xref: /openbmc/linux/fs/eventpoll.c (revision f7777dcc)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/freezer.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/mman.h>
41 #include <linux/atomic.h>
42 #include <linux/proc_fs.h>
43 #include <linux/seq_file.h>
44 #include <linux/compat.h>
45 
46 /*
47  * LOCKING:
48  * There are three level of locking required by epoll :
49  *
50  * 1) epmutex (mutex)
51  * 2) ep->mtx (mutex)
52  * 3) ep->lock (spinlock)
53  *
54  * The acquire order is the one listed above, from 1 to 3.
55  * We need a spinlock (ep->lock) because we manipulate objects
56  * from inside the poll callback, that might be triggered from
57  * a wake_up() that in turn might be called from IRQ context.
58  * So we can't sleep inside the poll callback and hence we need
59  * a spinlock. During the event transfer loop (from kernel to
60  * user space) we could end up sleeping due a copy_to_user(), so
61  * we need a lock that will allow us to sleep. This lock is a
62  * mutex (ep->mtx). It is acquired during the event transfer loop,
63  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
64  * Then we also need a global mutex to serialize eventpoll_release_file()
65  * and ep_free().
66  * This mutex is acquired by ep_free() during the epoll file
67  * cleanup path and it is also acquired by eventpoll_release_file()
68  * if a file has been pushed inside an epoll set and it is then
69  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
70  * It is also acquired when inserting an epoll fd onto another epoll
71  * fd. We do this so that we walk the epoll tree and ensure that this
72  * insertion does not create a cycle of epoll file descriptors, which
73  * could lead to deadlock. We need a global mutex to prevent two
74  * simultaneous inserts (A into B and B into A) from racing and
75  * constructing a cycle without either insert observing that it is
76  * going to.
77  * It is necessary to acquire multiple "ep->mtx"es at once in the
78  * case when one epoll fd is added to another. In this case, we
79  * always acquire the locks in the order of nesting (i.e. after
80  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
81  * before e2->mtx). Since we disallow cycles of epoll file
82  * descriptors, this ensures that the mutexes are well-ordered. In
83  * order to communicate this nesting to lockdep, when walking a tree
84  * of epoll file descriptors, we use the current recursion depth as
85  * the lockdep subkey.
86  * It is possible to drop the "ep->mtx" and to use the global
87  * mutex "epmutex" (together with "ep->lock") to have it working,
88  * but having "ep->mtx" will make the interface more scalable.
89  * Events that require holding "epmutex" are very rare, while for
90  * normal operations the epoll private "ep->mtx" will guarantee
91  * a better scalability.
92  */
93 
94 /* Epoll private bits inside the event mask */
95 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
96 
97 /* Maximum number of nesting allowed inside epoll sets */
98 #define EP_MAX_NESTS 4
99 
100 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
101 
102 #define EP_UNACTIVE_PTR ((void *) -1L)
103 
104 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
105 
106 struct epoll_filefd {
107 	struct file *file;
108 	int fd;
109 } __packed;
110 
111 /*
112  * Structure used to track possible nested calls, for too deep recursions
113  * and loop cycles.
114  */
115 struct nested_call_node {
116 	struct list_head llink;
117 	void *cookie;
118 	void *ctx;
119 };
120 
121 /*
122  * This structure is used as collector for nested calls, to check for
123  * maximum recursion dept and loop cycles.
124  */
125 struct nested_calls {
126 	struct list_head tasks_call_list;
127 	spinlock_t lock;
128 };
129 
130 /*
131  * Each file descriptor added to the eventpoll interface will
132  * have an entry of this type linked to the "rbr" RB tree.
133  * Avoid increasing the size of this struct, there can be many thousands
134  * of these on a server and we do not want this to take another cache line.
135  */
136 struct epitem {
137 	/* RB tree node used to link this structure to the eventpoll RB tree */
138 	struct rb_node rbn;
139 
140 	/* List header used to link this structure to the eventpoll ready list */
141 	struct list_head rdllink;
142 
143 	/*
144 	 * Works together "struct eventpoll"->ovflist in keeping the
145 	 * single linked chain of items.
146 	 */
147 	struct epitem *next;
148 
149 	/* The file descriptor information this item refers to */
150 	struct epoll_filefd ffd;
151 
152 	/* Number of active wait queue attached to poll operations */
153 	int nwait;
154 
155 	/* List containing poll wait queues */
156 	struct list_head pwqlist;
157 
158 	/* The "container" of this item */
159 	struct eventpoll *ep;
160 
161 	/* List header used to link this item to the "struct file" items list */
162 	struct list_head fllink;
163 
164 	/* wakeup_source used when EPOLLWAKEUP is set */
165 	struct wakeup_source __rcu *ws;
166 
167 	/* The structure that describe the interested events and the source fd */
168 	struct epoll_event event;
169 };
170 
171 /*
172  * This structure is stored inside the "private_data" member of the file
173  * structure and represents the main data structure for the eventpoll
174  * interface.
175  */
176 struct eventpoll {
177 	/* Protect the access to this structure */
178 	spinlock_t lock;
179 
180 	/*
181 	 * This mutex is used to ensure that files are not removed
182 	 * while epoll is using them. This is held during the event
183 	 * collection loop, the file cleanup path, the epoll file exit
184 	 * code and the ctl operations.
185 	 */
186 	struct mutex mtx;
187 
188 	/* Wait queue used by sys_epoll_wait() */
189 	wait_queue_head_t wq;
190 
191 	/* Wait queue used by file->poll() */
192 	wait_queue_head_t poll_wait;
193 
194 	/* List of ready file descriptors */
195 	struct list_head rdllist;
196 
197 	/* RB tree root used to store monitored fd structs */
198 	struct rb_root rbr;
199 
200 	/*
201 	 * This is a single linked list that chains all the "struct epitem" that
202 	 * happened while transferring ready events to userspace w/out
203 	 * holding ->lock.
204 	 */
205 	struct epitem *ovflist;
206 
207 	/* wakeup_source used when ep_scan_ready_list is running */
208 	struct wakeup_source *ws;
209 
210 	/* The user that created the eventpoll descriptor */
211 	struct user_struct *user;
212 
213 	struct file *file;
214 
215 	/* used to optimize loop detection check */
216 	int visited;
217 	struct list_head visited_list_link;
218 };
219 
220 /* Wait structure used by the poll hooks */
221 struct eppoll_entry {
222 	/* List header used to link this structure to the "struct epitem" */
223 	struct list_head llink;
224 
225 	/* The "base" pointer is set to the container "struct epitem" */
226 	struct epitem *base;
227 
228 	/*
229 	 * Wait queue item that will be linked to the target file wait
230 	 * queue head.
231 	 */
232 	wait_queue_t wait;
233 
234 	/* The wait queue head that linked the "wait" wait queue item */
235 	wait_queue_head_t *whead;
236 };
237 
238 /* Wrapper struct used by poll queueing */
239 struct ep_pqueue {
240 	poll_table pt;
241 	struct epitem *epi;
242 };
243 
244 /* Used by the ep_send_events() function as callback private data */
245 struct ep_send_events_data {
246 	int maxevents;
247 	struct epoll_event __user *events;
248 };
249 
250 /*
251  * Configuration options available inside /proc/sys/fs/epoll/
252  */
253 /* Maximum number of epoll watched descriptors, per user */
254 static long max_user_watches __read_mostly;
255 
256 /*
257  * This mutex is used to serialize ep_free() and eventpoll_release_file().
258  */
259 static DEFINE_MUTEX(epmutex);
260 
261 /* Used to check for epoll file descriptor inclusion loops */
262 static struct nested_calls poll_loop_ncalls;
263 
264 /* Used for safe wake up implementation */
265 static struct nested_calls poll_safewake_ncalls;
266 
267 /* Used to call file's f_op->poll() under the nested calls boundaries */
268 static struct nested_calls poll_readywalk_ncalls;
269 
270 /* Slab cache used to allocate "struct epitem" */
271 static struct kmem_cache *epi_cache __read_mostly;
272 
273 /* Slab cache used to allocate "struct eppoll_entry" */
274 static struct kmem_cache *pwq_cache __read_mostly;
275 
276 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
277 static LIST_HEAD(visited_list);
278 
279 /*
280  * List of files with newly added links, where we may need to limit the number
281  * of emanating paths. Protected by the epmutex.
282  */
283 static LIST_HEAD(tfile_check_list);
284 
285 #ifdef CONFIG_SYSCTL
286 
287 #include <linux/sysctl.h>
288 
289 static long zero;
290 static long long_max = LONG_MAX;
291 
292 ctl_table epoll_table[] = {
293 	{
294 		.procname	= "max_user_watches",
295 		.data		= &max_user_watches,
296 		.maxlen		= sizeof(max_user_watches),
297 		.mode		= 0644,
298 		.proc_handler	= proc_doulongvec_minmax,
299 		.extra1		= &zero,
300 		.extra2		= &long_max,
301 	},
302 	{ }
303 };
304 #endif /* CONFIG_SYSCTL */
305 
306 static const struct file_operations eventpoll_fops;
307 
308 static inline int is_file_epoll(struct file *f)
309 {
310 	return f->f_op == &eventpoll_fops;
311 }
312 
313 /* Setup the structure that is used as key for the RB tree */
314 static inline void ep_set_ffd(struct epoll_filefd *ffd,
315 			      struct file *file, int fd)
316 {
317 	ffd->file = file;
318 	ffd->fd = fd;
319 }
320 
321 /* Compare RB tree keys */
322 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
323 			     struct epoll_filefd *p2)
324 {
325 	return (p1->file > p2->file ? +1:
326 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
327 }
328 
329 /* Tells us if the item is currently linked */
330 static inline int ep_is_linked(struct list_head *p)
331 {
332 	return !list_empty(p);
333 }
334 
335 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
336 {
337 	return container_of(p, struct eppoll_entry, wait);
338 }
339 
340 /* Get the "struct epitem" from a wait queue pointer */
341 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
342 {
343 	return container_of(p, struct eppoll_entry, wait)->base;
344 }
345 
346 /* Get the "struct epitem" from an epoll queue wrapper */
347 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
348 {
349 	return container_of(p, struct ep_pqueue, pt)->epi;
350 }
351 
352 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
353 static inline int ep_op_has_event(int op)
354 {
355 	return op != EPOLL_CTL_DEL;
356 }
357 
358 /* Initialize the poll safe wake up structure */
359 static void ep_nested_calls_init(struct nested_calls *ncalls)
360 {
361 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
362 	spin_lock_init(&ncalls->lock);
363 }
364 
365 /**
366  * ep_events_available - Checks if ready events might be available.
367  *
368  * @ep: Pointer to the eventpoll context.
369  *
370  * Returns: Returns a value different than zero if ready events are available,
371  *          or zero otherwise.
372  */
373 static inline int ep_events_available(struct eventpoll *ep)
374 {
375 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
376 }
377 
378 /**
379  * ep_call_nested - Perform a bound (possibly) nested call, by checking
380  *                  that the recursion limit is not exceeded, and that
381  *                  the same nested call (by the meaning of same cookie) is
382  *                  no re-entered.
383  *
384  * @ncalls: Pointer to the nested_calls structure to be used for this call.
385  * @max_nests: Maximum number of allowed nesting calls.
386  * @nproc: Nested call core function pointer.
387  * @priv: Opaque data to be passed to the @nproc callback.
388  * @cookie: Cookie to be used to identify this nested call.
389  * @ctx: This instance context.
390  *
391  * Returns: Returns the code returned by the @nproc callback, or -1 if
392  *          the maximum recursion limit has been exceeded.
393  */
394 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
395 			  int (*nproc)(void *, void *, int), void *priv,
396 			  void *cookie, void *ctx)
397 {
398 	int error, call_nests = 0;
399 	unsigned long flags;
400 	struct list_head *lsthead = &ncalls->tasks_call_list;
401 	struct nested_call_node *tncur;
402 	struct nested_call_node tnode;
403 
404 	spin_lock_irqsave(&ncalls->lock, flags);
405 
406 	/*
407 	 * Try to see if the current task is already inside this wakeup call.
408 	 * We use a list here, since the population inside this set is always
409 	 * very much limited.
410 	 */
411 	list_for_each_entry(tncur, lsthead, llink) {
412 		if (tncur->ctx == ctx &&
413 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
414 			/*
415 			 * Ops ... loop detected or maximum nest level reached.
416 			 * We abort this wake by breaking the cycle itself.
417 			 */
418 			error = -1;
419 			goto out_unlock;
420 		}
421 	}
422 
423 	/* Add the current task and cookie to the list */
424 	tnode.ctx = ctx;
425 	tnode.cookie = cookie;
426 	list_add(&tnode.llink, lsthead);
427 
428 	spin_unlock_irqrestore(&ncalls->lock, flags);
429 
430 	/* Call the nested function */
431 	error = (*nproc)(priv, cookie, call_nests);
432 
433 	/* Remove the current task from the list */
434 	spin_lock_irqsave(&ncalls->lock, flags);
435 	list_del(&tnode.llink);
436 out_unlock:
437 	spin_unlock_irqrestore(&ncalls->lock, flags);
438 
439 	return error;
440 }
441 
442 /*
443  * As described in commit 0ccf831cb lockdep: annotate epoll
444  * the use of wait queues used by epoll is done in a very controlled
445  * manner. Wake ups can nest inside each other, but are never done
446  * with the same locking. For example:
447  *
448  *   dfd = socket(...);
449  *   efd1 = epoll_create();
450  *   efd2 = epoll_create();
451  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
452  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
453  *
454  * When a packet arrives to the device underneath "dfd", the net code will
455  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
456  * callback wakeup entry on that queue, and the wake_up() performed by the
457  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
458  * (efd1) notices that it may have some event ready, so it needs to wake up
459  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
460  * that ends up in another wake_up(), after having checked about the
461  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
462  * avoid stack blasting.
463  *
464  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
465  * this special case of epoll.
466  */
467 #ifdef CONFIG_DEBUG_LOCK_ALLOC
468 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
469 				     unsigned long events, int subclass)
470 {
471 	unsigned long flags;
472 
473 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
474 	wake_up_locked_poll(wqueue, events);
475 	spin_unlock_irqrestore(&wqueue->lock, flags);
476 }
477 #else
478 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
479 				     unsigned long events, int subclass)
480 {
481 	wake_up_poll(wqueue, events);
482 }
483 #endif
484 
485 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
486 {
487 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
488 			  1 + call_nests);
489 	return 0;
490 }
491 
492 /*
493  * Perform a safe wake up of the poll wait list. The problem is that
494  * with the new callback'd wake up system, it is possible that the
495  * poll callback is reentered from inside the call to wake_up() done
496  * on the poll wait queue head. The rule is that we cannot reenter the
497  * wake up code from the same task more than EP_MAX_NESTS times,
498  * and we cannot reenter the same wait queue head at all. This will
499  * enable to have a hierarchy of epoll file descriptor of no more than
500  * EP_MAX_NESTS deep.
501  */
502 static void ep_poll_safewake(wait_queue_head_t *wq)
503 {
504 	int this_cpu = get_cpu();
505 
506 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
507 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
508 
509 	put_cpu();
510 }
511 
512 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
513 {
514 	wait_queue_head_t *whead;
515 
516 	rcu_read_lock();
517 	/* If it is cleared by POLLFREE, it should be rcu-safe */
518 	whead = rcu_dereference(pwq->whead);
519 	if (whead)
520 		remove_wait_queue(whead, &pwq->wait);
521 	rcu_read_unlock();
522 }
523 
524 /*
525  * This function unregisters poll callbacks from the associated file
526  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
527  * ep_free).
528  */
529 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
530 {
531 	struct list_head *lsthead = &epi->pwqlist;
532 	struct eppoll_entry *pwq;
533 
534 	while (!list_empty(lsthead)) {
535 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
536 
537 		list_del(&pwq->llink);
538 		ep_remove_wait_queue(pwq);
539 		kmem_cache_free(pwq_cache, pwq);
540 	}
541 }
542 
543 /* call only when ep->mtx is held */
544 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
545 {
546 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
547 }
548 
549 /* call only when ep->mtx is held */
550 static inline void ep_pm_stay_awake(struct epitem *epi)
551 {
552 	struct wakeup_source *ws = ep_wakeup_source(epi);
553 
554 	if (ws)
555 		__pm_stay_awake(ws);
556 }
557 
558 static inline bool ep_has_wakeup_source(struct epitem *epi)
559 {
560 	return rcu_access_pointer(epi->ws) ? true : false;
561 }
562 
563 /* call when ep->mtx cannot be held (ep_poll_callback) */
564 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
565 {
566 	struct wakeup_source *ws;
567 
568 	rcu_read_lock();
569 	ws = rcu_dereference(epi->ws);
570 	if (ws)
571 		__pm_stay_awake(ws);
572 	rcu_read_unlock();
573 }
574 
575 /**
576  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
577  *                      the scan code, to call f_op->poll(). Also allows for
578  *                      O(NumReady) performance.
579  *
580  * @ep: Pointer to the epoll private data structure.
581  * @sproc: Pointer to the scan callback.
582  * @priv: Private opaque data passed to the @sproc callback.
583  * @depth: The current depth of recursive f_op->poll calls.
584  *
585  * Returns: The same integer error code returned by the @sproc callback.
586  */
587 static int ep_scan_ready_list(struct eventpoll *ep,
588 			      int (*sproc)(struct eventpoll *,
589 					   struct list_head *, void *),
590 			      void *priv,
591 			      int depth)
592 {
593 	int error, pwake = 0;
594 	unsigned long flags;
595 	struct epitem *epi, *nepi;
596 	LIST_HEAD(txlist);
597 
598 	/*
599 	 * We need to lock this because we could be hit by
600 	 * eventpoll_release_file() and epoll_ctl().
601 	 */
602 	mutex_lock_nested(&ep->mtx, depth);
603 
604 	/*
605 	 * Steal the ready list, and re-init the original one to the
606 	 * empty list. Also, set ep->ovflist to NULL so that events
607 	 * happening while looping w/out locks, are not lost. We cannot
608 	 * have the poll callback to queue directly on ep->rdllist,
609 	 * because we want the "sproc" callback to be able to do it
610 	 * in a lockless way.
611 	 */
612 	spin_lock_irqsave(&ep->lock, flags);
613 	list_splice_init(&ep->rdllist, &txlist);
614 	ep->ovflist = NULL;
615 	spin_unlock_irqrestore(&ep->lock, flags);
616 
617 	/*
618 	 * Now call the callback function.
619 	 */
620 	error = (*sproc)(ep, &txlist, priv);
621 
622 	spin_lock_irqsave(&ep->lock, flags);
623 	/*
624 	 * During the time we spent inside the "sproc" callback, some
625 	 * other events might have been queued by the poll callback.
626 	 * We re-insert them inside the main ready-list here.
627 	 */
628 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
629 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
630 		/*
631 		 * We need to check if the item is already in the list.
632 		 * During the "sproc" callback execution time, items are
633 		 * queued into ->ovflist but the "txlist" might already
634 		 * contain them, and the list_splice() below takes care of them.
635 		 */
636 		if (!ep_is_linked(&epi->rdllink)) {
637 			list_add_tail(&epi->rdllink, &ep->rdllist);
638 			ep_pm_stay_awake(epi);
639 		}
640 	}
641 	/*
642 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
643 	 * releasing the lock, events will be queued in the normal way inside
644 	 * ep->rdllist.
645 	 */
646 	ep->ovflist = EP_UNACTIVE_PTR;
647 
648 	/*
649 	 * Quickly re-inject items left on "txlist".
650 	 */
651 	list_splice(&txlist, &ep->rdllist);
652 	__pm_relax(ep->ws);
653 
654 	if (!list_empty(&ep->rdllist)) {
655 		/*
656 		 * Wake up (if active) both the eventpoll wait list and
657 		 * the ->poll() wait list (delayed after we release the lock).
658 		 */
659 		if (waitqueue_active(&ep->wq))
660 			wake_up_locked(&ep->wq);
661 		if (waitqueue_active(&ep->poll_wait))
662 			pwake++;
663 	}
664 	spin_unlock_irqrestore(&ep->lock, flags);
665 
666 	mutex_unlock(&ep->mtx);
667 
668 	/* We have to call this outside the lock */
669 	if (pwake)
670 		ep_poll_safewake(&ep->poll_wait);
671 
672 	return error;
673 }
674 
675 /*
676  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
677  * all the associated resources. Must be called with "mtx" held.
678  */
679 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
680 {
681 	unsigned long flags;
682 	struct file *file = epi->ffd.file;
683 
684 	/*
685 	 * Removes poll wait queue hooks. We _have_ to do this without holding
686 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
687 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
688 	 * queue head lock when unregistering the wait queue. The wakeup callback
689 	 * will run by holding the wait queue head lock and will call our callback
690 	 * that will try to get "ep->lock".
691 	 */
692 	ep_unregister_pollwait(ep, epi);
693 
694 	/* Remove the current item from the list of epoll hooks */
695 	spin_lock(&file->f_lock);
696 	if (ep_is_linked(&epi->fllink))
697 		list_del_init(&epi->fllink);
698 	spin_unlock(&file->f_lock);
699 
700 	rb_erase(&epi->rbn, &ep->rbr);
701 
702 	spin_lock_irqsave(&ep->lock, flags);
703 	if (ep_is_linked(&epi->rdllink))
704 		list_del_init(&epi->rdllink);
705 	spin_unlock_irqrestore(&ep->lock, flags);
706 
707 	wakeup_source_unregister(ep_wakeup_source(epi));
708 
709 	/* At this point it is safe to free the eventpoll item */
710 	kmem_cache_free(epi_cache, epi);
711 
712 	atomic_long_dec(&ep->user->epoll_watches);
713 
714 	return 0;
715 }
716 
717 static void ep_free(struct eventpoll *ep)
718 {
719 	struct rb_node *rbp;
720 	struct epitem *epi;
721 
722 	/* We need to release all tasks waiting for these file */
723 	if (waitqueue_active(&ep->poll_wait))
724 		ep_poll_safewake(&ep->poll_wait);
725 
726 	/*
727 	 * We need to lock this because we could be hit by
728 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
729 	 * We do not need to hold "ep->mtx" here because the epoll file
730 	 * is on the way to be removed and no one has references to it
731 	 * anymore. The only hit might come from eventpoll_release_file() but
732 	 * holding "epmutex" is sufficient here.
733 	 */
734 	mutex_lock(&epmutex);
735 
736 	/*
737 	 * Walks through the whole tree by unregistering poll callbacks.
738 	 */
739 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
740 		epi = rb_entry(rbp, struct epitem, rbn);
741 
742 		ep_unregister_pollwait(ep, epi);
743 		cond_resched();
744 	}
745 
746 	/*
747 	 * Walks through the whole tree by freeing each "struct epitem". At this
748 	 * point we are sure no poll callbacks will be lingering around, and also by
749 	 * holding "epmutex" we can be sure that no file cleanup code will hit
750 	 * us during this operation. So we can avoid the lock on "ep->lock".
751 	 * We do not need to lock ep->mtx, either, we only do it to prevent
752 	 * a lockdep warning.
753 	 */
754 	mutex_lock(&ep->mtx);
755 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
756 		epi = rb_entry(rbp, struct epitem, rbn);
757 		ep_remove(ep, epi);
758 		cond_resched();
759 	}
760 	mutex_unlock(&ep->mtx);
761 
762 	mutex_unlock(&epmutex);
763 	mutex_destroy(&ep->mtx);
764 	free_uid(ep->user);
765 	wakeup_source_unregister(ep->ws);
766 	kfree(ep);
767 }
768 
769 static int ep_eventpoll_release(struct inode *inode, struct file *file)
770 {
771 	struct eventpoll *ep = file->private_data;
772 
773 	if (ep)
774 		ep_free(ep);
775 
776 	return 0;
777 }
778 
779 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
780 {
781 	pt->_key = epi->event.events;
782 
783 	return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
784 }
785 
786 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
787 			       void *priv)
788 {
789 	struct epitem *epi, *tmp;
790 	poll_table pt;
791 
792 	init_poll_funcptr(&pt, NULL);
793 
794 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
795 		if (ep_item_poll(epi, &pt))
796 			return POLLIN | POLLRDNORM;
797 		else {
798 			/*
799 			 * Item has been dropped into the ready list by the poll
800 			 * callback, but it's not actually ready, as far as
801 			 * caller requested events goes. We can remove it here.
802 			 */
803 			__pm_relax(ep_wakeup_source(epi));
804 			list_del_init(&epi->rdllink);
805 		}
806 	}
807 
808 	return 0;
809 }
810 
811 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
812 {
813 	return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
814 }
815 
816 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
817 {
818 	int pollflags;
819 	struct eventpoll *ep = file->private_data;
820 
821 	/* Insert inside our poll wait queue */
822 	poll_wait(file, &ep->poll_wait, wait);
823 
824 	/*
825 	 * Proceed to find out if wanted events are really available inside
826 	 * the ready list. This need to be done under ep_call_nested()
827 	 * supervision, since the call to f_op->poll() done on listed files
828 	 * could re-enter here.
829 	 */
830 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
831 				   ep_poll_readyevents_proc, ep, ep, current);
832 
833 	return pollflags != -1 ? pollflags : 0;
834 }
835 
836 #ifdef CONFIG_PROC_FS
837 static int ep_show_fdinfo(struct seq_file *m, struct file *f)
838 {
839 	struct eventpoll *ep = f->private_data;
840 	struct rb_node *rbp;
841 	int ret = 0;
842 
843 	mutex_lock(&ep->mtx);
844 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
845 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
846 
847 		ret = seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
848 				 epi->ffd.fd, epi->event.events,
849 				 (long long)epi->event.data);
850 		if (ret)
851 			break;
852 	}
853 	mutex_unlock(&ep->mtx);
854 
855 	return ret;
856 }
857 #endif
858 
859 /* File callbacks that implement the eventpoll file behaviour */
860 static const struct file_operations eventpoll_fops = {
861 #ifdef CONFIG_PROC_FS
862 	.show_fdinfo	= ep_show_fdinfo,
863 #endif
864 	.release	= ep_eventpoll_release,
865 	.poll		= ep_eventpoll_poll,
866 	.llseek		= noop_llseek,
867 };
868 
869 /*
870  * This is called from eventpoll_release() to unlink files from the eventpoll
871  * interface. We need to have this facility to cleanup correctly files that are
872  * closed without being removed from the eventpoll interface.
873  */
874 void eventpoll_release_file(struct file *file)
875 {
876 	struct list_head *lsthead = &file->f_ep_links;
877 	struct eventpoll *ep;
878 	struct epitem *epi;
879 
880 	/*
881 	 * We don't want to get "file->f_lock" because it is not
882 	 * necessary. It is not necessary because we're in the "struct file"
883 	 * cleanup path, and this means that no one is using this file anymore.
884 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
885 	 * point, the file counter already went to zero and fget() would fail.
886 	 * The only hit might come from ep_free() but by holding the mutex
887 	 * will correctly serialize the operation. We do need to acquire
888 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
889 	 * from anywhere but ep_free().
890 	 *
891 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
892 	 */
893 	mutex_lock(&epmutex);
894 
895 	while (!list_empty(lsthead)) {
896 		epi = list_first_entry(lsthead, struct epitem, fllink);
897 
898 		ep = epi->ep;
899 		list_del_init(&epi->fllink);
900 		mutex_lock_nested(&ep->mtx, 0);
901 		ep_remove(ep, epi);
902 		mutex_unlock(&ep->mtx);
903 	}
904 
905 	mutex_unlock(&epmutex);
906 }
907 
908 static int ep_alloc(struct eventpoll **pep)
909 {
910 	int error;
911 	struct user_struct *user;
912 	struct eventpoll *ep;
913 
914 	user = get_current_user();
915 	error = -ENOMEM;
916 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
917 	if (unlikely(!ep))
918 		goto free_uid;
919 
920 	spin_lock_init(&ep->lock);
921 	mutex_init(&ep->mtx);
922 	init_waitqueue_head(&ep->wq);
923 	init_waitqueue_head(&ep->poll_wait);
924 	INIT_LIST_HEAD(&ep->rdllist);
925 	ep->rbr = RB_ROOT;
926 	ep->ovflist = EP_UNACTIVE_PTR;
927 	ep->user = user;
928 
929 	*pep = ep;
930 
931 	return 0;
932 
933 free_uid:
934 	free_uid(user);
935 	return error;
936 }
937 
938 /*
939  * Search the file inside the eventpoll tree. The RB tree operations
940  * are protected by the "mtx" mutex, and ep_find() must be called with
941  * "mtx" held.
942  */
943 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
944 {
945 	int kcmp;
946 	struct rb_node *rbp;
947 	struct epitem *epi, *epir = NULL;
948 	struct epoll_filefd ffd;
949 
950 	ep_set_ffd(&ffd, file, fd);
951 	for (rbp = ep->rbr.rb_node; rbp; ) {
952 		epi = rb_entry(rbp, struct epitem, rbn);
953 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
954 		if (kcmp > 0)
955 			rbp = rbp->rb_right;
956 		else if (kcmp < 0)
957 			rbp = rbp->rb_left;
958 		else {
959 			epir = epi;
960 			break;
961 		}
962 	}
963 
964 	return epir;
965 }
966 
967 /*
968  * This is the callback that is passed to the wait queue wakeup
969  * mechanism. It is called by the stored file descriptors when they
970  * have events to report.
971  */
972 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
973 {
974 	int pwake = 0;
975 	unsigned long flags;
976 	struct epitem *epi = ep_item_from_wait(wait);
977 	struct eventpoll *ep = epi->ep;
978 
979 	if ((unsigned long)key & POLLFREE) {
980 		ep_pwq_from_wait(wait)->whead = NULL;
981 		/*
982 		 * whead = NULL above can race with ep_remove_wait_queue()
983 		 * which can do another remove_wait_queue() after us, so we
984 		 * can't use __remove_wait_queue(). whead->lock is held by
985 		 * the caller.
986 		 */
987 		list_del_init(&wait->task_list);
988 	}
989 
990 	spin_lock_irqsave(&ep->lock, flags);
991 
992 	/*
993 	 * If the event mask does not contain any poll(2) event, we consider the
994 	 * descriptor to be disabled. This condition is likely the effect of the
995 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
996 	 * until the next EPOLL_CTL_MOD will be issued.
997 	 */
998 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
999 		goto out_unlock;
1000 
1001 	/*
1002 	 * Check the events coming with the callback. At this stage, not
1003 	 * every device reports the events in the "key" parameter of the
1004 	 * callback. We need to be able to handle both cases here, hence the
1005 	 * test for "key" != NULL before the event match test.
1006 	 */
1007 	if (key && !((unsigned long) key & epi->event.events))
1008 		goto out_unlock;
1009 
1010 	/*
1011 	 * If we are transferring events to userspace, we can hold no locks
1012 	 * (because we're accessing user memory, and because of linux f_op->poll()
1013 	 * semantics). All the events that happen during that period of time are
1014 	 * chained in ep->ovflist and requeued later on.
1015 	 */
1016 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1017 		if (epi->next == EP_UNACTIVE_PTR) {
1018 			epi->next = ep->ovflist;
1019 			ep->ovflist = epi;
1020 			if (epi->ws) {
1021 				/*
1022 				 * Activate ep->ws since epi->ws may get
1023 				 * deactivated at any time.
1024 				 */
1025 				__pm_stay_awake(ep->ws);
1026 			}
1027 
1028 		}
1029 		goto out_unlock;
1030 	}
1031 
1032 	/* If this file is already in the ready list we exit soon */
1033 	if (!ep_is_linked(&epi->rdllink)) {
1034 		list_add_tail(&epi->rdllink, &ep->rdllist);
1035 		ep_pm_stay_awake_rcu(epi);
1036 	}
1037 
1038 	/*
1039 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1040 	 * wait list.
1041 	 */
1042 	if (waitqueue_active(&ep->wq))
1043 		wake_up_locked(&ep->wq);
1044 	if (waitqueue_active(&ep->poll_wait))
1045 		pwake++;
1046 
1047 out_unlock:
1048 	spin_unlock_irqrestore(&ep->lock, flags);
1049 
1050 	/* We have to call this outside the lock */
1051 	if (pwake)
1052 		ep_poll_safewake(&ep->poll_wait);
1053 
1054 	return 1;
1055 }
1056 
1057 /*
1058  * This is the callback that is used to add our wait queue to the
1059  * target file wakeup lists.
1060  */
1061 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1062 				 poll_table *pt)
1063 {
1064 	struct epitem *epi = ep_item_from_epqueue(pt);
1065 	struct eppoll_entry *pwq;
1066 
1067 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1068 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1069 		pwq->whead = whead;
1070 		pwq->base = epi;
1071 		add_wait_queue(whead, &pwq->wait);
1072 		list_add_tail(&pwq->llink, &epi->pwqlist);
1073 		epi->nwait++;
1074 	} else {
1075 		/* We have to signal that an error occurred */
1076 		epi->nwait = -1;
1077 	}
1078 }
1079 
1080 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1081 {
1082 	int kcmp;
1083 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1084 	struct epitem *epic;
1085 
1086 	while (*p) {
1087 		parent = *p;
1088 		epic = rb_entry(parent, struct epitem, rbn);
1089 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1090 		if (kcmp > 0)
1091 			p = &parent->rb_right;
1092 		else
1093 			p = &parent->rb_left;
1094 	}
1095 	rb_link_node(&epi->rbn, parent, p);
1096 	rb_insert_color(&epi->rbn, &ep->rbr);
1097 }
1098 
1099 
1100 
1101 #define PATH_ARR_SIZE 5
1102 /*
1103  * These are the number paths of length 1 to 5, that we are allowing to emanate
1104  * from a single file of interest. For example, we allow 1000 paths of length
1105  * 1, to emanate from each file of interest. This essentially represents the
1106  * potential wakeup paths, which need to be limited in order to avoid massive
1107  * uncontrolled wakeup storms. The common use case should be a single ep which
1108  * is connected to n file sources. In this case each file source has 1 path
1109  * of length 1. Thus, the numbers below should be more than sufficient. These
1110  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1111  * and delete can't add additional paths. Protected by the epmutex.
1112  */
1113 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1114 static int path_count[PATH_ARR_SIZE];
1115 
1116 static int path_count_inc(int nests)
1117 {
1118 	/* Allow an arbitrary number of depth 1 paths */
1119 	if (nests == 0)
1120 		return 0;
1121 
1122 	if (++path_count[nests] > path_limits[nests])
1123 		return -1;
1124 	return 0;
1125 }
1126 
1127 static void path_count_init(void)
1128 {
1129 	int i;
1130 
1131 	for (i = 0; i < PATH_ARR_SIZE; i++)
1132 		path_count[i] = 0;
1133 }
1134 
1135 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1136 {
1137 	int error = 0;
1138 	struct file *file = priv;
1139 	struct file *child_file;
1140 	struct epitem *epi;
1141 
1142 	list_for_each_entry(epi, &file->f_ep_links, fllink) {
1143 		child_file = epi->ep->file;
1144 		if (is_file_epoll(child_file)) {
1145 			if (list_empty(&child_file->f_ep_links)) {
1146 				if (path_count_inc(call_nests)) {
1147 					error = -1;
1148 					break;
1149 				}
1150 			} else {
1151 				error = ep_call_nested(&poll_loop_ncalls,
1152 							EP_MAX_NESTS,
1153 							reverse_path_check_proc,
1154 							child_file, child_file,
1155 							current);
1156 			}
1157 			if (error != 0)
1158 				break;
1159 		} else {
1160 			printk(KERN_ERR "reverse_path_check_proc: "
1161 				"file is not an ep!\n");
1162 		}
1163 	}
1164 	return error;
1165 }
1166 
1167 /**
1168  * reverse_path_check - The tfile_check_list is list of file *, which have
1169  *                      links that are proposed to be newly added. We need to
1170  *                      make sure that those added links don't add too many
1171  *                      paths such that we will spend all our time waking up
1172  *                      eventpoll objects.
1173  *
1174  * Returns: Returns zero if the proposed links don't create too many paths,
1175  *	    -1 otherwise.
1176  */
1177 static int reverse_path_check(void)
1178 {
1179 	int error = 0;
1180 	struct file *current_file;
1181 
1182 	/* let's call this for all tfiles */
1183 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1184 		path_count_init();
1185 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1186 					reverse_path_check_proc, current_file,
1187 					current_file, current);
1188 		if (error)
1189 			break;
1190 	}
1191 	return error;
1192 }
1193 
1194 static int ep_create_wakeup_source(struct epitem *epi)
1195 {
1196 	const char *name;
1197 	struct wakeup_source *ws;
1198 
1199 	if (!epi->ep->ws) {
1200 		epi->ep->ws = wakeup_source_register("eventpoll");
1201 		if (!epi->ep->ws)
1202 			return -ENOMEM;
1203 	}
1204 
1205 	name = epi->ffd.file->f_path.dentry->d_name.name;
1206 	ws = wakeup_source_register(name);
1207 
1208 	if (!ws)
1209 		return -ENOMEM;
1210 	rcu_assign_pointer(epi->ws, ws);
1211 
1212 	return 0;
1213 }
1214 
1215 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1216 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1217 {
1218 	struct wakeup_source *ws = ep_wakeup_source(epi);
1219 
1220 	RCU_INIT_POINTER(epi->ws, NULL);
1221 
1222 	/*
1223 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1224 	 * used internally by wakeup_source_remove, too (called by
1225 	 * wakeup_source_unregister), so we cannot use call_rcu
1226 	 */
1227 	synchronize_rcu();
1228 	wakeup_source_unregister(ws);
1229 }
1230 
1231 /*
1232  * Must be called with "mtx" held.
1233  */
1234 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1235 		     struct file *tfile, int fd)
1236 {
1237 	int error, revents, pwake = 0;
1238 	unsigned long flags;
1239 	long user_watches;
1240 	struct epitem *epi;
1241 	struct ep_pqueue epq;
1242 
1243 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1244 	if (unlikely(user_watches >= max_user_watches))
1245 		return -ENOSPC;
1246 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1247 		return -ENOMEM;
1248 
1249 	/* Item initialization follow here ... */
1250 	INIT_LIST_HEAD(&epi->rdllink);
1251 	INIT_LIST_HEAD(&epi->fllink);
1252 	INIT_LIST_HEAD(&epi->pwqlist);
1253 	epi->ep = ep;
1254 	ep_set_ffd(&epi->ffd, tfile, fd);
1255 	epi->event = *event;
1256 	epi->nwait = 0;
1257 	epi->next = EP_UNACTIVE_PTR;
1258 	if (epi->event.events & EPOLLWAKEUP) {
1259 		error = ep_create_wakeup_source(epi);
1260 		if (error)
1261 			goto error_create_wakeup_source;
1262 	} else {
1263 		RCU_INIT_POINTER(epi->ws, NULL);
1264 	}
1265 
1266 	/* Initialize the poll table using the queue callback */
1267 	epq.epi = epi;
1268 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1269 
1270 	/*
1271 	 * Attach the item to the poll hooks and get current event bits.
1272 	 * We can safely use the file* here because its usage count has
1273 	 * been increased by the caller of this function. Note that after
1274 	 * this operation completes, the poll callback can start hitting
1275 	 * the new item.
1276 	 */
1277 	revents = ep_item_poll(epi, &epq.pt);
1278 
1279 	/*
1280 	 * We have to check if something went wrong during the poll wait queue
1281 	 * install process. Namely an allocation for a wait queue failed due
1282 	 * high memory pressure.
1283 	 */
1284 	error = -ENOMEM;
1285 	if (epi->nwait < 0)
1286 		goto error_unregister;
1287 
1288 	/* Add the current item to the list of active epoll hook for this file */
1289 	spin_lock(&tfile->f_lock);
1290 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
1291 	spin_unlock(&tfile->f_lock);
1292 
1293 	/*
1294 	 * Add the current item to the RB tree. All RB tree operations are
1295 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1296 	 */
1297 	ep_rbtree_insert(ep, epi);
1298 
1299 	/* now check if we've created too many backpaths */
1300 	error = -EINVAL;
1301 	if (reverse_path_check())
1302 		goto error_remove_epi;
1303 
1304 	/* We have to drop the new item inside our item list to keep track of it */
1305 	spin_lock_irqsave(&ep->lock, flags);
1306 
1307 	/* If the file is already "ready" we drop it inside the ready list */
1308 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1309 		list_add_tail(&epi->rdllink, &ep->rdllist);
1310 		ep_pm_stay_awake(epi);
1311 
1312 		/* Notify waiting tasks that events are available */
1313 		if (waitqueue_active(&ep->wq))
1314 			wake_up_locked(&ep->wq);
1315 		if (waitqueue_active(&ep->poll_wait))
1316 			pwake++;
1317 	}
1318 
1319 	spin_unlock_irqrestore(&ep->lock, flags);
1320 
1321 	atomic_long_inc(&ep->user->epoll_watches);
1322 
1323 	/* We have to call this outside the lock */
1324 	if (pwake)
1325 		ep_poll_safewake(&ep->poll_wait);
1326 
1327 	return 0;
1328 
1329 error_remove_epi:
1330 	spin_lock(&tfile->f_lock);
1331 	if (ep_is_linked(&epi->fllink))
1332 		list_del_init(&epi->fllink);
1333 	spin_unlock(&tfile->f_lock);
1334 
1335 	rb_erase(&epi->rbn, &ep->rbr);
1336 
1337 error_unregister:
1338 	ep_unregister_pollwait(ep, epi);
1339 
1340 	/*
1341 	 * We need to do this because an event could have been arrived on some
1342 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1343 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1344 	 * And ep_insert() is called with "mtx" held.
1345 	 */
1346 	spin_lock_irqsave(&ep->lock, flags);
1347 	if (ep_is_linked(&epi->rdllink))
1348 		list_del_init(&epi->rdllink);
1349 	spin_unlock_irqrestore(&ep->lock, flags);
1350 
1351 	wakeup_source_unregister(ep_wakeup_source(epi));
1352 
1353 error_create_wakeup_source:
1354 	kmem_cache_free(epi_cache, epi);
1355 
1356 	return error;
1357 }
1358 
1359 /*
1360  * Modify the interest event mask by dropping an event if the new mask
1361  * has a match in the current file status. Must be called with "mtx" held.
1362  */
1363 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1364 {
1365 	int pwake = 0;
1366 	unsigned int revents;
1367 	poll_table pt;
1368 
1369 	init_poll_funcptr(&pt, NULL);
1370 
1371 	/*
1372 	 * Set the new event interest mask before calling f_op->poll();
1373 	 * otherwise we might miss an event that happens between the
1374 	 * f_op->poll() call and the new event set registering.
1375 	 */
1376 	epi->event.events = event->events; /* need barrier below */
1377 	epi->event.data = event->data; /* protected by mtx */
1378 	if (epi->event.events & EPOLLWAKEUP) {
1379 		if (!ep_has_wakeup_source(epi))
1380 			ep_create_wakeup_source(epi);
1381 	} else if (ep_has_wakeup_source(epi)) {
1382 		ep_destroy_wakeup_source(epi);
1383 	}
1384 
1385 	/*
1386 	 * The following barrier has two effects:
1387 	 *
1388 	 * 1) Flush epi changes above to other CPUs.  This ensures
1389 	 *    we do not miss events from ep_poll_callback if an
1390 	 *    event occurs immediately after we call f_op->poll().
1391 	 *    We need this because we did not take ep->lock while
1392 	 *    changing epi above (but ep_poll_callback does take
1393 	 *    ep->lock).
1394 	 *
1395 	 * 2) We also need to ensure we do not miss _past_ events
1396 	 *    when calling f_op->poll().  This barrier also
1397 	 *    pairs with the barrier in wq_has_sleeper (see
1398 	 *    comments for wq_has_sleeper).
1399 	 *
1400 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1401 	 * (or both) will notice the readiness of an item.
1402 	 */
1403 	smp_mb();
1404 
1405 	/*
1406 	 * Get current event bits. We can safely use the file* here because
1407 	 * its usage count has been increased by the caller of this function.
1408 	 */
1409 	revents = ep_item_poll(epi, &pt);
1410 
1411 	/*
1412 	 * If the item is "hot" and it is not registered inside the ready
1413 	 * list, push it inside.
1414 	 */
1415 	if (revents & event->events) {
1416 		spin_lock_irq(&ep->lock);
1417 		if (!ep_is_linked(&epi->rdllink)) {
1418 			list_add_tail(&epi->rdllink, &ep->rdllist);
1419 			ep_pm_stay_awake(epi);
1420 
1421 			/* Notify waiting tasks that events are available */
1422 			if (waitqueue_active(&ep->wq))
1423 				wake_up_locked(&ep->wq);
1424 			if (waitqueue_active(&ep->poll_wait))
1425 				pwake++;
1426 		}
1427 		spin_unlock_irq(&ep->lock);
1428 	}
1429 
1430 	/* We have to call this outside the lock */
1431 	if (pwake)
1432 		ep_poll_safewake(&ep->poll_wait);
1433 
1434 	return 0;
1435 }
1436 
1437 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1438 			       void *priv)
1439 {
1440 	struct ep_send_events_data *esed = priv;
1441 	int eventcnt;
1442 	unsigned int revents;
1443 	struct epitem *epi;
1444 	struct epoll_event __user *uevent;
1445 	struct wakeup_source *ws;
1446 	poll_table pt;
1447 
1448 	init_poll_funcptr(&pt, NULL);
1449 
1450 	/*
1451 	 * We can loop without lock because we are passed a task private list.
1452 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1453 	 * holding "mtx" during this call.
1454 	 */
1455 	for (eventcnt = 0, uevent = esed->events;
1456 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1457 		epi = list_first_entry(head, struct epitem, rdllink);
1458 
1459 		/*
1460 		 * Activate ep->ws before deactivating epi->ws to prevent
1461 		 * triggering auto-suspend here (in case we reactive epi->ws
1462 		 * below).
1463 		 *
1464 		 * This could be rearranged to delay the deactivation of epi->ws
1465 		 * instead, but then epi->ws would temporarily be out of sync
1466 		 * with ep_is_linked().
1467 		 */
1468 		ws = ep_wakeup_source(epi);
1469 		if (ws) {
1470 			if (ws->active)
1471 				__pm_stay_awake(ep->ws);
1472 			__pm_relax(ws);
1473 		}
1474 
1475 		list_del_init(&epi->rdllink);
1476 
1477 		revents = ep_item_poll(epi, &pt);
1478 
1479 		/*
1480 		 * If the event mask intersect the caller-requested one,
1481 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1482 		 * is holding "mtx", so no operations coming from userspace
1483 		 * can change the item.
1484 		 */
1485 		if (revents) {
1486 			if (__put_user(revents, &uevent->events) ||
1487 			    __put_user(epi->event.data, &uevent->data)) {
1488 				list_add(&epi->rdllink, head);
1489 				ep_pm_stay_awake(epi);
1490 				return eventcnt ? eventcnt : -EFAULT;
1491 			}
1492 			eventcnt++;
1493 			uevent++;
1494 			if (epi->event.events & EPOLLONESHOT)
1495 				epi->event.events &= EP_PRIVATE_BITS;
1496 			else if (!(epi->event.events & EPOLLET)) {
1497 				/*
1498 				 * If this file has been added with Level
1499 				 * Trigger mode, we need to insert back inside
1500 				 * the ready list, so that the next call to
1501 				 * epoll_wait() will check again the events
1502 				 * availability. At this point, no one can insert
1503 				 * into ep->rdllist besides us. The epoll_ctl()
1504 				 * callers are locked out by
1505 				 * ep_scan_ready_list() holding "mtx" and the
1506 				 * poll callback will queue them in ep->ovflist.
1507 				 */
1508 				list_add_tail(&epi->rdllink, &ep->rdllist);
1509 				ep_pm_stay_awake(epi);
1510 			}
1511 		}
1512 	}
1513 
1514 	return eventcnt;
1515 }
1516 
1517 static int ep_send_events(struct eventpoll *ep,
1518 			  struct epoll_event __user *events, int maxevents)
1519 {
1520 	struct ep_send_events_data esed;
1521 
1522 	esed.maxevents = maxevents;
1523 	esed.events = events;
1524 
1525 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1526 }
1527 
1528 static inline struct timespec ep_set_mstimeout(long ms)
1529 {
1530 	struct timespec now, ts = {
1531 		.tv_sec = ms / MSEC_PER_SEC,
1532 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1533 	};
1534 
1535 	ktime_get_ts(&now);
1536 	return timespec_add_safe(now, ts);
1537 }
1538 
1539 /**
1540  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1541  *           event buffer.
1542  *
1543  * @ep: Pointer to the eventpoll context.
1544  * @events: Pointer to the userspace buffer where the ready events should be
1545  *          stored.
1546  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1547  * @timeout: Maximum timeout for the ready events fetch operation, in
1548  *           milliseconds. If the @timeout is zero, the function will not block,
1549  *           while if the @timeout is less than zero, the function will block
1550  *           until at least one event has been retrieved (or an error
1551  *           occurred).
1552  *
1553  * Returns: Returns the number of ready events which have been fetched, or an
1554  *          error code, in case of error.
1555  */
1556 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1557 		   int maxevents, long timeout)
1558 {
1559 	int res = 0, eavail, timed_out = 0;
1560 	unsigned long flags;
1561 	long slack = 0;
1562 	wait_queue_t wait;
1563 	ktime_t expires, *to = NULL;
1564 
1565 	if (timeout > 0) {
1566 		struct timespec end_time = ep_set_mstimeout(timeout);
1567 
1568 		slack = select_estimate_accuracy(&end_time);
1569 		to = &expires;
1570 		*to = timespec_to_ktime(end_time);
1571 	} else if (timeout == 0) {
1572 		/*
1573 		 * Avoid the unnecessary trip to the wait queue loop, if the
1574 		 * caller specified a non blocking operation.
1575 		 */
1576 		timed_out = 1;
1577 		spin_lock_irqsave(&ep->lock, flags);
1578 		goto check_events;
1579 	}
1580 
1581 fetch_events:
1582 	spin_lock_irqsave(&ep->lock, flags);
1583 
1584 	if (!ep_events_available(ep)) {
1585 		/*
1586 		 * We don't have any available event to return to the caller.
1587 		 * We need to sleep here, and we will be wake up by
1588 		 * ep_poll_callback() when events will become available.
1589 		 */
1590 		init_waitqueue_entry(&wait, current);
1591 		__add_wait_queue_exclusive(&ep->wq, &wait);
1592 
1593 		for (;;) {
1594 			/*
1595 			 * We don't want to sleep if the ep_poll_callback() sends us
1596 			 * a wakeup in between. That's why we set the task state
1597 			 * to TASK_INTERRUPTIBLE before doing the checks.
1598 			 */
1599 			set_current_state(TASK_INTERRUPTIBLE);
1600 			if (ep_events_available(ep) || timed_out)
1601 				break;
1602 			if (signal_pending(current)) {
1603 				res = -EINTR;
1604 				break;
1605 			}
1606 
1607 			spin_unlock_irqrestore(&ep->lock, flags);
1608 			if (!freezable_schedule_hrtimeout_range(to, slack,
1609 								HRTIMER_MODE_ABS))
1610 				timed_out = 1;
1611 
1612 			spin_lock_irqsave(&ep->lock, flags);
1613 		}
1614 		__remove_wait_queue(&ep->wq, &wait);
1615 
1616 		set_current_state(TASK_RUNNING);
1617 	}
1618 check_events:
1619 	/* Is it worth to try to dig for events ? */
1620 	eavail = ep_events_available(ep);
1621 
1622 	spin_unlock_irqrestore(&ep->lock, flags);
1623 
1624 	/*
1625 	 * Try to transfer events to user space. In case we get 0 events and
1626 	 * there's still timeout left over, we go trying again in search of
1627 	 * more luck.
1628 	 */
1629 	if (!res && eavail &&
1630 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1631 		goto fetch_events;
1632 
1633 	return res;
1634 }
1635 
1636 /**
1637  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1638  *                      API, to verify that adding an epoll file inside another
1639  *                      epoll structure, does not violate the constraints, in
1640  *                      terms of closed loops, or too deep chains (which can
1641  *                      result in excessive stack usage).
1642  *
1643  * @priv: Pointer to the epoll file to be currently checked.
1644  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1645  *          data structure pointer.
1646  * @call_nests: Current dept of the @ep_call_nested() call stack.
1647  *
1648  * Returns: Returns zero if adding the epoll @file inside current epoll
1649  *          structure @ep does not violate the constraints, or -1 otherwise.
1650  */
1651 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1652 {
1653 	int error = 0;
1654 	struct file *file = priv;
1655 	struct eventpoll *ep = file->private_data;
1656 	struct eventpoll *ep_tovisit;
1657 	struct rb_node *rbp;
1658 	struct epitem *epi;
1659 
1660 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1661 	ep->visited = 1;
1662 	list_add(&ep->visited_list_link, &visited_list);
1663 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1664 		epi = rb_entry(rbp, struct epitem, rbn);
1665 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1666 			ep_tovisit = epi->ffd.file->private_data;
1667 			if (ep_tovisit->visited)
1668 				continue;
1669 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1670 					ep_loop_check_proc, epi->ffd.file,
1671 					ep_tovisit, current);
1672 			if (error != 0)
1673 				break;
1674 		} else {
1675 			/*
1676 			 * If we've reached a file that is not associated with
1677 			 * an ep, then we need to check if the newly added
1678 			 * links are going to add too many wakeup paths. We do
1679 			 * this by adding it to the tfile_check_list, if it's
1680 			 * not already there, and calling reverse_path_check()
1681 			 * during ep_insert().
1682 			 */
1683 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1684 				list_add(&epi->ffd.file->f_tfile_llink,
1685 					 &tfile_check_list);
1686 		}
1687 	}
1688 	mutex_unlock(&ep->mtx);
1689 
1690 	return error;
1691 }
1692 
1693 /**
1694  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1695  *                 another epoll file (represented by @ep) does not create
1696  *                 closed loops or too deep chains.
1697  *
1698  * @ep: Pointer to the epoll private data structure.
1699  * @file: Pointer to the epoll file to be checked.
1700  *
1701  * Returns: Returns zero if adding the epoll @file inside current epoll
1702  *          structure @ep does not violate the constraints, or -1 otherwise.
1703  */
1704 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1705 {
1706 	int ret;
1707 	struct eventpoll *ep_cur, *ep_next;
1708 
1709 	ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1710 			      ep_loop_check_proc, file, ep, current);
1711 	/* clear visited list */
1712 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1713 							visited_list_link) {
1714 		ep_cur->visited = 0;
1715 		list_del(&ep_cur->visited_list_link);
1716 	}
1717 	return ret;
1718 }
1719 
1720 static void clear_tfile_check_list(void)
1721 {
1722 	struct file *file;
1723 
1724 	/* first clear the tfile_check_list */
1725 	while (!list_empty(&tfile_check_list)) {
1726 		file = list_first_entry(&tfile_check_list, struct file,
1727 					f_tfile_llink);
1728 		list_del_init(&file->f_tfile_llink);
1729 	}
1730 	INIT_LIST_HEAD(&tfile_check_list);
1731 }
1732 
1733 /*
1734  * Open an eventpoll file descriptor.
1735  */
1736 SYSCALL_DEFINE1(epoll_create1, int, flags)
1737 {
1738 	int error, fd;
1739 	struct eventpoll *ep = NULL;
1740 	struct file *file;
1741 
1742 	/* Check the EPOLL_* constant for consistency.  */
1743 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1744 
1745 	if (flags & ~EPOLL_CLOEXEC)
1746 		return -EINVAL;
1747 	/*
1748 	 * Create the internal data structure ("struct eventpoll").
1749 	 */
1750 	error = ep_alloc(&ep);
1751 	if (error < 0)
1752 		return error;
1753 	/*
1754 	 * Creates all the items needed to setup an eventpoll file. That is,
1755 	 * a file structure and a free file descriptor.
1756 	 */
1757 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1758 	if (fd < 0) {
1759 		error = fd;
1760 		goto out_free_ep;
1761 	}
1762 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1763 				 O_RDWR | (flags & O_CLOEXEC));
1764 	if (IS_ERR(file)) {
1765 		error = PTR_ERR(file);
1766 		goto out_free_fd;
1767 	}
1768 	ep->file = file;
1769 	fd_install(fd, file);
1770 	return fd;
1771 
1772 out_free_fd:
1773 	put_unused_fd(fd);
1774 out_free_ep:
1775 	ep_free(ep);
1776 	return error;
1777 }
1778 
1779 SYSCALL_DEFINE1(epoll_create, int, size)
1780 {
1781 	if (size <= 0)
1782 		return -EINVAL;
1783 
1784 	return sys_epoll_create1(0);
1785 }
1786 
1787 /*
1788  * The following function implements the controller interface for
1789  * the eventpoll file that enables the insertion/removal/change of
1790  * file descriptors inside the interest set.
1791  */
1792 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1793 		struct epoll_event __user *, event)
1794 {
1795 	int error;
1796 	int did_lock_epmutex = 0;
1797 	struct fd f, tf;
1798 	struct eventpoll *ep;
1799 	struct epitem *epi;
1800 	struct epoll_event epds;
1801 
1802 	error = -EFAULT;
1803 	if (ep_op_has_event(op) &&
1804 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1805 		goto error_return;
1806 
1807 	error = -EBADF;
1808 	f = fdget(epfd);
1809 	if (!f.file)
1810 		goto error_return;
1811 
1812 	/* Get the "struct file *" for the target file */
1813 	tf = fdget(fd);
1814 	if (!tf.file)
1815 		goto error_fput;
1816 
1817 	/* The target file descriptor must support poll */
1818 	error = -EPERM;
1819 	if (!tf.file->f_op || !tf.file->f_op->poll)
1820 		goto error_tgt_fput;
1821 
1822 	/* Check if EPOLLWAKEUP is allowed */
1823 	if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
1824 		epds.events &= ~EPOLLWAKEUP;
1825 
1826 	/*
1827 	 * We have to check that the file structure underneath the file descriptor
1828 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1829 	 * adding an epoll file descriptor inside itself.
1830 	 */
1831 	error = -EINVAL;
1832 	if (f.file == tf.file || !is_file_epoll(f.file))
1833 		goto error_tgt_fput;
1834 
1835 	/*
1836 	 * At this point it is safe to assume that the "private_data" contains
1837 	 * our own data structure.
1838 	 */
1839 	ep = f.file->private_data;
1840 
1841 	/*
1842 	 * When we insert an epoll file descriptor, inside another epoll file
1843 	 * descriptor, there is the change of creating closed loops, which are
1844 	 * better be handled here, than in more critical paths. While we are
1845 	 * checking for loops we also determine the list of files reachable
1846 	 * and hang them on the tfile_check_list, so we can check that we
1847 	 * haven't created too many possible wakeup paths.
1848 	 *
1849 	 * We need to hold the epmutex across both ep_insert and ep_remove
1850 	 * b/c we want to make sure we are looking at a coherent view of
1851 	 * epoll network.
1852 	 */
1853 	if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) {
1854 		mutex_lock(&epmutex);
1855 		did_lock_epmutex = 1;
1856 	}
1857 	if (op == EPOLL_CTL_ADD) {
1858 		if (is_file_epoll(tf.file)) {
1859 			error = -ELOOP;
1860 			if (ep_loop_check(ep, tf.file) != 0) {
1861 				clear_tfile_check_list();
1862 				goto error_tgt_fput;
1863 			}
1864 		} else
1865 			list_add(&tf.file->f_tfile_llink, &tfile_check_list);
1866 	}
1867 
1868 	mutex_lock_nested(&ep->mtx, 0);
1869 
1870 	/*
1871 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1872 	 * above, we can be sure to be able to use the item looked up by
1873 	 * ep_find() till we release the mutex.
1874 	 */
1875 	epi = ep_find(ep, tf.file, fd);
1876 
1877 	error = -EINVAL;
1878 	switch (op) {
1879 	case EPOLL_CTL_ADD:
1880 		if (!epi) {
1881 			epds.events |= POLLERR | POLLHUP;
1882 			error = ep_insert(ep, &epds, tf.file, fd);
1883 		} else
1884 			error = -EEXIST;
1885 		clear_tfile_check_list();
1886 		break;
1887 	case EPOLL_CTL_DEL:
1888 		if (epi)
1889 			error = ep_remove(ep, epi);
1890 		else
1891 			error = -ENOENT;
1892 		break;
1893 	case EPOLL_CTL_MOD:
1894 		if (epi) {
1895 			epds.events |= POLLERR | POLLHUP;
1896 			error = ep_modify(ep, epi, &epds);
1897 		} else
1898 			error = -ENOENT;
1899 		break;
1900 	}
1901 	mutex_unlock(&ep->mtx);
1902 
1903 error_tgt_fput:
1904 	if (did_lock_epmutex)
1905 		mutex_unlock(&epmutex);
1906 
1907 	fdput(tf);
1908 error_fput:
1909 	fdput(f);
1910 error_return:
1911 
1912 	return error;
1913 }
1914 
1915 /*
1916  * Implement the event wait interface for the eventpoll file. It is the kernel
1917  * part of the user space epoll_wait(2).
1918  */
1919 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1920 		int, maxevents, int, timeout)
1921 {
1922 	int error;
1923 	struct fd f;
1924 	struct eventpoll *ep;
1925 
1926 	/* The maximum number of event must be greater than zero */
1927 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1928 		return -EINVAL;
1929 
1930 	/* Verify that the area passed by the user is writeable */
1931 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
1932 		return -EFAULT;
1933 
1934 	/* Get the "struct file *" for the eventpoll file */
1935 	f = fdget(epfd);
1936 	if (!f.file)
1937 		return -EBADF;
1938 
1939 	/*
1940 	 * We have to check that the file structure underneath the fd
1941 	 * the user passed to us _is_ an eventpoll file.
1942 	 */
1943 	error = -EINVAL;
1944 	if (!is_file_epoll(f.file))
1945 		goto error_fput;
1946 
1947 	/*
1948 	 * At this point it is safe to assume that the "private_data" contains
1949 	 * our own data structure.
1950 	 */
1951 	ep = f.file->private_data;
1952 
1953 	/* Time to fish for events ... */
1954 	error = ep_poll(ep, events, maxevents, timeout);
1955 
1956 error_fput:
1957 	fdput(f);
1958 	return error;
1959 }
1960 
1961 /*
1962  * Implement the event wait interface for the eventpoll file. It is the kernel
1963  * part of the user space epoll_pwait(2).
1964  */
1965 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1966 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1967 		size_t, sigsetsize)
1968 {
1969 	int error;
1970 	sigset_t ksigmask, sigsaved;
1971 
1972 	/*
1973 	 * If the caller wants a certain signal mask to be set during the wait,
1974 	 * we apply it here.
1975 	 */
1976 	if (sigmask) {
1977 		if (sigsetsize != sizeof(sigset_t))
1978 			return -EINVAL;
1979 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1980 			return -EFAULT;
1981 		sigsaved = current->blocked;
1982 		set_current_blocked(&ksigmask);
1983 	}
1984 
1985 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1986 
1987 	/*
1988 	 * If we changed the signal mask, we need to restore the original one.
1989 	 * In case we've got a signal while waiting, we do not restore the
1990 	 * signal mask yet, and we allow do_signal() to deliver the signal on
1991 	 * the way back to userspace, before the signal mask is restored.
1992 	 */
1993 	if (sigmask) {
1994 		if (error == -EINTR) {
1995 			memcpy(&current->saved_sigmask, &sigsaved,
1996 			       sizeof(sigsaved));
1997 			set_restore_sigmask();
1998 		} else
1999 			set_current_blocked(&sigsaved);
2000 	}
2001 
2002 	return error;
2003 }
2004 
2005 #ifdef CONFIG_COMPAT
2006 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2007 			struct epoll_event __user *, events,
2008 			int, maxevents, int, timeout,
2009 			const compat_sigset_t __user *, sigmask,
2010 			compat_size_t, sigsetsize)
2011 {
2012 	long err;
2013 	compat_sigset_t csigmask;
2014 	sigset_t ksigmask, sigsaved;
2015 
2016 	/*
2017 	 * If the caller wants a certain signal mask to be set during the wait,
2018 	 * we apply it here.
2019 	 */
2020 	if (sigmask) {
2021 		if (sigsetsize != sizeof(compat_sigset_t))
2022 			return -EINVAL;
2023 		if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2024 			return -EFAULT;
2025 		sigset_from_compat(&ksigmask, &csigmask);
2026 		sigsaved = current->blocked;
2027 		set_current_blocked(&ksigmask);
2028 	}
2029 
2030 	err = sys_epoll_wait(epfd, events, maxevents, timeout);
2031 
2032 	/*
2033 	 * If we changed the signal mask, we need to restore the original one.
2034 	 * In case we've got a signal while waiting, we do not restore the
2035 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2036 	 * the way back to userspace, before the signal mask is restored.
2037 	 */
2038 	if (sigmask) {
2039 		if (err == -EINTR) {
2040 			memcpy(&current->saved_sigmask, &sigsaved,
2041 			       sizeof(sigsaved));
2042 			set_restore_sigmask();
2043 		} else
2044 			set_current_blocked(&sigsaved);
2045 	}
2046 
2047 	return err;
2048 }
2049 #endif
2050 
2051 static int __init eventpoll_init(void)
2052 {
2053 	struct sysinfo si;
2054 
2055 	si_meminfo(&si);
2056 	/*
2057 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2058 	 */
2059 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2060 		EP_ITEM_COST;
2061 	BUG_ON(max_user_watches < 0);
2062 
2063 	/*
2064 	 * Initialize the structure used to perform epoll file descriptor
2065 	 * inclusion loops checks.
2066 	 */
2067 	ep_nested_calls_init(&poll_loop_ncalls);
2068 
2069 	/* Initialize the structure used to perform safe poll wait head wake ups */
2070 	ep_nested_calls_init(&poll_safewake_ncalls);
2071 
2072 	/* Initialize the structure used to perform file's f_op->poll() calls */
2073 	ep_nested_calls_init(&poll_readywalk_ncalls);
2074 
2075 	/*
2076 	 * We can have many thousands of epitems, so prevent this from
2077 	 * using an extra cache line on 64-bit (and smaller) CPUs
2078 	 */
2079 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2080 
2081 	/* Allocates slab cache used to allocate "struct epitem" items */
2082 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2083 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2084 
2085 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2086 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2087 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2088 
2089 	return 0;
2090 }
2091 fs_initcall(eventpoll_init);
2092