1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/signal.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/device.h> 37 #include <linux/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 #include <linux/proc_fs.h> 42 #include <linux/seq_file.h> 43 #include <linux/compat.h> 44 #include <linux/rculist.h> 45 #include <net/busy_poll.h> 46 47 /* 48 * LOCKING: 49 * There are three level of locking required by epoll : 50 * 51 * 1) epmutex (mutex) 52 * 2) ep->mtx (mutex) 53 * 3) ep->lock (spinlock) 54 * 55 * The acquire order is the one listed above, from 1 to 3. 56 * We need a spinlock (ep->lock) because we manipulate objects 57 * from inside the poll callback, that might be triggered from 58 * a wake_up() that in turn might be called from IRQ context. 59 * So we can't sleep inside the poll callback and hence we need 60 * a spinlock. During the event transfer loop (from kernel to 61 * user space) we could end up sleeping due a copy_to_user(), so 62 * we need a lock that will allow us to sleep. This lock is a 63 * mutex (ep->mtx). It is acquired during the event transfer loop, 64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 65 * Then we also need a global mutex to serialize eventpoll_release_file() 66 * and ep_free(). 67 * This mutex is acquired by ep_free() during the epoll file 68 * cleanup path and it is also acquired by eventpoll_release_file() 69 * if a file has been pushed inside an epoll set and it is then 70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 71 * It is also acquired when inserting an epoll fd onto another epoll 72 * fd. We do this so that we walk the epoll tree and ensure that this 73 * insertion does not create a cycle of epoll file descriptors, which 74 * could lead to deadlock. We need a global mutex to prevent two 75 * simultaneous inserts (A into B and B into A) from racing and 76 * constructing a cycle without either insert observing that it is 77 * going to. 78 * It is necessary to acquire multiple "ep->mtx"es at once in the 79 * case when one epoll fd is added to another. In this case, we 80 * always acquire the locks in the order of nesting (i.e. after 81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 82 * before e2->mtx). Since we disallow cycles of epoll file 83 * descriptors, this ensures that the mutexes are well-ordered. In 84 * order to communicate this nesting to lockdep, when walking a tree 85 * of epoll file descriptors, we use the current recursion depth as 86 * the lockdep subkey. 87 * It is possible to drop the "ep->mtx" and to use the global 88 * mutex "epmutex" (together with "ep->lock") to have it working, 89 * but having "ep->mtx" will make the interface more scalable. 90 * Events that require holding "epmutex" are very rare, while for 91 * normal operations the epoll private "ep->mtx" will guarantee 92 * a better scalability. 93 */ 94 95 /* Epoll private bits inside the event mask */ 96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 97 98 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 99 100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 102 103 /* Maximum number of nesting allowed inside epoll sets */ 104 #define EP_MAX_NESTS 4 105 106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 107 108 #define EP_UNACTIVE_PTR ((void *) -1L) 109 110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 111 112 struct epoll_filefd { 113 struct file *file; 114 int fd; 115 } __packed; 116 117 /* 118 * Structure used to track possible nested calls, for too deep recursions 119 * and loop cycles. 120 */ 121 struct nested_call_node { 122 struct list_head llink; 123 void *cookie; 124 void *ctx; 125 }; 126 127 /* 128 * This structure is used as collector for nested calls, to check for 129 * maximum recursion dept and loop cycles. 130 */ 131 struct nested_calls { 132 struct list_head tasks_call_list; 133 spinlock_t lock; 134 }; 135 136 /* 137 * Each file descriptor added to the eventpoll interface will 138 * have an entry of this type linked to the "rbr" RB tree. 139 * Avoid increasing the size of this struct, there can be many thousands 140 * of these on a server and we do not want this to take another cache line. 141 */ 142 struct epitem { 143 union { 144 /* RB tree node links this structure to the eventpoll RB tree */ 145 struct rb_node rbn; 146 /* Used to free the struct epitem */ 147 struct rcu_head rcu; 148 }; 149 150 /* List header used to link this structure to the eventpoll ready list */ 151 struct list_head rdllink; 152 153 /* 154 * Works together "struct eventpoll"->ovflist in keeping the 155 * single linked chain of items. 156 */ 157 struct epitem *next; 158 159 /* The file descriptor information this item refers to */ 160 struct epoll_filefd ffd; 161 162 /* Number of active wait queue attached to poll operations */ 163 int nwait; 164 165 /* List containing poll wait queues */ 166 struct list_head pwqlist; 167 168 /* The "container" of this item */ 169 struct eventpoll *ep; 170 171 /* List header used to link this item to the "struct file" items list */ 172 struct list_head fllink; 173 174 /* wakeup_source used when EPOLLWAKEUP is set */ 175 struct wakeup_source __rcu *ws; 176 177 /* The structure that describe the interested events and the source fd */ 178 struct epoll_event event; 179 }; 180 181 /* 182 * This structure is stored inside the "private_data" member of the file 183 * structure and represents the main data structure for the eventpoll 184 * interface. 185 */ 186 struct eventpoll { 187 /* Protect the access to this structure */ 188 spinlock_t lock; 189 190 /* 191 * This mutex is used to ensure that files are not removed 192 * while epoll is using them. This is held during the event 193 * collection loop, the file cleanup path, the epoll file exit 194 * code and the ctl operations. 195 */ 196 struct mutex mtx; 197 198 /* Wait queue used by sys_epoll_wait() */ 199 wait_queue_head_t wq; 200 201 /* Wait queue used by file->poll() */ 202 wait_queue_head_t poll_wait; 203 204 /* List of ready file descriptors */ 205 struct list_head rdllist; 206 207 /* RB tree root used to store monitored fd structs */ 208 struct rb_root_cached rbr; 209 210 /* 211 * This is a single linked list that chains all the "struct epitem" that 212 * happened while transferring ready events to userspace w/out 213 * holding ->lock. 214 */ 215 struct epitem *ovflist; 216 217 /* wakeup_source used when ep_scan_ready_list is running */ 218 struct wakeup_source *ws; 219 220 /* The user that created the eventpoll descriptor */ 221 struct user_struct *user; 222 223 struct file *file; 224 225 /* used to optimize loop detection check */ 226 int visited; 227 struct list_head visited_list_link; 228 229 #ifdef CONFIG_NET_RX_BUSY_POLL 230 /* used to track busy poll napi_id */ 231 unsigned int napi_id; 232 #endif 233 }; 234 235 /* Wait structure used by the poll hooks */ 236 struct eppoll_entry { 237 /* List header used to link this structure to the "struct epitem" */ 238 struct list_head llink; 239 240 /* The "base" pointer is set to the container "struct epitem" */ 241 struct epitem *base; 242 243 /* 244 * Wait queue item that will be linked to the target file wait 245 * queue head. 246 */ 247 wait_queue_entry_t wait; 248 249 /* The wait queue head that linked the "wait" wait queue item */ 250 wait_queue_head_t *whead; 251 }; 252 253 /* Wrapper struct used by poll queueing */ 254 struct ep_pqueue { 255 poll_table pt; 256 struct epitem *epi; 257 }; 258 259 /* Used by the ep_send_events() function as callback private data */ 260 struct ep_send_events_data { 261 int maxevents; 262 struct epoll_event __user *events; 263 int res; 264 }; 265 266 /* 267 * Configuration options available inside /proc/sys/fs/epoll/ 268 */ 269 /* Maximum number of epoll watched descriptors, per user */ 270 static long max_user_watches __read_mostly; 271 272 /* 273 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 274 */ 275 static DEFINE_MUTEX(epmutex); 276 277 /* Used to check for epoll file descriptor inclusion loops */ 278 static struct nested_calls poll_loop_ncalls; 279 280 /* Slab cache used to allocate "struct epitem" */ 281 static struct kmem_cache *epi_cache __read_mostly; 282 283 /* Slab cache used to allocate "struct eppoll_entry" */ 284 static struct kmem_cache *pwq_cache __read_mostly; 285 286 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 287 static LIST_HEAD(visited_list); 288 289 /* 290 * List of files with newly added links, where we may need to limit the number 291 * of emanating paths. Protected by the epmutex. 292 */ 293 static LIST_HEAD(tfile_check_list); 294 295 #ifdef CONFIG_SYSCTL 296 297 #include <linux/sysctl.h> 298 299 static long zero; 300 static long long_max = LONG_MAX; 301 302 struct ctl_table epoll_table[] = { 303 { 304 .procname = "max_user_watches", 305 .data = &max_user_watches, 306 .maxlen = sizeof(max_user_watches), 307 .mode = 0644, 308 .proc_handler = proc_doulongvec_minmax, 309 .extra1 = &zero, 310 .extra2 = &long_max, 311 }, 312 { } 313 }; 314 #endif /* CONFIG_SYSCTL */ 315 316 static const struct file_operations eventpoll_fops; 317 318 static inline int is_file_epoll(struct file *f) 319 { 320 return f->f_op == &eventpoll_fops; 321 } 322 323 /* Setup the structure that is used as key for the RB tree */ 324 static inline void ep_set_ffd(struct epoll_filefd *ffd, 325 struct file *file, int fd) 326 { 327 ffd->file = file; 328 ffd->fd = fd; 329 } 330 331 /* Compare RB tree keys */ 332 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 333 struct epoll_filefd *p2) 334 { 335 return (p1->file > p2->file ? +1: 336 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 337 } 338 339 /* Tells us if the item is currently linked */ 340 static inline int ep_is_linked(struct list_head *p) 341 { 342 return !list_empty(p); 343 } 344 345 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 346 { 347 return container_of(p, struct eppoll_entry, wait); 348 } 349 350 /* Get the "struct epitem" from a wait queue pointer */ 351 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 352 { 353 return container_of(p, struct eppoll_entry, wait)->base; 354 } 355 356 /* Get the "struct epitem" from an epoll queue wrapper */ 357 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 358 { 359 return container_of(p, struct ep_pqueue, pt)->epi; 360 } 361 362 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 363 static inline int ep_op_has_event(int op) 364 { 365 return op != EPOLL_CTL_DEL; 366 } 367 368 /* Initialize the poll safe wake up structure */ 369 static void ep_nested_calls_init(struct nested_calls *ncalls) 370 { 371 INIT_LIST_HEAD(&ncalls->tasks_call_list); 372 spin_lock_init(&ncalls->lock); 373 } 374 375 /** 376 * ep_events_available - Checks if ready events might be available. 377 * 378 * @ep: Pointer to the eventpoll context. 379 * 380 * Returns: Returns a value different than zero if ready events are available, 381 * or zero otherwise. 382 */ 383 static inline int ep_events_available(struct eventpoll *ep) 384 { 385 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 386 } 387 388 #ifdef CONFIG_NET_RX_BUSY_POLL 389 static bool ep_busy_loop_end(void *p, unsigned long start_time) 390 { 391 struct eventpoll *ep = p; 392 393 return ep_events_available(ep) || busy_loop_timeout(start_time); 394 } 395 #endif /* CONFIG_NET_RX_BUSY_POLL */ 396 397 /* 398 * Busy poll if globally on and supporting sockets found && no events, 399 * busy loop will return if need_resched or ep_events_available. 400 * 401 * we must do our busy polling with irqs enabled 402 */ 403 static void ep_busy_loop(struct eventpoll *ep, int nonblock) 404 { 405 #ifdef CONFIG_NET_RX_BUSY_POLL 406 unsigned int napi_id = READ_ONCE(ep->napi_id); 407 408 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) 409 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep); 410 #endif 411 } 412 413 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 414 { 415 #ifdef CONFIG_NET_RX_BUSY_POLL 416 if (ep->napi_id) 417 ep->napi_id = 0; 418 #endif 419 } 420 421 /* 422 * Set epoll busy poll NAPI ID from sk. 423 */ 424 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 425 { 426 #ifdef CONFIG_NET_RX_BUSY_POLL 427 struct eventpoll *ep; 428 unsigned int napi_id; 429 struct socket *sock; 430 struct sock *sk; 431 int err; 432 433 if (!net_busy_loop_on()) 434 return; 435 436 sock = sock_from_file(epi->ffd.file, &err); 437 if (!sock) 438 return; 439 440 sk = sock->sk; 441 if (!sk) 442 return; 443 444 napi_id = READ_ONCE(sk->sk_napi_id); 445 ep = epi->ep; 446 447 /* Non-NAPI IDs can be rejected 448 * or 449 * Nothing to do if we already have this ID 450 */ 451 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 452 return; 453 454 /* record NAPI ID for use in next busy poll */ 455 ep->napi_id = napi_id; 456 #endif 457 } 458 459 /** 460 * ep_call_nested - Perform a bound (possibly) nested call, by checking 461 * that the recursion limit is not exceeded, and that 462 * the same nested call (by the meaning of same cookie) is 463 * no re-entered. 464 * 465 * @ncalls: Pointer to the nested_calls structure to be used for this call. 466 * @max_nests: Maximum number of allowed nesting calls. 467 * @nproc: Nested call core function pointer. 468 * @priv: Opaque data to be passed to the @nproc callback. 469 * @cookie: Cookie to be used to identify this nested call. 470 * @ctx: This instance context. 471 * 472 * Returns: Returns the code returned by the @nproc callback, or -1 if 473 * the maximum recursion limit has been exceeded. 474 */ 475 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 476 int (*nproc)(void *, void *, int), void *priv, 477 void *cookie, void *ctx) 478 { 479 int error, call_nests = 0; 480 unsigned long flags; 481 struct list_head *lsthead = &ncalls->tasks_call_list; 482 struct nested_call_node *tncur; 483 struct nested_call_node tnode; 484 485 spin_lock_irqsave(&ncalls->lock, flags); 486 487 /* 488 * Try to see if the current task is already inside this wakeup call. 489 * We use a list here, since the population inside this set is always 490 * very much limited. 491 */ 492 list_for_each_entry(tncur, lsthead, llink) { 493 if (tncur->ctx == ctx && 494 (tncur->cookie == cookie || ++call_nests > max_nests)) { 495 /* 496 * Ops ... loop detected or maximum nest level reached. 497 * We abort this wake by breaking the cycle itself. 498 */ 499 error = -1; 500 goto out_unlock; 501 } 502 } 503 504 /* Add the current task and cookie to the list */ 505 tnode.ctx = ctx; 506 tnode.cookie = cookie; 507 list_add(&tnode.llink, lsthead); 508 509 spin_unlock_irqrestore(&ncalls->lock, flags); 510 511 /* Call the nested function */ 512 error = (*nproc)(priv, cookie, call_nests); 513 514 /* Remove the current task from the list */ 515 spin_lock_irqsave(&ncalls->lock, flags); 516 list_del(&tnode.llink); 517 out_unlock: 518 spin_unlock_irqrestore(&ncalls->lock, flags); 519 520 return error; 521 } 522 523 /* 524 * As described in commit 0ccf831cb lockdep: annotate epoll 525 * the use of wait queues used by epoll is done in a very controlled 526 * manner. Wake ups can nest inside each other, but are never done 527 * with the same locking. For example: 528 * 529 * dfd = socket(...); 530 * efd1 = epoll_create(); 531 * efd2 = epoll_create(); 532 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 533 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 534 * 535 * When a packet arrives to the device underneath "dfd", the net code will 536 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 537 * callback wakeup entry on that queue, and the wake_up() performed by the 538 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 539 * (efd1) notices that it may have some event ready, so it needs to wake up 540 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 541 * that ends up in another wake_up(), after having checked about the 542 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 543 * avoid stack blasting. 544 * 545 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 546 * this special case of epoll. 547 */ 548 #ifdef CONFIG_DEBUG_LOCK_ALLOC 549 550 static struct nested_calls poll_safewake_ncalls; 551 552 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 553 { 554 unsigned long flags; 555 wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie; 556 557 spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1); 558 wake_up_locked_poll(wqueue, EPOLLIN); 559 spin_unlock_irqrestore(&wqueue->lock, flags); 560 561 return 0; 562 } 563 564 static void ep_poll_safewake(wait_queue_head_t *wq) 565 { 566 int this_cpu = get_cpu(); 567 568 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 569 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 570 571 put_cpu(); 572 } 573 574 #else 575 576 static void ep_poll_safewake(wait_queue_head_t *wq) 577 { 578 wake_up_poll(wq, EPOLLIN); 579 } 580 581 #endif 582 583 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 584 { 585 wait_queue_head_t *whead; 586 587 rcu_read_lock(); 588 /* 589 * If it is cleared by POLLFREE, it should be rcu-safe. 590 * If we read NULL we need a barrier paired with 591 * smp_store_release() in ep_poll_callback(), otherwise 592 * we rely on whead->lock. 593 */ 594 whead = smp_load_acquire(&pwq->whead); 595 if (whead) 596 remove_wait_queue(whead, &pwq->wait); 597 rcu_read_unlock(); 598 } 599 600 /* 601 * This function unregisters poll callbacks from the associated file 602 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 603 * ep_free). 604 */ 605 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 606 { 607 struct list_head *lsthead = &epi->pwqlist; 608 struct eppoll_entry *pwq; 609 610 while (!list_empty(lsthead)) { 611 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 612 613 list_del(&pwq->llink); 614 ep_remove_wait_queue(pwq); 615 kmem_cache_free(pwq_cache, pwq); 616 } 617 } 618 619 /* call only when ep->mtx is held */ 620 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 621 { 622 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 623 } 624 625 /* call only when ep->mtx is held */ 626 static inline void ep_pm_stay_awake(struct epitem *epi) 627 { 628 struct wakeup_source *ws = ep_wakeup_source(epi); 629 630 if (ws) 631 __pm_stay_awake(ws); 632 } 633 634 static inline bool ep_has_wakeup_source(struct epitem *epi) 635 { 636 return rcu_access_pointer(epi->ws) ? true : false; 637 } 638 639 /* call when ep->mtx cannot be held (ep_poll_callback) */ 640 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 641 { 642 struct wakeup_source *ws; 643 644 rcu_read_lock(); 645 ws = rcu_dereference(epi->ws); 646 if (ws) 647 __pm_stay_awake(ws); 648 rcu_read_unlock(); 649 } 650 651 /** 652 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 653 * the scan code, to call f_op->poll(). Also allows for 654 * O(NumReady) performance. 655 * 656 * @ep: Pointer to the epoll private data structure. 657 * @sproc: Pointer to the scan callback. 658 * @priv: Private opaque data passed to the @sproc callback. 659 * @depth: The current depth of recursive f_op->poll calls. 660 * @ep_locked: caller already holds ep->mtx 661 * 662 * Returns: The same integer error code returned by the @sproc callback. 663 */ 664 static __poll_t ep_scan_ready_list(struct eventpoll *ep, 665 __poll_t (*sproc)(struct eventpoll *, 666 struct list_head *, void *), 667 void *priv, int depth, bool ep_locked) 668 { 669 __poll_t res; 670 int pwake = 0; 671 unsigned long flags; 672 struct epitem *epi, *nepi; 673 LIST_HEAD(txlist); 674 675 /* 676 * We need to lock this because we could be hit by 677 * eventpoll_release_file() and epoll_ctl(). 678 */ 679 680 if (!ep_locked) 681 mutex_lock_nested(&ep->mtx, depth); 682 683 /* 684 * Steal the ready list, and re-init the original one to the 685 * empty list. Also, set ep->ovflist to NULL so that events 686 * happening while looping w/out locks, are not lost. We cannot 687 * have the poll callback to queue directly on ep->rdllist, 688 * because we want the "sproc" callback to be able to do it 689 * in a lockless way. 690 */ 691 spin_lock_irqsave(&ep->lock, flags); 692 list_splice_init(&ep->rdllist, &txlist); 693 ep->ovflist = NULL; 694 spin_unlock_irqrestore(&ep->lock, flags); 695 696 /* 697 * Now call the callback function. 698 */ 699 res = (*sproc)(ep, &txlist, priv); 700 701 spin_lock_irqsave(&ep->lock, flags); 702 /* 703 * During the time we spent inside the "sproc" callback, some 704 * other events might have been queued by the poll callback. 705 * We re-insert them inside the main ready-list here. 706 */ 707 for (nepi = ep->ovflist; (epi = nepi) != NULL; 708 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 709 /* 710 * We need to check if the item is already in the list. 711 * During the "sproc" callback execution time, items are 712 * queued into ->ovflist but the "txlist" might already 713 * contain them, and the list_splice() below takes care of them. 714 */ 715 if (!ep_is_linked(&epi->rdllink)) { 716 list_add_tail(&epi->rdllink, &ep->rdllist); 717 ep_pm_stay_awake(epi); 718 } 719 } 720 /* 721 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 722 * releasing the lock, events will be queued in the normal way inside 723 * ep->rdllist. 724 */ 725 ep->ovflist = EP_UNACTIVE_PTR; 726 727 /* 728 * Quickly re-inject items left on "txlist". 729 */ 730 list_splice(&txlist, &ep->rdllist); 731 __pm_relax(ep->ws); 732 733 if (!list_empty(&ep->rdllist)) { 734 /* 735 * Wake up (if active) both the eventpoll wait list and 736 * the ->poll() wait list (delayed after we release the lock). 737 */ 738 if (waitqueue_active(&ep->wq)) 739 wake_up_locked(&ep->wq); 740 if (waitqueue_active(&ep->poll_wait)) 741 pwake++; 742 } 743 spin_unlock_irqrestore(&ep->lock, flags); 744 745 if (!ep_locked) 746 mutex_unlock(&ep->mtx); 747 748 /* We have to call this outside the lock */ 749 if (pwake) 750 ep_poll_safewake(&ep->poll_wait); 751 752 return res; 753 } 754 755 static void epi_rcu_free(struct rcu_head *head) 756 { 757 struct epitem *epi = container_of(head, struct epitem, rcu); 758 kmem_cache_free(epi_cache, epi); 759 } 760 761 /* 762 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 763 * all the associated resources. Must be called with "mtx" held. 764 */ 765 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 766 { 767 unsigned long flags; 768 struct file *file = epi->ffd.file; 769 770 /* 771 * Removes poll wait queue hooks. We _have_ to do this without holding 772 * the "ep->lock" otherwise a deadlock might occur. This because of the 773 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 774 * queue head lock when unregistering the wait queue. The wakeup callback 775 * will run by holding the wait queue head lock and will call our callback 776 * that will try to get "ep->lock". 777 */ 778 ep_unregister_pollwait(ep, epi); 779 780 /* Remove the current item from the list of epoll hooks */ 781 spin_lock(&file->f_lock); 782 list_del_rcu(&epi->fllink); 783 spin_unlock(&file->f_lock); 784 785 rb_erase_cached(&epi->rbn, &ep->rbr); 786 787 spin_lock_irqsave(&ep->lock, flags); 788 if (ep_is_linked(&epi->rdllink)) 789 list_del_init(&epi->rdllink); 790 spin_unlock_irqrestore(&ep->lock, flags); 791 792 wakeup_source_unregister(ep_wakeup_source(epi)); 793 /* 794 * At this point it is safe to free the eventpoll item. Use the union 795 * field epi->rcu, since we are trying to minimize the size of 796 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 797 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 798 * use of the rbn field. 799 */ 800 call_rcu(&epi->rcu, epi_rcu_free); 801 802 atomic_long_dec(&ep->user->epoll_watches); 803 804 return 0; 805 } 806 807 static void ep_free(struct eventpoll *ep) 808 { 809 struct rb_node *rbp; 810 struct epitem *epi; 811 812 /* We need to release all tasks waiting for these file */ 813 if (waitqueue_active(&ep->poll_wait)) 814 ep_poll_safewake(&ep->poll_wait); 815 816 /* 817 * We need to lock this because we could be hit by 818 * eventpoll_release_file() while we're freeing the "struct eventpoll". 819 * We do not need to hold "ep->mtx" here because the epoll file 820 * is on the way to be removed and no one has references to it 821 * anymore. The only hit might come from eventpoll_release_file() but 822 * holding "epmutex" is sufficient here. 823 */ 824 mutex_lock(&epmutex); 825 826 /* 827 * Walks through the whole tree by unregistering poll callbacks. 828 */ 829 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 830 epi = rb_entry(rbp, struct epitem, rbn); 831 832 ep_unregister_pollwait(ep, epi); 833 cond_resched(); 834 } 835 836 /* 837 * Walks through the whole tree by freeing each "struct epitem". At this 838 * point we are sure no poll callbacks will be lingering around, and also by 839 * holding "epmutex" we can be sure that no file cleanup code will hit 840 * us during this operation. So we can avoid the lock on "ep->lock". 841 * We do not need to lock ep->mtx, either, we only do it to prevent 842 * a lockdep warning. 843 */ 844 mutex_lock(&ep->mtx); 845 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 846 epi = rb_entry(rbp, struct epitem, rbn); 847 ep_remove(ep, epi); 848 cond_resched(); 849 } 850 mutex_unlock(&ep->mtx); 851 852 mutex_unlock(&epmutex); 853 mutex_destroy(&ep->mtx); 854 free_uid(ep->user); 855 wakeup_source_unregister(ep->ws); 856 kfree(ep); 857 } 858 859 static int ep_eventpoll_release(struct inode *inode, struct file *file) 860 { 861 struct eventpoll *ep = file->private_data; 862 863 if (ep) 864 ep_free(ep); 865 866 return 0; 867 } 868 869 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 870 void *priv); 871 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 872 poll_table *pt); 873 874 /* 875 * Differs from ep_eventpoll_poll() in that internal callers already have 876 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 877 * is correctly annotated. 878 */ 879 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 880 int depth) 881 { 882 struct eventpoll *ep; 883 bool locked; 884 885 pt->_key = epi->event.events; 886 if (!is_file_epoll(epi->ffd.file)) 887 return vfs_poll(epi->ffd.file, pt) & epi->event.events; 888 889 ep = epi->ffd.file->private_data; 890 poll_wait(epi->ffd.file, &ep->poll_wait, pt); 891 locked = pt && (pt->_qproc == ep_ptable_queue_proc); 892 893 return ep_scan_ready_list(epi->ffd.file->private_data, 894 ep_read_events_proc, &depth, depth, 895 locked) & epi->event.events; 896 } 897 898 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 899 void *priv) 900 { 901 struct epitem *epi, *tmp; 902 poll_table pt; 903 int depth = *(int *)priv; 904 905 init_poll_funcptr(&pt, NULL); 906 depth++; 907 908 list_for_each_entry_safe(epi, tmp, head, rdllink) { 909 if (ep_item_poll(epi, &pt, depth)) { 910 return EPOLLIN | EPOLLRDNORM; 911 } else { 912 /* 913 * Item has been dropped into the ready list by the poll 914 * callback, but it's not actually ready, as far as 915 * caller requested events goes. We can remove it here. 916 */ 917 __pm_relax(ep_wakeup_source(epi)); 918 list_del_init(&epi->rdllink); 919 } 920 } 921 922 return 0; 923 } 924 925 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 926 { 927 struct eventpoll *ep = file->private_data; 928 int depth = 0; 929 930 /* Insert inside our poll wait queue */ 931 poll_wait(file, &ep->poll_wait, wait); 932 933 /* 934 * Proceed to find out if wanted events are really available inside 935 * the ready list. 936 */ 937 return ep_scan_ready_list(ep, ep_read_events_proc, 938 &depth, depth, false); 939 } 940 941 #ifdef CONFIG_PROC_FS 942 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 943 { 944 struct eventpoll *ep = f->private_data; 945 struct rb_node *rbp; 946 947 mutex_lock(&ep->mtx); 948 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 949 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 950 struct inode *inode = file_inode(epi->ffd.file); 951 952 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 953 " pos:%lli ino:%lx sdev:%x\n", 954 epi->ffd.fd, epi->event.events, 955 (long long)epi->event.data, 956 (long long)epi->ffd.file->f_pos, 957 inode->i_ino, inode->i_sb->s_dev); 958 if (seq_has_overflowed(m)) 959 break; 960 } 961 mutex_unlock(&ep->mtx); 962 } 963 #endif 964 965 /* File callbacks that implement the eventpoll file behaviour */ 966 static const struct file_operations eventpoll_fops = { 967 #ifdef CONFIG_PROC_FS 968 .show_fdinfo = ep_show_fdinfo, 969 #endif 970 .release = ep_eventpoll_release, 971 .poll = ep_eventpoll_poll, 972 .llseek = noop_llseek, 973 }; 974 975 /* 976 * This is called from eventpoll_release() to unlink files from the eventpoll 977 * interface. We need to have this facility to cleanup correctly files that are 978 * closed without being removed from the eventpoll interface. 979 */ 980 void eventpoll_release_file(struct file *file) 981 { 982 struct eventpoll *ep; 983 struct epitem *epi, *next; 984 985 /* 986 * We don't want to get "file->f_lock" because it is not 987 * necessary. It is not necessary because we're in the "struct file" 988 * cleanup path, and this means that no one is using this file anymore. 989 * So, for example, epoll_ctl() cannot hit here since if we reach this 990 * point, the file counter already went to zero and fget() would fail. 991 * The only hit might come from ep_free() but by holding the mutex 992 * will correctly serialize the operation. We do need to acquire 993 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 994 * from anywhere but ep_free(). 995 * 996 * Besides, ep_remove() acquires the lock, so we can't hold it here. 997 */ 998 mutex_lock(&epmutex); 999 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 1000 ep = epi->ep; 1001 mutex_lock_nested(&ep->mtx, 0); 1002 ep_remove(ep, epi); 1003 mutex_unlock(&ep->mtx); 1004 } 1005 mutex_unlock(&epmutex); 1006 } 1007 1008 static int ep_alloc(struct eventpoll **pep) 1009 { 1010 int error; 1011 struct user_struct *user; 1012 struct eventpoll *ep; 1013 1014 user = get_current_user(); 1015 error = -ENOMEM; 1016 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1017 if (unlikely(!ep)) 1018 goto free_uid; 1019 1020 spin_lock_init(&ep->lock); 1021 mutex_init(&ep->mtx); 1022 init_waitqueue_head(&ep->wq); 1023 init_waitqueue_head(&ep->poll_wait); 1024 INIT_LIST_HEAD(&ep->rdllist); 1025 ep->rbr = RB_ROOT_CACHED; 1026 ep->ovflist = EP_UNACTIVE_PTR; 1027 ep->user = user; 1028 1029 *pep = ep; 1030 1031 return 0; 1032 1033 free_uid: 1034 free_uid(user); 1035 return error; 1036 } 1037 1038 /* 1039 * Search the file inside the eventpoll tree. The RB tree operations 1040 * are protected by the "mtx" mutex, and ep_find() must be called with 1041 * "mtx" held. 1042 */ 1043 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1044 { 1045 int kcmp; 1046 struct rb_node *rbp; 1047 struct epitem *epi, *epir = NULL; 1048 struct epoll_filefd ffd; 1049 1050 ep_set_ffd(&ffd, file, fd); 1051 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1052 epi = rb_entry(rbp, struct epitem, rbn); 1053 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1054 if (kcmp > 0) 1055 rbp = rbp->rb_right; 1056 else if (kcmp < 0) 1057 rbp = rbp->rb_left; 1058 else { 1059 epir = epi; 1060 break; 1061 } 1062 } 1063 1064 return epir; 1065 } 1066 1067 #ifdef CONFIG_CHECKPOINT_RESTORE 1068 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1069 { 1070 struct rb_node *rbp; 1071 struct epitem *epi; 1072 1073 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1074 epi = rb_entry(rbp, struct epitem, rbn); 1075 if (epi->ffd.fd == tfd) { 1076 if (toff == 0) 1077 return epi; 1078 else 1079 toff--; 1080 } 1081 cond_resched(); 1082 } 1083 1084 return NULL; 1085 } 1086 1087 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1088 unsigned long toff) 1089 { 1090 struct file *file_raw; 1091 struct eventpoll *ep; 1092 struct epitem *epi; 1093 1094 if (!is_file_epoll(file)) 1095 return ERR_PTR(-EINVAL); 1096 1097 ep = file->private_data; 1098 1099 mutex_lock(&ep->mtx); 1100 epi = ep_find_tfd(ep, tfd, toff); 1101 if (epi) 1102 file_raw = epi->ffd.file; 1103 else 1104 file_raw = ERR_PTR(-ENOENT); 1105 mutex_unlock(&ep->mtx); 1106 1107 return file_raw; 1108 } 1109 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1110 1111 /* 1112 * This is the callback that is passed to the wait queue wakeup 1113 * mechanism. It is called by the stored file descriptors when they 1114 * have events to report. 1115 */ 1116 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1117 { 1118 int pwake = 0; 1119 unsigned long flags; 1120 struct epitem *epi = ep_item_from_wait(wait); 1121 struct eventpoll *ep = epi->ep; 1122 __poll_t pollflags = key_to_poll(key); 1123 int ewake = 0; 1124 1125 spin_lock_irqsave(&ep->lock, flags); 1126 1127 ep_set_busy_poll_napi_id(epi); 1128 1129 /* 1130 * If the event mask does not contain any poll(2) event, we consider the 1131 * descriptor to be disabled. This condition is likely the effect of the 1132 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1133 * until the next EPOLL_CTL_MOD will be issued. 1134 */ 1135 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1136 goto out_unlock; 1137 1138 /* 1139 * Check the events coming with the callback. At this stage, not 1140 * every device reports the events in the "key" parameter of the 1141 * callback. We need to be able to handle both cases here, hence the 1142 * test for "key" != NULL before the event match test. 1143 */ 1144 if (pollflags && !(pollflags & epi->event.events)) 1145 goto out_unlock; 1146 1147 /* 1148 * If we are transferring events to userspace, we can hold no locks 1149 * (because we're accessing user memory, and because of linux f_op->poll() 1150 * semantics). All the events that happen during that period of time are 1151 * chained in ep->ovflist and requeued later on. 1152 */ 1153 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 1154 if (epi->next == EP_UNACTIVE_PTR) { 1155 epi->next = ep->ovflist; 1156 ep->ovflist = epi; 1157 if (epi->ws) { 1158 /* 1159 * Activate ep->ws since epi->ws may get 1160 * deactivated at any time. 1161 */ 1162 __pm_stay_awake(ep->ws); 1163 } 1164 1165 } 1166 goto out_unlock; 1167 } 1168 1169 /* If this file is already in the ready list we exit soon */ 1170 if (!ep_is_linked(&epi->rdllink)) { 1171 list_add_tail(&epi->rdllink, &ep->rdllist); 1172 ep_pm_stay_awake_rcu(epi); 1173 } 1174 1175 /* 1176 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1177 * wait list. 1178 */ 1179 if (waitqueue_active(&ep->wq)) { 1180 if ((epi->event.events & EPOLLEXCLUSIVE) && 1181 !(pollflags & POLLFREE)) { 1182 switch (pollflags & EPOLLINOUT_BITS) { 1183 case EPOLLIN: 1184 if (epi->event.events & EPOLLIN) 1185 ewake = 1; 1186 break; 1187 case EPOLLOUT: 1188 if (epi->event.events & EPOLLOUT) 1189 ewake = 1; 1190 break; 1191 case 0: 1192 ewake = 1; 1193 break; 1194 } 1195 } 1196 wake_up_locked(&ep->wq); 1197 } 1198 if (waitqueue_active(&ep->poll_wait)) 1199 pwake++; 1200 1201 out_unlock: 1202 spin_unlock_irqrestore(&ep->lock, flags); 1203 1204 /* We have to call this outside the lock */ 1205 if (pwake) 1206 ep_poll_safewake(&ep->poll_wait); 1207 1208 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1209 ewake = 1; 1210 1211 if (pollflags & POLLFREE) { 1212 /* 1213 * If we race with ep_remove_wait_queue() it can miss 1214 * ->whead = NULL and do another remove_wait_queue() after 1215 * us, so we can't use __remove_wait_queue(). 1216 */ 1217 list_del_init(&wait->entry); 1218 /* 1219 * ->whead != NULL protects us from the race with ep_free() 1220 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1221 * held by the caller. Once we nullify it, nothing protects 1222 * ep/epi or even wait. 1223 */ 1224 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1225 } 1226 1227 return ewake; 1228 } 1229 1230 /* 1231 * This is the callback that is used to add our wait queue to the 1232 * target file wakeup lists. 1233 */ 1234 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1235 poll_table *pt) 1236 { 1237 struct epitem *epi = ep_item_from_epqueue(pt); 1238 struct eppoll_entry *pwq; 1239 1240 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1241 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1242 pwq->whead = whead; 1243 pwq->base = epi; 1244 if (epi->event.events & EPOLLEXCLUSIVE) 1245 add_wait_queue_exclusive(whead, &pwq->wait); 1246 else 1247 add_wait_queue(whead, &pwq->wait); 1248 list_add_tail(&pwq->llink, &epi->pwqlist); 1249 epi->nwait++; 1250 } else { 1251 /* We have to signal that an error occurred */ 1252 epi->nwait = -1; 1253 } 1254 } 1255 1256 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1257 { 1258 int kcmp; 1259 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1260 struct epitem *epic; 1261 bool leftmost = true; 1262 1263 while (*p) { 1264 parent = *p; 1265 epic = rb_entry(parent, struct epitem, rbn); 1266 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1267 if (kcmp > 0) { 1268 p = &parent->rb_right; 1269 leftmost = false; 1270 } else 1271 p = &parent->rb_left; 1272 } 1273 rb_link_node(&epi->rbn, parent, p); 1274 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1275 } 1276 1277 1278 1279 #define PATH_ARR_SIZE 5 1280 /* 1281 * These are the number paths of length 1 to 5, that we are allowing to emanate 1282 * from a single file of interest. For example, we allow 1000 paths of length 1283 * 1, to emanate from each file of interest. This essentially represents the 1284 * potential wakeup paths, which need to be limited in order to avoid massive 1285 * uncontrolled wakeup storms. The common use case should be a single ep which 1286 * is connected to n file sources. In this case each file source has 1 path 1287 * of length 1. Thus, the numbers below should be more than sufficient. These 1288 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1289 * and delete can't add additional paths. Protected by the epmutex. 1290 */ 1291 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1292 static int path_count[PATH_ARR_SIZE]; 1293 1294 static int path_count_inc(int nests) 1295 { 1296 /* Allow an arbitrary number of depth 1 paths */ 1297 if (nests == 0) 1298 return 0; 1299 1300 if (++path_count[nests] > path_limits[nests]) 1301 return -1; 1302 return 0; 1303 } 1304 1305 static void path_count_init(void) 1306 { 1307 int i; 1308 1309 for (i = 0; i < PATH_ARR_SIZE; i++) 1310 path_count[i] = 0; 1311 } 1312 1313 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1314 { 1315 int error = 0; 1316 struct file *file = priv; 1317 struct file *child_file; 1318 struct epitem *epi; 1319 1320 /* CTL_DEL can remove links here, but that can't increase our count */ 1321 rcu_read_lock(); 1322 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1323 child_file = epi->ep->file; 1324 if (is_file_epoll(child_file)) { 1325 if (list_empty(&child_file->f_ep_links)) { 1326 if (path_count_inc(call_nests)) { 1327 error = -1; 1328 break; 1329 } 1330 } else { 1331 error = ep_call_nested(&poll_loop_ncalls, 1332 EP_MAX_NESTS, 1333 reverse_path_check_proc, 1334 child_file, child_file, 1335 current); 1336 } 1337 if (error != 0) 1338 break; 1339 } else { 1340 printk(KERN_ERR "reverse_path_check_proc: " 1341 "file is not an ep!\n"); 1342 } 1343 } 1344 rcu_read_unlock(); 1345 return error; 1346 } 1347 1348 /** 1349 * reverse_path_check - The tfile_check_list is list of file *, which have 1350 * links that are proposed to be newly added. We need to 1351 * make sure that those added links don't add too many 1352 * paths such that we will spend all our time waking up 1353 * eventpoll objects. 1354 * 1355 * Returns: Returns zero if the proposed links don't create too many paths, 1356 * -1 otherwise. 1357 */ 1358 static int reverse_path_check(void) 1359 { 1360 int error = 0; 1361 struct file *current_file; 1362 1363 /* let's call this for all tfiles */ 1364 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1365 path_count_init(); 1366 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1367 reverse_path_check_proc, current_file, 1368 current_file, current); 1369 if (error) 1370 break; 1371 } 1372 return error; 1373 } 1374 1375 static int ep_create_wakeup_source(struct epitem *epi) 1376 { 1377 const char *name; 1378 struct wakeup_source *ws; 1379 1380 if (!epi->ep->ws) { 1381 epi->ep->ws = wakeup_source_register("eventpoll"); 1382 if (!epi->ep->ws) 1383 return -ENOMEM; 1384 } 1385 1386 name = epi->ffd.file->f_path.dentry->d_name.name; 1387 ws = wakeup_source_register(name); 1388 1389 if (!ws) 1390 return -ENOMEM; 1391 rcu_assign_pointer(epi->ws, ws); 1392 1393 return 0; 1394 } 1395 1396 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1397 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1398 { 1399 struct wakeup_source *ws = ep_wakeup_source(epi); 1400 1401 RCU_INIT_POINTER(epi->ws, NULL); 1402 1403 /* 1404 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1405 * used internally by wakeup_source_remove, too (called by 1406 * wakeup_source_unregister), so we cannot use call_rcu 1407 */ 1408 synchronize_rcu(); 1409 wakeup_source_unregister(ws); 1410 } 1411 1412 /* 1413 * Must be called with "mtx" held. 1414 */ 1415 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1416 struct file *tfile, int fd, int full_check) 1417 { 1418 int error, pwake = 0; 1419 __poll_t revents; 1420 unsigned long flags; 1421 long user_watches; 1422 struct epitem *epi; 1423 struct ep_pqueue epq; 1424 1425 user_watches = atomic_long_read(&ep->user->epoll_watches); 1426 if (unlikely(user_watches >= max_user_watches)) 1427 return -ENOSPC; 1428 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1429 return -ENOMEM; 1430 1431 /* Item initialization follow here ... */ 1432 INIT_LIST_HEAD(&epi->rdllink); 1433 INIT_LIST_HEAD(&epi->fllink); 1434 INIT_LIST_HEAD(&epi->pwqlist); 1435 epi->ep = ep; 1436 ep_set_ffd(&epi->ffd, tfile, fd); 1437 epi->event = *event; 1438 epi->nwait = 0; 1439 epi->next = EP_UNACTIVE_PTR; 1440 if (epi->event.events & EPOLLWAKEUP) { 1441 error = ep_create_wakeup_source(epi); 1442 if (error) 1443 goto error_create_wakeup_source; 1444 } else { 1445 RCU_INIT_POINTER(epi->ws, NULL); 1446 } 1447 1448 /* Initialize the poll table using the queue callback */ 1449 epq.epi = epi; 1450 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1451 1452 /* 1453 * Attach the item to the poll hooks and get current event bits. 1454 * We can safely use the file* here because its usage count has 1455 * been increased by the caller of this function. Note that after 1456 * this operation completes, the poll callback can start hitting 1457 * the new item. 1458 */ 1459 revents = ep_item_poll(epi, &epq.pt, 1); 1460 1461 /* 1462 * We have to check if something went wrong during the poll wait queue 1463 * install process. Namely an allocation for a wait queue failed due 1464 * high memory pressure. 1465 */ 1466 error = -ENOMEM; 1467 if (epi->nwait < 0) 1468 goto error_unregister; 1469 1470 /* Add the current item to the list of active epoll hook for this file */ 1471 spin_lock(&tfile->f_lock); 1472 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); 1473 spin_unlock(&tfile->f_lock); 1474 1475 /* 1476 * Add the current item to the RB tree. All RB tree operations are 1477 * protected by "mtx", and ep_insert() is called with "mtx" held. 1478 */ 1479 ep_rbtree_insert(ep, epi); 1480 1481 /* now check if we've created too many backpaths */ 1482 error = -EINVAL; 1483 if (full_check && reverse_path_check()) 1484 goto error_remove_epi; 1485 1486 /* We have to drop the new item inside our item list to keep track of it */ 1487 spin_lock_irqsave(&ep->lock, flags); 1488 1489 /* record NAPI ID of new item if present */ 1490 ep_set_busy_poll_napi_id(epi); 1491 1492 /* If the file is already "ready" we drop it inside the ready list */ 1493 if (revents && !ep_is_linked(&epi->rdllink)) { 1494 list_add_tail(&epi->rdllink, &ep->rdllist); 1495 ep_pm_stay_awake(epi); 1496 1497 /* Notify waiting tasks that events are available */ 1498 if (waitqueue_active(&ep->wq)) 1499 wake_up_locked(&ep->wq); 1500 if (waitqueue_active(&ep->poll_wait)) 1501 pwake++; 1502 } 1503 1504 spin_unlock_irqrestore(&ep->lock, flags); 1505 1506 atomic_long_inc(&ep->user->epoll_watches); 1507 1508 /* We have to call this outside the lock */ 1509 if (pwake) 1510 ep_poll_safewake(&ep->poll_wait); 1511 1512 return 0; 1513 1514 error_remove_epi: 1515 spin_lock(&tfile->f_lock); 1516 list_del_rcu(&epi->fllink); 1517 spin_unlock(&tfile->f_lock); 1518 1519 rb_erase_cached(&epi->rbn, &ep->rbr); 1520 1521 error_unregister: 1522 ep_unregister_pollwait(ep, epi); 1523 1524 /* 1525 * We need to do this because an event could have been arrived on some 1526 * allocated wait queue. Note that we don't care about the ep->ovflist 1527 * list, since that is used/cleaned only inside a section bound by "mtx". 1528 * And ep_insert() is called with "mtx" held. 1529 */ 1530 spin_lock_irqsave(&ep->lock, flags); 1531 if (ep_is_linked(&epi->rdllink)) 1532 list_del_init(&epi->rdllink); 1533 spin_unlock_irqrestore(&ep->lock, flags); 1534 1535 wakeup_source_unregister(ep_wakeup_source(epi)); 1536 1537 error_create_wakeup_source: 1538 kmem_cache_free(epi_cache, epi); 1539 1540 return error; 1541 } 1542 1543 /* 1544 * Modify the interest event mask by dropping an event if the new mask 1545 * has a match in the current file status. Must be called with "mtx" held. 1546 */ 1547 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1548 const struct epoll_event *event) 1549 { 1550 int pwake = 0; 1551 poll_table pt; 1552 1553 init_poll_funcptr(&pt, NULL); 1554 1555 /* 1556 * Set the new event interest mask before calling f_op->poll(); 1557 * otherwise we might miss an event that happens between the 1558 * f_op->poll() call and the new event set registering. 1559 */ 1560 epi->event.events = event->events; /* need barrier below */ 1561 epi->event.data = event->data; /* protected by mtx */ 1562 if (epi->event.events & EPOLLWAKEUP) { 1563 if (!ep_has_wakeup_source(epi)) 1564 ep_create_wakeup_source(epi); 1565 } else if (ep_has_wakeup_source(epi)) { 1566 ep_destroy_wakeup_source(epi); 1567 } 1568 1569 /* 1570 * The following barrier has two effects: 1571 * 1572 * 1) Flush epi changes above to other CPUs. This ensures 1573 * we do not miss events from ep_poll_callback if an 1574 * event occurs immediately after we call f_op->poll(). 1575 * We need this because we did not take ep->lock while 1576 * changing epi above (but ep_poll_callback does take 1577 * ep->lock). 1578 * 1579 * 2) We also need to ensure we do not miss _past_ events 1580 * when calling f_op->poll(). This barrier also 1581 * pairs with the barrier in wq_has_sleeper (see 1582 * comments for wq_has_sleeper). 1583 * 1584 * This barrier will now guarantee ep_poll_callback or f_op->poll 1585 * (or both) will notice the readiness of an item. 1586 */ 1587 smp_mb(); 1588 1589 /* 1590 * Get current event bits. We can safely use the file* here because 1591 * its usage count has been increased by the caller of this function. 1592 * If the item is "hot" and it is not registered inside the ready 1593 * list, push it inside. 1594 */ 1595 if (ep_item_poll(epi, &pt, 1)) { 1596 spin_lock_irq(&ep->lock); 1597 if (!ep_is_linked(&epi->rdllink)) { 1598 list_add_tail(&epi->rdllink, &ep->rdllist); 1599 ep_pm_stay_awake(epi); 1600 1601 /* Notify waiting tasks that events are available */ 1602 if (waitqueue_active(&ep->wq)) 1603 wake_up_locked(&ep->wq); 1604 if (waitqueue_active(&ep->poll_wait)) 1605 pwake++; 1606 } 1607 spin_unlock_irq(&ep->lock); 1608 } 1609 1610 /* We have to call this outside the lock */ 1611 if (pwake) 1612 ep_poll_safewake(&ep->poll_wait); 1613 1614 return 0; 1615 } 1616 1617 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1618 void *priv) 1619 { 1620 struct ep_send_events_data *esed = priv; 1621 __poll_t revents; 1622 struct epitem *epi; 1623 struct epoll_event __user *uevent; 1624 struct wakeup_source *ws; 1625 poll_table pt; 1626 1627 init_poll_funcptr(&pt, NULL); 1628 1629 /* 1630 * We can loop without lock because we are passed a task private list. 1631 * Items cannot vanish during the loop because ep_scan_ready_list() is 1632 * holding "mtx" during this call. 1633 */ 1634 for (esed->res = 0, uevent = esed->events; 1635 !list_empty(head) && esed->res < esed->maxevents;) { 1636 epi = list_first_entry(head, struct epitem, rdllink); 1637 1638 /* 1639 * Activate ep->ws before deactivating epi->ws to prevent 1640 * triggering auto-suspend here (in case we reactive epi->ws 1641 * below). 1642 * 1643 * This could be rearranged to delay the deactivation of epi->ws 1644 * instead, but then epi->ws would temporarily be out of sync 1645 * with ep_is_linked(). 1646 */ 1647 ws = ep_wakeup_source(epi); 1648 if (ws) { 1649 if (ws->active) 1650 __pm_stay_awake(ep->ws); 1651 __pm_relax(ws); 1652 } 1653 1654 list_del_init(&epi->rdllink); 1655 1656 revents = ep_item_poll(epi, &pt, 1); 1657 1658 /* 1659 * If the event mask intersect the caller-requested one, 1660 * deliver the event to userspace. Again, ep_scan_ready_list() 1661 * is holding "mtx", so no operations coming from userspace 1662 * can change the item. 1663 */ 1664 if (revents) { 1665 if (__put_user(revents, &uevent->events) || 1666 __put_user(epi->event.data, &uevent->data)) { 1667 list_add(&epi->rdllink, head); 1668 ep_pm_stay_awake(epi); 1669 if (!esed->res) 1670 esed->res = -EFAULT; 1671 return 0; 1672 } 1673 esed->res++; 1674 uevent++; 1675 if (epi->event.events & EPOLLONESHOT) 1676 epi->event.events &= EP_PRIVATE_BITS; 1677 else if (!(epi->event.events & EPOLLET)) { 1678 /* 1679 * If this file has been added with Level 1680 * Trigger mode, we need to insert back inside 1681 * the ready list, so that the next call to 1682 * epoll_wait() will check again the events 1683 * availability. At this point, no one can insert 1684 * into ep->rdllist besides us. The epoll_ctl() 1685 * callers are locked out by 1686 * ep_scan_ready_list() holding "mtx" and the 1687 * poll callback will queue them in ep->ovflist. 1688 */ 1689 list_add_tail(&epi->rdllink, &ep->rdllist); 1690 ep_pm_stay_awake(epi); 1691 } 1692 } 1693 } 1694 1695 return 0; 1696 } 1697 1698 static int ep_send_events(struct eventpoll *ep, 1699 struct epoll_event __user *events, int maxevents) 1700 { 1701 struct ep_send_events_data esed; 1702 1703 esed.maxevents = maxevents; 1704 esed.events = events; 1705 1706 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1707 return esed.res; 1708 } 1709 1710 static inline struct timespec64 ep_set_mstimeout(long ms) 1711 { 1712 struct timespec64 now, ts = { 1713 .tv_sec = ms / MSEC_PER_SEC, 1714 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1715 }; 1716 1717 ktime_get_ts64(&now); 1718 return timespec64_add_safe(now, ts); 1719 } 1720 1721 /** 1722 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1723 * event buffer. 1724 * 1725 * @ep: Pointer to the eventpoll context. 1726 * @events: Pointer to the userspace buffer where the ready events should be 1727 * stored. 1728 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1729 * @timeout: Maximum timeout for the ready events fetch operation, in 1730 * milliseconds. If the @timeout is zero, the function will not block, 1731 * while if the @timeout is less than zero, the function will block 1732 * until at least one event has been retrieved (or an error 1733 * occurred). 1734 * 1735 * Returns: Returns the number of ready events which have been fetched, or an 1736 * error code, in case of error. 1737 */ 1738 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1739 int maxevents, long timeout) 1740 { 1741 int res = 0, eavail, timed_out = 0; 1742 unsigned long flags; 1743 u64 slack = 0; 1744 wait_queue_entry_t wait; 1745 ktime_t expires, *to = NULL; 1746 1747 if (timeout > 0) { 1748 struct timespec64 end_time = ep_set_mstimeout(timeout); 1749 1750 slack = select_estimate_accuracy(&end_time); 1751 to = &expires; 1752 *to = timespec64_to_ktime(end_time); 1753 } else if (timeout == 0) { 1754 /* 1755 * Avoid the unnecessary trip to the wait queue loop, if the 1756 * caller specified a non blocking operation. 1757 */ 1758 timed_out = 1; 1759 spin_lock_irqsave(&ep->lock, flags); 1760 goto check_events; 1761 } 1762 1763 fetch_events: 1764 1765 if (!ep_events_available(ep)) 1766 ep_busy_loop(ep, timed_out); 1767 1768 spin_lock_irqsave(&ep->lock, flags); 1769 1770 if (!ep_events_available(ep)) { 1771 /* 1772 * Busy poll timed out. Drop NAPI ID for now, we can add 1773 * it back in when we have moved a socket with a valid NAPI 1774 * ID onto the ready list. 1775 */ 1776 ep_reset_busy_poll_napi_id(ep); 1777 1778 /* 1779 * We don't have any available event to return to the caller. 1780 * We need to sleep here, and we will be wake up by 1781 * ep_poll_callback() when events will become available. 1782 */ 1783 init_waitqueue_entry(&wait, current); 1784 __add_wait_queue_exclusive(&ep->wq, &wait); 1785 1786 for (;;) { 1787 /* 1788 * We don't want to sleep if the ep_poll_callback() sends us 1789 * a wakeup in between. That's why we set the task state 1790 * to TASK_INTERRUPTIBLE before doing the checks. 1791 */ 1792 set_current_state(TASK_INTERRUPTIBLE); 1793 /* 1794 * Always short-circuit for fatal signals to allow 1795 * threads to make a timely exit without the chance of 1796 * finding more events available and fetching 1797 * repeatedly. 1798 */ 1799 if (fatal_signal_pending(current)) { 1800 res = -EINTR; 1801 break; 1802 } 1803 if (ep_events_available(ep) || timed_out) 1804 break; 1805 if (signal_pending(current)) { 1806 res = -EINTR; 1807 break; 1808 } 1809 1810 spin_unlock_irqrestore(&ep->lock, flags); 1811 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1812 timed_out = 1; 1813 1814 spin_lock_irqsave(&ep->lock, flags); 1815 } 1816 1817 __remove_wait_queue(&ep->wq, &wait); 1818 __set_current_state(TASK_RUNNING); 1819 } 1820 check_events: 1821 /* Is it worth to try to dig for events ? */ 1822 eavail = ep_events_available(ep); 1823 1824 spin_unlock_irqrestore(&ep->lock, flags); 1825 1826 /* 1827 * Try to transfer events to user space. In case we get 0 events and 1828 * there's still timeout left over, we go trying again in search of 1829 * more luck. 1830 */ 1831 if (!res && eavail && 1832 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1833 goto fetch_events; 1834 1835 return res; 1836 } 1837 1838 /** 1839 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1840 * API, to verify that adding an epoll file inside another 1841 * epoll structure, does not violate the constraints, in 1842 * terms of closed loops, or too deep chains (which can 1843 * result in excessive stack usage). 1844 * 1845 * @priv: Pointer to the epoll file to be currently checked. 1846 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1847 * data structure pointer. 1848 * @call_nests: Current dept of the @ep_call_nested() call stack. 1849 * 1850 * Returns: Returns zero if adding the epoll @file inside current epoll 1851 * structure @ep does not violate the constraints, or -1 otherwise. 1852 */ 1853 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1854 { 1855 int error = 0; 1856 struct file *file = priv; 1857 struct eventpoll *ep = file->private_data; 1858 struct eventpoll *ep_tovisit; 1859 struct rb_node *rbp; 1860 struct epitem *epi; 1861 1862 mutex_lock_nested(&ep->mtx, call_nests + 1); 1863 ep->visited = 1; 1864 list_add(&ep->visited_list_link, &visited_list); 1865 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1866 epi = rb_entry(rbp, struct epitem, rbn); 1867 if (unlikely(is_file_epoll(epi->ffd.file))) { 1868 ep_tovisit = epi->ffd.file->private_data; 1869 if (ep_tovisit->visited) 1870 continue; 1871 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1872 ep_loop_check_proc, epi->ffd.file, 1873 ep_tovisit, current); 1874 if (error != 0) 1875 break; 1876 } else { 1877 /* 1878 * If we've reached a file that is not associated with 1879 * an ep, then we need to check if the newly added 1880 * links are going to add too many wakeup paths. We do 1881 * this by adding it to the tfile_check_list, if it's 1882 * not already there, and calling reverse_path_check() 1883 * during ep_insert(). 1884 */ 1885 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1886 list_add(&epi->ffd.file->f_tfile_llink, 1887 &tfile_check_list); 1888 } 1889 } 1890 mutex_unlock(&ep->mtx); 1891 1892 return error; 1893 } 1894 1895 /** 1896 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1897 * another epoll file (represented by @ep) does not create 1898 * closed loops or too deep chains. 1899 * 1900 * @ep: Pointer to the epoll private data structure. 1901 * @file: Pointer to the epoll file to be checked. 1902 * 1903 * Returns: Returns zero if adding the epoll @file inside current epoll 1904 * structure @ep does not violate the constraints, or -1 otherwise. 1905 */ 1906 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1907 { 1908 int ret; 1909 struct eventpoll *ep_cur, *ep_next; 1910 1911 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1912 ep_loop_check_proc, file, ep, current); 1913 /* clear visited list */ 1914 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1915 visited_list_link) { 1916 ep_cur->visited = 0; 1917 list_del(&ep_cur->visited_list_link); 1918 } 1919 return ret; 1920 } 1921 1922 static void clear_tfile_check_list(void) 1923 { 1924 struct file *file; 1925 1926 /* first clear the tfile_check_list */ 1927 while (!list_empty(&tfile_check_list)) { 1928 file = list_first_entry(&tfile_check_list, struct file, 1929 f_tfile_llink); 1930 list_del_init(&file->f_tfile_llink); 1931 } 1932 INIT_LIST_HEAD(&tfile_check_list); 1933 } 1934 1935 /* 1936 * Open an eventpoll file descriptor. 1937 */ 1938 static int do_epoll_create(int flags) 1939 { 1940 int error, fd; 1941 struct eventpoll *ep = NULL; 1942 struct file *file; 1943 1944 /* Check the EPOLL_* constant for consistency. */ 1945 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1946 1947 if (flags & ~EPOLL_CLOEXEC) 1948 return -EINVAL; 1949 /* 1950 * Create the internal data structure ("struct eventpoll"). 1951 */ 1952 error = ep_alloc(&ep); 1953 if (error < 0) 1954 return error; 1955 /* 1956 * Creates all the items needed to setup an eventpoll file. That is, 1957 * a file structure and a free file descriptor. 1958 */ 1959 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1960 if (fd < 0) { 1961 error = fd; 1962 goto out_free_ep; 1963 } 1964 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1965 O_RDWR | (flags & O_CLOEXEC)); 1966 if (IS_ERR(file)) { 1967 error = PTR_ERR(file); 1968 goto out_free_fd; 1969 } 1970 ep->file = file; 1971 fd_install(fd, file); 1972 return fd; 1973 1974 out_free_fd: 1975 put_unused_fd(fd); 1976 out_free_ep: 1977 ep_free(ep); 1978 return error; 1979 } 1980 1981 SYSCALL_DEFINE1(epoll_create1, int, flags) 1982 { 1983 return do_epoll_create(flags); 1984 } 1985 1986 SYSCALL_DEFINE1(epoll_create, int, size) 1987 { 1988 if (size <= 0) 1989 return -EINVAL; 1990 1991 return do_epoll_create(0); 1992 } 1993 1994 /* 1995 * The following function implements the controller interface for 1996 * the eventpoll file that enables the insertion/removal/change of 1997 * file descriptors inside the interest set. 1998 */ 1999 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2000 struct epoll_event __user *, event) 2001 { 2002 int error; 2003 int full_check = 0; 2004 struct fd f, tf; 2005 struct eventpoll *ep; 2006 struct epitem *epi; 2007 struct epoll_event epds; 2008 struct eventpoll *tep = NULL; 2009 2010 error = -EFAULT; 2011 if (ep_op_has_event(op) && 2012 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2013 goto error_return; 2014 2015 error = -EBADF; 2016 f = fdget(epfd); 2017 if (!f.file) 2018 goto error_return; 2019 2020 /* Get the "struct file *" for the target file */ 2021 tf = fdget(fd); 2022 if (!tf.file) 2023 goto error_fput; 2024 2025 /* The target file descriptor must support poll */ 2026 error = -EPERM; 2027 if (!file_can_poll(tf.file)) 2028 goto error_tgt_fput; 2029 2030 /* Check if EPOLLWAKEUP is allowed */ 2031 if (ep_op_has_event(op)) 2032 ep_take_care_of_epollwakeup(&epds); 2033 2034 /* 2035 * We have to check that the file structure underneath the file descriptor 2036 * the user passed to us _is_ an eventpoll file. And also we do not permit 2037 * adding an epoll file descriptor inside itself. 2038 */ 2039 error = -EINVAL; 2040 if (f.file == tf.file || !is_file_epoll(f.file)) 2041 goto error_tgt_fput; 2042 2043 /* 2044 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2045 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2046 * Also, we do not currently supported nested exclusive wakeups. 2047 */ 2048 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) { 2049 if (op == EPOLL_CTL_MOD) 2050 goto error_tgt_fput; 2051 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2052 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS))) 2053 goto error_tgt_fput; 2054 } 2055 2056 /* 2057 * At this point it is safe to assume that the "private_data" contains 2058 * our own data structure. 2059 */ 2060 ep = f.file->private_data; 2061 2062 /* 2063 * When we insert an epoll file descriptor, inside another epoll file 2064 * descriptor, there is the change of creating closed loops, which are 2065 * better be handled here, than in more critical paths. While we are 2066 * checking for loops we also determine the list of files reachable 2067 * and hang them on the tfile_check_list, so we can check that we 2068 * haven't created too many possible wakeup paths. 2069 * 2070 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2071 * the epoll file descriptor is attaching directly to a wakeup source, 2072 * unless the epoll file descriptor is nested. The purpose of taking the 2073 * 'epmutex' on add is to prevent complex toplogies such as loops and 2074 * deep wakeup paths from forming in parallel through multiple 2075 * EPOLL_CTL_ADD operations. 2076 */ 2077 mutex_lock_nested(&ep->mtx, 0); 2078 if (op == EPOLL_CTL_ADD) { 2079 if (!list_empty(&f.file->f_ep_links) || 2080 is_file_epoll(tf.file)) { 2081 full_check = 1; 2082 mutex_unlock(&ep->mtx); 2083 mutex_lock(&epmutex); 2084 if (is_file_epoll(tf.file)) { 2085 error = -ELOOP; 2086 if (ep_loop_check(ep, tf.file) != 0) { 2087 clear_tfile_check_list(); 2088 goto error_tgt_fput; 2089 } 2090 } else 2091 list_add(&tf.file->f_tfile_llink, 2092 &tfile_check_list); 2093 mutex_lock_nested(&ep->mtx, 0); 2094 if (is_file_epoll(tf.file)) { 2095 tep = tf.file->private_data; 2096 mutex_lock_nested(&tep->mtx, 1); 2097 } 2098 } 2099 } 2100 2101 /* 2102 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 2103 * above, we can be sure to be able to use the item looked up by 2104 * ep_find() till we release the mutex. 2105 */ 2106 epi = ep_find(ep, tf.file, fd); 2107 2108 error = -EINVAL; 2109 switch (op) { 2110 case EPOLL_CTL_ADD: 2111 if (!epi) { 2112 epds.events |= EPOLLERR | EPOLLHUP; 2113 error = ep_insert(ep, &epds, tf.file, fd, full_check); 2114 } else 2115 error = -EEXIST; 2116 if (full_check) 2117 clear_tfile_check_list(); 2118 break; 2119 case EPOLL_CTL_DEL: 2120 if (epi) 2121 error = ep_remove(ep, epi); 2122 else 2123 error = -ENOENT; 2124 break; 2125 case EPOLL_CTL_MOD: 2126 if (epi) { 2127 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2128 epds.events |= EPOLLERR | EPOLLHUP; 2129 error = ep_modify(ep, epi, &epds); 2130 } 2131 } else 2132 error = -ENOENT; 2133 break; 2134 } 2135 if (tep != NULL) 2136 mutex_unlock(&tep->mtx); 2137 mutex_unlock(&ep->mtx); 2138 2139 error_tgt_fput: 2140 if (full_check) 2141 mutex_unlock(&epmutex); 2142 2143 fdput(tf); 2144 error_fput: 2145 fdput(f); 2146 error_return: 2147 2148 return error; 2149 } 2150 2151 /* 2152 * Implement the event wait interface for the eventpoll file. It is the kernel 2153 * part of the user space epoll_wait(2). 2154 */ 2155 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2156 int maxevents, int timeout) 2157 { 2158 int error; 2159 struct fd f; 2160 struct eventpoll *ep; 2161 2162 /* The maximum number of event must be greater than zero */ 2163 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2164 return -EINVAL; 2165 2166 /* Verify that the area passed by the user is writeable */ 2167 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) 2168 return -EFAULT; 2169 2170 /* Get the "struct file *" for the eventpoll file */ 2171 f = fdget(epfd); 2172 if (!f.file) 2173 return -EBADF; 2174 2175 /* 2176 * We have to check that the file structure underneath the fd 2177 * the user passed to us _is_ an eventpoll file. 2178 */ 2179 error = -EINVAL; 2180 if (!is_file_epoll(f.file)) 2181 goto error_fput; 2182 2183 /* 2184 * At this point it is safe to assume that the "private_data" contains 2185 * our own data structure. 2186 */ 2187 ep = f.file->private_data; 2188 2189 /* Time to fish for events ... */ 2190 error = ep_poll(ep, events, maxevents, timeout); 2191 2192 error_fput: 2193 fdput(f); 2194 return error; 2195 } 2196 2197 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2198 int, maxevents, int, timeout) 2199 { 2200 return do_epoll_wait(epfd, events, maxevents, timeout); 2201 } 2202 2203 /* 2204 * Implement the event wait interface for the eventpoll file. It is the kernel 2205 * part of the user space epoll_pwait(2). 2206 */ 2207 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2208 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2209 size_t, sigsetsize) 2210 { 2211 int error; 2212 sigset_t ksigmask, sigsaved; 2213 2214 /* 2215 * If the caller wants a certain signal mask to be set during the wait, 2216 * we apply it here. 2217 */ 2218 if (sigmask) { 2219 if (sigsetsize != sizeof(sigset_t)) 2220 return -EINVAL; 2221 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 2222 return -EFAULT; 2223 sigsaved = current->blocked; 2224 set_current_blocked(&ksigmask); 2225 } 2226 2227 error = do_epoll_wait(epfd, events, maxevents, timeout); 2228 2229 /* 2230 * If we changed the signal mask, we need to restore the original one. 2231 * In case we've got a signal while waiting, we do not restore the 2232 * signal mask yet, and we allow do_signal() to deliver the signal on 2233 * the way back to userspace, before the signal mask is restored. 2234 */ 2235 if (sigmask) { 2236 if (error == -EINTR) { 2237 memcpy(¤t->saved_sigmask, &sigsaved, 2238 sizeof(sigsaved)); 2239 set_restore_sigmask(); 2240 } else 2241 set_current_blocked(&sigsaved); 2242 } 2243 2244 return error; 2245 } 2246 2247 #ifdef CONFIG_COMPAT 2248 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2249 struct epoll_event __user *, events, 2250 int, maxevents, int, timeout, 2251 const compat_sigset_t __user *, sigmask, 2252 compat_size_t, sigsetsize) 2253 { 2254 long err; 2255 sigset_t ksigmask, sigsaved; 2256 2257 /* 2258 * If the caller wants a certain signal mask to be set during the wait, 2259 * we apply it here. 2260 */ 2261 if (sigmask) { 2262 if (sigsetsize != sizeof(compat_sigset_t)) 2263 return -EINVAL; 2264 if (get_compat_sigset(&ksigmask, sigmask)) 2265 return -EFAULT; 2266 sigsaved = current->blocked; 2267 set_current_blocked(&ksigmask); 2268 } 2269 2270 err = do_epoll_wait(epfd, events, maxevents, timeout); 2271 2272 /* 2273 * If we changed the signal mask, we need to restore the original one. 2274 * In case we've got a signal while waiting, we do not restore the 2275 * signal mask yet, and we allow do_signal() to deliver the signal on 2276 * the way back to userspace, before the signal mask is restored. 2277 */ 2278 if (sigmask) { 2279 if (err == -EINTR) { 2280 memcpy(¤t->saved_sigmask, &sigsaved, 2281 sizeof(sigsaved)); 2282 set_restore_sigmask(); 2283 } else 2284 set_current_blocked(&sigsaved); 2285 } 2286 2287 return err; 2288 } 2289 #endif 2290 2291 static int __init eventpoll_init(void) 2292 { 2293 struct sysinfo si; 2294 2295 si_meminfo(&si); 2296 /* 2297 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2298 */ 2299 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2300 EP_ITEM_COST; 2301 BUG_ON(max_user_watches < 0); 2302 2303 /* 2304 * Initialize the structure used to perform epoll file descriptor 2305 * inclusion loops checks. 2306 */ 2307 ep_nested_calls_init(&poll_loop_ncalls); 2308 2309 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2310 /* Initialize the structure used to perform safe poll wait head wake ups */ 2311 ep_nested_calls_init(&poll_safewake_ncalls); 2312 #endif 2313 2314 /* 2315 * We can have many thousands of epitems, so prevent this from 2316 * using an extra cache line on 64-bit (and smaller) CPUs 2317 */ 2318 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2319 2320 /* Allocates slab cache used to allocate "struct epitem" items */ 2321 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2322 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2323 2324 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2325 pwq_cache = kmem_cache_create("eventpoll_pwq", 2326 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2327 2328 return 0; 2329 } 2330 fs_initcall(eventpoll_init); 2331