648 		 * During the "sproc" callback execution time, items are
649 		 * queued into ->ovflist but the "txlist" might already
650 		 * contain them, and the list_splice() below takes care of them.
651 		 */
652 		if (!ep_is_linked(epi)) {
653 			/*
654 			 * ->ovflist is LIFO, so we have to reverse it in order
655 			 * to keep in FIFO.
656 			 */
657 			list_add(&epi->rdllink, &ep->rdllist);
658 			ep_pm_stay_awake(epi);
659 		}
660 	}
661 	/*
662 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
663 	 * releasing the lock, events will be queued in the normal way inside
664 	 * ep->rdllist.
665 	 */
666 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
667 
668 	/*
669 	 * Quickly re-inject items left on "txlist".
670 	 */
671 	list_splice(txlist, &ep->rdllist);
672 	__pm_relax(ep->ws);
673 
674 	if (!list_empty(&ep->rdllist)) {
675 		if (waitqueue_active(&ep->wq))
676 			wake_up(&ep->wq);
677 	}
678 
679 	write_unlock_irq(&ep->lock);
680 }
681 
682 static void epi_rcu_free(struct rcu_head *head)
683 {
684 	struct epitem *epi = container_of(head, struct epitem, rcu);
685 	kmem_cache_free(epi_cache, epi);
686 }
687 
688 static void ep_get(struct eventpoll *ep)
689 {
690 	refcount_inc(&ep->refcount);
691 }
692 
693 /*
694  * Returns true if the event poll can be disposed
695  */
696 static bool ep_refcount_dec_and_test(struct eventpoll *ep)
697 {
698 	if (!refcount_dec_and_test(&ep->refcount))
699 		return false;
700 
701 	WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
702 	return true;
703 }
704 
705 static void ep_free(struct eventpoll *ep)
706 {
707 	mutex_destroy(&ep->mtx);
708 	free_uid(ep->user);
709 	wakeup_source_unregister(ep->ws);
710 	kfree(ep);
711 }
712 
713 /*
714  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
715  * all the associated resources. Must be called with "mtx" held.
716  * If the dying flag is set, do the removal only if force is true.
717  * This prevents ep_clear_and_put() from dropping all the ep references
718  * while running concurrently with eventpoll_release_file().
719  * Returns true if the eventpoll can be disposed.
720  */
721 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
722 {
723 	struct file *file = epi->ffd.file;
724 	struct epitems_head *to_free;
725 	struct hlist_head *head;
726 
727 	lockdep_assert_irqs_enabled();
728 
729 	/*
730 	 * Removes poll wait queue hooks.
731 	 */
732 	ep_unregister_pollwait(ep, epi);
733 
734 	/* Remove the current item from the list of epoll hooks */
735 	spin_lock(&file->f_lock);
736 	if (epi->dying && !force) {
737 		spin_unlock(&file->f_lock);
738 		return false;
739 	}
740 
741 	to_free = NULL;
742 	head = file->f_ep;
743 	if (head->first == &epi->fllink && !epi->fllink.next) {
744 		file->f_ep = NULL;
745 		if (!is_file_epoll(file)) {
746 			struct epitems_head *v;
747 			v = container_of(head, struct epitems_head, epitems);
748 			if (!smp_load_acquire(&v->next))
749 				to_free = v;
750 		}
751 	}
752 	hlist_del_rcu(&epi->fllink);
753 	spin_unlock(&file->f_lock);
754 	free_ephead(to_free);
755 
756 	rb_erase_cached(&epi->rbn, &ep->rbr);
757 
758 	write_lock_irq(&ep->lock);
759 	if (ep_is_linked(epi))
760 		list_del_init(&epi->rdllink);
761 	write_unlock_irq(&ep->lock);
762 
763 	wakeup_source_unregister(ep_wakeup_source(epi));
764 	/*
765 	 * At this point it is safe to free the eventpoll item. Use the union
766 	 * field epi->rcu, since we are trying to minimize the size of
767 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
768 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
769 	 * use of the rbn field.
770 	 */
771 	call_rcu(&epi->rcu, epi_rcu_free);
772 
773 	percpu_counter_dec(&ep->user->epoll_watches);
774 	return ep_refcount_dec_and_test(ep);
775 }
776 
777 /*
778  * ep_remove variant for callers owing an additional reference to the ep
779  */
780 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
781 {
782 	WARN_ON_ONCE(__ep_remove(ep, epi, false));
783 }
784 
785 static void ep_clear_and_put(struct eventpoll *ep)
786 {
787 	struct rb_node *rbp, *next;
788 	struct epitem *epi;
789 	bool dispose;
790 
791 	/* We need to release all tasks waiting for these file */
792 	if (waitqueue_active(&ep->poll_wait))
793 		ep_poll_safewake(ep, NULL, 0);
794 
795 	mutex_lock(&ep->mtx);
796 
797 	/*
798 	 * Walks through the whole tree by unregistering poll callbacks.
799 	 */
800 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
801 		epi = rb_entry(rbp, struct epitem, rbn);
802 
803 		ep_unregister_pollwait(ep, epi);
804 		cond_resched();
805 	}
806 
807 	/*
808 	 * Walks through the whole tree and try to free each "struct epitem".
809 	 * Note that ep_remove_safe() will not remove the epitem in case of a
810 	 * racing eventpoll_release_file(); the latter will do the removal.
811 	 * At this point we are sure no poll callbacks will be lingering around.
812 	 * Since we still own a reference to the eventpoll struct, the loop can't
813 	 * dispose it.
814 	 */
815 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
816 		next = rb_next(rbp);
817 		epi = rb_entry(rbp, struct epitem, rbn);
818 		ep_remove_safe(ep, epi);
819 		cond_resched();
820 	}
821 
822 	dispose = ep_refcount_dec_and_test(ep);
823 	mutex_unlock(&ep->mtx);
824 
825 	if (dispose)
826 		ep_free(ep);
827 }
828 
829 static int ep_eventpoll_release(struct inode *inode, struct file *file)
830 {
831 	struct eventpoll *ep = file->private_data;
832 
833 	if (ep)
834 		ep_clear_and_put(ep);
835 
836 	return 0;
837 }
838 
839 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
840 
841 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
842 {
843 	struct eventpoll *ep = file->private_data;
844 	LIST_HEAD(txlist);
845 	struct epitem *epi, *tmp;
846 	poll_table pt;
847 	__poll_t res = 0;
848 
849 	init_poll_funcptr(&pt, NULL);
850 
851 	/* Insert inside our poll wait queue */
852 	poll_wait(file, &ep->poll_wait, wait);
853 
854 	/*
855 	 * Proceed to find out if wanted events are really available inside
856 	 * the ready list.
857 	 */
858 	mutex_lock_nested(&ep->mtx, depth);
859 	ep_start_scan(ep, &txlist);
860 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
861 		if (ep_item_poll(epi, &pt, depth + 1)) {
862 			res = EPOLLIN | EPOLLRDNORM;
863 			break;
864 		} else {
865 			/*
866 			 * Item has been dropped into the ready list by the poll
867 			 * callback, but it's not actually ready, as far as
868 			 * caller requested events goes. We can remove it here.
869 			 */
870 			__pm_relax(ep_wakeup_source(epi));
871 			list_del_init(&epi->rdllink);
872 		}
873 	}
874 	ep_done_scan(ep, &txlist);
875 	mutex_unlock(&ep->mtx);
876 	return res;
877 }
878 
879 /*
880  * Differs from ep_eventpoll_poll() in that internal callers already have
881  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
882  * is correctly annotated.
883  */
884 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
885 				 int depth)
886 {
887 	struct file *file = epi->ffd.file;
888 	__poll_t res;
889 
890 	pt->_key = epi->event.events;
891 	if (!is_file_epoll(file))
892 		res = vfs_poll(file, pt);
893 	else
894 		res = __ep_eventpoll_poll(file, pt, depth);
895 	return res & epi->event.events;
896 }
897 
898 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
899 {
900 	return __ep_eventpoll_poll(file, wait, 0);
901 }
902 
903 #ifdef CONFIG_PROC_FS
904 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
905 {
906 	struct eventpoll *ep = f->private_data;
907 	struct rb_node *rbp;
908 
909 	mutex_lock(&ep->mtx);
910 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
911 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
912 		struct inode *inode = file_inode(epi->ffd.file);
913 
914 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
915 			   " pos:%lli ino:%lx sdev:%x\n",
916 			   epi->ffd.fd, epi->event.events,
917 			   (long long)epi->event.data,
918 			   (long long)epi->ffd.file->f_pos,
919 			   inode->i_ino, inode->i_sb->s_dev);
920 		if (seq_has_overflowed(m))
921 			break;
922 	}
923 	mutex_unlock(&ep->mtx);
924 }
925 #endif
926 
927 /* File callbacks that implement the eventpoll file behaviour */
928 static const struct file_operations eventpoll_fops = {
929 #ifdef CONFIG_PROC_FS
930 	.show_fdinfo	= ep_show_fdinfo,
931 #endif
932 	.release	= ep_eventpoll_release,
933 	.poll		= ep_eventpoll_poll,
934 	.llseek		= noop_llseek,
935 };
936 
937 /*
938  * This is called from eventpoll_release() to unlink files from the eventpoll
939  * interface. We need to have this facility to cleanup correctly files that are
940  * closed without being removed from the eventpoll interface.
941  */
942 void eventpoll_release_file(struct file *file)
943 {
944 	struct eventpoll *ep;
945 	struct epitem *epi;
946 	bool dispose;
947 
948 	/*
949 	 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
950 	 * touching the epitems list before eventpoll_release_file() can access
951 	 * the ep->mtx.
952 	 */
953 again:
954 	spin_lock(&file->f_lock);
955 	if (file->f_ep && file->f_ep->first) {
956 		epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
957 		epi->dying = true;
958 		spin_unlock(&file->f_lock);
959 
960 		/*
961 		 * ep access is safe as we still own a reference to the ep
962 		 * struct
963 		 */
964 		ep = epi->ep;
965 		mutex_lock(&ep->mtx);
966 		dispose = __ep_remove(ep, epi, true);
967 		mutex_unlock(&ep->mtx);
968 
969 		if (dispose)
970 			ep_free(ep);
971 		goto again;
972 	}
973 	spin_unlock(&file->f_lock);
974 }
975 
976 static int ep_alloc(struct eventpoll **pep)
977 {
978 	int error;
979 	struct user_struct *user;
980 	struct eventpoll *ep;
981 
982 	user = get_current_user();
983 	error = -ENOMEM;
984 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
985 	if (unlikely(!ep))
986 		goto free_uid;
987 
988 	mutex_init(&ep->mtx);
989 	rwlock_init(&ep->lock);
990 	init_waitqueue_head(&ep->wq);
991 	init_waitqueue_head(&ep->poll_wait);
992 	INIT_LIST_HEAD(&ep->rdllist);
993 	ep->rbr = RB_ROOT_CACHED;
994 	ep->ovflist = EP_UNACTIVE_PTR;
995 	ep->user = user;
996 	refcount_set(&ep->refcount, 1);
997 
998 	*pep = ep;
999 
1000 	return 0;
1001 
1002 free_uid:
1003 	free_uid(user);
1004 	return error;
1005 }
1006 
1007 /*
1008  * Search the file inside the eventpoll tree. The RB tree operations
1009  * are protected by the "mtx" mutex, and ep_find() must be called with
1010  * "mtx" held.
1011  */
1012 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1013 {
1014 	int kcmp;
1015 	struct rb_node *rbp;
1016 	struct epitem *epi, *epir = NULL;
1017 	struct epoll_filefd ffd;
1018 
1019 	ep_set_ffd(&ffd, file, fd);
1020 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1021 		epi = rb_entry(rbp, struct epitem, rbn);
1022 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1023 		if (kcmp > 0)
1024 			rbp = rbp->rb_right;
1025 		else if (kcmp < 0)
1026 			rbp = rbp->rb_left;
1027 		else {
1028 			epir = epi;
1029 			break;
1030 		}
1031 	}
1032 
1033 	return epir;
1034 }
1035 
1036 #ifdef CONFIG_KCMP
1037 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1038 {
1039 	struct rb_node *rbp;
1040 	struct epitem *epi;
1041 
1042 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1043 		epi = rb_entry(rbp, struct epitem, rbn);
1044 		if (epi->ffd.fd == tfd) {
1045 			if (toff == 0)
1046 				return epi;
1047 			else
1048 				toff--;
1049 		}
1050 		cond_resched();
1051 	}
1052 
1053 	return NULL;
1054 }
1055 
1056 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1057 				     unsigned long toff)
1058 {
1059 	struct file *file_raw;
1060 	struct eventpoll *ep;
1061 	struct epitem *epi;
1062 
1063 	if (!is_file_epoll(file))
1064 		return ERR_PTR(-EINVAL);
1065 
1066 	ep = file->private_data;
1067 
1068 	mutex_lock(&ep->mtx);
1069 	epi = ep_find_tfd(ep, tfd, toff);
1070 	if (epi)
1071 		file_raw = epi->ffd.file;
1072 	else
1073 		file_raw = ERR_PTR(-ENOENT);
1074 	mutex_unlock(&ep->mtx);
1075 
1076 	return file_raw;
1077 }
1078 #endif /* CONFIG_KCMP */
1079 
1080 /*
1081  * Adds a new entry to the tail of the list in a lockless way, i.e.
1082  * multiple CPUs are allowed to call this function concurrently.
1083  *
1084  * Beware: it is necessary to prevent any other modifications of the
1085  *         existing list until all changes are completed, in other words
1086  *         concurrent list_add_tail_lockless() calls should be protected
1087  *         with a read lock, where write lock acts as a barrier which
1088  *         makes sure all list_add_tail_lockless() calls are fully
1089  *         completed.
1090  *
1091  *        Also an element can be locklessly added to the list only in one
1092  *        direction i.e. either to the tail or to the head, otherwise
1093  *        concurrent access will corrupt the list.
1094  *
1095  * Return: %false if element has been already added to the list, %true
1096  * otherwise.
1097  */
1098 static inline bool list_add_tail_lockless(struct list_head *new,
1099 					  struct list_head *head)
1100 {
1101 	struct list_head *prev;
1102 
1103 	/*
1104 	 * This is simple 'new->next = head' operation, but cmpxchg()
1105 	 * is used in order to detect that same element has been just
1106 	 * added to the list from another CPU: the winner observes
1107 	 * new->next == new.
1108 	 */
1109 	if (!try_cmpxchg(&new->next, &new, head))
1110 		return false;
1111 
1112 	/*
1113 	 * Initially ->next of a new element must be updated with the head
1114 	 * (we are inserting to the tail) and only then pointers are atomically
1115 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1116 	 * updated before pointers are actually swapped and pointers are
1117 	 * swapped before prev->next is updated.
1118 	 */
1119 
1120 	prev = xchg(&head->prev, new);
1121 
1122 	/*
1123 	 * It is safe to modify prev->next and new->prev, because a new element
1124 	 * is added only to the tail and new->next is updated before XCHG.
1125 	 */
1126 
1127 	prev->next = new;
1128 	new->prev = prev;
1129 
1130 	return true;
1131 }
1132 
1133 /*
1134  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1135  * i.e. multiple CPUs are allowed to call this function concurrently.
1136  *
1137  * Return: %false if epi element has been already chained, %true otherwise.
1138  */
1139 static inline bool chain_epi_lockless(struct epitem *epi)
1140 {
1141 	struct eventpoll *ep = epi->ep;
1142 
1143 	/* Fast preliminary check */
1144 	if (epi->next != EP_UNACTIVE_PTR)
1145 		return false;
1146 
1147 	/* Check that the same epi has not been just chained from another CPU */
1148 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1149 		return false;
1150 
1151 	/* Atomically exchange tail */
1152 	epi->next = xchg(&ep->ovflist, epi);
1153 
1154 	return true;
1155 }
1156 
1157 /*
1158  * This is the callback that is passed to the wait queue wakeup
1159  * mechanism. It is called by the stored file descriptors when they
1160  * have events to report.
1161  *
1162  * This callback takes a read lock in order not to contend with concurrent
1163  * events from another file descriptor, thus all modifications to ->rdllist
1164  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1165  * ep_scan_ready_list(), which stops all list modifications and guarantees
1166  * that lists state is seen correctly.
1167  *
1168  * Another thing worth to mention is that ep_poll_callback() can be called
1169  * concurrently for the same @epi from different CPUs if poll table was inited
1170  * with several wait queues entries.  Plural wakeup from different CPUs of a
1171  * single wait queue is serialized by wq.lock, but the case when multiple wait
1172  * queues are used should be detected accordingly.  This is detected using
1173  * cmpxchg() operation.
1174  */
1175 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1176 {
1177 	int pwake = 0;
1178 	struct epitem *epi = ep_item_from_wait(wait);
1179 	struct eventpoll *ep = epi->ep;
1180 	__poll_t pollflags = key_to_poll(key);
1181 	unsigned long flags;
1182 	int ewake = 0;
1183 
1184 	read_lock_irqsave(&ep->lock, flags);
1185 
1186 	ep_set_busy_poll_napi_id(epi);
1187 
1188 	/*
1189 	 * If the event mask does not contain any poll(2) event, we consider the
1190 	 * descriptor to be disabled. This condition is likely the effect of the
1191 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1192 	 * until the next EPOLL_CTL_MOD will be issued.
1193 	 */
1194 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1195 		goto out_unlock;
1196 
1197 	/*
1198 	 * Check the events coming with the callback. At this stage, not
1199 	 * every device reports the events in the "key" parameter of the
1200 	 * callback. We need to be able to handle both cases here, hence the
1201 	 * test for "key" != NULL before the event match test.
1202 	 */
1203 	if (pollflags && !(pollflags & epi->event.events))
1204 		goto out_unlock;
1205 
1206 	/*
1207 	 * If we are transferring events to userspace, we can hold no locks
1208 	 * (because we're accessing user memory, and because of linux f_op->poll()
1209 	 * semantics). All the events that happen during that period of time are
1210 	 * chained in ep->ovflist and requeued later on.
1211 	 */
1212 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1213 		if (chain_epi_lockless(epi))
1214 			ep_pm_stay_awake_rcu(epi);
1215 	} else if (!ep_is_linked(epi)) {
1216 		/* In the usual case, add event to ready list. */
1217 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1218 			ep_pm_stay_awake_rcu(epi);
1219 	}
1220 
1221 	/*
1222 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1223 	 * wait list.
1224 	 */
1225 	if (waitqueue_active(&ep->wq)) {
1226 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1227 					!(pollflags & POLLFREE)) {
1228 			switch (pollflags & EPOLLINOUT_BITS) {
1229 			case EPOLLIN:
1230 				if (epi->event.events & EPOLLIN)
1231 					ewake = 1;
1232 				break;
1233 			case EPOLLOUT:
1234 				if (epi->event.events & EPOLLOUT)
1235 					ewake = 1;
1236 				break;
1237 			case 0:
1238 				ewake = 1;
1239 				break;
1240 			}
1241 		}
1242 		wake_up(&ep->wq);
1243 	}
1244 	if (waitqueue_active(&ep->poll_wait))
1245 		pwake++;
1246 
1247 out_unlock:
1248 	read_unlock_irqrestore(&ep->lock, flags);
1249 
1250 	/* We have to call this outside the lock */
1251 	if (pwake)
1252 		ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1253 
1254 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1255 		ewake = 1;
1256 
1257 	if (pollflags & POLLFREE) {
1258 		/*
1259 		 * If we race with ep_remove_wait_queue() it can miss
1260 		 * ->whead = NULL and do another remove_wait_queue() after
1261 		 * us, so we can't use __remove_wait_queue().
1262 		 */
1263 		list_del_init(&wait->entry);
1264 		/*
1265 		 * ->whead != NULL protects us from the race with
1266 		 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1267 		 * takes whead->lock held by the caller. Once we nullify it,
1268 		 * nothing protects ep/epi or even wait.
1269 		 */
1270 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1271 	}
1272 
1273 	return ewake;
1274 }
1275 
1276 /*
1277  * This is the callback that is used to add our wait queue to the
1278  * target file wakeup lists.
1279  */
1280 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1281 				 poll_table *pt)
1282 {
1283 	struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1284 	struct epitem *epi = epq->epi;
1285 	struct eppoll_entry *pwq;
1286 
1287 	if (unlikely(!epi))	// an earlier allocation has failed
1288 		return;
1289 
1290 	pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1291 	if (unlikely(!pwq)) {
1292 		epq->epi = NULL;
1293 		return;
1294 	}
1295 
1296 	init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1297 	pwq->whead = whead;
1298 	pwq->base = epi;
1299 	if (epi->event.events & EPOLLEXCLUSIVE)
1300 		add_wait_queue_exclusive(whead, &pwq->wait);
1301 	else
1302 		add_wait_queue(whead, &pwq->wait);
1303 	pwq->next = epi->pwqlist;
1304 	epi->pwqlist = pwq;
1305 }
1306 
1307 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1308 {
1309 	int kcmp;
1310 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1311 	struct epitem *epic;
1312 	bool leftmost = true;
1313 
1314 	while (*p) {
1315 		parent = *p;
1316 		epic = rb_entry(parent, struct epitem, rbn);
1317 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1318 		if (kcmp > 0) {
1319 			p = &parent->rb_right;
1320 			leftmost = false;
1321 		} else
1322 			p = &parent->rb_left;
1323 	}
1324 	rb_link_node(&epi->rbn, parent, p);
1325 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1326 }
1327 
1328 
1329 
1330 #define PATH_ARR_SIZE 5
1331 /*
1332  * These are the number paths of length 1 to 5, that we are allowing to emanate
1333  * from a single file of interest. For example, we allow 1000 paths of length
1334  * 1, to emanate from each file of interest. This essentially represents the
1335  * potential wakeup paths, which need to be limited in order to avoid massive
1336  * uncontrolled wakeup storms. The common use case should be a single ep which
1337  * is connected to n file sources. In this case each file source has 1 path
1338  * of length 1. Thus, the numbers below should be more than sufficient. These
1339  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1340  * and delete can't add additional paths. Protected by the epnested_mutex.
1341  */
1342 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1343 static int path_count[PATH_ARR_SIZE];
1344 
1345 static int path_count_inc(int nests)
1346 {
1347 	/* Allow an arbitrary number of depth 1 paths */
1348 	if (nests == 0)
1349 		return 0;
1350 
1351 	if (++path_count[nests] > path_limits[nests])
1352 		return -1;
1353 	return 0;
1354 }
1355 
1356 static void path_count_init(void)
1357 {
1358 	int i;
1359 
1360 	for (i = 0; i < PATH_ARR_SIZE; i++)
1361 		path_count[i] = 0;
1362 }
1363 
1364 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1365 {
1366 	int error = 0;
1367 	struct epitem *epi;
1368 
1369 	if (depth > EP_MAX_NESTS) /* too deep nesting */
1370 		return -1;
1371 
1372 	/* CTL_DEL can remove links here, but that can't increase our count */
1373 	hlist_for_each_entry_rcu(epi, refs, fllink) {
1374 		struct hlist_head *refs = &epi->ep->refs;
1375 		if (hlist_empty(refs))
1376 			error = path_count_inc(depth);
1377 		else
1378 			error = reverse_path_check_proc(refs, depth + 1);
1379 		if (error != 0)
1380 			break;
1381 	}
1382 	return error;
1383 }
1384 
1385 /**
1386  * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1387  *                      links that are proposed to be newly added. We need to
1388  *                      make sure that those added links don't add too many
1389  *                      paths such that we will spend all our time waking up
1390  *                      eventpoll objects.
1391  *
1392  * Return: %zero if the proposed links don't create too many paths,
1393  *	    %-1 otherwise.
1394  */
1395 static int reverse_path_check(void)
1396 {
1397 	struct epitems_head *p;
1398 
1399 	for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1400 		int error;
1401 		path_count_init();
1402 		rcu_read_lock();
1403 		error = reverse_path_check_proc(&p->epitems, 0);
1404 		rcu_read_unlock();
1405 		if (error)
1406 			return error;
1407 	}
1408 	return 0;
1409 }
1410 
1411 static int ep_create_wakeup_source(struct epitem *epi)
1412 {
1413 	struct name_snapshot n;
1414 	struct wakeup_source *ws;
1415 
1416 	if (!epi->ep->ws) {
1417 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1418 		if (!epi->ep->ws)
1419 			return -ENOMEM;
1420 	}
1421 
1422 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1423 	ws = wakeup_source_register(NULL, n.name.name);
1424 	release_dentry_name_snapshot(&n);
1425 
1426 	if (!ws)
1427 		return -ENOMEM;
1428 	rcu_assign_pointer(epi->ws, ws);
1429 
1430 	return 0;
1431 }
1432 
1433 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1434 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1435 {
1436 	struct wakeup_source *ws = ep_wakeup_source(epi);
1437 
1438 	RCU_INIT_POINTER(epi->ws, NULL);
1439 
1440 	/*
1441 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1442 	 * used internally by wakeup_source_remove, too (called by
1443 	 * wakeup_source_unregister), so we cannot use call_rcu
1444 	 */
1445 	synchronize_rcu();
1446 	wakeup_source_unregister(ws);
1447 }
1448 
1449 static int attach_epitem(struct file *file, struct epitem *epi)
1450 {
1451 	struct epitems_head *to_free = NULL;
1452 	struct hlist_head *head = NULL;
1453 	struct eventpoll *ep = NULL;
1454 
1455 	if (is_file_epoll(file))
1456 		ep = file->private_data;
1457 
1458 	if (ep) {
1459 		head = &ep->refs;
1460 	} else if (!READ_ONCE(file->f_ep)) {
1461 allocate:
1462 		to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1463 		if (!to_free)
1464 			return -ENOMEM;
1465 		head = &to_free->epitems;
1466 	}
1467 	spin_lock(&file->f_lock);
1468 	if (!file->f_ep) {
1469 		if (unlikely(!head)) {
1470 			spin_unlock(&file->f_lock);
1471 			goto allocate;
1472 		}
1473 		file->f_ep = head;
1474 		to_free = NULL;
1475 	}
1476 	hlist_add_head_rcu(&epi->fllink, file->f_ep);
1477 	spin_unlock(&file->f_lock);
1478 	free_ephead(to_free);
1479 	return 0;
1480 }
1481 
1482 /*
1483  * Must be called with "mtx" held.
1484  */
1485 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1486 		     struct file *tfile, int fd, int full_check)
1487 {
1488 	int error, pwake = 0;
1489 	__poll_t revents;
1490 	struct epitem *epi;
1491 	struct ep_pqueue epq;
1492 	struct eventpoll *tep = NULL;
1493 
1494 	if (is_file_epoll(tfile))
1495 		tep = tfile->private_data;
1496 
1497 	lockdep_assert_irqs_enabled();
1498 
1499 	if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1500 					    max_user_watches) >= 0))
1501 		return -ENOSPC;
1502 	percpu_counter_inc(&ep->user->epoll_watches);
1503 
1504 	if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1505 		percpu_counter_dec(&ep->user->epoll_watches);
1506 		return -ENOMEM;
1507 	}
1508 
1509 	/* Item initialization follow here ... */
1510 	INIT_LIST_HEAD(&epi->rdllink);
1511 	epi->ep = ep;
1512 	ep_set_ffd(&epi->ffd, tfile, fd);
1513 	epi->event = *event;
1514 	epi->next = EP_UNACTIVE_PTR;
1515 
1516 	if (tep)
1517 		mutex_lock_nested(&tep->mtx, 1);
1518 	/* Add the current item to the list of active epoll hook for this file */
1519 	if (unlikely(attach_epitem(tfile, epi) < 0)) {
1520 		if (tep)
1521 			mutex_unlock(&tep->mtx);
1522 		kmem_cache_free(epi_cache, epi);
1523 		percpu_counter_dec(&ep->user->epoll_watches);
1524 		return -ENOMEM;
1525 	}
1526 
1527 	if (full_check && !tep)
1528 		list_file(tfile);
1529 
1530 	/*
1531 	 * Add the current item to the RB tree. All RB tree operations are
1532 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1533 	 */
1534 	ep_rbtree_insert(ep, epi);
1535 	if (tep)
1536 		mutex_unlock(&tep->mtx);
1537 
1538 	/*
1539 	 * ep_remove_safe() calls in the later error paths can't lead to
1540 	 * ep_free() as the ep file itself still holds an ep reference.
1541 	 */
1542 	ep_get(ep);
1543 
1544 	/* now check if we've created too many backpaths */
1545 	if (unlikely(full_check && reverse_path_check())) {
1546 		ep_remove_safe(ep, epi);
1547 		return -EINVAL;
1548 	}
1549 
1550 	if (epi->event.events & EPOLLWAKEUP) {
1551 		error = ep_create_wakeup_source(epi);
1552 		if (error) {
1553 			ep_remove_safe(ep, epi);
1554 			return error;
1555 		}
1556 	}
1557 
1558 	/* Initialize the poll table using the queue callback */
1559 	epq.epi = epi;
1560 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1561 
1562 	/*
1563 	 * Attach the item to the poll hooks and get current event bits.
1564 	 * We can safely use the file* here because its usage count has
1565 	 * been increased by the caller of this function. Note that after
1566 	 * this operation completes, the poll callback can start hitting
1567 	 * the new item.
1568 	 */
1569 	revents = ep_item_poll(epi, &epq.pt, 1);
1570 
1571 	/*
1572 	 * We have to check if something went wrong during the poll wait queue
1573 	 * install process. Namely an allocation for a wait queue failed due
1574 	 * high memory pressure.
1575 	 */
1576 	if (unlikely(!epq.epi)) {
1577 		ep_remove_safe(ep, epi);
1578 		return -ENOMEM;
1579 	}
1580 
1581 	/* We have to drop the new item inside our item list to keep track of it */
1582 	write_lock_irq(&ep->lock);
1583 
1584 	/* record NAPI ID of new item if present */
1585 	ep_set_busy_poll_napi_id(epi);
1586 
1587 	/* If the file is already "ready" we drop it inside the ready list */
1588 	if (revents && !ep_is_linked(epi)) {
1589 		list_add_tail(&epi->rdllink, &ep->rdllist);
1590 		ep_pm_stay_awake(epi);
1591 
1592 		/* Notify waiting tasks that events are available */
1593 		if (waitqueue_active(&ep->wq))
1594 			wake_up(&ep->wq);
1595 		if (waitqueue_active(&ep->poll_wait))
1596 			pwake++;
1597 	}
1598 
1599 	write_unlock_irq(&ep->lock);
1600 
1601 	/* We have to call this outside the lock */
1602 	if (pwake)
1603 		ep_poll_safewake(ep, NULL, 0);
1604 
1605 	return 0;
1606 }
1607 
1608 /*
1609  * Modify the interest event mask by dropping an event if the new mask
1610  * has a match in the current file status. Must be called with "mtx" held.
1611  */
1612 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1613 		     const struct epoll_event *event)
1614 {
1615 	int pwake = 0;
1616 	poll_table pt;
1617 
1618 	lockdep_assert_irqs_enabled();
1619 
1620 	init_poll_funcptr(&pt, NULL);
1621 
1622 	/*
1623 	 * Set the new event interest mask before calling f_op->poll();
1624 	 * otherwise we might miss an event that happens between the
1625 	 * f_op->poll() call and the new event set registering.
1626 	 */
1627 	epi->event.events = event->events; /* need barrier below */
1628 	epi->event.data = event->data; /* protected by mtx */
1629 	if (epi->event.events & EPOLLWAKEUP) {
1630 		if (!ep_has_wakeup_source(epi))
1631 			ep_create_wakeup_source(epi);
1632 	} else if (ep_has_wakeup_source(epi)) {
1633 		ep_destroy_wakeup_source(epi);
1634 	}
1635 
1636 	/*
1637 	 * The following barrier has two effects:
1638 	 *
1639 	 * 1) Flush epi changes above to other CPUs.  This ensures
1640 	 *    we do not miss events from ep_poll_callback if an
1641 	 *    event occurs immediately after we call f_op->poll().
1642 	 *    We need this because we did not take ep->lock while
1643 	 *    changing epi above (but ep_poll_callback does take
1644 	 *    ep->lock).
1645 	 *
1646 	 * 2) We also need to ensure we do not miss _past_ events
1647 	 *    when calling f_op->poll().  This barrier also
1648 	 *    pairs with the barrier in wq_has_sleeper (see
1649 	 *    comments for wq_has_sleeper).
1650 	 *
1651 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1652 	 * (or both) will notice the readiness of an item.
1653 	 */
1654 	smp_mb();
1655 
1656 	/*
1657 	 * Get current event bits. We can safely use the file* here because
1658 	 * its usage count has been increased by the caller of this function.
1659 	 * If the item is "hot" and it is not registered inside the ready
1660 	 * list, push it inside.
1661 	 */
1662 	if (ep_item_poll(epi, &pt, 1)) {
1663 		write_lock_irq(&ep->lock);
1664 		if (!ep_is_linked(epi)) {
1665 			list_add_tail(&epi->rdllink, &ep->rdllist);
1666 			ep_pm_stay_awake(epi);
1667 
1668 			/* Notify waiting tasks that events are available */
1669 			if (waitqueue_active(&ep->wq))
1670 				wake_up(&ep->wq);
1671 			if (waitqueue_active(&ep->poll_wait))
1672 				pwake++;
1673 		}
1674 		write_unlock_irq(&ep->lock);
1675 	}
1676 
1677 	/* We have to call this outside the lock */
1678 	if (pwake)
1679 		ep_poll_safewake(ep, NULL, 0);
1680 
1681 	return 0;
1682 }
1683 
1684 static int ep_send_events(struct eventpoll *ep,
1685 			  struct epoll_event __user *events, int maxevents)
1686 {
1687 	struct epitem *epi, *tmp;
1688 	LIST_HEAD(txlist);
1689 	poll_table pt;
1690 	int res = 0;
1691 
1692 	/*
1693 	 * Always short-circuit for fatal signals to allow threads to make a
1694 	 * timely exit without the chance of finding more events available and
1695 	 * fetching repeatedly.
1696 	 */
1697 	if (fatal_signal_pending(current))
1698 		return -EINTR;
1699 
1700 	init_poll_funcptr(&pt, NULL);
1701 
1702 	mutex_lock(&ep->mtx);
1703 	ep_start_scan(ep, &txlist);
1704 
1705 	/*
1706 	 * We can loop without lock because we are passed a task private list.
1707 	 * Items cannot vanish during the loop we are holding ep->mtx.
1708 	 */
1709 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1710 		struct wakeup_source *ws;
1711 		__poll_t revents;
1712 
1713 		if (res >= maxevents)
1714 			break;
1715 
1716 		/*
1717 		 * Activate ep->ws before deactivating epi->ws to prevent
1718 		 * triggering auto-suspend here (in case we reactive epi->ws
1719 		 * below).
1720 		 *
1721 		 * This could be rearranged to delay the deactivation of epi->ws
1722 		 * instead, but then epi->ws would temporarily be out of sync
1723 		 * with ep_is_linked().
1724 		 */
1725 		ws = ep_wakeup_source(epi);
1726 		if (ws) {
1727 			if (ws->active)
1728 				__pm_stay_awake(ep->ws);
1729 			__pm_relax(ws);
1730 		}
1731 
1732 		list_del_init(&epi->rdllink);
1733 
1734 		/*
1735 		 * If the event mask intersect the caller-requested one,
1736 		 * deliver the event to userspace. Again, we are holding ep->mtx,
1737 		 * so no operations coming from userspace can change the item.
1738 		 */
1739 		revents = ep_item_poll(epi, &pt, 1);
1740 		if (!revents)
1741 			continue;
1742 
1743 		events = epoll_put_uevent(revents, epi->event.data, events);
1744 		if (!events) {
1745 			list_add(&epi->rdllink, &txlist);
1746 			ep_pm_stay_awake(epi);
1747 			if (!res)
1748 				res = -EFAULT;
1749 			break;
1750 		}
1751 		res++;
1752 		if (epi->event.events & EPOLLONESHOT)
1753 			epi->event.events &= EP_PRIVATE_BITS;
1754 		else if (!(epi->event.events & EPOLLET)) {
1755 			/*
1756 			 * If this file has been added with Level
1757 			 * Trigger mode, we need to insert back inside
1758 			 * the ready list, so that the next call to
1759 			 * epoll_wait() will check again the events
1760 			 * availability. At this point, no one can insert
1761 			 * into ep->rdllist besides us. The epoll_ctl()
1762 			 * callers are locked out by
1763 			 * ep_scan_ready_list() holding "mtx" and the
1764 			 * poll callback will queue them in ep->ovflist.
1765 			 */
1766 			list_add_tail(&epi->rdllink, &ep->rdllist);
1767 			ep_pm_stay_awake(epi);
1768 		}
1769 	}
1770 	ep_done_scan(ep, &txlist);
1771 	mutex_unlock(&ep->mtx);
1772 
1773 	return res;
1774 }
1775 
1776 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1777 {
1778 	struct timespec64 now;
1779 
1780 	if (ms < 0)
1781 		return NULL;
1782 
1783 	if (!ms) {
1784 		to->tv_sec = 0;
1785 		to->tv_nsec = 0;
1786 		return to;
1787 	}
1788 
1789 	to->tv_sec = ms / MSEC_PER_SEC;
1790 	to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1791 
1792 	ktime_get_ts64(&now);
1793 	*to = timespec64_add_safe(now, *to);
1794 	return to;
1795 }
1796 
1797 /*
1798  * autoremove_wake_function, but remove even on failure to wake up, because we
1799  * know that default_wake_function/ttwu will only fail if the thread is already
1800  * woken, and in that case the ep_poll loop will remove the entry anyways, not
1801  * try to reuse it.
1802  */
1803 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1804 				       unsigned int mode, int sync, void *key)
1805 {
1806 	int ret = default_wake_function(wq_entry, mode, sync, key);
1807 
1808 	list_del_init(&wq_entry->entry);
1809 	return ret;
1810 }
1811 
1812 /**
1813  * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1814  *           event buffer.
1815  *
1816  * @ep: Pointer to the eventpoll context.
1817  * @events: Pointer to the userspace buffer where the ready events should be
1818  *          stored.
1819  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1820  * @timeout: Maximum timeout for the ready events fetch operation, in
1821  *           timespec. If the timeout is zero, the function will not block,
1822  *           while if the @timeout ptr is NULL, the function will block
1823  *           until at least one event has been retrieved (or an error
1824  *           occurred).
1825  *
1826  * Return: the number of ready events which have been fetched, or an
1827  *          error code, in case of error.
1828  */
1829 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1830 		   int maxevents, struct timespec64 *timeout)
1831 {
1832 	int res, eavail, timed_out = 0;
1833 	u64 slack = 0;
1834 	wait_queue_entry_t wait;
1835 	ktime_t expires, *to = NULL;
1836 
1837 	lockdep_assert_irqs_enabled();
1838 
1839 	if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1840 		slack = select_estimate_accuracy(timeout);
1841 		to = &expires;
1842 		*to = timespec64_to_ktime(*timeout);
1843 	} else if (timeout) {
1844 		/*
1845 		 * Avoid the unnecessary trip to the wait queue loop, if the
1846 		 * caller specified a non blocking operation.
1847 		 */
1848 		timed_out = 1;
1849 	}
1850 
1851 	/*
1852 	 * This call is racy: We may or may not see events that are being added
1853 	 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1854 	 * with a non-zero timeout, this thread will check the ready list under
1855 	 * lock and will add to the wait queue.  For cases with a zero
1856 	 * timeout, the user by definition should not care and will have to
1857 	 * recheck again.
1858 	 */
1859 	eavail = ep_events_available(ep);
1860 
1861 	while (1) {
1862 		if (eavail) {
1863 			/*
1864 			 * Try to transfer events to user space. In case we get
1865 			 * 0 events and there's still timeout left over, we go
1866 			 * trying again in search of more luck.
1867 			 */
1868 			res = ep_send_events(ep, events, maxevents);
1869 			if (res)
1870 				return res;
1871 		}
1872 
1873 		if (timed_out)
1874 			return 0;
1875 
1876 		eavail = ep_busy_loop(ep, timed_out);
1877 		if (eavail)
1878 			continue;
1879 
1880 		if (signal_pending(current))
1881 			return -EINTR;
1882 
1883 		/*
1884 		 * Internally init_wait() uses autoremove_wake_function(),
1885 		 * thus wait entry is removed from the wait queue on each
1886 		 * wakeup. Why it is important? In case of several waiters
1887 		 * each new wakeup will hit the next waiter, giving it the
1888 		 * chance to harvest new event. Otherwise wakeup can be
1889 		 * lost. This is also good performance-wise, because on
1890 		 * normal wakeup path no need to call __remove_wait_queue()
1891 		 * explicitly, thus ep->lock is not taken, which halts the
1892 		 * event delivery.
1893 		 *
1894 		 * In fact, we now use an even more aggressive function that
1895 		 * unconditionally removes, because we don't reuse the wait
1896 		 * entry between loop iterations. This lets us also avoid the
1897 		 * performance issue if a process is killed, causing all of its
1898 		 * threads to wake up without being removed normally.
1899 		 */
1900 		init_wait(&wait);
1901 		wait.func = ep_autoremove_wake_function;
1902 
1903 		write_lock_irq(&ep->lock);
1904 		/*
1905 		 * Barrierless variant, waitqueue_active() is called under
1906 		 * the same lock on wakeup ep_poll_callback() side, so it
1907 		 * is safe to avoid an explicit barrier.
1908 		 */
1909 		__set_current_state(TASK_INTERRUPTIBLE);
1910 
1911 		/*
1912 		 * Do the final check under the lock. ep_scan_ready_list()
1913 		 * plays with two lists (->rdllist and ->ovflist) and there
1914 		 * is always a race when both lists are empty for short
1915 		 * period of time although events are pending, so lock is
1916 		 * important.
1917 		 */
1918 		eavail = ep_events_available(ep);
1919 		if (!eavail)
1920 			__add_wait_queue_exclusive(&ep->wq, &wait);
1921 
1922 		write_unlock_irq(&ep->lock);
1923 
1924 		if (!eavail)
1925 			timed_out = !schedule_hrtimeout_range(to, slack,
1926 							      HRTIMER_MODE_ABS);
1927 		__set_current_state(TASK_RUNNING);
1928 
1929 		/*
1930 		 * We were woken up, thus go and try to harvest some events.
1931 		 * If timed out and still on the wait queue, recheck eavail
1932 		 * carefully under lock, below.
1933 		 */
1934 		eavail = 1;
1935 
1936 		if (!list_empty_careful(&wait.entry)) {
1937 			write_lock_irq(&ep->lock);
1938 			/*
1939 			 * If the thread timed out and is not on the wait queue,
1940 			 * it means that the thread was woken up after its
1941 			 * timeout expired before it could reacquire the lock.
1942 			 * Thus, when wait.entry is empty, it needs to harvest
1943 			 * events.
1944 			 */
1945 			if (timed_out)
1946 				eavail = list_empty(&wait.entry);
1947 			__remove_wait_queue(&ep->wq, &wait);
1948 			write_unlock_irq(&ep->lock);
1949 		}
1950 	}
1951 }
1952 
1953 /**
1954  * ep_loop_check_proc - verify that adding an epoll file inside another
1955  *                      epoll structure does not violate the constraints, in
1956  *                      terms of closed loops, or too deep chains (which can
1957  *                      result in excessive stack usage).
1958  *
1959  * @ep: the &struct eventpoll to be currently checked.
1960  * @depth: Current depth of the path being checked.
1961  *
1962  * Return: %zero if adding the epoll @file inside current epoll
1963  *          structure @ep does not violate the constraints, or %-1 otherwise.
1964  */
1965 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1966 {
1967 	int error = 0;
1968 	struct rb_node *rbp;
1969 	struct epitem *epi;
1970 
1971 	mutex_lock_nested(&ep->mtx, depth + 1);
1972 	ep->gen = loop_check_gen;
1973 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1974 		epi = rb_entry(rbp, struct epitem, rbn);
1975 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1976 			struct eventpoll *ep_tovisit;
1977 			ep_tovisit = epi->ffd.file->private_data;
1978 			if (ep_tovisit->gen == loop_check_gen)
1979 				continue;
1980 			if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1981 				error = -1;
1982 			else
1983 				error = ep_loop_check_proc(ep_tovisit, depth + 1);
1984 			if (error != 0)
1985 				break;
1986 		} else {
1987 			/*
1988 			 * If we've reached a file that is not associated with
1989 			 * an ep, then we need to check if the newly added
1990 			 * links are going to add too many wakeup paths. We do
1991 			 * this by adding it to the tfile_check_list, if it's
1992 			 * not already there, and calling reverse_path_check()
1993 			 * during ep_insert().
1994 			 */
1995 			list_file(epi->ffd.file);
1996 		}
1997 	}
1998 	mutex_unlock(&ep->mtx);
1999 
2000 	return error;
2001 }
2002 
2003 /**
2004  * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2005  *                 into another epoll file (represented by @ep) does not create
2006  *                 closed loops or too deep chains.
2007  *
2008  * @ep: Pointer to the epoll we are inserting into.
2009  * @to: Pointer to the epoll to be inserted.
2010  *
2011  * Return: %zero if adding the epoll @to inside the epoll @from
2012  * does not violate the constraints, or %-1 otherwise.
2013  */
2014 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2015 {
2016 	inserting_into = ep;
2017 	return ep_loop_check_proc(to, 0);
2018 }
2019 
2020 static void clear_tfile_check_list(void)
2021 {
2022 	rcu_read_lock();
2023 	while (tfile_check_list != EP_UNACTIVE_PTR) {
2024 		struct epitems_head *head = tfile_check_list;
2025 		tfile_check_list = head->next;
2026 		unlist_file(head);
2027 	}
2028 	rcu_read_unlock();
2029 }
2030 
2031 /*
2032  * Open an eventpoll file descriptor.
2033  */
2034 static int do_epoll_create(int flags)
2035 {
2036 	int error, fd;
2037 	struct eventpoll *ep = NULL;
2038 	struct file *file;
2039 
2040 	/* Check the EPOLL_* constant for consistency.  */
2041 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2042 
2043 	if (flags & ~EPOLL_CLOEXEC)
2044 		return -EINVAL;
2045 	/*
2046 	 * Create the internal data structure ("struct eventpoll").
2047 	 */
2048 	error = ep_alloc(&ep);
2049 	if (error < 0)
2050 		return error;
2051 	/*
2052 	 * Creates all the items needed to setup an eventpoll file. That is,
2053 	 * a file structure and a free file descriptor.
2054 	 */
2055 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2056 	if (fd < 0) {
2057 		error = fd;
2058 		goto out_free_ep;
2059 	}
2060 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2061 				 O_RDWR | (flags & O_CLOEXEC));
2062 	if (IS_ERR(file)) {
2063 		error = PTR_ERR(file);
2064 		goto out_free_fd;
2065 	}
2066 	ep->file = file;
2067 	fd_install(fd, file);
2068 	return fd;
2069 
2070 out_free_fd:
2071 	put_unused_fd(fd);
2072 out_free_ep:
2073 	ep_clear_and_put(ep);
2074 	return error;
2075 }
2076 
2077 SYSCALL_DEFINE1(epoll_create1, int, flags)
2078 {
2079 	return do_epoll_create(flags);
2080 }
2081 
2082 SYSCALL_DEFINE1(epoll_create, int, size)
2083 {
2084 	if (size <= 0)
2085 		return -EINVAL;
2086 
2087 	return do_epoll_create(0);
2088 }
2089 
2090 #ifdef CONFIG_PM_SLEEP
2091 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2092 {
2093 	if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2094 		epev->events &= ~EPOLLWAKEUP;
2095 }
2096 #else
2097 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2098 {
2099 	epev->events &= ~EPOLLWAKEUP;
2100 }
2101 #endif
2102 
2103 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2104 				   bool nonblock)
2105 {
2106 	if (!nonblock) {
2107 		mutex_lock_nested(mutex, depth);
2108 		return 0;
2109 	}
2110 	if (mutex_trylock(mutex))
2111 		return 0;
2112 	return -EAGAIN;
2113 }
2114 
2115 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2116 		 bool nonblock)
2117 {
2118 	int error;
2119 	int full_check = 0;
2120 	struct fd f, tf;
2121 	struct eventpoll *ep;
2122 	struct epitem *epi;
2123 	struct eventpoll *tep = NULL;
2124 
2125 	error = -EBADF;
2126 	f = fdget(epfd);
2127 	if (!f.file)
2128 		goto error_return;
2129 
2130 	/* Get the "struct file *" for the target file */
2131 	tf = fdget(fd);
2132 	if (!tf.file)
2133 		goto error_fput;
2134 
2135 	/* The target file descriptor must support poll */
2136 	error = -EPERM;
2137 	if (!file_can_poll(tf.file))
2138 		goto error_tgt_fput;
2139 
2140 	/* Check if EPOLLWAKEUP is allowed */
2141 	if (ep_op_has_event(op))
2142 		ep_take_care_of_epollwakeup(epds);
2143 
2144 	/*
2145 	 * We have to check that the file structure underneath the file descriptor
2146 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2147 	 * adding an epoll file descriptor inside itself.
2148 	 */
2149 	error = -EINVAL;
2150 	if (f.file == tf.file || !is_file_epoll(f.file))
2151 		goto error_tgt_fput;
2152 
2153 	/*
2154 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2155 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2156 	 * Also, we do not currently supported nested exclusive wakeups.
2157 	 */
2158 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2159 		if (op == EPOLL_CTL_MOD)
2160 			goto error_tgt_fput;
2161 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2162 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2163 			goto error_tgt_fput;
2164 	}
2165 
2166 	/*
2167 	 * At this point it is safe to assume that the "private_data" contains
2168 	 * our own data structure.
2169 	 */
2170 	ep = f.file->private_data;
2171 
2172 	/*
2173 	 * When we insert an epoll file descriptor inside another epoll file
2174 	 * descriptor, there is the chance of creating closed loops, which are
2175 	 * better be handled here, than in more critical paths. While we are
2176 	 * checking for loops we also determine the list of files reachable
2177 	 * and hang them on the tfile_check_list, so we can check that we
2178 	 * haven't created too many possible wakeup paths.
2179 	 *
2180 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2181 	 * the epoll file descriptor is attaching directly to a wakeup source,
2182 	 * unless the epoll file descriptor is nested. The purpose of taking the
2183 	 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2184 	 * deep wakeup paths from forming in parallel through multiple
2185 	 * EPOLL_CTL_ADD operations.
2186 	 */
2187 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2188 	if (error)
2189 		goto error_tgt_fput;
2190 	if (op == EPOLL_CTL_ADD) {
2191 		if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2192 		    is_file_epoll(tf.file)) {
2193 			mutex_unlock(&ep->mtx);
2194 			error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2195 			if (error)
2196 				goto error_tgt_fput;
2197 			loop_check_gen++;
2198 			full_check = 1;
2199 			if (is_file_epoll(tf.file)) {
2200 				tep = tf.file->private_data;
2201 				error = -ELOOP;
2202 				if (ep_loop_check(ep, tep) != 0)
2203 					goto error_tgt_fput;
2204 			}
2205 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2206 			if (error)
2207 				goto error_tgt_fput;
2208 		}
2209 	}
2210 
2211 	/*
2212 	 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2213 	 * above, we can be sure to be able to use the item looked up by
2214 	 * ep_find() till we release the mutex.
2215 	 */
2216 	epi = ep_find(ep, tf.file, fd);
2217 
2218 	error = -EINVAL;
2219 	switch (op) {
2220 	case EPOLL_CTL_ADD:
2221 		if (!epi) {
2222 			epds->events |= EPOLLERR | EPOLLHUP;
2223 			error = ep_insert(ep, epds, tf.file, fd, full_check);
2224 		} else
2225 			error = -EEXIST;
2226 		break;
2227 	case EPOLL_CTL_DEL:
2228 		if (epi) {
2229 			/*
2230 			 * The eventpoll itself is still alive: the refcount
2231 			 * can't go to zero here.
2232 			 */
2233 			ep_remove_safe(ep, epi);
2234 			error = 0;
2235 		} else {
2236 			error = -ENOENT;
2237 		}
2238 		break;
2239 	case EPOLL_CTL_MOD:
2240 		if (epi) {
2241 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2242 				epds->events |= EPOLLERR | EPOLLHUP;
2243 				error = ep_modify(ep, epi, epds);
2244 			}
2245 		} else
2246 			error = -ENOENT;
2247 		break;
2248 	}
2249 	mutex_unlock(&ep->mtx);
2250 
2251 error_tgt_fput:
2252 	if (full_check) {
2253 		clear_tfile_check_list();
2254 		loop_check_gen++;
2255 		mutex_unlock(&epnested_mutex);
2256 	}
2257 
2258 	fdput(tf);
2259 error_fput:
2260 	fdput(f);
2261 error_return:
2262 
2263 	return error;
2264 }
2265 
2266 /*
2267  * The following function implements the controller interface for
2268  * the eventpoll file that enables the insertion/removal/change of
2269  * file descriptors inside the interest set.
2270  */
2271 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2272 		struct epoll_event __user *, event)
2273 {
2274 	struct epoll_event epds;
2275 
2276 	if (ep_op_has_event(op) &&
2277 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2278 		return -EFAULT;
2279 
2280 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2281 }
2282 
2283 /*
2284  * Implement the event wait interface for the eventpoll file. It is the kernel
2285  * part of the user space epoll_wait(2).
2286  */
2287 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2288 			 int maxevents, struct timespec64 *to)
2289 {
2290 	int error;
2291 	struct fd f;
2292 	struct eventpoll *ep;
2293 
2294 	/* The maximum number of event must be greater than zero */
2295 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2296 		return -EINVAL;
2297 
2298 	/* Verify that the area passed by the user is writeable */
2299 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2300 		return -EFAULT;
2301 
2302 	/* Get the "struct file *" for the eventpoll file */
2303 	f = fdget(epfd);
2304 	if (!f.file)
2305 		return -EBADF;
2306 
2307 	/*
2308 	 * We have to check that the file structure underneath the fd
2309 	 * the user passed to us _is_ an eventpoll file.
2310 	 */
2311 	error = -EINVAL;
2312 	if (!is_file_epoll(f.file))
2313 		goto error_fput;
2314 
2315 	/*
2316 	 * At this point it is safe to assume that the "private_data" contains
2317 	 * our own data structure.
2318 	 */
2319 	ep = f.file->private_data;
2320 
2321 	/* Time to fish for events ... */
2322 	error = ep_poll(ep, events, maxevents, to);
2323 
2324 error_fput:
2325 	fdput(f);
2326 	return error;
2327 }
2328 
2329 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2330 		int, maxevents, int, timeout)
2331 {
2332 	struct timespec64 to;
2333 
2334 	return do_epoll_wait(epfd, events, maxevents,
2335 			     ep_timeout_to_timespec(&to, timeout));
2336 }
2337 
2338 /*
2339  * Implement the event wait interface for the eventpoll file. It is the kernel
2340  * part of the user space epoll_pwait(2).
2341  */
2342 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2343 			  int maxevents, struct timespec64 *to,
2344 			  const sigset_t __user *sigmask, size_t sigsetsize)
2345 {
2346 	int error;
2347 
2348 	/*
2349 	 * If the caller wants a certain signal mask to be set during the wait,
2350 	 * we apply it here.
2351 	 */
2352 	error = set_user_sigmask(sigmask, sigsetsize);
2353 	if (error)
2354 		return error;
2355 
2356 	error = do_epoll_wait(epfd, events, maxevents, to);
2357 
2358 	restore_saved_sigmask_unless(error == -EINTR);
2359 
2360 	return error;
2361 }
2362 
2363 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2364 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2365 		size_t, sigsetsize)
2366 {
2367 	struct timespec64 to;
2368 
2369 	return do_epoll_pwait(epfd, events, maxevents,
2370 			      ep_timeout_to_timespec(&to, timeout),
2371 			      sigmask, sigsetsize);
2372 }
2373 
2374 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2375 		int, maxevents, const struct __kernel_timespec __user *, timeout,
2376 		const sigset_t __user *, sigmask, size_t, sigsetsize)
2377 {
2378 	struct timespec64 ts, *to = NULL;
2379 
2380 	if (timeout) {
2381 		if (get_timespec64(&ts, timeout))
2382 			return -EFAULT;
2383 		to = &ts;
2384 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2385 			return -EINVAL;
2386 	}
2387 
2388 	return do_epoll_pwait(epfd, events, maxevents, to,
2389 			      sigmask, sigsetsize);
2390 }
2391 
2392 #ifdef CONFIG_COMPAT
2393 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2394 				 int maxevents, struct timespec64 *timeout,
2395 				 const compat_sigset_t __user *sigmask,
2396 				 compat_size_t sigsetsize)
2397 {
2398 	long err;
2399 
2400 	/*
2401 	 * If the caller wants a certain signal mask to be set during the wait,
2402 	 * we apply it here.
2403 	 */
2404 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2405 	if (err)
2406 		return err;
2407 
2408 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2409 
2410 	restore_saved_sigmask_unless(err == -EINTR);
2411 
2412 	return err;
2413 }
2414 
2415 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2416 		       struct epoll_event __user *, events,
2417 		       int, maxevents, int, timeout,
2418 		       const compat_sigset_t __user *, sigmask,
2419 		       compat_size_t, sigsetsize)
2420 {
2421 	struct timespec64 to;
2422 
2423 	return do_compat_epoll_pwait(epfd, events, maxevents,
2424 				     ep_timeout_to_timespec(&to, timeout),
2425 				     sigmask, sigsetsize);
2426 }
2427 
2428 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2429 		       struct epoll_event __user *, events,
2430 		       int, maxevents,
2431 		       const struct __kernel_timespec __user *, timeout,
2432 		       const compat_sigset_t __user *, sigmask,
2433 		       compat_size_t, sigsetsize)
2434 {
2435 	struct timespec64 ts, *to = NULL;
2436 
2437 	if (timeout) {
2438 		if (get_timespec64(&ts, timeout))
2439 			return -EFAULT;
2440 		to = &ts;
2441 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2442 			return -EINVAL;
2443 	}
2444 
2445 	return do_compat_epoll_pwait(epfd, events, maxevents, to,
2446 				     sigmask, sigsetsize);
2447 }
2448 
2449 #endif
2450 
2451 static int __init eventpoll_init(void)
2452 {
2453 	struct sysinfo si;
2454 
2455 	si_meminfo(&si);
2456 	/*
2457 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2458 	 */
2459 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2460 		EP_ITEM_COST;
2461 	BUG_ON(max_user_watches < 0);
2462 
2463 	/*
2464 	 * We can have many thousands of epitems, so prevent this from
2465 	 * using an extra cache line on 64-bit (and smaller) CPUs
2466 	 */
2467 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2468 
2469 	/* Allocates slab cache used to allocate "struct epitem" items */
2470 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2471 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2472 
2473 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2474 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2475 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2476 	epoll_sysctls_init();
2477 
2478 	ephead_cache = kmem_cache_create("ep_head",
2479 		sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2480 
2481 	return 0;
2482 }
2483 fs_initcall(eventpoll_init);
2484