1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/device.h> 37 #include <linux/freezer.h> 38 #include <asm/uaccess.h> 39 #include <asm/io.h> 40 #include <asm/mman.h> 41 #include <linux/atomic.h> 42 #include <linux/proc_fs.h> 43 #include <linux/seq_file.h> 44 #include <linux/compat.h> 45 46 /* 47 * LOCKING: 48 * There are three level of locking required by epoll : 49 * 50 * 1) epmutex (mutex) 51 * 2) ep->mtx (mutex) 52 * 3) ep->lock (spinlock) 53 * 54 * The acquire order is the one listed above, from 1 to 3. 55 * We need a spinlock (ep->lock) because we manipulate objects 56 * from inside the poll callback, that might be triggered from 57 * a wake_up() that in turn might be called from IRQ context. 58 * So we can't sleep inside the poll callback and hence we need 59 * a spinlock. During the event transfer loop (from kernel to 60 * user space) we could end up sleeping due a copy_to_user(), so 61 * we need a lock that will allow us to sleep. This lock is a 62 * mutex (ep->mtx). It is acquired during the event transfer loop, 63 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 64 * Then we also need a global mutex to serialize eventpoll_release_file() 65 * and ep_free(). 66 * This mutex is acquired by ep_free() during the epoll file 67 * cleanup path and it is also acquired by eventpoll_release_file() 68 * if a file has been pushed inside an epoll set and it is then 69 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 70 * It is also acquired when inserting an epoll fd onto another epoll 71 * fd. We do this so that we walk the epoll tree and ensure that this 72 * insertion does not create a cycle of epoll file descriptors, which 73 * could lead to deadlock. We need a global mutex to prevent two 74 * simultaneous inserts (A into B and B into A) from racing and 75 * constructing a cycle without either insert observing that it is 76 * going to. 77 * It is necessary to acquire multiple "ep->mtx"es at once in the 78 * case when one epoll fd is added to another. In this case, we 79 * always acquire the locks in the order of nesting (i.e. after 80 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 81 * before e2->mtx). Since we disallow cycles of epoll file 82 * descriptors, this ensures that the mutexes are well-ordered. In 83 * order to communicate this nesting to lockdep, when walking a tree 84 * of epoll file descriptors, we use the current recursion depth as 85 * the lockdep subkey. 86 * It is possible to drop the "ep->mtx" and to use the global 87 * mutex "epmutex" (together with "ep->lock") to have it working, 88 * but having "ep->mtx" will make the interface more scalable. 89 * Events that require holding "epmutex" are very rare, while for 90 * normal operations the epoll private "ep->mtx" will guarantee 91 * a better scalability. 92 */ 93 94 /* Epoll private bits inside the event mask */ 95 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET) 96 97 /* Maximum number of nesting allowed inside epoll sets */ 98 #define EP_MAX_NESTS 4 99 100 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 101 102 #define EP_UNACTIVE_PTR ((void *) -1L) 103 104 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 105 106 struct epoll_filefd { 107 struct file *file; 108 int fd; 109 } __packed; 110 111 /* 112 * Structure used to track possible nested calls, for too deep recursions 113 * and loop cycles. 114 */ 115 struct nested_call_node { 116 struct list_head llink; 117 void *cookie; 118 void *ctx; 119 }; 120 121 /* 122 * This structure is used as collector for nested calls, to check for 123 * maximum recursion dept and loop cycles. 124 */ 125 struct nested_calls { 126 struct list_head tasks_call_list; 127 spinlock_t lock; 128 }; 129 130 /* 131 * Each file descriptor added to the eventpoll interface will 132 * have an entry of this type linked to the "rbr" RB tree. 133 * Avoid increasing the size of this struct, there can be many thousands 134 * of these on a server and we do not want this to take another cache line. 135 */ 136 struct epitem { 137 /* RB tree node used to link this structure to the eventpoll RB tree */ 138 struct rb_node rbn; 139 140 /* List header used to link this structure to the eventpoll ready list */ 141 struct list_head rdllink; 142 143 /* 144 * Works together "struct eventpoll"->ovflist in keeping the 145 * single linked chain of items. 146 */ 147 struct epitem *next; 148 149 /* The file descriptor information this item refers to */ 150 struct epoll_filefd ffd; 151 152 /* Number of active wait queue attached to poll operations */ 153 int nwait; 154 155 /* List containing poll wait queues */ 156 struct list_head pwqlist; 157 158 /* The "container" of this item */ 159 struct eventpoll *ep; 160 161 /* List header used to link this item to the "struct file" items list */ 162 struct list_head fllink; 163 164 /* wakeup_source used when EPOLLWAKEUP is set */ 165 struct wakeup_source __rcu *ws; 166 167 /* The structure that describe the interested events and the source fd */ 168 struct epoll_event event; 169 }; 170 171 /* 172 * This structure is stored inside the "private_data" member of the file 173 * structure and represents the main data structure for the eventpoll 174 * interface. 175 */ 176 struct eventpoll { 177 /* Protect the access to this structure */ 178 spinlock_t lock; 179 180 /* 181 * This mutex is used to ensure that files are not removed 182 * while epoll is using them. This is held during the event 183 * collection loop, the file cleanup path, the epoll file exit 184 * code and the ctl operations. 185 */ 186 struct mutex mtx; 187 188 /* Wait queue used by sys_epoll_wait() */ 189 wait_queue_head_t wq; 190 191 /* Wait queue used by file->poll() */ 192 wait_queue_head_t poll_wait; 193 194 /* List of ready file descriptors */ 195 struct list_head rdllist; 196 197 /* RB tree root used to store monitored fd structs */ 198 struct rb_root rbr; 199 200 /* 201 * This is a single linked list that chains all the "struct epitem" that 202 * happened while transferring ready events to userspace w/out 203 * holding ->lock. 204 */ 205 struct epitem *ovflist; 206 207 /* wakeup_source used when ep_scan_ready_list is running */ 208 struct wakeup_source *ws; 209 210 /* The user that created the eventpoll descriptor */ 211 struct user_struct *user; 212 213 struct file *file; 214 215 /* used to optimize loop detection check */ 216 int visited; 217 struct list_head visited_list_link; 218 }; 219 220 /* Wait structure used by the poll hooks */ 221 struct eppoll_entry { 222 /* List header used to link this structure to the "struct epitem" */ 223 struct list_head llink; 224 225 /* The "base" pointer is set to the container "struct epitem" */ 226 struct epitem *base; 227 228 /* 229 * Wait queue item that will be linked to the target file wait 230 * queue head. 231 */ 232 wait_queue_t wait; 233 234 /* The wait queue head that linked the "wait" wait queue item */ 235 wait_queue_head_t *whead; 236 }; 237 238 /* Wrapper struct used by poll queueing */ 239 struct ep_pqueue { 240 poll_table pt; 241 struct epitem *epi; 242 }; 243 244 /* Used by the ep_send_events() function as callback private data */ 245 struct ep_send_events_data { 246 int maxevents; 247 struct epoll_event __user *events; 248 }; 249 250 /* 251 * Configuration options available inside /proc/sys/fs/epoll/ 252 */ 253 /* Maximum number of epoll watched descriptors, per user */ 254 static long max_user_watches __read_mostly; 255 256 /* 257 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 258 */ 259 static DEFINE_MUTEX(epmutex); 260 261 /* Used to check for epoll file descriptor inclusion loops */ 262 static struct nested_calls poll_loop_ncalls; 263 264 /* Used for safe wake up implementation */ 265 static struct nested_calls poll_safewake_ncalls; 266 267 /* Used to call file's f_op->poll() under the nested calls boundaries */ 268 static struct nested_calls poll_readywalk_ncalls; 269 270 /* Slab cache used to allocate "struct epitem" */ 271 static struct kmem_cache *epi_cache __read_mostly; 272 273 /* Slab cache used to allocate "struct eppoll_entry" */ 274 static struct kmem_cache *pwq_cache __read_mostly; 275 276 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 277 static LIST_HEAD(visited_list); 278 279 /* 280 * List of files with newly added links, where we may need to limit the number 281 * of emanating paths. Protected by the epmutex. 282 */ 283 static LIST_HEAD(tfile_check_list); 284 285 #ifdef CONFIG_SYSCTL 286 287 #include <linux/sysctl.h> 288 289 static long zero; 290 static long long_max = LONG_MAX; 291 292 ctl_table epoll_table[] = { 293 { 294 .procname = "max_user_watches", 295 .data = &max_user_watches, 296 .maxlen = sizeof(max_user_watches), 297 .mode = 0644, 298 .proc_handler = proc_doulongvec_minmax, 299 .extra1 = &zero, 300 .extra2 = &long_max, 301 }, 302 { } 303 }; 304 #endif /* CONFIG_SYSCTL */ 305 306 static const struct file_operations eventpoll_fops; 307 308 static inline int is_file_epoll(struct file *f) 309 { 310 return f->f_op == &eventpoll_fops; 311 } 312 313 /* Setup the structure that is used as key for the RB tree */ 314 static inline void ep_set_ffd(struct epoll_filefd *ffd, 315 struct file *file, int fd) 316 { 317 ffd->file = file; 318 ffd->fd = fd; 319 } 320 321 /* Compare RB tree keys */ 322 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 323 struct epoll_filefd *p2) 324 { 325 return (p1->file > p2->file ? +1: 326 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 327 } 328 329 /* Tells us if the item is currently linked */ 330 static inline int ep_is_linked(struct list_head *p) 331 { 332 return !list_empty(p); 333 } 334 335 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p) 336 { 337 return container_of(p, struct eppoll_entry, wait); 338 } 339 340 /* Get the "struct epitem" from a wait queue pointer */ 341 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 342 { 343 return container_of(p, struct eppoll_entry, wait)->base; 344 } 345 346 /* Get the "struct epitem" from an epoll queue wrapper */ 347 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 348 { 349 return container_of(p, struct ep_pqueue, pt)->epi; 350 } 351 352 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 353 static inline int ep_op_has_event(int op) 354 { 355 return op != EPOLL_CTL_DEL; 356 } 357 358 /* Initialize the poll safe wake up structure */ 359 static void ep_nested_calls_init(struct nested_calls *ncalls) 360 { 361 INIT_LIST_HEAD(&ncalls->tasks_call_list); 362 spin_lock_init(&ncalls->lock); 363 } 364 365 /** 366 * ep_events_available - Checks if ready events might be available. 367 * 368 * @ep: Pointer to the eventpoll context. 369 * 370 * Returns: Returns a value different than zero if ready events are available, 371 * or zero otherwise. 372 */ 373 static inline int ep_events_available(struct eventpoll *ep) 374 { 375 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 376 } 377 378 /** 379 * ep_call_nested - Perform a bound (possibly) nested call, by checking 380 * that the recursion limit is not exceeded, and that 381 * the same nested call (by the meaning of same cookie) is 382 * no re-entered. 383 * 384 * @ncalls: Pointer to the nested_calls structure to be used for this call. 385 * @max_nests: Maximum number of allowed nesting calls. 386 * @nproc: Nested call core function pointer. 387 * @priv: Opaque data to be passed to the @nproc callback. 388 * @cookie: Cookie to be used to identify this nested call. 389 * @ctx: This instance context. 390 * 391 * Returns: Returns the code returned by the @nproc callback, or -1 if 392 * the maximum recursion limit has been exceeded. 393 */ 394 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 395 int (*nproc)(void *, void *, int), void *priv, 396 void *cookie, void *ctx) 397 { 398 int error, call_nests = 0; 399 unsigned long flags; 400 struct list_head *lsthead = &ncalls->tasks_call_list; 401 struct nested_call_node *tncur; 402 struct nested_call_node tnode; 403 404 spin_lock_irqsave(&ncalls->lock, flags); 405 406 /* 407 * Try to see if the current task is already inside this wakeup call. 408 * We use a list here, since the population inside this set is always 409 * very much limited. 410 */ 411 list_for_each_entry(tncur, lsthead, llink) { 412 if (tncur->ctx == ctx && 413 (tncur->cookie == cookie || ++call_nests > max_nests)) { 414 /* 415 * Ops ... loop detected or maximum nest level reached. 416 * We abort this wake by breaking the cycle itself. 417 */ 418 error = -1; 419 goto out_unlock; 420 } 421 } 422 423 /* Add the current task and cookie to the list */ 424 tnode.ctx = ctx; 425 tnode.cookie = cookie; 426 list_add(&tnode.llink, lsthead); 427 428 spin_unlock_irqrestore(&ncalls->lock, flags); 429 430 /* Call the nested function */ 431 error = (*nproc)(priv, cookie, call_nests); 432 433 /* Remove the current task from the list */ 434 spin_lock_irqsave(&ncalls->lock, flags); 435 list_del(&tnode.llink); 436 out_unlock: 437 spin_unlock_irqrestore(&ncalls->lock, flags); 438 439 return error; 440 } 441 442 /* 443 * As described in commit 0ccf831cb lockdep: annotate epoll 444 * the use of wait queues used by epoll is done in a very controlled 445 * manner. Wake ups can nest inside each other, but are never done 446 * with the same locking. For example: 447 * 448 * dfd = socket(...); 449 * efd1 = epoll_create(); 450 * efd2 = epoll_create(); 451 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 452 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 453 * 454 * When a packet arrives to the device underneath "dfd", the net code will 455 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 456 * callback wakeup entry on that queue, and the wake_up() performed by the 457 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 458 * (efd1) notices that it may have some event ready, so it needs to wake up 459 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 460 * that ends up in another wake_up(), after having checked about the 461 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 462 * avoid stack blasting. 463 * 464 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 465 * this special case of epoll. 466 */ 467 #ifdef CONFIG_DEBUG_LOCK_ALLOC 468 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 469 unsigned long events, int subclass) 470 { 471 unsigned long flags; 472 473 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 474 wake_up_locked_poll(wqueue, events); 475 spin_unlock_irqrestore(&wqueue->lock, flags); 476 } 477 #else 478 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 479 unsigned long events, int subclass) 480 { 481 wake_up_poll(wqueue, events); 482 } 483 #endif 484 485 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 486 { 487 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 488 1 + call_nests); 489 return 0; 490 } 491 492 /* 493 * Perform a safe wake up of the poll wait list. The problem is that 494 * with the new callback'd wake up system, it is possible that the 495 * poll callback is reentered from inside the call to wake_up() done 496 * on the poll wait queue head. The rule is that we cannot reenter the 497 * wake up code from the same task more than EP_MAX_NESTS times, 498 * and we cannot reenter the same wait queue head at all. This will 499 * enable to have a hierarchy of epoll file descriptor of no more than 500 * EP_MAX_NESTS deep. 501 */ 502 static void ep_poll_safewake(wait_queue_head_t *wq) 503 { 504 int this_cpu = get_cpu(); 505 506 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 507 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 508 509 put_cpu(); 510 } 511 512 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 513 { 514 wait_queue_head_t *whead; 515 516 rcu_read_lock(); 517 /* If it is cleared by POLLFREE, it should be rcu-safe */ 518 whead = rcu_dereference(pwq->whead); 519 if (whead) 520 remove_wait_queue(whead, &pwq->wait); 521 rcu_read_unlock(); 522 } 523 524 /* 525 * This function unregisters poll callbacks from the associated file 526 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 527 * ep_free). 528 */ 529 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 530 { 531 struct list_head *lsthead = &epi->pwqlist; 532 struct eppoll_entry *pwq; 533 534 while (!list_empty(lsthead)) { 535 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 536 537 list_del(&pwq->llink); 538 ep_remove_wait_queue(pwq); 539 kmem_cache_free(pwq_cache, pwq); 540 } 541 } 542 543 /* call only when ep->mtx is held */ 544 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 545 { 546 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 547 } 548 549 /* call only when ep->mtx is held */ 550 static inline void ep_pm_stay_awake(struct epitem *epi) 551 { 552 struct wakeup_source *ws = ep_wakeup_source(epi); 553 554 if (ws) 555 __pm_stay_awake(ws); 556 } 557 558 static inline bool ep_has_wakeup_source(struct epitem *epi) 559 { 560 return rcu_access_pointer(epi->ws) ? true : false; 561 } 562 563 /* call when ep->mtx cannot be held (ep_poll_callback) */ 564 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 565 { 566 struct wakeup_source *ws; 567 568 rcu_read_lock(); 569 ws = rcu_dereference(epi->ws); 570 if (ws) 571 __pm_stay_awake(ws); 572 rcu_read_unlock(); 573 } 574 575 /** 576 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 577 * the scan code, to call f_op->poll(). Also allows for 578 * O(NumReady) performance. 579 * 580 * @ep: Pointer to the epoll private data structure. 581 * @sproc: Pointer to the scan callback. 582 * @priv: Private opaque data passed to the @sproc callback. 583 * @depth: The current depth of recursive f_op->poll calls. 584 * 585 * Returns: The same integer error code returned by the @sproc callback. 586 */ 587 static int ep_scan_ready_list(struct eventpoll *ep, 588 int (*sproc)(struct eventpoll *, 589 struct list_head *, void *), 590 void *priv, 591 int depth) 592 { 593 int error, pwake = 0; 594 unsigned long flags; 595 struct epitem *epi, *nepi; 596 LIST_HEAD(txlist); 597 598 /* 599 * We need to lock this because we could be hit by 600 * eventpoll_release_file() and epoll_ctl(). 601 */ 602 mutex_lock_nested(&ep->mtx, depth); 603 604 /* 605 * Steal the ready list, and re-init the original one to the 606 * empty list. Also, set ep->ovflist to NULL so that events 607 * happening while looping w/out locks, are not lost. We cannot 608 * have the poll callback to queue directly on ep->rdllist, 609 * because we want the "sproc" callback to be able to do it 610 * in a lockless way. 611 */ 612 spin_lock_irqsave(&ep->lock, flags); 613 list_splice_init(&ep->rdllist, &txlist); 614 ep->ovflist = NULL; 615 spin_unlock_irqrestore(&ep->lock, flags); 616 617 /* 618 * Now call the callback function. 619 */ 620 error = (*sproc)(ep, &txlist, priv); 621 622 spin_lock_irqsave(&ep->lock, flags); 623 /* 624 * During the time we spent inside the "sproc" callback, some 625 * other events might have been queued by the poll callback. 626 * We re-insert them inside the main ready-list here. 627 */ 628 for (nepi = ep->ovflist; (epi = nepi) != NULL; 629 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 630 /* 631 * We need to check if the item is already in the list. 632 * During the "sproc" callback execution time, items are 633 * queued into ->ovflist but the "txlist" might already 634 * contain them, and the list_splice() below takes care of them. 635 */ 636 if (!ep_is_linked(&epi->rdllink)) { 637 list_add_tail(&epi->rdllink, &ep->rdllist); 638 ep_pm_stay_awake(epi); 639 } 640 } 641 /* 642 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 643 * releasing the lock, events will be queued in the normal way inside 644 * ep->rdllist. 645 */ 646 ep->ovflist = EP_UNACTIVE_PTR; 647 648 /* 649 * Quickly re-inject items left on "txlist". 650 */ 651 list_splice(&txlist, &ep->rdllist); 652 __pm_relax(ep->ws); 653 654 if (!list_empty(&ep->rdllist)) { 655 /* 656 * Wake up (if active) both the eventpoll wait list and 657 * the ->poll() wait list (delayed after we release the lock). 658 */ 659 if (waitqueue_active(&ep->wq)) 660 wake_up_locked(&ep->wq); 661 if (waitqueue_active(&ep->poll_wait)) 662 pwake++; 663 } 664 spin_unlock_irqrestore(&ep->lock, flags); 665 666 mutex_unlock(&ep->mtx); 667 668 /* We have to call this outside the lock */ 669 if (pwake) 670 ep_poll_safewake(&ep->poll_wait); 671 672 return error; 673 } 674 675 /* 676 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 677 * all the associated resources. Must be called with "mtx" held. 678 */ 679 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 680 { 681 unsigned long flags; 682 struct file *file = epi->ffd.file; 683 684 /* 685 * Removes poll wait queue hooks. We _have_ to do this without holding 686 * the "ep->lock" otherwise a deadlock might occur. This because of the 687 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 688 * queue head lock when unregistering the wait queue. The wakeup callback 689 * will run by holding the wait queue head lock and will call our callback 690 * that will try to get "ep->lock". 691 */ 692 ep_unregister_pollwait(ep, epi); 693 694 /* Remove the current item from the list of epoll hooks */ 695 spin_lock(&file->f_lock); 696 if (ep_is_linked(&epi->fllink)) 697 list_del_init(&epi->fllink); 698 spin_unlock(&file->f_lock); 699 700 rb_erase(&epi->rbn, &ep->rbr); 701 702 spin_lock_irqsave(&ep->lock, flags); 703 if (ep_is_linked(&epi->rdllink)) 704 list_del_init(&epi->rdllink); 705 spin_unlock_irqrestore(&ep->lock, flags); 706 707 wakeup_source_unregister(ep_wakeup_source(epi)); 708 709 /* At this point it is safe to free the eventpoll item */ 710 kmem_cache_free(epi_cache, epi); 711 712 atomic_long_dec(&ep->user->epoll_watches); 713 714 return 0; 715 } 716 717 static void ep_free(struct eventpoll *ep) 718 { 719 struct rb_node *rbp; 720 struct epitem *epi; 721 722 /* We need to release all tasks waiting for these file */ 723 if (waitqueue_active(&ep->poll_wait)) 724 ep_poll_safewake(&ep->poll_wait); 725 726 /* 727 * We need to lock this because we could be hit by 728 * eventpoll_release_file() while we're freeing the "struct eventpoll". 729 * We do not need to hold "ep->mtx" here because the epoll file 730 * is on the way to be removed and no one has references to it 731 * anymore. The only hit might come from eventpoll_release_file() but 732 * holding "epmutex" is sufficient here. 733 */ 734 mutex_lock(&epmutex); 735 736 /* 737 * Walks through the whole tree by unregistering poll callbacks. 738 */ 739 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 740 epi = rb_entry(rbp, struct epitem, rbn); 741 742 ep_unregister_pollwait(ep, epi); 743 cond_resched(); 744 } 745 746 /* 747 * Walks through the whole tree by freeing each "struct epitem". At this 748 * point we are sure no poll callbacks will be lingering around, and also by 749 * holding "epmutex" we can be sure that no file cleanup code will hit 750 * us during this operation. So we can avoid the lock on "ep->lock". 751 * We do not need to lock ep->mtx, either, we only do it to prevent 752 * a lockdep warning. 753 */ 754 mutex_lock(&ep->mtx); 755 while ((rbp = rb_first(&ep->rbr)) != NULL) { 756 epi = rb_entry(rbp, struct epitem, rbn); 757 ep_remove(ep, epi); 758 cond_resched(); 759 } 760 mutex_unlock(&ep->mtx); 761 762 mutex_unlock(&epmutex); 763 mutex_destroy(&ep->mtx); 764 free_uid(ep->user); 765 wakeup_source_unregister(ep->ws); 766 kfree(ep); 767 } 768 769 static int ep_eventpoll_release(struct inode *inode, struct file *file) 770 { 771 struct eventpoll *ep = file->private_data; 772 773 if (ep) 774 ep_free(ep); 775 776 return 0; 777 } 778 779 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt) 780 { 781 pt->_key = epi->event.events; 782 783 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events; 784 } 785 786 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 787 void *priv) 788 { 789 struct epitem *epi, *tmp; 790 poll_table pt; 791 792 init_poll_funcptr(&pt, NULL); 793 794 list_for_each_entry_safe(epi, tmp, head, rdllink) { 795 if (ep_item_poll(epi, &pt)) 796 return POLLIN | POLLRDNORM; 797 else { 798 /* 799 * Item has been dropped into the ready list by the poll 800 * callback, but it's not actually ready, as far as 801 * caller requested events goes. We can remove it here. 802 */ 803 __pm_relax(ep_wakeup_source(epi)); 804 list_del_init(&epi->rdllink); 805 } 806 } 807 808 return 0; 809 } 810 811 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 812 { 813 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1); 814 } 815 816 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 817 { 818 int pollflags; 819 struct eventpoll *ep = file->private_data; 820 821 /* Insert inside our poll wait queue */ 822 poll_wait(file, &ep->poll_wait, wait); 823 824 /* 825 * Proceed to find out if wanted events are really available inside 826 * the ready list. This need to be done under ep_call_nested() 827 * supervision, since the call to f_op->poll() done on listed files 828 * could re-enter here. 829 */ 830 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 831 ep_poll_readyevents_proc, ep, ep, current); 832 833 return pollflags != -1 ? pollflags : 0; 834 } 835 836 #ifdef CONFIG_PROC_FS 837 static int ep_show_fdinfo(struct seq_file *m, struct file *f) 838 { 839 struct eventpoll *ep = f->private_data; 840 struct rb_node *rbp; 841 int ret = 0; 842 843 mutex_lock(&ep->mtx); 844 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 845 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 846 847 ret = seq_printf(m, "tfd: %8d events: %8x data: %16llx\n", 848 epi->ffd.fd, epi->event.events, 849 (long long)epi->event.data); 850 if (ret) 851 break; 852 } 853 mutex_unlock(&ep->mtx); 854 855 return ret; 856 } 857 #endif 858 859 /* File callbacks that implement the eventpoll file behaviour */ 860 static const struct file_operations eventpoll_fops = { 861 #ifdef CONFIG_PROC_FS 862 .show_fdinfo = ep_show_fdinfo, 863 #endif 864 .release = ep_eventpoll_release, 865 .poll = ep_eventpoll_poll, 866 .llseek = noop_llseek, 867 }; 868 869 /* 870 * This is called from eventpoll_release() to unlink files from the eventpoll 871 * interface. We need to have this facility to cleanup correctly files that are 872 * closed without being removed from the eventpoll interface. 873 */ 874 void eventpoll_release_file(struct file *file) 875 { 876 struct list_head *lsthead = &file->f_ep_links; 877 struct eventpoll *ep; 878 struct epitem *epi; 879 880 /* 881 * We don't want to get "file->f_lock" because it is not 882 * necessary. It is not necessary because we're in the "struct file" 883 * cleanup path, and this means that no one is using this file anymore. 884 * So, for example, epoll_ctl() cannot hit here since if we reach this 885 * point, the file counter already went to zero and fget() would fail. 886 * The only hit might come from ep_free() but by holding the mutex 887 * will correctly serialize the operation. We do need to acquire 888 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 889 * from anywhere but ep_free(). 890 * 891 * Besides, ep_remove() acquires the lock, so we can't hold it here. 892 */ 893 mutex_lock(&epmutex); 894 895 while (!list_empty(lsthead)) { 896 epi = list_first_entry(lsthead, struct epitem, fllink); 897 898 ep = epi->ep; 899 list_del_init(&epi->fllink); 900 mutex_lock_nested(&ep->mtx, 0); 901 ep_remove(ep, epi); 902 mutex_unlock(&ep->mtx); 903 } 904 905 mutex_unlock(&epmutex); 906 } 907 908 static int ep_alloc(struct eventpoll **pep) 909 { 910 int error; 911 struct user_struct *user; 912 struct eventpoll *ep; 913 914 user = get_current_user(); 915 error = -ENOMEM; 916 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 917 if (unlikely(!ep)) 918 goto free_uid; 919 920 spin_lock_init(&ep->lock); 921 mutex_init(&ep->mtx); 922 init_waitqueue_head(&ep->wq); 923 init_waitqueue_head(&ep->poll_wait); 924 INIT_LIST_HEAD(&ep->rdllist); 925 ep->rbr = RB_ROOT; 926 ep->ovflist = EP_UNACTIVE_PTR; 927 ep->user = user; 928 929 *pep = ep; 930 931 return 0; 932 933 free_uid: 934 free_uid(user); 935 return error; 936 } 937 938 /* 939 * Search the file inside the eventpoll tree. The RB tree operations 940 * are protected by the "mtx" mutex, and ep_find() must be called with 941 * "mtx" held. 942 */ 943 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 944 { 945 int kcmp; 946 struct rb_node *rbp; 947 struct epitem *epi, *epir = NULL; 948 struct epoll_filefd ffd; 949 950 ep_set_ffd(&ffd, file, fd); 951 for (rbp = ep->rbr.rb_node; rbp; ) { 952 epi = rb_entry(rbp, struct epitem, rbn); 953 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 954 if (kcmp > 0) 955 rbp = rbp->rb_right; 956 else if (kcmp < 0) 957 rbp = rbp->rb_left; 958 else { 959 epir = epi; 960 break; 961 } 962 } 963 964 return epir; 965 } 966 967 /* 968 * This is the callback that is passed to the wait queue wakeup 969 * mechanism. It is called by the stored file descriptors when they 970 * have events to report. 971 */ 972 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 973 { 974 int pwake = 0; 975 unsigned long flags; 976 struct epitem *epi = ep_item_from_wait(wait); 977 struct eventpoll *ep = epi->ep; 978 979 if ((unsigned long)key & POLLFREE) { 980 ep_pwq_from_wait(wait)->whead = NULL; 981 /* 982 * whead = NULL above can race with ep_remove_wait_queue() 983 * which can do another remove_wait_queue() after us, so we 984 * can't use __remove_wait_queue(). whead->lock is held by 985 * the caller. 986 */ 987 list_del_init(&wait->task_list); 988 } 989 990 spin_lock_irqsave(&ep->lock, flags); 991 992 /* 993 * If the event mask does not contain any poll(2) event, we consider the 994 * descriptor to be disabled. This condition is likely the effect of the 995 * EPOLLONESHOT bit that disables the descriptor when an event is received, 996 * until the next EPOLL_CTL_MOD will be issued. 997 */ 998 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 999 goto out_unlock; 1000 1001 /* 1002 * Check the events coming with the callback. At this stage, not 1003 * every device reports the events in the "key" parameter of the 1004 * callback. We need to be able to handle both cases here, hence the 1005 * test for "key" != NULL before the event match test. 1006 */ 1007 if (key && !((unsigned long) key & epi->event.events)) 1008 goto out_unlock; 1009 1010 /* 1011 * If we are transferring events to userspace, we can hold no locks 1012 * (because we're accessing user memory, and because of linux f_op->poll() 1013 * semantics). All the events that happen during that period of time are 1014 * chained in ep->ovflist and requeued later on. 1015 */ 1016 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 1017 if (epi->next == EP_UNACTIVE_PTR) { 1018 epi->next = ep->ovflist; 1019 ep->ovflist = epi; 1020 if (epi->ws) { 1021 /* 1022 * Activate ep->ws since epi->ws may get 1023 * deactivated at any time. 1024 */ 1025 __pm_stay_awake(ep->ws); 1026 } 1027 1028 } 1029 goto out_unlock; 1030 } 1031 1032 /* If this file is already in the ready list we exit soon */ 1033 if (!ep_is_linked(&epi->rdllink)) { 1034 list_add_tail(&epi->rdllink, &ep->rdllist); 1035 ep_pm_stay_awake_rcu(epi); 1036 } 1037 1038 /* 1039 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1040 * wait list. 1041 */ 1042 if (waitqueue_active(&ep->wq)) 1043 wake_up_locked(&ep->wq); 1044 if (waitqueue_active(&ep->poll_wait)) 1045 pwake++; 1046 1047 out_unlock: 1048 spin_unlock_irqrestore(&ep->lock, flags); 1049 1050 /* We have to call this outside the lock */ 1051 if (pwake) 1052 ep_poll_safewake(&ep->poll_wait); 1053 1054 return 1; 1055 } 1056 1057 /* 1058 * This is the callback that is used to add our wait queue to the 1059 * target file wakeup lists. 1060 */ 1061 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1062 poll_table *pt) 1063 { 1064 struct epitem *epi = ep_item_from_epqueue(pt); 1065 struct eppoll_entry *pwq; 1066 1067 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1068 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1069 pwq->whead = whead; 1070 pwq->base = epi; 1071 add_wait_queue(whead, &pwq->wait); 1072 list_add_tail(&pwq->llink, &epi->pwqlist); 1073 epi->nwait++; 1074 } else { 1075 /* We have to signal that an error occurred */ 1076 epi->nwait = -1; 1077 } 1078 } 1079 1080 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1081 { 1082 int kcmp; 1083 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 1084 struct epitem *epic; 1085 1086 while (*p) { 1087 parent = *p; 1088 epic = rb_entry(parent, struct epitem, rbn); 1089 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1090 if (kcmp > 0) 1091 p = &parent->rb_right; 1092 else 1093 p = &parent->rb_left; 1094 } 1095 rb_link_node(&epi->rbn, parent, p); 1096 rb_insert_color(&epi->rbn, &ep->rbr); 1097 } 1098 1099 1100 1101 #define PATH_ARR_SIZE 5 1102 /* 1103 * These are the number paths of length 1 to 5, that we are allowing to emanate 1104 * from a single file of interest. For example, we allow 1000 paths of length 1105 * 1, to emanate from each file of interest. This essentially represents the 1106 * potential wakeup paths, which need to be limited in order to avoid massive 1107 * uncontrolled wakeup storms. The common use case should be a single ep which 1108 * is connected to n file sources. In this case each file source has 1 path 1109 * of length 1. Thus, the numbers below should be more than sufficient. These 1110 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1111 * and delete can't add additional paths. Protected by the epmutex. 1112 */ 1113 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1114 static int path_count[PATH_ARR_SIZE]; 1115 1116 static int path_count_inc(int nests) 1117 { 1118 /* Allow an arbitrary number of depth 1 paths */ 1119 if (nests == 0) 1120 return 0; 1121 1122 if (++path_count[nests] > path_limits[nests]) 1123 return -1; 1124 return 0; 1125 } 1126 1127 static void path_count_init(void) 1128 { 1129 int i; 1130 1131 for (i = 0; i < PATH_ARR_SIZE; i++) 1132 path_count[i] = 0; 1133 } 1134 1135 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1136 { 1137 int error = 0; 1138 struct file *file = priv; 1139 struct file *child_file; 1140 struct epitem *epi; 1141 1142 list_for_each_entry(epi, &file->f_ep_links, fllink) { 1143 child_file = epi->ep->file; 1144 if (is_file_epoll(child_file)) { 1145 if (list_empty(&child_file->f_ep_links)) { 1146 if (path_count_inc(call_nests)) { 1147 error = -1; 1148 break; 1149 } 1150 } else { 1151 error = ep_call_nested(&poll_loop_ncalls, 1152 EP_MAX_NESTS, 1153 reverse_path_check_proc, 1154 child_file, child_file, 1155 current); 1156 } 1157 if (error != 0) 1158 break; 1159 } else { 1160 printk(KERN_ERR "reverse_path_check_proc: " 1161 "file is not an ep!\n"); 1162 } 1163 } 1164 return error; 1165 } 1166 1167 /** 1168 * reverse_path_check - The tfile_check_list is list of file *, which have 1169 * links that are proposed to be newly added. We need to 1170 * make sure that those added links don't add too many 1171 * paths such that we will spend all our time waking up 1172 * eventpoll objects. 1173 * 1174 * Returns: Returns zero if the proposed links don't create too many paths, 1175 * -1 otherwise. 1176 */ 1177 static int reverse_path_check(void) 1178 { 1179 int error = 0; 1180 struct file *current_file; 1181 1182 /* let's call this for all tfiles */ 1183 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1184 path_count_init(); 1185 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1186 reverse_path_check_proc, current_file, 1187 current_file, current); 1188 if (error) 1189 break; 1190 } 1191 return error; 1192 } 1193 1194 static int ep_create_wakeup_source(struct epitem *epi) 1195 { 1196 const char *name; 1197 struct wakeup_source *ws; 1198 1199 if (!epi->ep->ws) { 1200 epi->ep->ws = wakeup_source_register("eventpoll"); 1201 if (!epi->ep->ws) 1202 return -ENOMEM; 1203 } 1204 1205 name = epi->ffd.file->f_path.dentry->d_name.name; 1206 ws = wakeup_source_register(name); 1207 1208 if (!ws) 1209 return -ENOMEM; 1210 rcu_assign_pointer(epi->ws, ws); 1211 1212 return 0; 1213 } 1214 1215 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1216 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1217 { 1218 struct wakeup_source *ws = ep_wakeup_source(epi); 1219 1220 RCU_INIT_POINTER(epi->ws, NULL); 1221 1222 /* 1223 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1224 * used internally by wakeup_source_remove, too (called by 1225 * wakeup_source_unregister), so we cannot use call_rcu 1226 */ 1227 synchronize_rcu(); 1228 wakeup_source_unregister(ws); 1229 } 1230 1231 /* 1232 * Must be called with "mtx" held. 1233 */ 1234 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 1235 struct file *tfile, int fd) 1236 { 1237 int error, revents, pwake = 0; 1238 unsigned long flags; 1239 long user_watches; 1240 struct epitem *epi; 1241 struct ep_pqueue epq; 1242 1243 user_watches = atomic_long_read(&ep->user->epoll_watches); 1244 if (unlikely(user_watches >= max_user_watches)) 1245 return -ENOSPC; 1246 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1247 return -ENOMEM; 1248 1249 /* Item initialization follow here ... */ 1250 INIT_LIST_HEAD(&epi->rdllink); 1251 INIT_LIST_HEAD(&epi->fllink); 1252 INIT_LIST_HEAD(&epi->pwqlist); 1253 epi->ep = ep; 1254 ep_set_ffd(&epi->ffd, tfile, fd); 1255 epi->event = *event; 1256 epi->nwait = 0; 1257 epi->next = EP_UNACTIVE_PTR; 1258 if (epi->event.events & EPOLLWAKEUP) { 1259 error = ep_create_wakeup_source(epi); 1260 if (error) 1261 goto error_create_wakeup_source; 1262 } else { 1263 RCU_INIT_POINTER(epi->ws, NULL); 1264 } 1265 1266 /* Initialize the poll table using the queue callback */ 1267 epq.epi = epi; 1268 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1269 1270 /* 1271 * Attach the item to the poll hooks and get current event bits. 1272 * We can safely use the file* here because its usage count has 1273 * been increased by the caller of this function. Note that after 1274 * this operation completes, the poll callback can start hitting 1275 * the new item. 1276 */ 1277 revents = ep_item_poll(epi, &epq.pt); 1278 1279 /* 1280 * We have to check if something went wrong during the poll wait queue 1281 * install process. Namely an allocation for a wait queue failed due 1282 * high memory pressure. 1283 */ 1284 error = -ENOMEM; 1285 if (epi->nwait < 0) 1286 goto error_unregister; 1287 1288 /* Add the current item to the list of active epoll hook for this file */ 1289 spin_lock(&tfile->f_lock); 1290 list_add_tail(&epi->fllink, &tfile->f_ep_links); 1291 spin_unlock(&tfile->f_lock); 1292 1293 /* 1294 * Add the current item to the RB tree. All RB tree operations are 1295 * protected by "mtx", and ep_insert() is called with "mtx" held. 1296 */ 1297 ep_rbtree_insert(ep, epi); 1298 1299 /* now check if we've created too many backpaths */ 1300 error = -EINVAL; 1301 if (reverse_path_check()) 1302 goto error_remove_epi; 1303 1304 /* We have to drop the new item inside our item list to keep track of it */ 1305 spin_lock_irqsave(&ep->lock, flags); 1306 1307 /* If the file is already "ready" we drop it inside the ready list */ 1308 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1309 list_add_tail(&epi->rdllink, &ep->rdllist); 1310 ep_pm_stay_awake(epi); 1311 1312 /* Notify waiting tasks that events are available */ 1313 if (waitqueue_active(&ep->wq)) 1314 wake_up_locked(&ep->wq); 1315 if (waitqueue_active(&ep->poll_wait)) 1316 pwake++; 1317 } 1318 1319 spin_unlock_irqrestore(&ep->lock, flags); 1320 1321 atomic_long_inc(&ep->user->epoll_watches); 1322 1323 /* We have to call this outside the lock */ 1324 if (pwake) 1325 ep_poll_safewake(&ep->poll_wait); 1326 1327 return 0; 1328 1329 error_remove_epi: 1330 spin_lock(&tfile->f_lock); 1331 if (ep_is_linked(&epi->fllink)) 1332 list_del_init(&epi->fllink); 1333 spin_unlock(&tfile->f_lock); 1334 1335 rb_erase(&epi->rbn, &ep->rbr); 1336 1337 error_unregister: 1338 ep_unregister_pollwait(ep, epi); 1339 1340 /* 1341 * We need to do this because an event could have been arrived on some 1342 * allocated wait queue. Note that we don't care about the ep->ovflist 1343 * list, since that is used/cleaned only inside a section bound by "mtx". 1344 * And ep_insert() is called with "mtx" held. 1345 */ 1346 spin_lock_irqsave(&ep->lock, flags); 1347 if (ep_is_linked(&epi->rdllink)) 1348 list_del_init(&epi->rdllink); 1349 spin_unlock_irqrestore(&ep->lock, flags); 1350 1351 wakeup_source_unregister(ep_wakeup_source(epi)); 1352 1353 error_create_wakeup_source: 1354 kmem_cache_free(epi_cache, epi); 1355 1356 return error; 1357 } 1358 1359 /* 1360 * Modify the interest event mask by dropping an event if the new mask 1361 * has a match in the current file status. Must be called with "mtx" held. 1362 */ 1363 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1364 { 1365 int pwake = 0; 1366 unsigned int revents; 1367 poll_table pt; 1368 1369 init_poll_funcptr(&pt, NULL); 1370 1371 /* 1372 * Set the new event interest mask before calling f_op->poll(); 1373 * otherwise we might miss an event that happens between the 1374 * f_op->poll() call and the new event set registering. 1375 */ 1376 epi->event.events = event->events; /* need barrier below */ 1377 epi->event.data = event->data; /* protected by mtx */ 1378 if (epi->event.events & EPOLLWAKEUP) { 1379 if (!ep_has_wakeup_source(epi)) 1380 ep_create_wakeup_source(epi); 1381 } else if (ep_has_wakeup_source(epi)) { 1382 ep_destroy_wakeup_source(epi); 1383 } 1384 1385 /* 1386 * The following barrier has two effects: 1387 * 1388 * 1) Flush epi changes above to other CPUs. This ensures 1389 * we do not miss events from ep_poll_callback if an 1390 * event occurs immediately after we call f_op->poll(). 1391 * We need this because we did not take ep->lock while 1392 * changing epi above (but ep_poll_callback does take 1393 * ep->lock). 1394 * 1395 * 2) We also need to ensure we do not miss _past_ events 1396 * when calling f_op->poll(). This barrier also 1397 * pairs with the barrier in wq_has_sleeper (see 1398 * comments for wq_has_sleeper). 1399 * 1400 * This barrier will now guarantee ep_poll_callback or f_op->poll 1401 * (or both) will notice the readiness of an item. 1402 */ 1403 smp_mb(); 1404 1405 /* 1406 * Get current event bits. We can safely use the file* here because 1407 * its usage count has been increased by the caller of this function. 1408 */ 1409 revents = ep_item_poll(epi, &pt); 1410 1411 /* 1412 * If the item is "hot" and it is not registered inside the ready 1413 * list, push it inside. 1414 */ 1415 if (revents & event->events) { 1416 spin_lock_irq(&ep->lock); 1417 if (!ep_is_linked(&epi->rdllink)) { 1418 list_add_tail(&epi->rdllink, &ep->rdllist); 1419 ep_pm_stay_awake(epi); 1420 1421 /* Notify waiting tasks that events are available */ 1422 if (waitqueue_active(&ep->wq)) 1423 wake_up_locked(&ep->wq); 1424 if (waitqueue_active(&ep->poll_wait)) 1425 pwake++; 1426 } 1427 spin_unlock_irq(&ep->lock); 1428 } 1429 1430 /* We have to call this outside the lock */ 1431 if (pwake) 1432 ep_poll_safewake(&ep->poll_wait); 1433 1434 return 0; 1435 } 1436 1437 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1438 void *priv) 1439 { 1440 struct ep_send_events_data *esed = priv; 1441 int eventcnt; 1442 unsigned int revents; 1443 struct epitem *epi; 1444 struct epoll_event __user *uevent; 1445 struct wakeup_source *ws; 1446 poll_table pt; 1447 1448 init_poll_funcptr(&pt, NULL); 1449 1450 /* 1451 * We can loop without lock because we are passed a task private list. 1452 * Items cannot vanish during the loop because ep_scan_ready_list() is 1453 * holding "mtx" during this call. 1454 */ 1455 for (eventcnt = 0, uevent = esed->events; 1456 !list_empty(head) && eventcnt < esed->maxevents;) { 1457 epi = list_first_entry(head, struct epitem, rdllink); 1458 1459 /* 1460 * Activate ep->ws before deactivating epi->ws to prevent 1461 * triggering auto-suspend here (in case we reactive epi->ws 1462 * below). 1463 * 1464 * This could be rearranged to delay the deactivation of epi->ws 1465 * instead, but then epi->ws would temporarily be out of sync 1466 * with ep_is_linked(). 1467 */ 1468 ws = ep_wakeup_source(epi); 1469 if (ws) { 1470 if (ws->active) 1471 __pm_stay_awake(ep->ws); 1472 __pm_relax(ws); 1473 } 1474 1475 list_del_init(&epi->rdllink); 1476 1477 revents = ep_item_poll(epi, &pt); 1478 1479 /* 1480 * If the event mask intersect the caller-requested one, 1481 * deliver the event to userspace. Again, ep_scan_ready_list() 1482 * is holding "mtx", so no operations coming from userspace 1483 * can change the item. 1484 */ 1485 if (revents) { 1486 if (__put_user(revents, &uevent->events) || 1487 __put_user(epi->event.data, &uevent->data)) { 1488 list_add(&epi->rdllink, head); 1489 ep_pm_stay_awake(epi); 1490 return eventcnt ? eventcnt : -EFAULT; 1491 } 1492 eventcnt++; 1493 uevent++; 1494 if (epi->event.events & EPOLLONESHOT) 1495 epi->event.events &= EP_PRIVATE_BITS; 1496 else if (!(epi->event.events & EPOLLET)) { 1497 /* 1498 * If this file has been added with Level 1499 * Trigger mode, we need to insert back inside 1500 * the ready list, so that the next call to 1501 * epoll_wait() will check again the events 1502 * availability. At this point, no one can insert 1503 * into ep->rdllist besides us. The epoll_ctl() 1504 * callers are locked out by 1505 * ep_scan_ready_list() holding "mtx" and the 1506 * poll callback will queue them in ep->ovflist. 1507 */ 1508 list_add_tail(&epi->rdllink, &ep->rdllist); 1509 ep_pm_stay_awake(epi); 1510 } 1511 } 1512 } 1513 1514 return eventcnt; 1515 } 1516 1517 static int ep_send_events(struct eventpoll *ep, 1518 struct epoll_event __user *events, int maxevents) 1519 { 1520 struct ep_send_events_data esed; 1521 1522 esed.maxevents = maxevents; 1523 esed.events = events; 1524 1525 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0); 1526 } 1527 1528 static inline struct timespec ep_set_mstimeout(long ms) 1529 { 1530 struct timespec now, ts = { 1531 .tv_sec = ms / MSEC_PER_SEC, 1532 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1533 }; 1534 1535 ktime_get_ts(&now); 1536 return timespec_add_safe(now, ts); 1537 } 1538 1539 /** 1540 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1541 * event buffer. 1542 * 1543 * @ep: Pointer to the eventpoll context. 1544 * @events: Pointer to the userspace buffer where the ready events should be 1545 * stored. 1546 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1547 * @timeout: Maximum timeout for the ready events fetch operation, in 1548 * milliseconds. If the @timeout is zero, the function will not block, 1549 * while if the @timeout is less than zero, the function will block 1550 * until at least one event has been retrieved (or an error 1551 * occurred). 1552 * 1553 * Returns: Returns the number of ready events which have been fetched, or an 1554 * error code, in case of error. 1555 */ 1556 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1557 int maxevents, long timeout) 1558 { 1559 int res = 0, eavail, timed_out = 0; 1560 unsigned long flags; 1561 long slack = 0; 1562 wait_queue_t wait; 1563 ktime_t expires, *to = NULL; 1564 1565 if (timeout > 0) { 1566 struct timespec end_time = ep_set_mstimeout(timeout); 1567 1568 slack = select_estimate_accuracy(&end_time); 1569 to = &expires; 1570 *to = timespec_to_ktime(end_time); 1571 } else if (timeout == 0) { 1572 /* 1573 * Avoid the unnecessary trip to the wait queue loop, if the 1574 * caller specified a non blocking operation. 1575 */ 1576 timed_out = 1; 1577 spin_lock_irqsave(&ep->lock, flags); 1578 goto check_events; 1579 } 1580 1581 fetch_events: 1582 spin_lock_irqsave(&ep->lock, flags); 1583 1584 if (!ep_events_available(ep)) { 1585 /* 1586 * We don't have any available event to return to the caller. 1587 * We need to sleep here, and we will be wake up by 1588 * ep_poll_callback() when events will become available. 1589 */ 1590 init_waitqueue_entry(&wait, current); 1591 __add_wait_queue_exclusive(&ep->wq, &wait); 1592 1593 for (;;) { 1594 /* 1595 * We don't want to sleep if the ep_poll_callback() sends us 1596 * a wakeup in between. That's why we set the task state 1597 * to TASK_INTERRUPTIBLE before doing the checks. 1598 */ 1599 set_current_state(TASK_INTERRUPTIBLE); 1600 if (ep_events_available(ep) || timed_out) 1601 break; 1602 if (signal_pending(current)) { 1603 res = -EINTR; 1604 break; 1605 } 1606 1607 spin_unlock_irqrestore(&ep->lock, flags); 1608 if (!freezable_schedule_hrtimeout_range(to, slack, 1609 HRTIMER_MODE_ABS)) 1610 timed_out = 1; 1611 1612 spin_lock_irqsave(&ep->lock, flags); 1613 } 1614 __remove_wait_queue(&ep->wq, &wait); 1615 1616 set_current_state(TASK_RUNNING); 1617 } 1618 check_events: 1619 /* Is it worth to try to dig for events ? */ 1620 eavail = ep_events_available(ep); 1621 1622 spin_unlock_irqrestore(&ep->lock, flags); 1623 1624 /* 1625 * Try to transfer events to user space. In case we get 0 events and 1626 * there's still timeout left over, we go trying again in search of 1627 * more luck. 1628 */ 1629 if (!res && eavail && 1630 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1631 goto fetch_events; 1632 1633 return res; 1634 } 1635 1636 /** 1637 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1638 * API, to verify that adding an epoll file inside another 1639 * epoll structure, does not violate the constraints, in 1640 * terms of closed loops, or too deep chains (which can 1641 * result in excessive stack usage). 1642 * 1643 * @priv: Pointer to the epoll file to be currently checked. 1644 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1645 * data structure pointer. 1646 * @call_nests: Current dept of the @ep_call_nested() call stack. 1647 * 1648 * Returns: Returns zero if adding the epoll @file inside current epoll 1649 * structure @ep does not violate the constraints, or -1 otherwise. 1650 */ 1651 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1652 { 1653 int error = 0; 1654 struct file *file = priv; 1655 struct eventpoll *ep = file->private_data; 1656 struct eventpoll *ep_tovisit; 1657 struct rb_node *rbp; 1658 struct epitem *epi; 1659 1660 mutex_lock_nested(&ep->mtx, call_nests + 1); 1661 ep->visited = 1; 1662 list_add(&ep->visited_list_link, &visited_list); 1663 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1664 epi = rb_entry(rbp, struct epitem, rbn); 1665 if (unlikely(is_file_epoll(epi->ffd.file))) { 1666 ep_tovisit = epi->ffd.file->private_data; 1667 if (ep_tovisit->visited) 1668 continue; 1669 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1670 ep_loop_check_proc, epi->ffd.file, 1671 ep_tovisit, current); 1672 if (error != 0) 1673 break; 1674 } else { 1675 /* 1676 * If we've reached a file that is not associated with 1677 * an ep, then we need to check if the newly added 1678 * links are going to add too many wakeup paths. We do 1679 * this by adding it to the tfile_check_list, if it's 1680 * not already there, and calling reverse_path_check() 1681 * during ep_insert(). 1682 */ 1683 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1684 list_add(&epi->ffd.file->f_tfile_llink, 1685 &tfile_check_list); 1686 } 1687 } 1688 mutex_unlock(&ep->mtx); 1689 1690 return error; 1691 } 1692 1693 /** 1694 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1695 * another epoll file (represented by @ep) does not create 1696 * closed loops or too deep chains. 1697 * 1698 * @ep: Pointer to the epoll private data structure. 1699 * @file: Pointer to the epoll file to be checked. 1700 * 1701 * Returns: Returns zero if adding the epoll @file inside current epoll 1702 * structure @ep does not violate the constraints, or -1 otherwise. 1703 */ 1704 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1705 { 1706 int ret; 1707 struct eventpoll *ep_cur, *ep_next; 1708 1709 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1710 ep_loop_check_proc, file, ep, current); 1711 /* clear visited list */ 1712 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1713 visited_list_link) { 1714 ep_cur->visited = 0; 1715 list_del(&ep_cur->visited_list_link); 1716 } 1717 return ret; 1718 } 1719 1720 static void clear_tfile_check_list(void) 1721 { 1722 struct file *file; 1723 1724 /* first clear the tfile_check_list */ 1725 while (!list_empty(&tfile_check_list)) { 1726 file = list_first_entry(&tfile_check_list, struct file, 1727 f_tfile_llink); 1728 list_del_init(&file->f_tfile_llink); 1729 } 1730 INIT_LIST_HEAD(&tfile_check_list); 1731 } 1732 1733 /* 1734 * Open an eventpoll file descriptor. 1735 */ 1736 SYSCALL_DEFINE1(epoll_create1, int, flags) 1737 { 1738 int error, fd; 1739 struct eventpoll *ep = NULL; 1740 struct file *file; 1741 1742 /* Check the EPOLL_* constant for consistency. */ 1743 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1744 1745 if (flags & ~EPOLL_CLOEXEC) 1746 return -EINVAL; 1747 /* 1748 * Create the internal data structure ("struct eventpoll"). 1749 */ 1750 error = ep_alloc(&ep); 1751 if (error < 0) 1752 return error; 1753 /* 1754 * Creates all the items needed to setup an eventpoll file. That is, 1755 * a file structure and a free file descriptor. 1756 */ 1757 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1758 if (fd < 0) { 1759 error = fd; 1760 goto out_free_ep; 1761 } 1762 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1763 O_RDWR | (flags & O_CLOEXEC)); 1764 if (IS_ERR(file)) { 1765 error = PTR_ERR(file); 1766 goto out_free_fd; 1767 } 1768 ep->file = file; 1769 fd_install(fd, file); 1770 return fd; 1771 1772 out_free_fd: 1773 put_unused_fd(fd); 1774 out_free_ep: 1775 ep_free(ep); 1776 return error; 1777 } 1778 1779 SYSCALL_DEFINE1(epoll_create, int, size) 1780 { 1781 if (size <= 0) 1782 return -EINVAL; 1783 1784 return sys_epoll_create1(0); 1785 } 1786 1787 /* 1788 * The following function implements the controller interface for 1789 * the eventpoll file that enables the insertion/removal/change of 1790 * file descriptors inside the interest set. 1791 */ 1792 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1793 struct epoll_event __user *, event) 1794 { 1795 int error; 1796 int did_lock_epmutex = 0; 1797 struct fd f, tf; 1798 struct eventpoll *ep; 1799 struct epitem *epi; 1800 struct epoll_event epds; 1801 1802 error = -EFAULT; 1803 if (ep_op_has_event(op) && 1804 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1805 goto error_return; 1806 1807 error = -EBADF; 1808 f = fdget(epfd); 1809 if (!f.file) 1810 goto error_return; 1811 1812 /* Get the "struct file *" for the target file */ 1813 tf = fdget(fd); 1814 if (!tf.file) 1815 goto error_fput; 1816 1817 /* The target file descriptor must support poll */ 1818 error = -EPERM; 1819 if (!tf.file->f_op || !tf.file->f_op->poll) 1820 goto error_tgt_fput; 1821 1822 /* Check if EPOLLWAKEUP is allowed */ 1823 if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 1824 epds.events &= ~EPOLLWAKEUP; 1825 1826 /* 1827 * We have to check that the file structure underneath the file descriptor 1828 * the user passed to us _is_ an eventpoll file. And also we do not permit 1829 * adding an epoll file descriptor inside itself. 1830 */ 1831 error = -EINVAL; 1832 if (f.file == tf.file || !is_file_epoll(f.file)) 1833 goto error_tgt_fput; 1834 1835 /* 1836 * At this point it is safe to assume that the "private_data" contains 1837 * our own data structure. 1838 */ 1839 ep = f.file->private_data; 1840 1841 /* 1842 * When we insert an epoll file descriptor, inside another epoll file 1843 * descriptor, there is the change of creating closed loops, which are 1844 * better be handled here, than in more critical paths. While we are 1845 * checking for loops we also determine the list of files reachable 1846 * and hang them on the tfile_check_list, so we can check that we 1847 * haven't created too many possible wakeup paths. 1848 * 1849 * We need to hold the epmutex across both ep_insert and ep_remove 1850 * b/c we want to make sure we are looking at a coherent view of 1851 * epoll network. 1852 */ 1853 if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) { 1854 mutex_lock(&epmutex); 1855 did_lock_epmutex = 1; 1856 } 1857 if (op == EPOLL_CTL_ADD) { 1858 if (is_file_epoll(tf.file)) { 1859 error = -ELOOP; 1860 if (ep_loop_check(ep, tf.file) != 0) { 1861 clear_tfile_check_list(); 1862 goto error_tgt_fput; 1863 } 1864 } else 1865 list_add(&tf.file->f_tfile_llink, &tfile_check_list); 1866 } 1867 1868 mutex_lock_nested(&ep->mtx, 0); 1869 1870 /* 1871 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1872 * above, we can be sure to be able to use the item looked up by 1873 * ep_find() till we release the mutex. 1874 */ 1875 epi = ep_find(ep, tf.file, fd); 1876 1877 error = -EINVAL; 1878 switch (op) { 1879 case EPOLL_CTL_ADD: 1880 if (!epi) { 1881 epds.events |= POLLERR | POLLHUP; 1882 error = ep_insert(ep, &epds, tf.file, fd); 1883 } else 1884 error = -EEXIST; 1885 clear_tfile_check_list(); 1886 break; 1887 case EPOLL_CTL_DEL: 1888 if (epi) 1889 error = ep_remove(ep, epi); 1890 else 1891 error = -ENOENT; 1892 break; 1893 case EPOLL_CTL_MOD: 1894 if (epi) { 1895 epds.events |= POLLERR | POLLHUP; 1896 error = ep_modify(ep, epi, &epds); 1897 } else 1898 error = -ENOENT; 1899 break; 1900 } 1901 mutex_unlock(&ep->mtx); 1902 1903 error_tgt_fput: 1904 if (did_lock_epmutex) 1905 mutex_unlock(&epmutex); 1906 1907 fdput(tf); 1908 error_fput: 1909 fdput(f); 1910 error_return: 1911 1912 return error; 1913 } 1914 1915 /* 1916 * Implement the event wait interface for the eventpoll file. It is the kernel 1917 * part of the user space epoll_wait(2). 1918 */ 1919 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1920 int, maxevents, int, timeout) 1921 { 1922 int error; 1923 struct fd f; 1924 struct eventpoll *ep; 1925 1926 /* The maximum number of event must be greater than zero */ 1927 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1928 return -EINVAL; 1929 1930 /* Verify that the area passed by the user is writeable */ 1931 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) 1932 return -EFAULT; 1933 1934 /* Get the "struct file *" for the eventpoll file */ 1935 f = fdget(epfd); 1936 if (!f.file) 1937 return -EBADF; 1938 1939 /* 1940 * We have to check that the file structure underneath the fd 1941 * the user passed to us _is_ an eventpoll file. 1942 */ 1943 error = -EINVAL; 1944 if (!is_file_epoll(f.file)) 1945 goto error_fput; 1946 1947 /* 1948 * At this point it is safe to assume that the "private_data" contains 1949 * our own data structure. 1950 */ 1951 ep = f.file->private_data; 1952 1953 /* Time to fish for events ... */ 1954 error = ep_poll(ep, events, maxevents, timeout); 1955 1956 error_fput: 1957 fdput(f); 1958 return error; 1959 } 1960 1961 /* 1962 * Implement the event wait interface for the eventpoll file. It is the kernel 1963 * part of the user space epoll_pwait(2). 1964 */ 1965 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 1966 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 1967 size_t, sigsetsize) 1968 { 1969 int error; 1970 sigset_t ksigmask, sigsaved; 1971 1972 /* 1973 * If the caller wants a certain signal mask to be set during the wait, 1974 * we apply it here. 1975 */ 1976 if (sigmask) { 1977 if (sigsetsize != sizeof(sigset_t)) 1978 return -EINVAL; 1979 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1980 return -EFAULT; 1981 sigsaved = current->blocked; 1982 set_current_blocked(&ksigmask); 1983 } 1984 1985 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1986 1987 /* 1988 * If we changed the signal mask, we need to restore the original one. 1989 * In case we've got a signal while waiting, we do not restore the 1990 * signal mask yet, and we allow do_signal() to deliver the signal on 1991 * the way back to userspace, before the signal mask is restored. 1992 */ 1993 if (sigmask) { 1994 if (error == -EINTR) { 1995 memcpy(¤t->saved_sigmask, &sigsaved, 1996 sizeof(sigsaved)); 1997 set_restore_sigmask(); 1998 } else 1999 set_current_blocked(&sigsaved); 2000 } 2001 2002 return error; 2003 } 2004 2005 #ifdef CONFIG_COMPAT 2006 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2007 struct epoll_event __user *, events, 2008 int, maxevents, int, timeout, 2009 const compat_sigset_t __user *, sigmask, 2010 compat_size_t, sigsetsize) 2011 { 2012 long err; 2013 compat_sigset_t csigmask; 2014 sigset_t ksigmask, sigsaved; 2015 2016 /* 2017 * If the caller wants a certain signal mask to be set during the wait, 2018 * we apply it here. 2019 */ 2020 if (sigmask) { 2021 if (sigsetsize != sizeof(compat_sigset_t)) 2022 return -EINVAL; 2023 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask))) 2024 return -EFAULT; 2025 sigset_from_compat(&ksigmask, &csigmask); 2026 sigsaved = current->blocked; 2027 set_current_blocked(&ksigmask); 2028 } 2029 2030 err = sys_epoll_wait(epfd, events, maxevents, timeout); 2031 2032 /* 2033 * If we changed the signal mask, we need to restore the original one. 2034 * In case we've got a signal while waiting, we do not restore the 2035 * signal mask yet, and we allow do_signal() to deliver the signal on 2036 * the way back to userspace, before the signal mask is restored. 2037 */ 2038 if (sigmask) { 2039 if (err == -EINTR) { 2040 memcpy(¤t->saved_sigmask, &sigsaved, 2041 sizeof(sigsaved)); 2042 set_restore_sigmask(); 2043 } else 2044 set_current_blocked(&sigsaved); 2045 } 2046 2047 return err; 2048 } 2049 #endif 2050 2051 static int __init eventpoll_init(void) 2052 { 2053 struct sysinfo si; 2054 2055 si_meminfo(&si); 2056 /* 2057 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2058 */ 2059 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2060 EP_ITEM_COST; 2061 BUG_ON(max_user_watches < 0); 2062 2063 /* 2064 * Initialize the structure used to perform epoll file descriptor 2065 * inclusion loops checks. 2066 */ 2067 ep_nested_calls_init(&poll_loop_ncalls); 2068 2069 /* Initialize the structure used to perform safe poll wait head wake ups */ 2070 ep_nested_calls_init(&poll_safewake_ncalls); 2071 2072 /* Initialize the structure used to perform file's f_op->poll() calls */ 2073 ep_nested_calls_init(&poll_readywalk_ncalls); 2074 2075 /* 2076 * We can have many thousands of epitems, so prevent this from 2077 * using an extra cache line on 64-bit (and smaller) CPUs 2078 */ 2079 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2080 2081 /* Allocates slab cache used to allocate "struct epitem" items */ 2082 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2083 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2084 2085 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2086 pwq_cache = kmem_cache_create("eventpoll_pwq", 2087 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 2088 2089 return 0; 2090 } 2091 fs_initcall(eventpoll_init); 2092