1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/signal.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/device.h> 37 #include <linux/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 #include <linux/proc_fs.h> 42 #include <linux/seq_file.h> 43 #include <linux/compat.h> 44 #include <linux/rculist.h> 45 #include <net/busy_poll.h> 46 47 /* 48 * LOCKING: 49 * There are three level of locking required by epoll : 50 * 51 * 1) epmutex (mutex) 52 * 2) ep->mtx (mutex) 53 * 3) ep->wq.lock (spinlock) 54 * 55 * The acquire order is the one listed above, from 1 to 3. 56 * We need a spinlock (ep->wq.lock) because we manipulate objects 57 * from inside the poll callback, that might be triggered from 58 * a wake_up() that in turn might be called from IRQ context. 59 * So we can't sleep inside the poll callback and hence we need 60 * a spinlock. During the event transfer loop (from kernel to 61 * user space) we could end up sleeping due a copy_to_user(), so 62 * we need a lock that will allow us to sleep. This lock is a 63 * mutex (ep->mtx). It is acquired during the event transfer loop, 64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 65 * Then we also need a global mutex to serialize eventpoll_release_file() 66 * and ep_free(). 67 * This mutex is acquired by ep_free() during the epoll file 68 * cleanup path and it is also acquired by eventpoll_release_file() 69 * if a file has been pushed inside an epoll set and it is then 70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 71 * It is also acquired when inserting an epoll fd onto another epoll 72 * fd. We do this so that we walk the epoll tree and ensure that this 73 * insertion does not create a cycle of epoll file descriptors, which 74 * could lead to deadlock. We need a global mutex to prevent two 75 * simultaneous inserts (A into B and B into A) from racing and 76 * constructing a cycle without either insert observing that it is 77 * going to. 78 * It is necessary to acquire multiple "ep->mtx"es at once in the 79 * case when one epoll fd is added to another. In this case, we 80 * always acquire the locks in the order of nesting (i.e. after 81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 82 * before e2->mtx). Since we disallow cycles of epoll file 83 * descriptors, this ensures that the mutexes are well-ordered. In 84 * order to communicate this nesting to lockdep, when walking a tree 85 * of epoll file descriptors, we use the current recursion depth as 86 * the lockdep subkey. 87 * It is possible to drop the "ep->mtx" and to use the global 88 * mutex "epmutex" (together with "ep->wq.lock") to have it working, 89 * but having "ep->mtx" will make the interface more scalable. 90 * Events that require holding "epmutex" are very rare, while for 91 * normal operations the epoll private "ep->mtx" will guarantee 92 * a better scalability. 93 */ 94 95 /* Epoll private bits inside the event mask */ 96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 97 98 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 99 100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 102 103 /* Maximum number of nesting allowed inside epoll sets */ 104 #define EP_MAX_NESTS 4 105 106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 107 108 #define EP_UNACTIVE_PTR ((void *) -1L) 109 110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 111 112 struct epoll_filefd { 113 struct file *file; 114 int fd; 115 } __packed; 116 117 /* 118 * Structure used to track possible nested calls, for too deep recursions 119 * and loop cycles. 120 */ 121 struct nested_call_node { 122 struct list_head llink; 123 void *cookie; 124 void *ctx; 125 }; 126 127 /* 128 * This structure is used as collector for nested calls, to check for 129 * maximum recursion dept and loop cycles. 130 */ 131 struct nested_calls { 132 struct list_head tasks_call_list; 133 spinlock_t lock; 134 }; 135 136 /* 137 * Each file descriptor added to the eventpoll interface will 138 * have an entry of this type linked to the "rbr" RB tree. 139 * Avoid increasing the size of this struct, there can be many thousands 140 * of these on a server and we do not want this to take another cache line. 141 */ 142 struct epitem { 143 union { 144 /* RB tree node links this structure to the eventpoll RB tree */ 145 struct rb_node rbn; 146 /* Used to free the struct epitem */ 147 struct rcu_head rcu; 148 }; 149 150 /* List header used to link this structure to the eventpoll ready list */ 151 struct list_head rdllink; 152 153 /* 154 * Works together "struct eventpoll"->ovflist in keeping the 155 * single linked chain of items. 156 */ 157 struct epitem *next; 158 159 /* The file descriptor information this item refers to */ 160 struct epoll_filefd ffd; 161 162 /* Number of active wait queue attached to poll operations */ 163 int nwait; 164 165 /* List containing poll wait queues */ 166 struct list_head pwqlist; 167 168 /* The "container" of this item */ 169 struct eventpoll *ep; 170 171 /* List header used to link this item to the "struct file" items list */ 172 struct list_head fllink; 173 174 /* wakeup_source used when EPOLLWAKEUP is set */ 175 struct wakeup_source __rcu *ws; 176 177 /* The structure that describe the interested events and the source fd */ 178 struct epoll_event event; 179 }; 180 181 /* 182 * This structure is stored inside the "private_data" member of the file 183 * structure and represents the main data structure for the eventpoll 184 * interface. 185 * 186 * Access to it is protected by the lock inside wq. 187 */ 188 struct eventpoll { 189 /* 190 * This mutex is used to ensure that files are not removed 191 * while epoll is using them. This is held during the event 192 * collection loop, the file cleanup path, the epoll file exit 193 * code and the ctl operations. 194 */ 195 struct mutex mtx; 196 197 /* Wait queue used by sys_epoll_wait() */ 198 wait_queue_head_t wq; 199 200 /* Wait queue used by file->poll() */ 201 wait_queue_head_t poll_wait; 202 203 /* List of ready file descriptors */ 204 struct list_head rdllist; 205 206 /* RB tree root used to store monitored fd structs */ 207 struct rb_root_cached rbr; 208 209 /* 210 * This is a single linked list that chains all the "struct epitem" that 211 * happened while transferring ready events to userspace w/out 212 * holding ->wq.lock. 213 */ 214 struct epitem *ovflist; 215 216 /* wakeup_source used when ep_scan_ready_list is running */ 217 struct wakeup_source *ws; 218 219 /* The user that created the eventpoll descriptor */ 220 struct user_struct *user; 221 222 struct file *file; 223 224 /* used to optimize loop detection check */ 225 int visited; 226 struct list_head visited_list_link; 227 228 #ifdef CONFIG_NET_RX_BUSY_POLL 229 /* used to track busy poll napi_id */ 230 unsigned int napi_id; 231 #endif 232 }; 233 234 /* Wait structure used by the poll hooks */ 235 struct eppoll_entry { 236 /* List header used to link this structure to the "struct epitem" */ 237 struct list_head llink; 238 239 /* The "base" pointer is set to the container "struct epitem" */ 240 struct epitem *base; 241 242 /* 243 * Wait queue item that will be linked to the target file wait 244 * queue head. 245 */ 246 wait_queue_entry_t wait; 247 248 /* The wait queue head that linked the "wait" wait queue item */ 249 wait_queue_head_t *whead; 250 }; 251 252 /* Wrapper struct used by poll queueing */ 253 struct ep_pqueue { 254 poll_table pt; 255 struct epitem *epi; 256 }; 257 258 /* Used by the ep_send_events() function as callback private data */ 259 struct ep_send_events_data { 260 int maxevents; 261 struct epoll_event __user *events; 262 int res; 263 }; 264 265 /* 266 * Configuration options available inside /proc/sys/fs/epoll/ 267 */ 268 /* Maximum number of epoll watched descriptors, per user */ 269 static long max_user_watches __read_mostly; 270 271 /* 272 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 273 */ 274 static DEFINE_MUTEX(epmutex); 275 276 /* Used to check for epoll file descriptor inclusion loops */ 277 static struct nested_calls poll_loop_ncalls; 278 279 /* Slab cache used to allocate "struct epitem" */ 280 static struct kmem_cache *epi_cache __read_mostly; 281 282 /* Slab cache used to allocate "struct eppoll_entry" */ 283 static struct kmem_cache *pwq_cache __read_mostly; 284 285 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 286 static LIST_HEAD(visited_list); 287 288 /* 289 * List of files with newly added links, where we may need to limit the number 290 * of emanating paths. Protected by the epmutex. 291 */ 292 static LIST_HEAD(tfile_check_list); 293 294 #ifdef CONFIG_SYSCTL 295 296 #include <linux/sysctl.h> 297 298 static long zero; 299 static long long_max = LONG_MAX; 300 301 struct ctl_table epoll_table[] = { 302 { 303 .procname = "max_user_watches", 304 .data = &max_user_watches, 305 .maxlen = sizeof(max_user_watches), 306 .mode = 0644, 307 .proc_handler = proc_doulongvec_minmax, 308 .extra1 = &zero, 309 .extra2 = &long_max, 310 }, 311 { } 312 }; 313 #endif /* CONFIG_SYSCTL */ 314 315 static const struct file_operations eventpoll_fops; 316 317 static inline int is_file_epoll(struct file *f) 318 { 319 return f->f_op == &eventpoll_fops; 320 } 321 322 /* Setup the structure that is used as key for the RB tree */ 323 static inline void ep_set_ffd(struct epoll_filefd *ffd, 324 struct file *file, int fd) 325 { 326 ffd->file = file; 327 ffd->fd = fd; 328 } 329 330 /* Compare RB tree keys */ 331 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 332 struct epoll_filefd *p2) 333 { 334 return (p1->file > p2->file ? +1: 335 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 336 } 337 338 /* Tells us if the item is currently linked */ 339 static inline int ep_is_linked(struct epitem *epi) 340 { 341 return !list_empty(&epi->rdllink); 342 } 343 344 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 345 { 346 return container_of(p, struct eppoll_entry, wait); 347 } 348 349 /* Get the "struct epitem" from a wait queue pointer */ 350 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 351 { 352 return container_of(p, struct eppoll_entry, wait)->base; 353 } 354 355 /* Get the "struct epitem" from an epoll queue wrapper */ 356 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 357 { 358 return container_of(p, struct ep_pqueue, pt)->epi; 359 } 360 361 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 362 static inline int ep_op_has_event(int op) 363 { 364 return op != EPOLL_CTL_DEL; 365 } 366 367 /* Initialize the poll safe wake up structure */ 368 static void ep_nested_calls_init(struct nested_calls *ncalls) 369 { 370 INIT_LIST_HEAD(&ncalls->tasks_call_list); 371 spin_lock_init(&ncalls->lock); 372 } 373 374 /** 375 * ep_events_available - Checks if ready events might be available. 376 * 377 * @ep: Pointer to the eventpoll context. 378 * 379 * Returns: Returns a value different than zero if ready events are available, 380 * or zero otherwise. 381 */ 382 static inline int ep_events_available(struct eventpoll *ep) 383 { 384 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 385 } 386 387 #ifdef CONFIG_NET_RX_BUSY_POLL 388 static bool ep_busy_loop_end(void *p, unsigned long start_time) 389 { 390 struct eventpoll *ep = p; 391 392 return ep_events_available(ep) || busy_loop_timeout(start_time); 393 } 394 395 /* 396 * Busy poll if globally on and supporting sockets found && no events, 397 * busy loop will return if need_resched or ep_events_available. 398 * 399 * we must do our busy polling with irqs enabled 400 */ 401 static void ep_busy_loop(struct eventpoll *ep, int nonblock) 402 { 403 unsigned int napi_id = READ_ONCE(ep->napi_id); 404 405 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) 406 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep); 407 } 408 409 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 410 { 411 if (ep->napi_id) 412 ep->napi_id = 0; 413 } 414 415 /* 416 * Set epoll busy poll NAPI ID from sk. 417 */ 418 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 419 { 420 struct eventpoll *ep; 421 unsigned int napi_id; 422 struct socket *sock; 423 struct sock *sk; 424 int err; 425 426 if (!net_busy_loop_on()) 427 return; 428 429 sock = sock_from_file(epi->ffd.file, &err); 430 if (!sock) 431 return; 432 433 sk = sock->sk; 434 if (!sk) 435 return; 436 437 napi_id = READ_ONCE(sk->sk_napi_id); 438 ep = epi->ep; 439 440 /* Non-NAPI IDs can be rejected 441 * or 442 * Nothing to do if we already have this ID 443 */ 444 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 445 return; 446 447 /* record NAPI ID for use in next busy poll */ 448 ep->napi_id = napi_id; 449 } 450 451 #else 452 453 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock) 454 { 455 } 456 457 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 458 { 459 } 460 461 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 462 { 463 } 464 465 #endif /* CONFIG_NET_RX_BUSY_POLL */ 466 467 /** 468 * ep_call_nested - Perform a bound (possibly) nested call, by checking 469 * that the recursion limit is not exceeded, and that 470 * the same nested call (by the meaning of same cookie) is 471 * no re-entered. 472 * 473 * @ncalls: Pointer to the nested_calls structure to be used for this call. 474 * @max_nests: Maximum number of allowed nesting calls. 475 * @nproc: Nested call core function pointer. 476 * @priv: Opaque data to be passed to the @nproc callback. 477 * @cookie: Cookie to be used to identify this nested call. 478 * @ctx: This instance context. 479 * 480 * Returns: Returns the code returned by the @nproc callback, or -1 if 481 * the maximum recursion limit has been exceeded. 482 */ 483 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 484 int (*nproc)(void *, void *, int), void *priv, 485 void *cookie, void *ctx) 486 { 487 int error, call_nests = 0; 488 unsigned long flags; 489 struct list_head *lsthead = &ncalls->tasks_call_list; 490 struct nested_call_node *tncur; 491 struct nested_call_node tnode; 492 493 spin_lock_irqsave(&ncalls->lock, flags); 494 495 /* 496 * Try to see if the current task is already inside this wakeup call. 497 * We use a list here, since the population inside this set is always 498 * very much limited. 499 */ 500 list_for_each_entry(tncur, lsthead, llink) { 501 if (tncur->ctx == ctx && 502 (tncur->cookie == cookie || ++call_nests > max_nests)) { 503 /* 504 * Ops ... loop detected or maximum nest level reached. 505 * We abort this wake by breaking the cycle itself. 506 */ 507 error = -1; 508 goto out_unlock; 509 } 510 } 511 512 /* Add the current task and cookie to the list */ 513 tnode.ctx = ctx; 514 tnode.cookie = cookie; 515 list_add(&tnode.llink, lsthead); 516 517 spin_unlock_irqrestore(&ncalls->lock, flags); 518 519 /* Call the nested function */ 520 error = (*nproc)(priv, cookie, call_nests); 521 522 /* Remove the current task from the list */ 523 spin_lock_irqsave(&ncalls->lock, flags); 524 list_del(&tnode.llink); 525 out_unlock: 526 spin_unlock_irqrestore(&ncalls->lock, flags); 527 528 return error; 529 } 530 531 /* 532 * As described in commit 0ccf831cb lockdep: annotate epoll 533 * the use of wait queues used by epoll is done in a very controlled 534 * manner. Wake ups can nest inside each other, but are never done 535 * with the same locking. For example: 536 * 537 * dfd = socket(...); 538 * efd1 = epoll_create(); 539 * efd2 = epoll_create(); 540 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 541 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 542 * 543 * When a packet arrives to the device underneath "dfd", the net code will 544 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 545 * callback wakeup entry on that queue, and the wake_up() performed by the 546 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 547 * (efd1) notices that it may have some event ready, so it needs to wake up 548 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 549 * that ends up in another wake_up(), after having checked about the 550 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 551 * avoid stack blasting. 552 * 553 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 554 * this special case of epoll. 555 */ 556 #ifdef CONFIG_DEBUG_LOCK_ALLOC 557 558 static struct nested_calls poll_safewake_ncalls; 559 560 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 561 { 562 unsigned long flags; 563 wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie; 564 565 spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1); 566 wake_up_locked_poll(wqueue, EPOLLIN); 567 spin_unlock_irqrestore(&wqueue->lock, flags); 568 569 return 0; 570 } 571 572 static void ep_poll_safewake(wait_queue_head_t *wq) 573 { 574 int this_cpu = get_cpu(); 575 576 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 577 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 578 579 put_cpu(); 580 } 581 582 #else 583 584 static void ep_poll_safewake(wait_queue_head_t *wq) 585 { 586 wake_up_poll(wq, EPOLLIN); 587 } 588 589 #endif 590 591 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 592 { 593 wait_queue_head_t *whead; 594 595 rcu_read_lock(); 596 /* 597 * If it is cleared by POLLFREE, it should be rcu-safe. 598 * If we read NULL we need a barrier paired with 599 * smp_store_release() in ep_poll_callback(), otherwise 600 * we rely on whead->lock. 601 */ 602 whead = smp_load_acquire(&pwq->whead); 603 if (whead) 604 remove_wait_queue(whead, &pwq->wait); 605 rcu_read_unlock(); 606 } 607 608 /* 609 * This function unregisters poll callbacks from the associated file 610 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 611 * ep_free). 612 */ 613 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 614 { 615 struct list_head *lsthead = &epi->pwqlist; 616 struct eppoll_entry *pwq; 617 618 while (!list_empty(lsthead)) { 619 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 620 621 list_del(&pwq->llink); 622 ep_remove_wait_queue(pwq); 623 kmem_cache_free(pwq_cache, pwq); 624 } 625 } 626 627 /* call only when ep->mtx is held */ 628 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 629 { 630 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 631 } 632 633 /* call only when ep->mtx is held */ 634 static inline void ep_pm_stay_awake(struct epitem *epi) 635 { 636 struct wakeup_source *ws = ep_wakeup_source(epi); 637 638 if (ws) 639 __pm_stay_awake(ws); 640 } 641 642 static inline bool ep_has_wakeup_source(struct epitem *epi) 643 { 644 return rcu_access_pointer(epi->ws) ? true : false; 645 } 646 647 /* call when ep->mtx cannot be held (ep_poll_callback) */ 648 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 649 { 650 struct wakeup_source *ws; 651 652 rcu_read_lock(); 653 ws = rcu_dereference(epi->ws); 654 if (ws) 655 __pm_stay_awake(ws); 656 rcu_read_unlock(); 657 } 658 659 /** 660 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 661 * the scan code, to call f_op->poll(). Also allows for 662 * O(NumReady) performance. 663 * 664 * @ep: Pointer to the epoll private data structure. 665 * @sproc: Pointer to the scan callback. 666 * @priv: Private opaque data passed to the @sproc callback. 667 * @depth: The current depth of recursive f_op->poll calls. 668 * @ep_locked: caller already holds ep->mtx 669 * 670 * Returns: The same integer error code returned by the @sproc callback. 671 */ 672 static __poll_t ep_scan_ready_list(struct eventpoll *ep, 673 __poll_t (*sproc)(struct eventpoll *, 674 struct list_head *, void *), 675 void *priv, int depth, bool ep_locked) 676 { 677 __poll_t res; 678 int pwake = 0; 679 struct epitem *epi, *nepi; 680 LIST_HEAD(txlist); 681 682 lockdep_assert_irqs_enabled(); 683 684 /* 685 * We need to lock this because we could be hit by 686 * eventpoll_release_file() and epoll_ctl(). 687 */ 688 689 if (!ep_locked) 690 mutex_lock_nested(&ep->mtx, depth); 691 692 /* 693 * Steal the ready list, and re-init the original one to the 694 * empty list. Also, set ep->ovflist to NULL so that events 695 * happening while looping w/out locks, are not lost. We cannot 696 * have the poll callback to queue directly on ep->rdllist, 697 * because we want the "sproc" callback to be able to do it 698 * in a lockless way. 699 */ 700 spin_lock_irq(&ep->wq.lock); 701 list_splice_init(&ep->rdllist, &txlist); 702 ep->ovflist = NULL; 703 spin_unlock_irq(&ep->wq.lock); 704 705 /* 706 * Now call the callback function. 707 */ 708 res = (*sproc)(ep, &txlist, priv); 709 710 spin_lock_irq(&ep->wq.lock); 711 /* 712 * During the time we spent inside the "sproc" callback, some 713 * other events might have been queued by the poll callback. 714 * We re-insert them inside the main ready-list here. 715 */ 716 for (nepi = ep->ovflist; (epi = nepi) != NULL; 717 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 718 /* 719 * We need to check if the item is already in the list. 720 * During the "sproc" callback execution time, items are 721 * queued into ->ovflist but the "txlist" might already 722 * contain them, and the list_splice() below takes care of them. 723 */ 724 if (!ep_is_linked(epi)) { 725 list_add_tail(&epi->rdllink, &ep->rdllist); 726 ep_pm_stay_awake(epi); 727 } 728 } 729 /* 730 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 731 * releasing the lock, events will be queued in the normal way inside 732 * ep->rdllist. 733 */ 734 ep->ovflist = EP_UNACTIVE_PTR; 735 736 /* 737 * Quickly re-inject items left on "txlist". 738 */ 739 list_splice(&txlist, &ep->rdllist); 740 __pm_relax(ep->ws); 741 742 if (!list_empty(&ep->rdllist)) { 743 /* 744 * Wake up (if active) both the eventpoll wait list and 745 * the ->poll() wait list (delayed after we release the lock). 746 */ 747 if (waitqueue_active(&ep->wq)) 748 wake_up_locked(&ep->wq); 749 if (waitqueue_active(&ep->poll_wait)) 750 pwake++; 751 } 752 spin_unlock_irq(&ep->wq.lock); 753 754 if (!ep_locked) 755 mutex_unlock(&ep->mtx); 756 757 /* We have to call this outside the lock */ 758 if (pwake) 759 ep_poll_safewake(&ep->poll_wait); 760 761 return res; 762 } 763 764 static void epi_rcu_free(struct rcu_head *head) 765 { 766 struct epitem *epi = container_of(head, struct epitem, rcu); 767 kmem_cache_free(epi_cache, epi); 768 } 769 770 /* 771 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 772 * all the associated resources. Must be called with "mtx" held. 773 */ 774 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 775 { 776 struct file *file = epi->ffd.file; 777 778 lockdep_assert_irqs_enabled(); 779 780 /* 781 * Removes poll wait queue hooks. 782 */ 783 ep_unregister_pollwait(ep, epi); 784 785 /* Remove the current item from the list of epoll hooks */ 786 spin_lock(&file->f_lock); 787 list_del_rcu(&epi->fllink); 788 spin_unlock(&file->f_lock); 789 790 rb_erase_cached(&epi->rbn, &ep->rbr); 791 792 spin_lock_irq(&ep->wq.lock); 793 if (ep_is_linked(epi)) 794 list_del_init(&epi->rdllink); 795 spin_unlock_irq(&ep->wq.lock); 796 797 wakeup_source_unregister(ep_wakeup_source(epi)); 798 /* 799 * At this point it is safe to free the eventpoll item. Use the union 800 * field epi->rcu, since we are trying to minimize the size of 801 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 802 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 803 * use of the rbn field. 804 */ 805 call_rcu(&epi->rcu, epi_rcu_free); 806 807 atomic_long_dec(&ep->user->epoll_watches); 808 809 return 0; 810 } 811 812 static void ep_free(struct eventpoll *ep) 813 { 814 struct rb_node *rbp; 815 struct epitem *epi; 816 817 /* We need to release all tasks waiting for these file */ 818 if (waitqueue_active(&ep->poll_wait)) 819 ep_poll_safewake(&ep->poll_wait); 820 821 /* 822 * We need to lock this because we could be hit by 823 * eventpoll_release_file() while we're freeing the "struct eventpoll". 824 * We do not need to hold "ep->mtx" here because the epoll file 825 * is on the way to be removed and no one has references to it 826 * anymore. The only hit might come from eventpoll_release_file() but 827 * holding "epmutex" is sufficient here. 828 */ 829 mutex_lock(&epmutex); 830 831 /* 832 * Walks through the whole tree by unregistering poll callbacks. 833 */ 834 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 835 epi = rb_entry(rbp, struct epitem, rbn); 836 837 ep_unregister_pollwait(ep, epi); 838 cond_resched(); 839 } 840 841 /* 842 * Walks through the whole tree by freeing each "struct epitem". At this 843 * point we are sure no poll callbacks will be lingering around, and also by 844 * holding "epmutex" we can be sure that no file cleanup code will hit 845 * us during this operation. So we can avoid the lock on "ep->wq.lock". 846 * We do not need to lock ep->mtx, either, we only do it to prevent 847 * a lockdep warning. 848 */ 849 mutex_lock(&ep->mtx); 850 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 851 epi = rb_entry(rbp, struct epitem, rbn); 852 ep_remove(ep, epi); 853 cond_resched(); 854 } 855 mutex_unlock(&ep->mtx); 856 857 mutex_unlock(&epmutex); 858 mutex_destroy(&ep->mtx); 859 free_uid(ep->user); 860 wakeup_source_unregister(ep->ws); 861 kfree(ep); 862 } 863 864 static int ep_eventpoll_release(struct inode *inode, struct file *file) 865 { 866 struct eventpoll *ep = file->private_data; 867 868 if (ep) 869 ep_free(ep); 870 871 return 0; 872 } 873 874 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 875 void *priv); 876 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 877 poll_table *pt); 878 879 /* 880 * Differs from ep_eventpoll_poll() in that internal callers already have 881 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 882 * is correctly annotated. 883 */ 884 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 885 int depth) 886 { 887 struct eventpoll *ep; 888 bool locked; 889 890 pt->_key = epi->event.events; 891 if (!is_file_epoll(epi->ffd.file)) 892 return vfs_poll(epi->ffd.file, pt) & epi->event.events; 893 894 ep = epi->ffd.file->private_data; 895 poll_wait(epi->ffd.file, &ep->poll_wait, pt); 896 locked = pt && (pt->_qproc == ep_ptable_queue_proc); 897 898 return ep_scan_ready_list(epi->ffd.file->private_data, 899 ep_read_events_proc, &depth, depth, 900 locked) & epi->event.events; 901 } 902 903 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 904 void *priv) 905 { 906 struct epitem *epi, *tmp; 907 poll_table pt; 908 int depth = *(int *)priv; 909 910 init_poll_funcptr(&pt, NULL); 911 depth++; 912 913 list_for_each_entry_safe(epi, tmp, head, rdllink) { 914 if (ep_item_poll(epi, &pt, depth)) { 915 return EPOLLIN | EPOLLRDNORM; 916 } else { 917 /* 918 * Item has been dropped into the ready list by the poll 919 * callback, but it's not actually ready, as far as 920 * caller requested events goes. We can remove it here. 921 */ 922 __pm_relax(ep_wakeup_source(epi)); 923 list_del_init(&epi->rdllink); 924 } 925 } 926 927 return 0; 928 } 929 930 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 931 { 932 struct eventpoll *ep = file->private_data; 933 int depth = 0; 934 935 /* Insert inside our poll wait queue */ 936 poll_wait(file, &ep->poll_wait, wait); 937 938 /* 939 * Proceed to find out if wanted events are really available inside 940 * the ready list. 941 */ 942 return ep_scan_ready_list(ep, ep_read_events_proc, 943 &depth, depth, false); 944 } 945 946 #ifdef CONFIG_PROC_FS 947 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 948 { 949 struct eventpoll *ep = f->private_data; 950 struct rb_node *rbp; 951 952 mutex_lock(&ep->mtx); 953 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 954 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 955 struct inode *inode = file_inode(epi->ffd.file); 956 957 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 958 " pos:%lli ino:%lx sdev:%x\n", 959 epi->ffd.fd, epi->event.events, 960 (long long)epi->event.data, 961 (long long)epi->ffd.file->f_pos, 962 inode->i_ino, inode->i_sb->s_dev); 963 if (seq_has_overflowed(m)) 964 break; 965 } 966 mutex_unlock(&ep->mtx); 967 } 968 #endif 969 970 /* File callbacks that implement the eventpoll file behaviour */ 971 static const struct file_operations eventpoll_fops = { 972 #ifdef CONFIG_PROC_FS 973 .show_fdinfo = ep_show_fdinfo, 974 #endif 975 .release = ep_eventpoll_release, 976 .poll = ep_eventpoll_poll, 977 .llseek = noop_llseek, 978 }; 979 980 /* 981 * This is called from eventpoll_release() to unlink files from the eventpoll 982 * interface. We need to have this facility to cleanup correctly files that are 983 * closed without being removed from the eventpoll interface. 984 */ 985 void eventpoll_release_file(struct file *file) 986 { 987 struct eventpoll *ep; 988 struct epitem *epi, *next; 989 990 /* 991 * We don't want to get "file->f_lock" because it is not 992 * necessary. It is not necessary because we're in the "struct file" 993 * cleanup path, and this means that no one is using this file anymore. 994 * So, for example, epoll_ctl() cannot hit here since if we reach this 995 * point, the file counter already went to zero and fget() would fail. 996 * The only hit might come from ep_free() but by holding the mutex 997 * will correctly serialize the operation. We do need to acquire 998 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 999 * from anywhere but ep_free(). 1000 * 1001 * Besides, ep_remove() acquires the lock, so we can't hold it here. 1002 */ 1003 mutex_lock(&epmutex); 1004 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 1005 ep = epi->ep; 1006 mutex_lock_nested(&ep->mtx, 0); 1007 ep_remove(ep, epi); 1008 mutex_unlock(&ep->mtx); 1009 } 1010 mutex_unlock(&epmutex); 1011 } 1012 1013 static int ep_alloc(struct eventpoll **pep) 1014 { 1015 int error; 1016 struct user_struct *user; 1017 struct eventpoll *ep; 1018 1019 user = get_current_user(); 1020 error = -ENOMEM; 1021 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1022 if (unlikely(!ep)) 1023 goto free_uid; 1024 1025 mutex_init(&ep->mtx); 1026 init_waitqueue_head(&ep->wq); 1027 init_waitqueue_head(&ep->poll_wait); 1028 INIT_LIST_HEAD(&ep->rdllist); 1029 ep->rbr = RB_ROOT_CACHED; 1030 ep->ovflist = EP_UNACTIVE_PTR; 1031 ep->user = user; 1032 1033 *pep = ep; 1034 1035 return 0; 1036 1037 free_uid: 1038 free_uid(user); 1039 return error; 1040 } 1041 1042 /* 1043 * Search the file inside the eventpoll tree. The RB tree operations 1044 * are protected by the "mtx" mutex, and ep_find() must be called with 1045 * "mtx" held. 1046 */ 1047 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1048 { 1049 int kcmp; 1050 struct rb_node *rbp; 1051 struct epitem *epi, *epir = NULL; 1052 struct epoll_filefd ffd; 1053 1054 ep_set_ffd(&ffd, file, fd); 1055 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1056 epi = rb_entry(rbp, struct epitem, rbn); 1057 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1058 if (kcmp > 0) 1059 rbp = rbp->rb_right; 1060 else if (kcmp < 0) 1061 rbp = rbp->rb_left; 1062 else { 1063 epir = epi; 1064 break; 1065 } 1066 } 1067 1068 return epir; 1069 } 1070 1071 #ifdef CONFIG_CHECKPOINT_RESTORE 1072 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1073 { 1074 struct rb_node *rbp; 1075 struct epitem *epi; 1076 1077 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1078 epi = rb_entry(rbp, struct epitem, rbn); 1079 if (epi->ffd.fd == tfd) { 1080 if (toff == 0) 1081 return epi; 1082 else 1083 toff--; 1084 } 1085 cond_resched(); 1086 } 1087 1088 return NULL; 1089 } 1090 1091 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1092 unsigned long toff) 1093 { 1094 struct file *file_raw; 1095 struct eventpoll *ep; 1096 struct epitem *epi; 1097 1098 if (!is_file_epoll(file)) 1099 return ERR_PTR(-EINVAL); 1100 1101 ep = file->private_data; 1102 1103 mutex_lock(&ep->mtx); 1104 epi = ep_find_tfd(ep, tfd, toff); 1105 if (epi) 1106 file_raw = epi->ffd.file; 1107 else 1108 file_raw = ERR_PTR(-ENOENT); 1109 mutex_unlock(&ep->mtx); 1110 1111 return file_raw; 1112 } 1113 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1114 1115 /* 1116 * This is the callback that is passed to the wait queue wakeup 1117 * mechanism. It is called by the stored file descriptors when they 1118 * have events to report. 1119 */ 1120 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1121 { 1122 int pwake = 0; 1123 unsigned long flags; 1124 struct epitem *epi = ep_item_from_wait(wait); 1125 struct eventpoll *ep = epi->ep; 1126 __poll_t pollflags = key_to_poll(key); 1127 int ewake = 0; 1128 1129 spin_lock_irqsave(&ep->wq.lock, flags); 1130 1131 ep_set_busy_poll_napi_id(epi); 1132 1133 /* 1134 * If the event mask does not contain any poll(2) event, we consider the 1135 * descriptor to be disabled. This condition is likely the effect of the 1136 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1137 * until the next EPOLL_CTL_MOD will be issued. 1138 */ 1139 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1140 goto out_unlock; 1141 1142 /* 1143 * Check the events coming with the callback. At this stage, not 1144 * every device reports the events in the "key" parameter of the 1145 * callback. We need to be able to handle both cases here, hence the 1146 * test for "key" != NULL before the event match test. 1147 */ 1148 if (pollflags && !(pollflags & epi->event.events)) 1149 goto out_unlock; 1150 1151 /* 1152 * If we are transferring events to userspace, we can hold no locks 1153 * (because we're accessing user memory, and because of linux f_op->poll() 1154 * semantics). All the events that happen during that period of time are 1155 * chained in ep->ovflist and requeued later on. 1156 */ 1157 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 1158 if (epi->next == EP_UNACTIVE_PTR) { 1159 epi->next = ep->ovflist; 1160 ep->ovflist = epi; 1161 if (epi->ws) { 1162 /* 1163 * Activate ep->ws since epi->ws may get 1164 * deactivated at any time. 1165 */ 1166 __pm_stay_awake(ep->ws); 1167 } 1168 1169 } 1170 goto out_unlock; 1171 } 1172 1173 /* If this file is already in the ready list we exit soon */ 1174 if (!ep_is_linked(epi)) { 1175 list_add_tail(&epi->rdllink, &ep->rdllist); 1176 ep_pm_stay_awake_rcu(epi); 1177 } 1178 1179 /* 1180 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1181 * wait list. 1182 */ 1183 if (waitqueue_active(&ep->wq)) { 1184 if ((epi->event.events & EPOLLEXCLUSIVE) && 1185 !(pollflags & POLLFREE)) { 1186 switch (pollflags & EPOLLINOUT_BITS) { 1187 case EPOLLIN: 1188 if (epi->event.events & EPOLLIN) 1189 ewake = 1; 1190 break; 1191 case EPOLLOUT: 1192 if (epi->event.events & EPOLLOUT) 1193 ewake = 1; 1194 break; 1195 case 0: 1196 ewake = 1; 1197 break; 1198 } 1199 } 1200 wake_up_locked(&ep->wq); 1201 } 1202 if (waitqueue_active(&ep->poll_wait)) 1203 pwake++; 1204 1205 out_unlock: 1206 spin_unlock_irqrestore(&ep->wq.lock, flags); 1207 1208 /* We have to call this outside the lock */ 1209 if (pwake) 1210 ep_poll_safewake(&ep->poll_wait); 1211 1212 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1213 ewake = 1; 1214 1215 if (pollflags & POLLFREE) { 1216 /* 1217 * If we race with ep_remove_wait_queue() it can miss 1218 * ->whead = NULL and do another remove_wait_queue() after 1219 * us, so we can't use __remove_wait_queue(). 1220 */ 1221 list_del_init(&wait->entry); 1222 /* 1223 * ->whead != NULL protects us from the race with ep_free() 1224 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1225 * held by the caller. Once we nullify it, nothing protects 1226 * ep/epi or even wait. 1227 */ 1228 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1229 } 1230 1231 return ewake; 1232 } 1233 1234 /* 1235 * This is the callback that is used to add our wait queue to the 1236 * target file wakeup lists. 1237 */ 1238 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1239 poll_table *pt) 1240 { 1241 struct epitem *epi = ep_item_from_epqueue(pt); 1242 struct eppoll_entry *pwq; 1243 1244 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1245 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1246 pwq->whead = whead; 1247 pwq->base = epi; 1248 if (epi->event.events & EPOLLEXCLUSIVE) 1249 add_wait_queue_exclusive(whead, &pwq->wait); 1250 else 1251 add_wait_queue(whead, &pwq->wait); 1252 list_add_tail(&pwq->llink, &epi->pwqlist); 1253 epi->nwait++; 1254 } else { 1255 /* We have to signal that an error occurred */ 1256 epi->nwait = -1; 1257 } 1258 } 1259 1260 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1261 { 1262 int kcmp; 1263 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1264 struct epitem *epic; 1265 bool leftmost = true; 1266 1267 while (*p) { 1268 parent = *p; 1269 epic = rb_entry(parent, struct epitem, rbn); 1270 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1271 if (kcmp > 0) { 1272 p = &parent->rb_right; 1273 leftmost = false; 1274 } else 1275 p = &parent->rb_left; 1276 } 1277 rb_link_node(&epi->rbn, parent, p); 1278 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1279 } 1280 1281 1282 1283 #define PATH_ARR_SIZE 5 1284 /* 1285 * These are the number paths of length 1 to 5, that we are allowing to emanate 1286 * from a single file of interest. For example, we allow 1000 paths of length 1287 * 1, to emanate from each file of interest. This essentially represents the 1288 * potential wakeup paths, which need to be limited in order to avoid massive 1289 * uncontrolled wakeup storms. The common use case should be a single ep which 1290 * is connected to n file sources. In this case each file source has 1 path 1291 * of length 1. Thus, the numbers below should be more than sufficient. These 1292 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1293 * and delete can't add additional paths. Protected by the epmutex. 1294 */ 1295 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1296 static int path_count[PATH_ARR_SIZE]; 1297 1298 static int path_count_inc(int nests) 1299 { 1300 /* Allow an arbitrary number of depth 1 paths */ 1301 if (nests == 0) 1302 return 0; 1303 1304 if (++path_count[nests] > path_limits[nests]) 1305 return -1; 1306 return 0; 1307 } 1308 1309 static void path_count_init(void) 1310 { 1311 int i; 1312 1313 for (i = 0; i < PATH_ARR_SIZE; i++) 1314 path_count[i] = 0; 1315 } 1316 1317 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1318 { 1319 int error = 0; 1320 struct file *file = priv; 1321 struct file *child_file; 1322 struct epitem *epi; 1323 1324 /* CTL_DEL can remove links here, but that can't increase our count */ 1325 rcu_read_lock(); 1326 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1327 child_file = epi->ep->file; 1328 if (is_file_epoll(child_file)) { 1329 if (list_empty(&child_file->f_ep_links)) { 1330 if (path_count_inc(call_nests)) { 1331 error = -1; 1332 break; 1333 } 1334 } else { 1335 error = ep_call_nested(&poll_loop_ncalls, 1336 EP_MAX_NESTS, 1337 reverse_path_check_proc, 1338 child_file, child_file, 1339 current); 1340 } 1341 if (error != 0) 1342 break; 1343 } else { 1344 printk(KERN_ERR "reverse_path_check_proc: " 1345 "file is not an ep!\n"); 1346 } 1347 } 1348 rcu_read_unlock(); 1349 return error; 1350 } 1351 1352 /** 1353 * reverse_path_check - The tfile_check_list is list of file *, which have 1354 * links that are proposed to be newly added. We need to 1355 * make sure that those added links don't add too many 1356 * paths such that we will spend all our time waking up 1357 * eventpoll objects. 1358 * 1359 * Returns: Returns zero if the proposed links don't create too many paths, 1360 * -1 otherwise. 1361 */ 1362 static int reverse_path_check(void) 1363 { 1364 int error = 0; 1365 struct file *current_file; 1366 1367 /* let's call this for all tfiles */ 1368 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1369 path_count_init(); 1370 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1371 reverse_path_check_proc, current_file, 1372 current_file, current); 1373 if (error) 1374 break; 1375 } 1376 return error; 1377 } 1378 1379 static int ep_create_wakeup_source(struct epitem *epi) 1380 { 1381 const char *name; 1382 struct wakeup_source *ws; 1383 1384 if (!epi->ep->ws) { 1385 epi->ep->ws = wakeup_source_register("eventpoll"); 1386 if (!epi->ep->ws) 1387 return -ENOMEM; 1388 } 1389 1390 name = epi->ffd.file->f_path.dentry->d_name.name; 1391 ws = wakeup_source_register(name); 1392 1393 if (!ws) 1394 return -ENOMEM; 1395 rcu_assign_pointer(epi->ws, ws); 1396 1397 return 0; 1398 } 1399 1400 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1401 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1402 { 1403 struct wakeup_source *ws = ep_wakeup_source(epi); 1404 1405 RCU_INIT_POINTER(epi->ws, NULL); 1406 1407 /* 1408 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1409 * used internally by wakeup_source_remove, too (called by 1410 * wakeup_source_unregister), so we cannot use call_rcu 1411 */ 1412 synchronize_rcu(); 1413 wakeup_source_unregister(ws); 1414 } 1415 1416 /* 1417 * Must be called with "mtx" held. 1418 */ 1419 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1420 struct file *tfile, int fd, int full_check) 1421 { 1422 int error, pwake = 0; 1423 __poll_t revents; 1424 long user_watches; 1425 struct epitem *epi; 1426 struct ep_pqueue epq; 1427 1428 lockdep_assert_irqs_enabled(); 1429 1430 user_watches = atomic_long_read(&ep->user->epoll_watches); 1431 if (unlikely(user_watches >= max_user_watches)) 1432 return -ENOSPC; 1433 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1434 return -ENOMEM; 1435 1436 /* Item initialization follow here ... */ 1437 INIT_LIST_HEAD(&epi->rdllink); 1438 INIT_LIST_HEAD(&epi->fllink); 1439 INIT_LIST_HEAD(&epi->pwqlist); 1440 epi->ep = ep; 1441 ep_set_ffd(&epi->ffd, tfile, fd); 1442 epi->event = *event; 1443 epi->nwait = 0; 1444 epi->next = EP_UNACTIVE_PTR; 1445 if (epi->event.events & EPOLLWAKEUP) { 1446 error = ep_create_wakeup_source(epi); 1447 if (error) 1448 goto error_create_wakeup_source; 1449 } else { 1450 RCU_INIT_POINTER(epi->ws, NULL); 1451 } 1452 1453 /* Initialize the poll table using the queue callback */ 1454 epq.epi = epi; 1455 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1456 1457 /* 1458 * Attach the item to the poll hooks and get current event bits. 1459 * We can safely use the file* here because its usage count has 1460 * been increased by the caller of this function. Note that after 1461 * this operation completes, the poll callback can start hitting 1462 * the new item. 1463 */ 1464 revents = ep_item_poll(epi, &epq.pt, 1); 1465 1466 /* 1467 * We have to check if something went wrong during the poll wait queue 1468 * install process. Namely an allocation for a wait queue failed due 1469 * high memory pressure. 1470 */ 1471 error = -ENOMEM; 1472 if (epi->nwait < 0) 1473 goto error_unregister; 1474 1475 /* Add the current item to the list of active epoll hook for this file */ 1476 spin_lock(&tfile->f_lock); 1477 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); 1478 spin_unlock(&tfile->f_lock); 1479 1480 /* 1481 * Add the current item to the RB tree. All RB tree operations are 1482 * protected by "mtx", and ep_insert() is called with "mtx" held. 1483 */ 1484 ep_rbtree_insert(ep, epi); 1485 1486 /* now check if we've created too many backpaths */ 1487 error = -EINVAL; 1488 if (full_check && reverse_path_check()) 1489 goto error_remove_epi; 1490 1491 /* We have to drop the new item inside our item list to keep track of it */ 1492 spin_lock_irq(&ep->wq.lock); 1493 1494 /* record NAPI ID of new item if present */ 1495 ep_set_busy_poll_napi_id(epi); 1496 1497 /* If the file is already "ready" we drop it inside the ready list */ 1498 if (revents && !ep_is_linked(epi)) { 1499 list_add_tail(&epi->rdllink, &ep->rdllist); 1500 ep_pm_stay_awake(epi); 1501 1502 /* Notify waiting tasks that events are available */ 1503 if (waitqueue_active(&ep->wq)) 1504 wake_up_locked(&ep->wq); 1505 if (waitqueue_active(&ep->poll_wait)) 1506 pwake++; 1507 } 1508 1509 spin_unlock_irq(&ep->wq.lock); 1510 1511 atomic_long_inc(&ep->user->epoll_watches); 1512 1513 /* We have to call this outside the lock */ 1514 if (pwake) 1515 ep_poll_safewake(&ep->poll_wait); 1516 1517 return 0; 1518 1519 error_remove_epi: 1520 spin_lock(&tfile->f_lock); 1521 list_del_rcu(&epi->fllink); 1522 spin_unlock(&tfile->f_lock); 1523 1524 rb_erase_cached(&epi->rbn, &ep->rbr); 1525 1526 error_unregister: 1527 ep_unregister_pollwait(ep, epi); 1528 1529 /* 1530 * We need to do this because an event could have been arrived on some 1531 * allocated wait queue. Note that we don't care about the ep->ovflist 1532 * list, since that is used/cleaned only inside a section bound by "mtx". 1533 * And ep_insert() is called with "mtx" held. 1534 */ 1535 spin_lock_irq(&ep->wq.lock); 1536 if (ep_is_linked(epi)) 1537 list_del_init(&epi->rdllink); 1538 spin_unlock_irq(&ep->wq.lock); 1539 1540 wakeup_source_unregister(ep_wakeup_source(epi)); 1541 1542 error_create_wakeup_source: 1543 kmem_cache_free(epi_cache, epi); 1544 1545 return error; 1546 } 1547 1548 /* 1549 * Modify the interest event mask by dropping an event if the new mask 1550 * has a match in the current file status. Must be called with "mtx" held. 1551 */ 1552 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1553 const struct epoll_event *event) 1554 { 1555 int pwake = 0; 1556 poll_table pt; 1557 1558 lockdep_assert_irqs_enabled(); 1559 1560 init_poll_funcptr(&pt, NULL); 1561 1562 /* 1563 * Set the new event interest mask before calling f_op->poll(); 1564 * otherwise we might miss an event that happens between the 1565 * f_op->poll() call and the new event set registering. 1566 */ 1567 epi->event.events = event->events; /* need barrier below */ 1568 epi->event.data = event->data; /* protected by mtx */ 1569 if (epi->event.events & EPOLLWAKEUP) { 1570 if (!ep_has_wakeup_source(epi)) 1571 ep_create_wakeup_source(epi); 1572 } else if (ep_has_wakeup_source(epi)) { 1573 ep_destroy_wakeup_source(epi); 1574 } 1575 1576 /* 1577 * The following barrier has two effects: 1578 * 1579 * 1) Flush epi changes above to other CPUs. This ensures 1580 * we do not miss events from ep_poll_callback if an 1581 * event occurs immediately after we call f_op->poll(). 1582 * We need this because we did not take ep->wq.lock while 1583 * changing epi above (but ep_poll_callback does take 1584 * ep->wq.lock). 1585 * 1586 * 2) We also need to ensure we do not miss _past_ events 1587 * when calling f_op->poll(). This barrier also 1588 * pairs with the barrier in wq_has_sleeper (see 1589 * comments for wq_has_sleeper). 1590 * 1591 * This barrier will now guarantee ep_poll_callback or f_op->poll 1592 * (or both) will notice the readiness of an item. 1593 */ 1594 smp_mb(); 1595 1596 /* 1597 * Get current event bits. We can safely use the file* here because 1598 * its usage count has been increased by the caller of this function. 1599 * If the item is "hot" and it is not registered inside the ready 1600 * list, push it inside. 1601 */ 1602 if (ep_item_poll(epi, &pt, 1)) { 1603 spin_lock_irq(&ep->wq.lock); 1604 if (!ep_is_linked(epi)) { 1605 list_add_tail(&epi->rdllink, &ep->rdllist); 1606 ep_pm_stay_awake(epi); 1607 1608 /* Notify waiting tasks that events are available */ 1609 if (waitqueue_active(&ep->wq)) 1610 wake_up_locked(&ep->wq); 1611 if (waitqueue_active(&ep->poll_wait)) 1612 pwake++; 1613 } 1614 spin_unlock_irq(&ep->wq.lock); 1615 } 1616 1617 /* We have to call this outside the lock */ 1618 if (pwake) 1619 ep_poll_safewake(&ep->poll_wait); 1620 1621 return 0; 1622 } 1623 1624 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1625 void *priv) 1626 { 1627 struct ep_send_events_data *esed = priv; 1628 __poll_t revents; 1629 struct epitem *epi; 1630 struct epoll_event __user *uevent; 1631 struct wakeup_source *ws; 1632 poll_table pt; 1633 1634 init_poll_funcptr(&pt, NULL); 1635 1636 /* 1637 * We can loop without lock because we are passed a task private list. 1638 * Items cannot vanish during the loop because ep_scan_ready_list() is 1639 * holding "mtx" during this call. 1640 */ 1641 for (esed->res = 0, uevent = esed->events; 1642 !list_empty(head) && esed->res < esed->maxevents;) { 1643 epi = list_first_entry(head, struct epitem, rdllink); 1644 1645 /* 1646 * Activate ep->ws before deactivating epi->ws to prevent 1647 * triggering auto-suspend here (in case we reactive epi->ws 1648 * below). 1649 * 1650 * This could be rearranged to delay the deactivation of epi->ws 1651 * instead, but then epi->ws would temporarily be out of sync 1652 * with ep_is_linked(). 1653 */ 1654 ws = ep_wakeup_source(epi); 1655 if (ws) { 1656 if (ws->active) 1657 __pm_stay_awake(ep->ws); 1658 __pm_relax(ws); 1659 } 1660 1661 list_del_init(&epi->rdllink); 1662 1663 revents = ep_item_poll(epi, &pt, 1); 1664 1665 /* 1666 * If the event mask intersect the caller-requested one, 1667 * deliver the event to userspace. Again, ep_scan_ready_list() 1668 * is holding "mtx", so no operations coming from userspace 1669 * can change the item. 1670 */ 1671 if (revents) { 1672 if (__put_user(revents, &uevent->events) || 1673 __put_user(epi->event.data, &uevent->data)) { 1674 list_add(&epi->rdllink, head); 1675 ep_pm_stay_awake(epi); 1676 if (!esed->res) 1677 esed->res = -EFAULT; 1678 return 0; 1679 } 1680 esed->res++; 1681 uevent++; 1682 if (epi->event.events & EPOLLONESHOT) 1683 epi->event.events &= EP_PRIVATE_BITS; 1684 else if (!(epi->event.events & EPOLLET)) { 1685 /* 1686 * If this file has been added with Level 1687 * Trigger mode, we need to insert back inside 1688 * the ready list, so that the next call to 1689 * epoll_wait() will check again the events 1690 * availability. At this point, no one can insert 1691 * into ep->rdllist besides us. The epoll_ctl() 1692 * callers are locked out by 1693 * ep_scan_ready_list() holding "mtx" and the 1694 * poll callback will queue them in ep->ovflist. 1695 */ 1696 list_add_tail(&epi->rdllink, &ep->rdllist); 1697 ep_pm_stay_awake(epi); 1698 } 1699 } 1700 } 1701 1702 return 0; 1703 } 1704 1705 static int ep_send_events(struct eventpoll *ep, 1706 struct epoll_event __user *events, int maxevents) 1707 { 1708 struct ep_send_events_data esed; 1709 1710 esed.maxevents = maxevents; 1711 esed.events = events; 1712 1713 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1714 return esed.res; 1715 } 1716 1717 static inline struct timespec64 ep_set_mstimeout(long ms) 1718 { 1719 struct timespec64 now, ts = { 1720 .tv_sec = ms / MSEC_PER_SEC, 1721 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1722 }; 1723 1724 ktime_get_ts64(&now); 1725 return timespec64_add_safe(now, ts); 1726 } 1727 1728 /** 1729 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1730 * event buffer. 1731 * 1732 * @ep: Pointer to the eventpoll context. 1733 * @events: Pointer to the userspace buffer where the ready events should be 1734 * stored. 1735 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1736 * @timeout: Maximum timeout for the ready events fetch operation, in 1737 * milliseconds. If the @timeout is zero, the function will not block, 1738 * while if the @timeout is less than zero, the function will block 1739 * until at least one event has been retrieved (or an error 1740 * occurred). 1741 * 1742 * Returns: Returns the number of ready events which have been fetched, or an 1743 * error code, in case of error. 1744 */ 1745 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1746 int maxevents, long timeout) 1747 { 1748 int res = 0, eavail, timed_out = 0; 1749 u64 slack = 0; 1750 wait_queue_entry_t wait; 1751 ktime_t expires, *to = NULL; 1752 1753 lockdep_assert_irqs_enabled(); 1754 1755 if (timeout > 0) { 1756 struct timespec64 end_time = ep_set_mstimeout(timeout); 1757 1758 slack = select_estimate_accuracy(&end_time); 1759 to = &expires; 1760 *to = timespec64_to_ktime(end_time); 1761 } else if (timeout == 0) { 1762 /* 1763 * Avoid the unnecessary trip to the wait queue loop, if the 1764 * caller specified a non blocking operation. 1765 */ 1766 timed_out = 1; 1767 spin_lock_irq(&ep->wq.lock); 1768 goto check_events; 1769 } 1770 1771 fetch_events: 1772 1773 if (!ep_events_available(ep)) 1774 ep_busy_loop(ep, timed_out); 1775 1776 spin_lock_irq(&ep->wq.lock); 1777 1778 if (!ep_events_available(ep)) { 1779 /* 1780 * Busy poll timed out. Drop NAPI ID for now, we can add 1781 * it back in when we have moved a socket with a valid NAPI 1782 * ID onto the ready list. 1783 */ 1784 ep_reset_busy_poll_napi_id(ep); 1785 1786 /* 1787 * We don't have any available event to return to the caller. 1788 * We need to sleep here, and we will be wake up by 1789 * ep_poll_callback() when events will become available. 1790 */ 1791 init_waitqueue_entry(&wait, current); 1792 __add_wait_queue_exclusive(&ep->wq, &wait); 1793 1794 for (;;) { 1795 /* 1796 * We don't want to sleep if the ep_poll_callback() sends us 1797 * a wakeup in between. That's why we set the task state 1798 * to TASK_INTERRUPTIBLE before doing the checks. 1799 */ 1800 set_current_state(TASK_INTERRUPTIBLE); 1801 /* 1802 * Always short-circuit for fatal signals to allow 1803 * threads to make a timely exit without the chance of 1804 * finding more events available and fetching 1805 * repeatedly. 1806 */ 1807 if (fatal_signal_pending(current)) { 1808 res = -EINTR; 1809 break; 1810 } 1811 if (ep_events_available(ep) || timed_out) 1812 break; 1813 if (signal_pending(current)) { 1814 res = -EINTR; 1815 break; 1816 } 1817 1818 spin_unlock_irq(&ep->wq.lock); 1819 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1820 timed_out = 1; 1821 1822 spin_lock_irq(&ep->wq.lock); 1823 } 1824 1825 __remove_wait_queue(&ep->wq, &wait); 1826 __set_current_state(TASK_RUNNING); 1827 } 1828 check_events: 1829 /* Is it worth to try to dig for events ? */ 1830 eavail = ep_events_available(ep); 1831 1832 spin_unlock_irq(&ep->wq.lock); 1833 1834 /* 1835 * Try to transfer events to user space. In case we get 0 events and 1836 * there's still timeout left over, we go trying again in search of 1837 * more luck. 1838 */ 1839 if (!res && eavail && 1840 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1841 goto fetch_events; 1842 1843 return res; 1844 } 1845 1846 /** 1847 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1848 * API, to verify that adding an epoll file inside another 1849 * epoll structure, does not violate the constraints, in 1850 * terms of closed loops, or too deep chains (which can 1851 * result in excessive stack usage). 1852 * 1853 * @priv: Pointer to the epoll file to be currently checked. 1854 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1855 * data structure pointer. 1856 * @call_nests: Current dept of the @ep_call_nested() call stack. 1857 * 1858 * Returns: Returns zero if adding the epoll @file inside current epoll 1859 * structure @ep does not violate the constraints, or -1 otherwise. 1860 */ 1861 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1862 { 1863 int error = 0; 1864 struct file *file = priv; 1865 struct eventpoll *ep = file->private_data; 1866 struct eventpoll *ep_tovisit; 1867 struct rb_node *rbp; 1868 struct epitem *epi; 1869 1870 mutex_lock_nested(&ep->mtx, call_nests + 1); 1871 ep->visited = 1; 1872 list_add(&ep->visited_list_link, &visited_list); 1873 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1874 epi = rb_entry(rbp, struct epitem, rbn); 1875 if (unlikely(is_file_epoll(epi->ffd.file))) { 1876 ep_tovisit = epi->ffd.file->private_data; 1877 if (ep_tovisit->visited) 1878 continue; 1879 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1880 ep_loop_check_proc, epi->ffd.file, 1881 ep_tovisit, current); 1882 if (error != 0) 1883 break; 1884 } else { 1885 /* 1886 * If we've reached a file that is not associated with 1887 * an ep, then we need to check if the newly added 1888 * links are going to add too many wakeup paths. We do 1889 * this by adding it to the tfile_check_list, if it's 1890 * not already there, and calling reverse_path_check() 1891 * during ep_insert(). 1892 */ 1893 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1894 list_add(&epi->ffd.file->f_tfile_llink, 1895 &tfile_check_list); 1896 } 1897 } 1898 mutex_unlock(&ep->mtx); 1899 1900 return error; 1901 } 1902 1903 /** 1904 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1905 * another epoll file (represented by @ep) does not create 1906 * closed loops or too deep chains. 1907 * 1908 * @ep: Pointer to the epoll private data structure. 1909 * @file: Pointer to the epoll file to be checked. 1910 * 1911 * Returns: Returns zero if adding the epoll @file inside current epoll 1912 * structure @ep does not violate the constraints, or -1 otherwise. 1913 */ 1914 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1915 { 1916 int ret; 1917 struct eventpoll *ep_cur, *ep_next; 1918 1919 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1920 ep_loop_check_proc, file, ep, current); 1921 /* clear visited list */ 1922 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1923 visited_list_link) { 1924 ep_cur->visited = 0; 1925 list_del(&ep_cur->visited_list_link); 1926 } 1927 return ret; 1928 } 1929 1930 static void clear_tfile_check_list(void) 1931 { 1932 struct file *file; 1933 1934 /* first clear the tfile_check_list */ 1935 while (!list_empty(&tfile_check_list)) { 1936 file = list_first_entry(&tfile_check_list, struct file, 1937 f_tfile_llink); 1938 list_del_init(&file->f_tfile_llink); 1939 } 1940 INIT_LIST_HEAD(&tfile_check_list); 1941 } 1942 1943 /* 1944 * Open an eventpoll file descriptor. 1945 */ 1946 static int do_epoll_create(int flags) 1947 { 1948 int error, fd; 1949 struct eventpoll *ep = NULL; 1950 struct file *file; 1951 1952 /* Check the EPOLL_* constant for consistency. */ 1953 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1954 1955 if (flags & ~EPOLL_CLOEXEC) 1956 return -EINVAL; 1957 /* 1958 * Create the internal data structure ("struct eventpoll"). 1959 */ 1960 error = ep_alloc(&ep); 1961 if (error < 0) 1962 return error; 1963 /* 1964 * Creates all the items needed to setup an eventpoll file. That is, 1965 * a file structure and a free file descriptor. 1966 */ 1967 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1968 if (fd < 0) { 1969 error = fd; 1970 goto out_free_ep; 1971 } 1972 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1973 O_RDWR | (flags & O_CLOEXEC)); 1974 if (IS_ERR(file)) { 1975 error = PTR_ERR(file); 1976 goto out_free_fd; 1977 } 1978 ep->file = file; 1979 fd_install(fd, file); 1980 return fd; 1981 1982 out_free_fd: 1983 put_unused_fd(fd); 1984 out_free_ep: 1985 ep_free(ep); 1986 return error; 1987 } 1988 1989 SYSCALL_DEFINE1(epoll_create1, int, flags) 1990 { 1991 return do_epoll_create(flags); 1992 } 1993 1994 SYSCALL_DEFINE1(epoll_create, int, size) 1995 { 1996 if (size <= 0) 1997 return -EINVAL; 1998 1999 return do_epoll_create(0); 2000 } 2001 2002 /* 2003 * The following function implements the controller interface for 2004 * the eventpoll file that enables the insertion/removal/change of 2005 * file descriptors inside the interest set. 2006 */ 2007 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2008 struct epoll_event __user *, event) 2009 { 2010 int error; 2011 int full_check = 0; 2012 struct fd f, tf; 2013 struct eventpoll *ep; 2014 struct epitem *epi; 2015 struct epoll_event epds; 2016 struct eventpoll *tep = NULL; 2017 2018 error = -EFAULT; 2019 if (ep_op_has_event(op) && 2020 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2021 goto error_return; 2022 2023 error = -EBADF; 2024 f = fdget(epfd); 2025 if (!f.file) 2026 goto error_return; 2027 2028 /* Get the "struct file *" for the target file */ 2029 tf = fdget(fd); 2030 if (!tf.file) 2031 goto error_fput; 2032 2033 /* The target file descriptor must support poll */ 2034 error = -EPERM; 2035 if (!file_can_poll(tf.file)) 2036 goto error_tgt_fput; 2037 2038 /* Check if EPOLLWAKEUP is allowed */ 2039 if (ep_op_has_event(op)) 2040 ep_take_care_of_epollwakeup(&epds); 2041 2042 /* 2043 * We have to check that the file structure underneath the file descriptor 2044 * the user passed to us _is_ an eventpoll file. And also we do not permit 2045 * adding an epoll file descriptor inside itself. 2046 */ 2047 error = -EINVAL; 2048 if (f.file == tf.file || !is_file_epoll(f.file)) 2049 goto error_tgt_fput; 2050 2051 /* 2052 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2053 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2054 * Also, we do not currently supported nested exclusive wakeups. 2055 */ 2056 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) { 2057 if (op == EPOLL_CTL_MOD) 2058 goto error_tgt_fput; 2059 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2060 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS))) 2061 goto error_tgt_fput; 2062 } 2063 2064 /* 2065 * At this point it is safe to assume that the "private_data" contains 2066 * our own data structure. 2067 */ 2068 ep = f.file->private_data; 2069 2070 /* 2071 * When we insert an epoll file descriptor, inside another epoll file 2072 * descriptor, there is the change of creating closed loops, which are 2073 * better be handled here, than in more critical paths. While we are 2074 * checking for loops we also determine the list of files reachable 2075 * and hang them on the tfile_check_list, so we can check that we 2076 * haven't created too many possible wakeup paths. 2077 * 2078 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2079 * the epoll file descriptor is attaching directly to a wakeup source, 2080 * unless the epoll file descriptor is nested. The purpose of taking the 2081 * 'epmutex' on add is to prevent complex toplogies such as loops and 2082 * deep wakeup paths from forming in parallel through multiple 2083 * EPOLL_CTL_ADD operations. 2084 */ 2085 mutex_lock_nested(&ep->mtx, 0); 2086 if (op == EPOLL_CTL_ADD) { 2087 if (!list_empty(&f.file->f_ep_links) || 2088 is_file_epoll(tf.file)) { 2089 full_check = 1; 2090 mutex_unlock(&ep->mtx); 2091 mutex_lock(&epmutex); 2092 if (is_file_epoll(tf.file)) { 2093 error = -ELOOP; 2094 if (ep_loop_check(ep, tf.file) != 0) { 2095 clear_tfile_check_list(); 2096 goto error_tgt_fput; 2097 } 2098 } else 2099 list_add(&tf.file->f_tfile_llink, 2100 &tfile_check_list); 2101 mutex_lock_nested(&ep->mtx, 0); 2102 if (is_file_epoll(tf.file)) { 2103 tep = tf.file->private_data; 2104 mutex_lock_nested(&tep->mtx, 1); 2105 } 2106 } 2107 } 2108 2109 /* 2110 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 2111 * above, we can be sure to be able to use the item looked up by 2112 * ep_find() till we release the mutex. 2113 */ 2114 epi = ep_find(ep, tf.file, fd); 2115 2116 error = -EINVAL; 2117 switch (op) { 2118 case EPOLL_CTL_ADD: 2119 if (!epi) { 2120 epds.events |= EPOLLERR | EPOLLHUP; 2121 error = ep_insert(ep, &epds, tf.file, fd, full_check); 2122 } else 2123 error = -EEXIST; 2124 if (full_check) 2125 clear_tfile_check_list(); 2126 break; 2127 case EPOLL_CTL_DEL: 2128 if (epi) 2129 error = ep_remove(ep, epi); 2130 else 2131 error = -ENOENT; 2132 break; 2133 case EPOLL_CTL_MOD: 2134 if (epi) { 2135 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2136 epds.events |= EPOLLERR | EPOLLHUP; 2137 error = ep_modify(ep, epi, &epds); 2138 } 2139 } else 2140 error = -ENOENT; 2141 break; 2142 } 2143 if (tep != NULL) 2144 mutex_unlock(&tep->mtx); 2145 mutex_unlock(&ep->mtx); 2146 2147 error_tgt_fput: 2148 if (full_check) 2149 mutex_unlock(&epmutex); 2150 2151 fdput(tf); 2152 error_fput: 2153 fdput(f); 2154 error_return: 2155 2156 return error; 2157 } 2158 2159 /* 2160 * Implement the event wait interface for the eventpoll file. It is the kernel 2161 * part of the user space epoll_wait(2). 2162 */ 2163 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2164 int maxevents, int timeout) 2165 { 2166 int error; 2167 struct fd f; 2168 struct eventpoll *ep; 2169 2170 /* The maximum number of event must be greater than zero */ 2171 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2172 return -EINVAL; 2173 2174 /* Verify that the area passed by the user is writeable */ 2175 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) 2176 return -EFAULT; 2177 2178 /* Get the "struct file *" for the eventpoll file */ 2179 f = fdget(epfd); 2180 if (!f.file) 2181 return -EBADF; 2182 2183 /* 2184 * We have to check that the file structure underneath the fd 2185 * the user passed to us _is_ an eventpoll file. 2186 */ 2187 error = -EINVAL; 2188 if (!is_file_epoll(f.file)) 2189 goto error_fput; 2190 2191 /* 2192 * At this point it is safe to assume that the "private_data" contains 2193 * our own data structure. 2194 */ 2195 ep = f.file->private_data; 2196 2197 /* Time to fish for events ... */ 2198 error = ep_poll(ep, events, maxevents, timeout); 2199 2200 error_fput: 2201 fdput(f); 2202 return error; 2203 } 2204 2205 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2206 int, maxevents, int, timeout) 2207 { 2208 return do_epoll_wait(epfd, events, maxevents, timeout); 2209 } 2210 2211 /* 2212 * Implement the event wait interface for the eventpoll file. It is the kernel 2213 * part of the user space epoll_pwait(2). 2214 */ 2215 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2216 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2217 size_t, sigsetsize) 2218 { 2219 int error; 2220 sigset_t ksigmask, sigsaved; 2221 2222 /* 2223 * If the caller wants a certain signal mask to be set during the wait, 2224 * we apply it here. 2225 */ 2226 if (sigmask) { 2227 if (sigsetsize != sizeof(sigset_t)) 2228 return -EINVAL; 2229 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 2230 return -EFAULT; 2231 sigsaved = current->blocked; 2232 set_current_blocked(&ksigmask); 2233 } 2234 2235 error = do_epoll_wait(epfd, events, maxevents, timeout); 2236 2237 /* 2238 * If we changed the signal mask, we need to restore the original one. 2239 * In case we've got a signal while waiting, we do not restore the 2240 * signal mask yet, and we allow do_signal() to deliver the signal on 2241 * the way back to userspace, before the signal mask is restored. 2242 */ 2243 if (sigmask) { 2244 if (error == -EINTR) { 2245 memcpy(¤t->saved_sigmask, &sigsaved, 2246 sizeof(sigsaved)); 2247 set_restore_sigmask(); 2248 } else 2249 set_current_blocked(&sigsaved); 2250 } 2251 2252 return error; 2253 } 2254 2255 #ifdef CONFIG_COMPAT 2256 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2257 struct epoll_event __user *, events, 2258 int, maxevents, int, timeout, 2259 const compat_sigset_t __user *, sigmask, 2260 compat_size_t, sigsetsize) 2261 { 2262 long err; 2263 sigset_t ksigmask, sigsaved; 2264 2265 /* 2266 * If the caller wants a certain signal mask to be set during the wait, 2267 * we apply it here. 2268 */ 2269 if (sigmask) { 2270 if (sigsetsize != sizeof(compat_sigset_t)) 2271 return -EINVAL; 2272 if (get_compat_sigset(&ksigmask, sigmask)) 2273 return -EFAULT; 2274 sigsaved = current->blocked; 2275 set_current_blocked(&ksigmask); 2276 } 2277 2278 err = do_epoll_wait(epfd, events, maxevents, timeout); 2279 2280 /* 2281 * If we changed the signal mask, we need to restore the original one. 2282 * In case we've got a signal while waiting, we do not restore the 2283 * signal mask yet, and we allow do_signal() to deliver the signal on 2284 * the way back to userspace, before the signal mask is restored. 2285 */ 2286 if (sigmask) { 2287 if (err == -EINTR) { 2288 memcpy(¤t->saved_sigmask, &sigsaved, 2289 sizeof(sigsaved)); 2290 set_restore_sigmask(); 2291 } else 2292 set_current_blocked(&sigsaved); 2293 } 2294 2295 return err; 2296 } 2297 #endif 2298 2299 static int __init eventpoll_init(void) 2300 { 2301 struct sysinfo si; 2302 2303 si_meminfo(&si); 2304 /* 2305 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2306 */ 2307 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2308 EP_ITEM_COST; 2309 BUG_ON(max_user_watches < 0); 2310 2311 /* 2312 * Initialize the structure used to perform epoll file descriptor 2313 * inclusion loops checks. 2314 */ 2315 ep_nested_calls_init(&poll_loop_ncalls); 2316 2317 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2318 /* Initialize the structure used to perform safe poll wait head wake ups */ 2319 ep_nested_calls_init(&poll_safewake_ncalls); 2320 #endif 2321 2322 /* 2323 * We can have many thousands of epitems, so prevent this from 2324 * using an extra cache line on 64-bit (and smaller) CPUs 2325 */ 2326 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2327 2328 /* Allocates slab cache used to allocate "struct epitem" items */ 2329 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2330 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2331 2332 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2333 pwq_cache = kmem_cache_create("eventpoll_pwq", 2334 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2335 2336 return 0; 2337 } 2338 fs_initcall(eventpoll_init); 2339