xref: /openbmc/linux/fs/eventpoll.c (revision f125e2d4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (rwlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a rwlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66  * It is also acquired when inserting an epoll fd onto another epoll
67  * fd. We do this so that we walk the epoll tree and ensure that this
68  * insertion does not create a cycle of epoll file descriptors, which
69  * could lead to deadlock. We need a global mutex to prevent two
70  * simultaneous inserts (A into B and B into A) from racing and
71  * constructing a cycle without either insert observing that it is
72  * going to.
73  * It is necessary to acquire multiple "ep->mtx"es at once in the
74  * case when one epoll fd is added to another. In this case, we
75  * always acquire the locks in the order of nesting (i.e. after
76  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77  * before e2->mtx). Since we disallow cycles of epoll file
78  * descriptors, this ensures that the mutexes are well-ordered. In
79  * order to communicate this nesting to lockdep, when walking a tree
80  * of epoll file descriptors, we use the current recursion depth as
81  * the lockdep subkey.
82  * It is possible to drop the "ep->mtx" and to use the global
83  * mutex "epmutex" (together with "ep->lock") to have it working,
84  * but having "ep->mtx" will make the interface more scalable.
85  * Events that require holding "epmutex" are very rare, while for
86  * normal operations the epoll private "ep->mtx" will guarantee
87  * a better scalability.
88  */
89 
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
92 
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
94 
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97 
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100 
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104 
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 
107 struct epoll_filefd {
108 	struct file *file;
109 	int fd;
110 } __packed;
111 
112 /*
113  * Structure used to track possible nested calls, for too deep recursions
114  * and loop cycles.
115  */
116 struct nested_call_node {
117 	struct list_head llink;
118 	void *cookie;
119 	void *ctx;
120 };
121 
122 /*
123  * This structure is used as collector for nested calls, to check for
124  * maximum recursion dept and loop cycles.
125  */
126 struct nested_calls {
127 	struct list_head tasks_call_list;
128 	spinlock_t lock;
129 };
130 
131 /*
132  * Each file descriptor added to the eventpoll interface will
133  * have an entry of this type linked to the "rbr" RB tree.
134  * Avoid increasing the size of this struct, there can be many thousands
135  * of these on a server and we do not want this to take another cache line.
136  */
137 struct epitem {
138 	union {
139 		/* RB tree node links this structure to the eventpoll RB tree */
140 		struct rb_node rbn;
141 		/* Used to free the struct epitem */
142 		struct rcu_head rcu;
143 	};
144 
145 	/* List header used to link this structure to the eventpoll ready list */
146 	struct list_head rdllink;
147 
148 	/*
149 	 * Works together "struct eventpoll"->ovflist in keeping the
150 	 * single linked chain of items.
151 	 */
152 	struct epitem *next;
153 
154 	/* The file descriptor information this item refers to */
155 	struct epoll_filefd ffd;
156 
157 	/* Number of active wait queue attached to poll operations */
158 	int nwait;
159 
160 	/* List containing poll wait queues */
161 	struct list_head pwqlist;
162 
163 	/* The "container" of this item */
164 	struct eventpoll *ep;
165 
166 	/* List header used to link this item to the "struct file" items list */
167 	struct list_head fllink;
168 
169 	/* wakeup_source used when EPOLLWAKEUP is set */
170 	struct wakeup_source __rcu *ws;
171 
172 	/* The structure that describe the interested events and the source fd */
173 	struct epoll_event event;
174 };
175 
176 /*
177  * This structure is stored inside the "private_data" member of the file
178  * structure and represents the main data structure for the eventpoll
179  * interface.
180  */
181 struct eventpoll {
182 	/*
183 	 * This mutex is used to ensure that files are not removed
184 	 * while epoll is using them. This is held during the event
185 	 * collection loop, the file cleanup path, the epoll file exit
186 	 * code and the ctl operations.
187 	 */
188 	struct mutex mtx;
189 
190 	/* Wait queue used by sys_epoll_wait() */
191 	wait_queue_head_t wq;
192 
193 	/* Wait queue used by file->poll() */
194 	wait_queue_head_t poll_wait;
195 
196 	/* List of ready file descriptors */
197 	struct list_head rdllist;
198 
199 	/* Lock which protects rdllist and ovflist */
200 	rwlock_t lock;
201 
202 	/* RB tree root used to store monitored fd structs */
203 	struct rb_root_cached rbr;
204 
205 	/*
206 	 * This is a single linked list that chains all the "struct epitem" that
207 	 * happened while transferring ready events to userspace w/out
208 	 * holding ->lock.
209 	 */
210 	struct epitem *ovflist;
211 
212 	/* wakeup_source used when ep_scan_ready_list is running */
213 	struct wakeup_source *ws;
214 
215 	/* The user that created the eventpoll descriptor */
216 	struct user_struct *user;
217 
218 	struct file *file;
219 
220 	/* used to optimize loop detection check */
221 	int visited;
222 	struct list_head visited_list_link;
223 
224 #ifdef CONFIG_NET_RX_BUSY_POLL
225 	/* used to track busy poll napi_id */
226 	unsigned int napi_id;
227 #endif
228 };
229 
230 /* Wait structure used by the poll hooks */
231 struct eppoll_entry {
232 	/* List header used to link this structure to the "struct epitem" */
233 	struct list_head llink;
234 
235 	/* The "base" pointer is set to the container "struct epitem" */
236 	struct epitem *base;
237 
238 	/*
239 	 * Wait queue item that will be linked to the target file wait
240 	 * queue head.
241 	 */
242 	wait_queue_entry_t wait;
243 
244 	/* The wait queue head that linked the "wait" wait queue item */
245 	wait_queue_head_t *whead;
246 };
247 
248 /* Wrapper struct used by poll queueing */
249 struct ep_pqueue {
250 	poll_table pt;
251 	struct epitem *epi;
252 };
253 
254 /* Used by the ep_send_events() function as callback private data */
255 struct ep_send_events_data {
256 	int maxevents;
257 	struct epoll_event __user *events;
258 	int res;
259 };
260 
261 /*
262  * Configuration options available inside /proc/sys/fs/epoll/
263  */
264 /* Maximum number of epoll watched descriptors, per user */
265 static long max_user_watches __read_mostly;
266 
267 /*
268  * This mutex is used to serialize ep_free() and eventpoll_release_file().
269  */
270 static DEFINE_MUTEX(epmutex);
271 
272 /* Used to check for epoll file descriptor inclusion loops */
273 static struct nested_calls poll_loop_ncalls;
274 
275 /* Slab cache used to allocate "struct epitem" */
276 static struct kmem_cache *epi_cache __read_mostly;
277 
278 /* Slab cache used to allocate "struct eppoll_entry" */
279 static struct kmem_cache *pwq_cache __read_mostly;
280 
281 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
282 static LIST_HEAD(visited_list);
283 
284 /*
285  * List of files with newly added links, where we may need to limit the number
286  * of emanating paths. Protected by the epmutex.
287  */
288 static LIST_HEAD(tfile_check_list);
289 
290 #ifdef CONFIG_SYSCTL
291 
292 #include <linux/sysctl.h>
293 
294 static long long_zero;
295 static long long_max = LONG_MAX;
296 
297 struct ctl_table epoll_table[] = {
298 	{
299 		.procname	= "max_user_watches",
300 		.data		= &max_user_watches,
301 		.maxlen		= sizeof(max_user_watches),
302 		.mode		= 0644,
303 		.proc_handler	= proc_doulongvec_minmax,
304 		.extra1		= &long_zero,
305 		.extra2		= &long_max,
306 	},
307 	{ }
308 };
309 #endif /* CONFIG_SYSCTL */
310 
311 static const struct file_operations eventpoll_fops;
312 
313 static inline int is_file_epoll(struct file *f)
314 {
315 	return f->f_op == &eventpoll_fops;
316 }
317 
318 /* Setup the structure that is used as key for the RB tree */
319 static inline void ep_set_ffd(struct epoll_filefd *ffd,
320 			      struct file *file, int fd)
321 {
322 	ffd->file = file;
323 	ffd->fd = fd;
324 }
325 
326 /* Compare RB tree keys */
327 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
328 			     struct epoll_filefd *p2)
329 {
330 	return (p1->file > p2->file ? +1:
331 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
332 }
333 
334 /* Tells us if the item is currently linked */
335 static inline int ep_is_linked(struct epitem *epi)
336 {
337 	return !list_empty(&epi->rdllink);
338 }
339 
340 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
341 {
342 	return container_of(p, struct eppoll_entry, wait);
343 }
344 
345 /* Get the "struct epitem" from a wait queue pointer */
346 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
347 {
348 	return container_of(p, struct eppoll_entry, wait)->base;
349 }
350 
351 /* Get the "struct epitem" from an epoll queue wrapper */
352 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
353 {
354 	return container_of(p, struct ep_pqueue, pt)->epi;
355 }
356 
357 /* Initialize the poll safe wake up structure */
358 static void ep_nested_calls_init(struct nested_calls *ncalls)
359 {
360 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
361 	spin_lock_init(&ncalls->lock);
362 }
363 
364 /**
365  * ep_events_available - Checks if ready events might be available.
366  *
367  * @ep: Pointer to the eventpoll context.
368  *
369  * Returns: Returns a value different than zero if ready events are available,
370  *          or zero otherwise.
371  */
372 static inline int ep_events_available(struct eventpoll *ep)
373 {
374 	return !list_empty_careful(&ep->rdllist) ||
375 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
376 }
377 
378 #ifdef CONFIG_NET_RX_BUSY_POLL
379 static bool ep_busy_loop_end(void *p, unsigned long start_time)
380 {
381 	struct eventpoll *ep = p;
382 
383 	return ep_events_available(ep) || busy_loop_timeout(start_time);
384 }
385 
386 /*
387  * Busy poll if globally on and supporting sockets found && no events,
388  * busy loop will return if need_resched or ep_events_available.
389  *
390  * we must do our busy polling with irqs enabled
391  */
392 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
393 {
394 	unsigned int napi_id = READ_ONCE(ep->napi_id);
395 
396 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
397 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
398 }
399 
400 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
401 {
402 	if (ep->napi_id)
403 		ep->napi_id = 0;
404 }
405 
406 /*
407  * Set epoll busy poll NAPI ID from sk.
408  */
409 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
410 {
411 	struct eventpoll *ep;
412 	unsigned int napi_id;
413 	struct socket *sock;
414 	struct sock *sk;
415 	int err;
416 
417 	if (!net_busy_loop_on())
418 		return;
419 
420 	sock = sock_from_file(epi->ffd.file, &err);
421 	if (!sock)
422 		return;
423 
424 	sk = sock->sk;
425 	if (!sk)
426 		return;
427 
428 	napi_id = READ_ONCE(sk->sk_napi_id);
429 	ep = epi->ep;
430 
431 	/* Non-NAPI IDs can be rejected
432 	 *	or
433 	 * Nothing to do if we already have this ID
434 	 */
435 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
436 		return;
437 
438 	/* record NAPI ID for use in next busy poll */
439 	ep->napi_id = napi_id;
440 }
441 
442 #else
443 
444 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
445 {
446 }
447 
448 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
449 {
450 }
451 
452 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
453 {
454 }
455 
456 #endif /* CONFIG_NET_RX_BUSY_POLL */
457 
458 /**
459  * ep_call_nested - Perform a bound (possibly) nested call, by checking
460  *                  that the recursion limit is not exceeded, and that
461  *                  the same nested call (by the meaning of same cookie) is
462  *                  no re-entered.
463  *
464  * @ncalls: Pointer to the nested_calls structure to be used for this call.
465  * @nproc: Nested call core function pointer.
466  * @priv: Opaque data to be passed to the @nproc callback.
467  * @cookie: Cookie to be used to identify this nested call.
468  * @ctx: This instance context.
469  *
470  * Returns: Returns the code returned by the @nproc callback, or -1 if
471  *          the maximum recursion limit has been exceeded.
472  */
473 static int ep_call_nested(struct nested_calls *ncalls,
474 			  int (*nproc)(void *, void *, int), void *priv,
475 			  void *cookie, void *ctx)
476 {
477 	int error, call_nests = 0;
478 	unsigned long flags;
479 	struct list_head *lsthead = &ncalls->tasks_call_list;
480 	struct nested_call_node *tncur;
481 	struct nested_call_node tnode;
482 
483 	spin_lock_irqsave(&ncalls->lock, flags);
484 
485 	/*
486 	 * Try to see if the current task is already inside this wakeup call.
487 	 * We use a list here, since the population inside this set is always
488 	 * very much limited.
489 	 */
490 	list_for_each_entry(tncur, lsthead, llink) {
491 		if (tncur->ctx == ctx &&
492 		    (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
493 			/*
494 			 * Ops ... loop detected or maximum nest level reached.
495 			 * We abort this wake by breaking the cycle itself.
496 			 */
497 			error = -1;
498 			goto out_unlock;
499 		}
500 	}
501 
502 	/* Add the current task and cookie to the list */
503 	tnode.ctx = ctx;
504 	tnode.cookie = cookie;
505 	list_add(&tnode.llink, lsthead);
506 
507 	spin_unlock_irqrestore(&ncalls->lock, flags);
508 
509 	/* Call the nested function */
510 	error = (*nproc)(priv, cookie, call_nests);
511 
512 	/* Remove the current task from the list */
513 	spin_lock_irqsave(&ncalls->lock, flags);
514 	list_del(&tnode.llink);
515 out_unlock:
516 	spin_unlock_irqrestore(&ncalls->lock, flags);
517 
518 	return error;
519 }
520 
521 /*
522  * As described in commit 0ccf831cb lockdep: annotate epoll
523  * the use of wait queues used by epoll is done in a very controlled
524  * manner. Wake ups can nest inside each other, but are never done
525  * with the same locking. For example:
526  *
527  *   dfd = socket(...);
528  *   efd1 = epoll_create();
529  *   efd2 = epoll_create();
530  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
531  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
532  *
533  * When a packet arrives to the device underneath "dfd", the net code will
534  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
535  * callback wakeup entry on that queue, and the wake_up() performed by the
536  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
537  * (efd1) notices that it may have some event ready, so it needs to wake up
538  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
539  * that ends up in another wake_up(), after having checked about the
540  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
541  * avoid stack blasting.
542  *
543  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
544  * this special case of epoll.
545  */
546 #ifdef CONFIG_DEBUG_LOCK_ALLOC
547 
548 static DEFINE_PER_CPU(int, wakeup_nest);
549 
550 static void ep_poll_safewake(wait_queue_head_t *wq)
551 {
552 	unsigned long flags;
553 	int subclass;
554 
555 	local_irq_save(flags);
556 	preempt_disable();
557 	subclass = __this_cpu_read(wakeup_nest);
558 	spin_lock_nested(&wq->lock, subclass + 1);
559 	__this_cpu_inc(wakeup_nest);
560 	wake_up_locked_poll(wq, POLLIN);
561 	__this_cpu_dec(wakeup_nest);
562 	spin_unlock(&wq->lock);
563 	local_irq_restore(flags);
564 	preempt_enable();
565 }
566 
567 #else
568 
569 static void ep_poll_safewake(wait_queue_head_t *wq)
570 {
571 	wake_up_poll(wq, EPOLLIN);
572 }
573 
574 #endif
575 
576 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
577 {
578 	wait_queue_head_t *whead;
579 
580 	rcu_read_lock();
581 	/*
582 	 * If it is cleared by POLLFREE, it should be rcu-safe.
583 	 * If we read NULL we need a barrier paired with
584 	 * smp_store_release() in ep_poll_callback(), otherwise
585 	 * we rely on whead->lock.
586 	 */
587 	whead = smp_load_acquire(&pwq->whead);
588 	if (whead)
589 		remove_wait_queue(whead, &pwq->wait);
590 	rcu_read_unlock();
591 }
592 
593 /*
594  * This function unregisters poll callbacks from the associated file
595  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
596  * ep_free).
597  */
598 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
599 {
600 	struct list_head *lsthead = &epi->pwqlist;
601 	struct eppoll_entry *pwq;
602 
603 	while (!list_empty(lsthead)) {
604 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
605 
606 		list_del(&pwq->llink);
607 		ep_remove_wait_queue(pwq);
608 		kmem_cache_free(pwq_cache, pwq);
609 	}
610 }
611 
612 /* call only when ep->mtx is held */
613 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
614 {
615 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
616 }
617 
618 /* call only when ep->mtx is held */
619 static inline void ep_pm_stay_awake(struct epitem *epi)
620 {
621 	struct wakeup_source *ws = ep_wakeup_source(epi);
622 
623 	if (ws)
624 		__pm_stay_awake(ws);
625 }
626 
627 static inline bool ep_has_wakeup_source(struct epitem *epi)
628 {
629 	return rcu_access_pointer(epi->ws) ? true : false;
630 }
631 
632 /* call when ep->mtx cannot be held (ep_poll_callback) */
633 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
634 {
635 	struct wakeup_source *ws;
636 
637 	rcu_read_lock();
638 	ws = rcu_dereference(epi->ws);
639 	if (ws)
640 		__pm_stay_awake(ws);
641 	rcu_read_unlock();
642 }
643 
644 /**
645  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
646  *                      the scan code, to call f_op->poll(). Also allows for
647  *                      O(NumReady) performance.
648  *
649  * @ep: Pointer to the epoll private data structure.
650  * @sproc: Pointer to the scan callback.
651  * @priv: Private opaque data passed to the @sproc callback.
652  * @depth: The current depth of recursive f_op->poll calls.
653  * @ep_locked: caller already holds ep->mtx
654  *
655  * Returns: The same integer error code returned by the @sproc callback.
656  */
657 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
658 			      __poll_t (*sproc)(struct eventpoll *,
659 					   struct list_head *, void *),
660 			      void *priv, int depth, bool ep_locked)
661 {
662 	__poll_t res;
663 	struct epitem *epi, *nepi;
664 	LIST_HEAD(txlist);
665 
666 	lockdep_assert_irqs_enabled();
667 
668 	/*
669 	 * We need to lock this because we could be hit by
670 	 * eventpoll_release_file() and epoll_ctl().
671 	 */
672 
673 	if (!ep_locked)
674 		mutex_lock_nested(&ep->mtx, depth);
675 
676 	/*
677 	 * Steal the ready list, and re-init the original one to the
678 	 * empty list. Also, set ep->ovflist to NULL so that events
679 	 * happening while looping w/out locks, are not lost. We cannot
680 	 * have the poll callback to queue directly on ep->rdllist,
681 	 * because we want the "sproc" callback to be able to do it
682 	 * in a lockless way.
683 	 */
684 	write_lock_irq(&ep->lock);
685 	list_splice_init(&ep->rdllist, &txlist);
686 	WRITE_ONCE(ep->ovflist, NULL);
687 	write_unlock_irq(&ep->lock);
688 
689 	/*
690 	 * Now call the callback function.
691 	 */
692 	res = (*sproc)(ep, &txlist, priv);
693 
694 	write_lock_irq(&ep->lock);
695 	/*
696 	 * During the time we spent inside the "sproc" callback, some
697 	 * other events might have been queued by the poll callback.
698 	 * We re-insert them inside the main ready-list here.
699 	 */
700 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
701 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
702 		/*
703 		 * We need to check if the item is already in the list.
704 		 * During the "sproc" callback execution time, items are
705 		 * queued into ->ovflist but the "txlist" might already
706 		 * contain them, and the list_splice() below takes care of them.
707 		 */
708 		if (!ep_is_linked(epi)) {
709 			/*
710 			 * ->ovflist is LIFO, so we have to reverse it in order
711 			 * to keep in FIFO.
712 			 */
713 			list_add(&epi->rdllink, &ep->rdllist);
714 			ep_pm_stay_awake(epi);
715 		}
716 	}
717 	/*
718 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
719 	 * releasing the lock, events will be queued in the normal way inside
720 	 * ep->rdllist.
721 	 */
722 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
723 
724 	/*
725 	 * Quickly re-inject items left on "txlist".
726 	 */
727 	list_splice(&txlist, &ep->rdllist);
728 	__pm_relax(ep->ws);
729 	write_unlock_irq(&ep->lock);
730 
731 	if (!ep_locked)
732 		mutex_unlock(&ep->mtx);
733 
734 	return res;
735 }
736 
737 static void epi_rcu_free(struct rcu_head *head)
738 {
739 	struct epitem *epi = container_of(head, struct epitem, rcu);
740 	kmem_cache_free(epi_cache, epi);
741 }
742 
743 /*
744  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
745  * all the associated resources. Must be called with "mtx" held.
746  */
747 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
748 {
749 	struct file *file = epi->ffd.file;
750 
751 	lockdep_assert_irqs_enabled();
752 
753 	/*
754 	 * Removes poll wait queue hooks.
755 	 */
756 	ep_unregister_pollwait(ep, epi);
757 
758 	/* Remove the current item from the list of epoll hooks */
759 	spin_lock(&file->f_lock);
760 	list_del_rcu(&epi->fllink);
761 	spin_unlock(&file->f_lock);
762 
763 	rb_erase_cached(&epi->rbn, &ep->rbr);
764 
765 	write_lock_irq(&ep->lock);
766 	if (ep_is_linked(epi))
767 		list_del_init(&epi->rdllink);
768 	write_unlock_irq(&ep->lock);
769 
770 	wakeup_source_unregister(ep_wakeup_source(epi));
771 	/*
772 	 * At this point it is safe to free the eventpoll item. Use the union
773 	 * field epi->rcu, since we are trying to minimize the size of
774 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
775 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
776 	 * use of the rbn field.
777 	 */
778 	call_rcu(&epi->rcu, epi_rcu_free);
779 
780 	atomic_long_dec(&ep->user->epoll_watches);
781 
782 	return 0;
783 }
784 
785 static void ep_free(struct eventpoll *ep)
786 {
787 	struct rb_node *rbp;
788 	struct epitem *epi;
789 
790 	/* We need to release all tasks waiting for these file */
791 	if (waitqueue_active(&ep->poll_wait))
792 		ep_poll_safewake(&ep->poll_wait);
793 
794 	/*
795 	 * We need to lock this because we could be hit by
796 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
797 	 * We do not need to hold "ep->mtx" here because the epoll file
798 	 * is on the way to be removed and no one has references to it
799 	 * anymore. The only hit might come from eventpoll_release_file() but
800 	 * holding "epmutex" is sufficient here.
801 	 */
802 	mutex_lock(&epmutex);
803 
804 	/*
805 	 * Walks through the whole tree by unregistering poll callbacks.
806 	 */
807 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
808 		epi = rb_entry(rbp, struct epitem, rbn);
809 
810 		ep_unregister_pollwait(ep, epi);
811 		cond_resched();
812 	}
813 
814 	/*
815 	 * Walks through the whole tree by freeing each "struct epitem". At this
816 	 * point we are sure no poll callbacks will be lingering around, and also by
817 	 * holding "epmutex" we can be sure that no file cleanup code will hit
818 	 * us during this operation. So we can avoid the lock on "ep->lock".
819 	 * We do not need to lock ep->mtx, either, we only do it to prevent
820 	 * a lockdep warning.
821 	 */
822 	mutex_lock(&ep->mtx);
823 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
824 		epi = rb_entry(rbp, struct epitem, rbn);
825 		ep_remove(ep, epi);
826 		cond_resched();
827 	}
828 	mutex_unlock(&ep->mtx);
829 
830 	mutex_unlock(&epmutex);
831 	mutex_destroy(&ep->mtx);
832 	free_uid(ep->user);
833 	wakeup_source_unregister(ep->ws);
834 	kfree(ep);
835 }
836 
837 static int ep_eventpoll_release(struct inode *inode, struct file *file)
838 {
839 	struct eventpoll *ep = file->private_data;
840 
841 	if (ep)
842 		ep_free(ep);
843 
844 	return 0;
845 }
846 
847 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
848 			       void *priv);
849 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
850 				 poll_table *pt);
851 
852 /*
853  * Differs from ep_eventpoll_poll() in that internal callers already have
854  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
855  * is correctly annotated.
856  */
857 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
858 				 int depth)
859 {
860 	struct eventpoll *ep;
861 	bool locked;
862 
863 	pt->_key = epi->event.events;
864 	if (!is_file_epoll(epi->ffd.file))
865 		return vfs_poll(epi->ffd.file, pt) & epi->event.events;
866 
867 	ep = epi->ffd.file->private_data;
868 	poll_wait(epi->ffd.file, &ep->poll_wait, pt);
869 	locked = pt && (pt->_qproc == ep_ptable_queue_proc);
870 
871 	return ep_scan_ready_list(epi->ffd.file->private_data,
872 				  ep_read_events_proc, &depth, depth,
873 				  locked) & epi->event.events;
874 }
875 
876 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
877 			       void *priv)
878 {
879 	struct epitem *epi, *tmp;
880 	poll_table pt;
881 	int depth = *(int *)priv;
882 
883 	init_poll_funcptr(&pt, NULL);
884 	depth++;
885 
886 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
887 		if (ep_item_poll(epi, &pt, depth)) {
888 			return EPOLLIN | EPOLLRDNORM;
889 		} else {
890 			/*
891 			 * Item has been dropped into the ready list by the poll
892 			 * callback, but it's not actually ready, as far as
893 			 * caller requested events goes. We can remove it here.
894 			 */
895 			__pm_relax(ep_wakeup_source(epi));
896 			list_del_init(&epi->rdllink);
897 		}
898 	}
899 
900 	return 0;
901 }
902 
903 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
904 {
905 	struct eventpoll *ep = file->private_data;
906 	int depth = 0;
907 
908 	/* Insert inside our poll wait queue */
909 	poll_wait(file, &ep->poll_wait, wait);
910 
911 	/*
912 	 * Proceed to find out if wanted events are really available inside
913 	 * the ready list.
914 	 */
915 	return ep_scan_ready_list(ep, ep_read_events_proc,
916 				  &depth, depth, false);
917 }
918 
919 #ifdef CONFIG_PROC_FS
920 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
921 {
922 	struct eventpoll *ep = f->private_data;
923 	struct rb_node *rbp;
924 
925 	mutex_lock(&ep->mtx);
926 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
927 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
928 		struct inode *inode = file_inode(epi->ffd.file);
929 
930 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
931 			   " pos:%lli ino:%lx sdev:%x\n",
932 			   epi->ffd.fd, epi->event.events,
933 			   (long long)epi->event.data,
934 			   (long long)epi->ffd.file->f_pos,
935 			   inode->i_ino, inode->i_sb->s_dev);
936 		if (seq_has_overflowed(m))
937 			break;
938 	}
939 	mutex_unlock(&ep->mtx);
940 }
941 #endif
942 
943 /* File callbacks that implement the eventpoll file behaviour */
944 static const struct file_operations eventpoll_fops = {
945 #ifdef CONFIG_PROC_FS
946 	.show_fdinfo	= ep_show_fdinfo,
947 #endif
948 	.release	= ep_eventpoll_release,
949 	.poll		= ep_eventpoll_poll,
950 	.llseek		= noop_llseek,
951 };
952 
953 /*
954  * This is called from eventpoll_release() to unlink files from the eventpoll
955  * interface. We need to have this facility to cleanup correctly files that are
956  * closed without being removed from the eventpoll interface.
957  */
958 void eventpoll_release_file(struct file *file)
959 {
960 	struct eventpoll *ep;
961 	struct epitem *epi, *next;
962 
963 	/*
964 	 * We don't want to get "file->f_lock" because it is not
965 	 * necessary. It is not necessary because we're in the "struct file"
966 	 * cleanup path, and this means that no one is using this file anymore.
967 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
968 	 * point, the file counter already went to zero and fget() would fail.
969 	 * The only hit might come from ep_free() but by holding the mutex
970 	 * will correctly serialize the operation. We do need to acquire
971 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
972 	 * from anywhere but ep_free().
973 	 *
974 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
975 	 */
976 	mutex_lock(&epmutex);
977 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
978 		ep = epi->ep;
979 		mutex_lock_nested(&ep->mtx, 0);
980 		ep_remove(ep, epi);
981 		mutex_unlock(&ep->mtx);
982 	}
983 	mutex_unlock(&epmutex);
984 }
985 
986 static int ep_alloc(struct eventpoll **pep)
987 {
988 	int error;
989 	struct user_struct *user;
990 	struct eventpoll *ep;
991 
992 	user = get_current_user();
993 	error = -ENOMEM;
994 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
995 	if (unlikely(!ep))
996 		goto free_uid;
997 
998 	mutex_init(&ep->mtx);
999 	rwlock_init(&ep->lock);
1000 	init_waitqueue_head(&ep->wq);
1001 	init_waitqueue_head(&ep->poll_wait);
1002 	INIT_LIST_HEAD(&ep->rdllist);
1003 	ep->rbr = RB_ROOT_CACHED;
1004 	ep->ovflist = EP_UNACTIVE_PTR;
1005 	ep->user = user;
1006 
1007 	*pep = ep;
1008 
1009 	return 0;
1010 
1011 free_uid:
1012 	free_uid(user);
1013 	return error;
1014 }
1015 
1016 /*
1017  * Search the file inside the eventpoll tree. The RB tree operations
1018  * are protected by the "mtx" mutex, and ep_find() must be called with
1019  * "mtx" held.
1020  */
1021 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1022 {
1023 	int kcmp;
1024 	struct rb_node *rbp;
1025 	struct epitem *epi, *epir = NULL;
1026 	struct epoll_filefd ffd;
1027 
1028 	ep_set_ffd(&ffd, file, fd);
1029 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1030 		epi = rb_entry(rbp, struct epitem, rbn);
1031 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1032 		if (kcmp > 0)
1033 			rbp = rbp->rb_right;
1034 		else if (kcmp < 0)
1035 			rbp = rbp->rb_left;
1036 		else {
1037 			epir = epi;
1038 			break;
1039 		}
1040 	}
1041 
1042 	return epir;
1043 }
1044 
1045 #ifdef CONFIG_CHECKPOINT_RESTORE
1046 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1047 {
1048 	struct rb_node *rbp;
1049 	struct epitem *epi;
1050 
1051 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1052 		epi = rb_entry(rbp, struct epitem, rbn);
1053 		if (epi->ffd.fd == tfd) {
1054 			if (toff == 0)
1055 				return epi;
1056 			else
1057 				toff--;
1058 		}
1059 		cond_resched();
1060 	}
1061 
1062 	return NULL;
1063 }
1064 
1065 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1066 				     unsigned long toff)
1067 {
1068 	struct file *file_raw;
1069 	struct eventpoll *ep;
1070 	struct epitem *epi;
1071 
1072 	if (!is_file_epoll(file))
1073 		return ERR_PTR(-EINVAL);
1074 
1075 	ep = file->private_data;
1076 
1077 	mutex_lock(&ep->mtx);
1078 	epi = ep_find_tfd(ep, tfd, toff);
1079 	if (epi)
1080 		file_raw = epi->ffd.file;
1081 	else
1082 		file_raw = ERR_PTR(-ENOENT);
1083 	mutex_unlock(&ep->mtx);
1084 
1085 	return file_raw;
1086 }
1087 #endif /* CONFIG_CHECKPOINT_RESTORE */
1088 
1089 /**
1090  * Adds a new entry to the tail of the list in a lockless way, i.e.
1091  * multiple CPUs are allowed to call this function concurrently.
1092  *
1093  * Beware: it is necessary to prevent any other modifications of the
1094  *         existing list until all changes are completed, in other words
1095  *         concurrent list_add_tail_lockless() calls should be protected
1096  *         with a read lock, where write lock acts as a barrier which
1097  *         makes sure all list_add_tail_lockless() calls are fully
1098  *         completed.
1099  *
1100  *        Also an element can be locklessly added to the list only in one
1101  *        direction i.e. either to the tail either to the head, otherwise
1102  *        concurrent access will corrupt the list.
1103  *
1104  * Returns %false if element has been already added to the list, %true
1105  * otherwise.
1106  */
1107 static inline bool list_add_tail_lockless(struct list_head *new,
1108 					  struct list_head *head)
1109 {
1110 	struct list_head *prev;
1111 
1112 	/*
1113 	 * This is simple 'new->next = head' operation, but cmpxchg()
1114 	 * is used in order to detect that same element has been just
1115 	 * added to the list from another CPU: the winner observes
1116 	 * new->next == new.
1117 	 */
1118 	if (cmpxchg(&new->next, new, head) != new)
1119 		return false;
1120 
1121 	/*
1122 	 * Initially ->next of a new element must be updated with the head
1123 	 * (we are inserting to the tail) and only then pointers are atomically
1124 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1125 	 * updated before pointers are actually swapped and pointers are
1126 	 * swapped before prev->next is updated.
1127 	 */
1128 
1129 	prev = xchg(&head->prev, new);
1130 
1131 	/*
1132 	 * It is safe to modify prev->next and new->prev, because a new element
1133 	 * is added only to the tail and new->next is updated before XCHG.
1134 	 */
1135 
1136 	prev->next = new;
1137 	new->prev = prev;
1138 
1139 	return true;
1140 }
1141 
1142 /**
1143  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1144  * i.e. multiple CPUs are allowed to call this function concurrently.
1145  *
1146  * Returns %false if epi element has been already chained, %true otherwise.
1147  */
1148 static inline bool chain_epi_lockless(struct epitem *epi)
1149 {
1150 	struct eventpoll *ep = epi->ep;
1151 
1152 	/* Check that the same epi has not been just chained from another CPU */
1153 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1154 		return false;
1155 
1156 	/* Atomically exchange tail */
1157 	epi->next = xchg(&ep->ovflist, epi);
1158 
1159 	return true;
1160 }
1161 
1162 /*
1163  * This is the callback that is passed to the wait queue wakeup
1164  * mechanism. It is called by the stored file descriptors when they
1165  * have events to report.
1166  *
1167  * This callback takes a read lock in order not to content with concurrent
1168  * events from another file descriptors, thus all modifications to ->rdllist
1169  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1170  * ep_scan_ready_list(), which stops all list modifications and guarantees
1171  * that lists state is seen correctly.
1172  *
1173  * Another thing worth to mention is that ep_poll_callback() can be called
1174  * concurrently for the same @epi from different CPUs if poll table was inited
1175  * with several wait queues entries.  Plural wakeup from different CPUs of a
1176  * single wait queue is serialized by wq.lock, but the case when multiple wait
1177  * queues are used should be detected accordingly.  This is detected using
1178  * cmpxchg() operation.
1179  */
1180 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1181 {
1182 	int pwake = 0;
1183 	struct epitem *epi = ep_item_from_wait(wait);
1184 	struct eventpoll *ep = epi->ep;
1185 	__poll_t pollflags = key_to_poll(key);
1186 	unsigned long flags;
1187 	int ewake = 0;
1188 
1189 	read_lock_irqsave(&ep->lock, flags);
1190 
1191 	ep_set_busy_poll_napi_id(epi);
1192 
1193 	/*
1194 	 * If the event mask does not contain any poll(2) event, we consider the
1195 	 * descriptor to be disabled. This condition is likely the effect of the
1196 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1197 	 * until the next EPOLL_CTL_MOD will be issued.
1198 	 */
1199 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1200 		goto out_unlock;
1201 
1202 	/*
1203 	 * Check the events coming with the callback. At this stage, not
1204 	 * every device reports the events in the "key" parameter of the
1205 	 * callback. We need to be able to handle both cases here, hence the
1206 	 * test for "key" != NULL before the event match test.
1207 	 */
1208 	if (pollflags && !(pollflags & epi->event.events))
1209 		goto out_unlock;
1210 
1211 	/*
1212 	 * If we are transferring events to userspace, we can hold no locks
1213 	 * (because we're accessing user memory, and because of linux f_op->poll()
1214 	 * semantics). All the events that happen during that period of time are
1215 	 * chained in ep->ovflist and requeued later on.
1216 	 */
1217 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1218 		if (epi->next == EP_UNACTIVE_PTR &&
1219 		    chain_epi_lockless(epi))
1220 			ep_pm_stay_awake_rcu(epi);
1221 		goto out_unlock;
1222 	}
1223 
1224 	/* If this file is already in the ready list we exit soon */
1225 	if (!ep_is_linked(epi) &&
1226 	    list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) {
1227 		ep_pm_stay_awake_rcu(epi);
1228 	}
1229 
1230 	/*
1231 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1232 	 * wait list.
1233 	 */
1234 	if (waitqueue_active(&ep->wq)) {
1235 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1236 					!(pollflags & POLLFREE)) {
1237 			switch (pollflags & EPOLLINOUT_BITS) {
1238 			case EPOLLIN:
1239 				if (epi->event.events & EPOLLIN)
1240 					ewake = 1;
1241 				break;
1242 			case EPOLLOUT:
1243 				if (epi->event.events & EPOLLOUT)
1244 					ewake = 1;
1245 				break;
1246 			case 0:
1247 				ewake = 1;
1248 				break;
1249 			}
1250 		}
1251 		wake_up(&ep->wq);
1252 	}
1253 	if (waitqueue_active(&ep->poll_wait))
1254 		pwake++;
1255 
1256 out_unlock:
1257 	read_unlock_irqrestore(&ep->lock, flags);
1258 
1259 	/* We have to call this outside the lock */
1260 	if (pwake)
1261 		ep_poll_safewake(&ep->poll_wait);
1262 
1263 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1264 		ewake = 1;
1265 
1266 	if (pollflags & POLLFREE) {
1267 		/*
1268 		 * If we race with ep_remove_wait_queue() it can miss
1269 		 * ->whead = NULL and do another remove_wait_queue() after
1270 		 * us, so we can't use __remove_wait_queue().
1271 		 */
1272 		list_del_init(&wait->entry);
1273 		/*
1274 		 * ->whead != NULL protects us from the race with ep_free()
1275 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1276 		 * held by the caller. Once we nullify it, nothing protects
1277 		 * ep/epi or even wait.
1278 		 */
1279 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1280 	}
1281 
1282 	return ewake;
1283 }
1284 
1285 /*
1286  * This is the callback that is used to add our wait queue to the
1287  * target file wakeup lists.
1288  */
1289 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1290 				 poll_table *pt)
1291 {
1292 	struct epitem *epi = ep_item_from_epqueue(pt);
1293 	struct eppoll_entry *pwq;
1294 
1295 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1296 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1297 		pwq->whead = whead;
1298 		pwq->base = epi;
1299 		if (epi->event.events & EPOLLEXCLUSIVE)
1300 			add_wait_queue_exclusive(whead, &pwq->wait);
1301 		else
1302 			add_wait_queue(whead, &pwq->wait);
1303 		list_add_tail(&pwq->llink, &epi->pwqlist);
1304 		epi->nwait++;
1305 	} else {
1306 		/* We have to signal that an error occurred */
1307 		epi->nwait = -1;
1308 	}
1309 }
1310 
1311 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1312 {
1313 	int kcmp;
1314 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1315 	struct epitem *epic;
1316 	bool leftmost = true;
1317 
1318 	while (*p) {
1319 		parent = *p;
1320 		epic = rb_entry(parent, struct epitem, rbn);
1321 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1322 		if (kcmp > 0) {
1323 			p = &parent->rb_right;
1324 			leftmost = false;
1325 		} else
1326 			p = &parent->rb_left;
1327 	}
1328 	rb_link_node(&epi->rbn, parent, p);
1329 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1330 }
1331 
1332 
1333 
1334 #define PATH_ARR_SIZE 5
1335 /*
1336  * These are the number paths of length 1 to 5, that we are allowing to emanate
1337  * from a single file of interest. For example, we allow 1000 paths of length
1338  * 1, to emanate from each file of interest. This essentially represents the
1339  * potential wakeup paths, which need to be limited in order to avoid massive
1340  * uncontrolled wakeup storms. The common use case should be a single ep which
1341  * is connected to n file sources. In this case each file source has 1 path
1342  * of length 1. Thus, the numbers below should be more than sufficient. These
1343  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1344  * and delete can't add additional paths. Protected by the epmutex.
1345  */
1346 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1347 static int path_count[PATH_ARR_SIZE];
1348 
1349 static int path_count_inc(int nests)
1350 {
1351 	/* Allow an arbitrary number of depth 1 paths */
1352 	if (nests == 0)
1353 		return 0;
1354 
1355 	if (++path_count[nests] > path_limits[nests])
1356 		return -1;
1357 	return 0;
1358 }
1359 
1360 static void path_count_init(void)
1361 {
1362 	int i;
1363 
1364 	for (i = 0; i < PATH_ARR_SIZE; i++)
1365 		path_count[i] = 0;
1366 }
1367 
1368 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1369 {
1370 	int error = 0;
1371 	struct file *file = priv;
1372 	struct file *child_file;
1373 	struct epitem *epi;
1374 
1375 	/* CTL_DEL can remove links here, but that can't increase our count */
1376 	rcu_read_lock();
1377 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1378 		child_file = epi->ep->file;
1379 		if (is_file_epoll(child_file)) {
1380 			if (list_empty(&child_file->f_ep_links)) {
1381 				if (path_count_inc(call_nests)) {
1382 					error = -1;
1383 					break;
1384 				}
1385 			} else {
1386 				error = ep_call_nested(&poll_loop_ncalls,
1387 							reverse_path_check_proc,
1388 							child_file, child_file,
1389 							current);
1390 			}
1391 			if (error != 0)
1392 				break;
1393 		} else {
1394 			printk(KERN_ERR "reverse_path_check_proc: "
1395 				"file is not an ep!\n");
1396 		}
1397 	}
1398 	rcu_read_unlock();
1399 	return error;
1400 }
1401 
1402 /**
1403  * reverse_path_check - The tfile_check_list is list of file *, which have
1404  *                      links that are proposed to be newly added. We need to
1405  *                      make sure that those added links don't add too many
1406  *                      paths such that we will spend all our time waking up
1407  *                      eventpoll objects.
1408  *
1409  * Returns: Returns zero if the proposed links don't create too many paths,
1410  *	    -1 otherwise.
1411  */
1412 static int reverse_path_check(void)
1413 {
1414 	int error = 0;
1415 	struct file *current_file;
1416 
1417 	/* let's call this for all tfiles */
1418 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1419 		path_count_init();
1420 		error = ep_call_nested(&poll_loop_ncalls,
1421 					reverse_path_check_proc, current_file,
1422 					current_file, current);
1423 		if (error)
1424 			break;
1425 	}
1426 	return error;
1427 }
1428 
1429 static int ep_create_wakeup_source(struct epitem *epi)
1430 {
1431 	const char *name;
1432 	struct wakeup_source *ws;
1433 
1434 	if (!epi->ep->ws) {
1435 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1436 		if (!epi->ep->ws)
1437 			return -ENOMEM;
1438 	}
1439 
1440 	name = epi->ffd.file->f_path.dentry->d_name.name;
1441 	ws = wakeup_source_register(NULL, name);
1442 
1443 	if (!ws)
1444 		return -ENOMEM;
1445 	rcu_assign_pointer(epi->ws, ws);
1446 
1447 	return 0;
1448 }
1449 
1450 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1451 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1452 {
1453 	struct wakeup_source *ws = ep_wakeup_source(epi);
1454 
1455 	RCU_INIT_POINTER(epi->ws, NULL);
1456 
1457 	/*
1458 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1459 	 * used internally by wakeup_source_remove, too (called by
1460 	 * wakeup_source_unregister), so we cannot use call_rcu
1461 	 */
1462 	synchronize_rcu();
1463 	wakeup_source_unregister(ws);
1464 }
1465 
1466 /*
1467  * Must be called with "mtx" held.
1468  */
1469 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1470 		     struct file *tfile, int fd, int full_check)
1471 {
1472 	int error, pwake = 0;
1473 	__poll_t revents;
1474 	long user_watches;
1475 	struct epitem *epi;
1476 	struct ep_pqueue epq;
1477 
1478 	lockdep_assert_irqs_enabled();
1479 
1480 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1481 	if (unlikely(user_watches >= max_user_watches))
1482 		return -ENOSPC;
1483 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1484 		return -ENOMEM;
1485 
1486 	/* Item initialization follow here ... */
1487 	INIT_LIST_HEAD(&epi->rdllink);
1488 	INIT_LIST_HEAD(&epi->fllink);
1489 	INIT_LIST_HEAD(&epi->pwqlist);
1490 	epi->ep = ep;
1491 	ep_set_ffd(&epi->ffd, tfile, fd);
1492 	epi->event = *event;
1493 	epi->nwait = 0;
1494 	epi->next = EP_UNACTIVE_PTR;
1495 	if (epi->event.events & EPOLLWAKEUP) {
1496 		error = ep_create_wakeup_source(epi);
1497 		if (error)
1498 			goto error_create_wakeup_source;
1499 	} else {
1500 		RCU_INIT_POINTER(epi->ws, NULL);
1501 	}
1502 
1503 	/* Initialize the poll table using the queue callback */
1504 	epq.epi = epi;
1505 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1506 
1507 	/*
1508 	 * Attach the item to the poll hooks and get current event bits.
1509 	 * We can safely use the file* here because its usage count has
1510 	 * been increased by the caller of this function. Note that after
1511 	 * this operation completes, the poll callback can start hitting
1512 	 * the new item.
1513 	 */
1514 	revents = ep_item_poll(epi, &epq.pt, 1);
1515 
1516 	/*
1517 	 * We have to check if something went wrong during the poll wait queue
1518 	 * install process. Namely an allocation for a wait queue failed due
1519 	 * high memory pressure.
1520 	 */
1521 	error = -ENOMEM;
1522 	if (epi->nwait < 0)
1523 		goto error_unregister;
1524 
1525 	/* Add the current item to the list of active epoll hook for this file */
1526 	spin_lock(&tfile->f_lock);
1527 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1528 	spin_unlock(&tfile->f_lock);
1529 
1530 	/*
1531 	 * Add the current item to the RB tree. All RB tree operations are
1532 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1533 	 */
1534 	ep_rbtree_insert(ep, epi);
1535 
1536 	/* now check if we've created too many backpaths */
1537 	error = -EINVAL;
1538 	if (full_check && reverse_path_check())
1539 		goto error_remove_epi;
1540 
1541 	/* We have to drop the new item inside our item list to keep track of it */
1542 	write_lock_irq(&ep->lock);
1543 
1544 	/* record NAPI ID of new item if present */
1545 	ep_set_busy_poll_napi_id(epi);
1546 
1547 	/* If the file is already "ready" we drop it inside the ready list */
1548 	if (revents && !ep_is_linked(epi)) {
1549 		list_add_tail(&epi->rdllink, &ep->rdllist);
1550 		ep_pm_stay_awake(epi);
1551 
1552 		/* Notify waiting tasks that events are available */
1553 		if (waitqueue_active(&ep->wq))
1554 			wake_up(&ep->wq);
1555 		if (waitqueue_active(&ep->poll_wait))
1556 			pwake++;
1557 	}
1558 
1559 	write_unlock_irq(&ep->lock);
1560 
1561 	atomic_long_inc(&ep->user->epoll_watches);
1562 
1563 	/* We have to call this outside the lock */
1564 	if (pwake)
1565 		ep_poll_safewake(&ep->poll_wait);
1566 
1567 	return 0;
1568 
1569 error_remove_epi:
1570 	spin_lock(&tfile->f_lock);
1571 	list_del_rcu(&epi->fllink);
1572 	spin_unlock(&tfile->f_lock);
1573 
1574 	rb_erase_cached(&epi->rbn, &ep->rbr);
1575 
1576 error_unregister:
1577 	ep_unregister_pollwait(ep, epi);
1578 
1579 	/*
1580 	 * We need to do this because an event could have been arrived on some
1581 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1582 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1583 	 * And ep_insert() is called with "mtx" held.
1584 	 */
1585 	write_lock_irq(&ep->lock);
1586 	if (ep_is_linked(epi))
1587 		list_del_init(&epi->rdllink);
1588 	write_unlock_irq(&ep->lock);
1589 
1590 	wakeup_source_unregister(ep_wakeup_source(epi));
1591 
1592 error_create_wakeup_source:
1593 	kmem_cache_free(epi_cache, epi);
1594 
1595 	return error;
1596 }
1597 
1598 /*
1599  * Modify the interest event mask by dropping an event if the new mask
1600  * has a match in the current file status. Must be called with "mtx" held.
1601  */
1602 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1603 		     const struct epoll_event *event)
1604 {
1605 	int pwake = 0;
1606 	poll_table pt;
1607 
1608 	lockdep_assert_irqs_enabled();
1609 
1610 	init_poll_funcptr(&pt, NULL);
1611 
1612 	/*
1613 	 * Set the new event interest mask before calling f_op->poll();
1614 	 * otherwise we might miss an event that happens between the
1615 	 * f_op->poll() call and the new event set registering.
1616 	 */
1617 	epi->event.events = event->events; /* need barrier below */
1618 	epi->event.data = event->data; /* protected by mtx */
1619 	if (epi->event.events & EPOLLWAKEUP) {
1620 		if (!ep_has_wakeup_source(epi))
1621 			ep_create_wakeup_source(epi);
1622 	} else if (ep_has_wakeup_source(epi)) {
1623 		ep_destroy_wakeup_source(epi);
1624 	}
1625 
1626 	/*
1627 	 * The following barrier has two effects:
1628 	 *
1629 	 * 1) Flush epi changes above to other CPUs.  This ensures
1630 	 *    we do not miss events from ep_poll_callback if an
1631 	 *    event occurs immediately after we call f_op->poll().
1632 	 *    We need this because we did not take ep->lock while
1633 	 *    changing epi above (but ep_poll_callback does take
1634 	 *    ep->lock).
1635 	 *
1636 	 * 2) We also need to ensure we do not miss _past_ events
1637 	 *    when calling f_op->poll().  This barrier also
1638 	 *    pairs with the barrier in wq_has_sleeper (see
1639 	 *    comments for wq_has_sleeper).
1640 	 *
1641 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1642 	 * (or both) will notice the readiness of an item.
1643 	 */
1644 	smp_mb();
1645 
1646 	/*
1647 	 * Get current event bits. We can safely use the file* here because
1648 	 * its usage count has been increased by the caller of this function.
1649 	 * If the item is "hot" and it is not registered inside the ready
1650 	 * list, push it inside.
1651 	 */
1652 	if (ep_item_poll(epi, &pt, 1)) {
1653 		write_lock_irq(&ep->lock);
1654 		if (!ep_is_linked(epi)) {
1655 			list_add_tail(&epi->rdllink, &ep->rdllist);
1656 			ep_pm_stay_awake(epi);
1657 
1658 			/* Notify waiting tasks that events are available */
1659 			if (waitqueue_active(&ep->wq))
1660 				wake_up(&ep->wq);
1661 			if (waitqueue_active(&ep->poll_wait))
1662 				pwake++;
1663 		}
1664 		write_unlock_irq(&ep->lock);
1665 	}
1666 
1667 	/* We have to call this outside the lock */
1668 	if (pwake)
1669 		ep_poll_safewake(&ep->poll_wait);
1670 
1671 	return 0;
1672 }
1673 
1674 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1675 			       void *priv)
1676 {
1677 	struct ep_send_events_data *esed = priv;
1678 	__poll_t revents;
1679 	struct epitem *epi, *tmp;
1680 	struct epoll_event __user *uevent = esed->events;
1681 	struct wakeup_source *ws;
1682 	poll_table pt;
1683 
1684 	init_poll_funcptr(&pt, NULL);
1685 	esed->res = 0;
1686 
1687 	/*
1688 	 * We can loop without lock because we are passed a task private list.
1689 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1690 	 * holding "mtx" during this call.
1691 	 */
1692 	lockdep_assert_held(&ep->mtx);
1693 
1694 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
1695 		if (esed->res >= esed->maxevents)
1696 			break;
1697 
1698 		/*
1699 		 * Activate ep->ws before deactivating epi->ws to prevent
1700 		 * triggering auto-suspend here (in case we reactive epi->ws
1701 		 * below).
1702 		 *
1703 		 * This could be rearranged to delay the deactivation of epi->ws
1704 		 * instead, but then epi->ws would temporarily be out of sync
1705 		 * with ep_is_linked().
1706 		 */
1707 		ws = ep_wakeup_source(epi);
1708 		if (ws) {
1709 			if (ws->active)
1710 				__pm_stay_awake(ep->ws);
1711 			__pm_relax(ws);
1712 		}
1713 
1714 		list_del_init(&epi->rdllink);
1715 
1716 		/*
1717 		 * If the event mask intersect the caller-requested one,
1718 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1719 		 * is holding ep->mtx, so no operations coming from userspace
1720 		 * can change the item.
1721 		 */
1722 		revents = ep_item_poll(epi, &pt, 1);
1723 		if (!revents)
1724 			continue;
1725 
1726 		if (__put_user(revents, &uevent->events) ||
1727 		    __put_user(epi->event.data, &uevent->data)) {
1728 			list_add(&epi->rdllink, head);
1729 			ep_pm_stay_awake(epi);
1730 			if (!esed->res)
1731 				esed->res = -EFAULT;
1732 			return 0;
1733 		}
1734 		esed->res++;
1735 		uevent++;
1736 		if (epi->event.events & EPOLLONESHOT)
1737 			epi->event.events &= EP_PRIVATE_BITS;
1738 		else if (!(epi->event.events & EPOLLET)) {
1739 			/*
1740 			 * If this file has been added with Level
1741 			 * Trigger mode, we need to insert back inside
1742 			 * the ready list, so that the next call to
1743 			 * epoll_wait() will check again the events
1744 			 * availability. At this point, no one can insert
1745 			 * into ep->rdllist besides us. The epoll_ctl()
1746 			 * callers are locked out by
1747 			 * ep_scan_ready_list() holding "mtx" and the
1748 			 * poll callback will queue them in ep->ovflist.
1749 			 */
1750 			list_add_tail(&epi->rdllink, &ep->rdllist);
1751 			ep_pm_stay_awake(epi);
1752 		}
1753 	}
1754 
1755 	return 0;
1756 }
1757 
1758 static int ep_send_events(struct eventpoll *ep,
1759 			  struct epoll_event __user *events, int maxevents)
1760 {
1761 	struct ep_send_events_data esed;
1762 
1763 	esed.maxevents = maxevents;
1764 	esed.events = events;
1765 
1766 	ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1767 	return esed.res;
1768 }
1769 
1770 static inline struct timespec64 ep_set_mstimeout(long ms)
1771 {
1772 	struct timespec64 now, ts = {
1773 		.tv_sec = ms / MSEC_PER_SEC,
1774 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1775 	};
1776 
1777 	ktime_get_ts64(&now);
1778 	return timespec64_add_safe(now, ts);
1779 }
1780 
1781 /**
1782  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1783  *           event buffer.
1784  *
1785  * @ep: Pointer to the eventpoll context.
1786  * @events: Pointer to the userspace buffer where the ready events should be
1787  *          stored.
1788  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1789  * @timeout: Maximum timeout for the ready events fetch operation, in
1790  *           milliseconds. If the @timeout is zero, the function will not block,
1791  *           while if the @timeout is less than zero, the function will block
1792  *           until at least one event has been retrieved (or an error
1793  *           occurred).
1794  *
1795  * Returns: Returns the number of ready events which have been fetched, or an
1796  *          error code, in case of error.
1797  */
1798 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1799 		   int maxevents, long timeout)
1800 {
1801 	int res = 0, eavail, timed_out = 0;
1802 	u64 slack = 0;
1803 	bool waiter = false;
1804 	wait_queue_entry_t wait;
1805 	ktime_t expires, *to = NULL;
1806 
1807 	lockdep_assert_irqs_enabled();
1808 
1809 	if (timeout > 0) {
1810 		struct timespec64 end_time = ep_set_mstimeout(timeout);
1811 
1812 		slack = select_estimate_accuracy(&end_time);
1813 		to = &expires;
1814 		*to = timespec64_to_ktime(end_time);
1815 	} else if (timeout == 0) {
1816 		/*
1817 		 * Avoid the unnecessary trip to the wait queue loop, if the
1818 		 * caller specified a non blocking operation. We still need
1819 		 * lock because we could race and not see an epi being added
1820 		 * to the ready list while in irq callback. Thus incorrectly
1821 		 * returning 0 back to userspace.
1822 		 */
1823 		timed_out = 1;
1824 
1825 		write_lock_irq(&ep->lock);
1826 		eavail = ep_events_available(ep);
1827 		write_unlock_irq(&ep->lock);
1828 
1829 		goto send_events;
1830 	}
1831 
1832 fetch_events:
1833 
1834 	if (!ep_events_available(ep))
1835 		ep_busy_loop(ep, timed_out);
1836 
1837 	eavail = ep_events_available(ep);
1838 	if (eavail)
1839 		goto send_events;
1840 
1841 	/*
1842 	 * Busy poll timed out.  Drop NAPI ID for now, we can add
1843 	 * it back in when we have moved a socket with a valid NAPI
1844 	 * ID onto the ready list.
1845 	 */
1846 	ep_reset_busy_poll_napi_id(ep);
1847 
1848 	/*
1849 	 * We don't have any available event to return to the caller.  We need
1850 	 * to sleep here, and we will be woken by ep_poll_callback() when events
1851 	 * become available.
1852 	 */
1853 	if (!waiter) {
1854 		waiter = true;
1855 		init_waitqueue_entry(&wait, current);
1856 
1857 		spin_lock_irq(&ep->wq.lock);
1858 		__add_wait_queue_exclusive(&ep->wq, &wait);
1859 		spin_unlock_irq(&ep->wq.lock);
1860 	}
1861 
1862 	for (;;) {
1863 		/*
1864 		 * We don't want to sleep if the ep_poll_callback() sends us
1865 		 * a wakeup in between. That's why we set the task state
1866 		 * to TASK_INTERRUPTIBLE before doing the checks.
1867 		 */
1868 		set_current_state(TASK_INTERRUPTIBLE);
1869 		/*
1870 		 * Always short-circuit for fatal signals to allow
1871 		 * threads to make a timely exit without the chance of
1872 		 * finding more events available and fetching
1873 		 * repeatedly.
1874 		 */
1875 		if (fatal_signal_pending(current)) {
1876 			res = -EINTR;
1877 			break;
1878 		}
1879 
1880 		eavail = ep_events_available(ep);
1881 		if (eavail)
1882 			break;
1883 		if (signal_pending(current)) {
1884 			res = -EINTR;
1885 			break;
1886 		}
1887 
1888 		if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
1889 			timed_out = 1;
1890 			break;
1891 		}
1892 	}
1893 
1894 	__set_current_state(TASK_RUNNING);
1895 
1896 send_events:
1897 	/*
1898 	 * Try to transfer events to user space. In case we get 0 events and
1899 	 * there's still timeout left over, we go trying again in search of
1900 	 * more luck.
1901 	 */
1902 	if (!res && eavail &&
1903 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1904 		goto fetch_events;
1905 
1906 	if (waiter) {
1907 		spin_lock_irq(&ep->wq.lock);
1908 		__remove_wait_queue(&ep->wq, &wait);
1909 		spin_unlock_irq(&ep->wq.lock);
1910 	}
1911 
1912 	return res;
1913 }
1914 
1915 /**
1916  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1917  *                      API, to verify that adding an epoll file inside another
1918  *                      epoll structure, does not violate the constraints, in
1919  *                      terms of closed loops, or too deep chains (which can
1920  *                      result in excessive stack usage).
1921  *
1922  * @priv: Pointer to the epoll file to be currently checked.
1923  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1924  *          data structure pointer.
1925  * @call_nests: Current dept of the @ep_call_nested() call stack.
1926  *
1927  * Returns: Returns zero if adding the epoll @file inside current epoll
1928  *          structure @ep does not violate the constraints, or -1 otherwise.
1929  */
1930 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1931 {
1932 	int error = 0;
1933 	struct file *file = priv;
1934 	struct eventpoll *ep = file->private_data;
1935 	struct eventpoll *ep_tovisit;
1936 	struct rb_node *rbp;
1937 	struct epitem *epi;
1938 
1939 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1940 	ep->visited = 1;
1941 	list_add(&ep->visited_list_link, &visited_list);
1942 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1943 		epi = rb_entry(rbp, struct epitem, rbn);
1944 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1945 			ep_tovisit = epi->ffd.file->private_data;
1946 			if (ep_tovisit->visited)
1947 				continue;
1948 			error = ep_call_nested(&poll_loop_ncalls,
1949 					ep_loop_check_proc, epi->ffd.file,
1950 					ep_tovisit, current);
1951 			if (error != 0)
1952 				break;
1953 		} else {
1954 			/*
1955 			 * If we've reached a file that is not associated with
1956 			 * an ep, then we need to check if the newly added
1957 			 * links are going to add too many wakeup paths. We do
1958 			 * this by adding it to the tfile_check_list, if it's
1959 			 * not already there, and calling reverse_path_check()
1960 			 * during ep_insert().
1961 			 */
1962 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1963 				list_add(&epi->ffd.file->f_tfile_llink,
1964 					 &tfile_check_list);
1965 		}
1966 	}
1967 	mutex_unlock(&ep->mtx);
1968 
1969 	return error;
1970 }
1971 
1972 /**
1973  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1974  *                 another epoll file (represented by @ep) does not create
1975  *                 closed loops or too deep chains.
1976  *
1977  * @ep: Pointer to the epoll private data structure.
1978  * @file: Pointer to the epoll file to be checked.
1979  *
1980  * Returns: Returns zero if adding the epoll @file inside current epoll
1981  *          structure @ep does not violate the constraints, or -1 otherwise.
1982  */
1983 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1984 {
1985 	int ret;
1986 	struct eventpoll *ep_cur, *ep_next;
1987 
1988 	ret = ep_call_nested(&poll_loop_ncalls,
1989 			      ep_loop_check_proc, file, ep, current);
1990 	/* clear visited list */
1991 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1992 							visited_list_link) {
1993 		ep_cur->visited = 0;
1994 		list_del(&ep_cur->visited_list_link);
1995 	}
1996 	return ret;
1997 }
1998 
1999 static void clear_tfile_check_list(void)
2000 {
2001 	struct file *file;
2002 
2003 	/* first clear the tfile_check_list */
2004 	while (!list_empty(&tfile_check_list)) {
2005 		file = list_first_entry(&tfile_check_list, struct file,
2006 					f_tfile_llink);
2007 		list_del_init(&file->f_tfile_llink);
2008 	}
2009 	INIT_LIST_HEAD(&tfile_check_list);
2010 }
2011 
2012 /*
2013  * Open an eventpoll file descriptor.
2014  */
2015 static int do_epoll_create(int flags)
2016 {
2017 	int error, fd;
2018 	struct eventpoll *ep = NULL;
2019 	struct file *file;
2020 
2021 	/* Check the EPOLL_* constant for consistency.  */
2022 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2023 
2024 	if (flags & ~EPOLL_CLOEXEC)
2025 		return -EINVAL;
2026 	/*
2027 	 * Create the internal data structure ("struct eventpoll").
2028 	 */
2029 	error = ep_alloc(&ep);
2030 	if (error < 0)
2031 		return error;
2032 	/*
2033 	 * Creates all the items needed to setup an eventpoll file. That is,
2034 	 * a file structure and a free file descriptor.
2035 	 */
2036 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2037 	if (fd < 0) {
2038 		error = fd;
2039 		goto out_free_ep;
2040 	}
2041 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2042 				 O_RDWR | (flags & O_CLOEXEC));
2043 	if (IS_ERR(file)) {
2044 		error = PTR_ERR(file);
2045 		goto out_free_fd;
2046 	}
2047 	ep->file = file;
2048 	fd_install(fd, file);
2049 	return fd;
2050 
2051 out_free_fd:
2052 	put_unused_fd(fd);
2053 out_free_ep:
2054 	ep_free(ep);
2055 	return error;
2056 }
2057 
2058 SYSCALL_DEFINE1(epoll_create1, int, flags)
2059 {
2060 	return do_epoll_create(flags);
2061 }
2062 
2063 SYSCALL_DEFINE1(epoll_create, int, size)
2064 {
2065 	if (size <= 0)
2066 		return -EINVAL;
2067 
2068 	return do_epoll_create(0);
2069 }
2070 
2071 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2072 				   bool nonblock)
2073 {
2074 	if (!nonblock) {
2075 		mutex_lock_nested(mutex, depth);
2076 		return 0;
2077 	}
2078 	if (mutex_trylock(mutex))
2079 		return 0;
2080 	return -EAGAIN;
2081 }
2082 
2083 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2084 		 bool nonblock)
2085 {
2086 	int error;
2087 	int full_check = 0;
2088 	struct fd f, tf;
2089 	struct eventpoll *ep;
2090 	struct epitem *epi;
2091 	struct eventpoll *tep = NULL;
2092 
2093 	error = -EBADF;
2094 	f = fdget(epfd);
2095 	if (!f.file)
2096 		goto error_return;
2097 
2098 	/* Get the "struct file *" for the target file */
2099 	tf = fdget(fd);
2100 	if (!tf.file)
2101 		goto error_fput;
2102 
2103 	/* The target file descriptor must support poll */
2104 	error = -EPERM;
2105 	if (!file_can_poll(tf.file))
2106 		goto error_tgt_fput;
2107 
2108 	/* Check if EPOLLWAKEUP is allowed */
2109 	if (ep_op_has_event(op))
2110 		ep_take_care_of_epollwakeup(epds);
2111 
2112 	/*
2113 	 * We have to check that the file structure underneath the file descriptor
2114 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2115 	 * adding an epoll file descriptor inside itself.
2116 	 */
2117 	error = -EINVAL;
2118 	if (f.file == tf.file || !is_file_epoll(f.file))
2119 		goto error_tgt_fput;
2120 
2121 	/*
2122 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2123 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2124 	 * Also, we do not currently supported nested exclusive wakeups.
2125 	 */
2126 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2127 		if (op == EPOLL_CTL_MOD)
2128 			goto error_tgt_fput;
2129 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2130 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2131 			goto error_tgt_fput;
2132 	}
2133 
2134 	/*
2135 	 * At this point it is safe to assume that the "private_data" contains
2136 	 * our own data structure.
2137 	 */
2138 	ep = f.file->private_data;
2139 
2140 	/*
2141 	 * When we insert an epoll file descriptor, inside another epoll file
2142 	 * descriptor, there is the change of creating closed loops, which are
2143 	 * better be handled here, than in more critical paths. While we are
2144 	 * checking for loops we also determine the list of files reachable
2145 	 * and hang them on the tfile_check_list, so we can check that we
2146 	 * haven't created too many possible wakeup paths.
2147 	 *
2148 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2149 	 * the epoll file descriptor is attaching directly to a wakeup source,
2150 	 * unless the epoll file descriptor is nested. The purpose of taking the
2151 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2152 	 * deep wakeup paths from forming in parallel through multiple
2153 	 * EPOLL_CTL_ADD operations.
2154 	 */
2155 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2156 	if (error)
2157 		goto error_tgt_fput;
2158 	if (op == EPOLL_CTL_ADD) {
2159 		if (!list_empty(&f.file->f_ep_links) ||
2160 						is_file_epoll(tf.file)) {
2161 			mutex_unlock(&ep->mtx);
2162 			error = epoll_mutex_lock(&epmutex, 0, nonblock);
2163 			if (error)
2164 				goto error_tgt_fput;
2165 			full_check = 1;
2166 			if (is_file_epoll(tf.file)) {
2167 				error = -ELOOP;
2168 				if (ep_loop_check(ep, tf.file) != 0) {
2169 					clear_tfile_check_list();
2170 					goto error_tgt_fput;
2171 				}
2172 			} else
2173 				list_add(&tf.file->f_tfile_llink,
2174 							&tfile_check_list);
2175 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2176 			if (error) {
2177 out_del:
2178 				list_del(&tf.file->f_tfile_llink);
2179 				goto error_tgt_fput;
2180 			}
2181 			if (is_file_epoll(tf.file)) {
2182 				tep = tf.file->private_data;
2183 				error = epoll_mutex_lock(&tep->mtx, 1, nonblock);
2184 				if (error) {
2185 					mutex_unlock(&ep->mtx);
2186 					goto out_del;
2187 				}
2188 			}
2189 		}
2190 	}
2191 
2192 	/*
2193 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2194 	 * above, we can be sure to be able to use the item looked up by
2195 	 * ep_find() till we release the mutex.
2196 	 */
2197 	epi = ep_find(ep, tf.file, fd);
2198 
2199 	error = -EINVAL;
2200 	switch (op) {
2201 	case EPOLL_CTL_ADD:
2202 		if (!epi) {
2203 			epds->events |= EPOLLERR | EPOLLHUP;
2204 			error = ep_insert(ep, epds, tf.file, fd, full_check);
2205 		} else
2206 			error = -EEXIST;
2207 		if (full_check)
2208 			clear_tfile_check_list();
2209 		break;
2210 	case EPOLL_CTL_DEL:
2211 		if (epi)
2212 			error = ep_remove(ep, epi);
2213 		else
2214 			error = -ENOENT;
2215 		break;
2216 	case EPOLL_CTL_MOD:
2217 		if (epi) {
2218 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2219 				epds->events |= EPOLLERR | EPOLLHUP;
2220 				error = ep_modify(ep, epi, epds);
2221 			}
2222 		} else
2223 			error = -ENOENT;
2224 		break;
2225 	}
2226 	if (tep != NULL)
2227 		mutex_unlock(&tep->mtx);
2228 	mutex_unlock(&ep->mtx);
2229 
2230 error_tgt_fput:
2231 	if (full_check)
2232 		mutex_unlock(&epmutex);
2233 
2234 	fdput(tf);
2235 error_fput:
2236 	fdput(f);
2237 error_return:
2238 
2239 	return error;
2240 }
2241 
2242 /*
2243  * The following function implements the controller interface for
2244  * the eventpoll file that enables the insertion/removal/change of
2245  * file descriptors inside the interest set.
2246  */
2247 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2248 		struct epoll_event __user *, event)
2249 {
2250 	struct epoll_event epds;
2251 
2252 	if (ep_op_has_event(op) &&
2253 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2254 		return -EFAULT;
2255 
2256 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2257 }
2258 
2259 /*
2260  * Implement the event wait interface for the eventpoll file. It is the kernel
2261  * part of the user space epoll_wait(2).
2262  */
2263 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2264 			 int maxevents, int timeout)
2265 {
2266 	int error;
2267 	struct fd f;
2268 	struct eventpoll *ep;
2269 
2270 	/* The maximum number of event must be greater than zero */
2271 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2272 		return -EINVAL;
2273 
2274 	/* Verify that the area passed by the user is writeable */
2275 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2276 		return -EFAULT;
2277 
2278 	/* Get the "struct file *" for the eventpoll file */
2279 	f = fdget(epfd);
2280 	if (!f.file)
2281 		return -EBADF;
2282 
2283 	/*
2284 	 * We have to check that the file structure underneath the fd
2285 	 * the user passed to us _is_ an eventpoll file.
2286 	 */
2287 	error = -EINVAL;
2288 	if (!is_file_epoll(f.file))
2289 		goto error_fput;
2290 
2291 	/*
2292 	 * At this point it is safe to assume that the "private_data" contains
2293 	 * our own data structure.
2294 	 */
2295 	ep = f.file->private_data;
2296 
2297 	/* Time to fish for events ... */
2298 	error = ep_poll(ep, events, maxevents, timeout);
2299 
2300 error_fput:
2301 	fdput(f);
2302 	return error;
2303 }
2304 
2305 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2306 		int, maxevents, int, timeout)
2307 {
2308 	return do_epoll_wait(epfd, events, maxevents, timeout);
2309 }
2310 
2311 /*
2312  * Implement the event wait interface for the eventpoll file. It is the kernel
2313  * part of the user space epoll_pwait(2).
2314  */
2315 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2316 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2317 		size_t, sigsetsize)
2318 {
2319 	int error;
2320 
2321 	/*
2322 	 * If the caller wants a certain signal mask to be set during the wait,
2323 	 * we apply it here.
2324 	 */
2325 	error = set_user_sigmask(sigmask, sigsetsize);
2326 	if (error)
2327 		return error;
2328 
2329 	error = do_epoll_wait(epfd, events, maxevents, timeout);
2330 	restore_saved_sigmask_unless(error == -EINTR);
2331 
2332 	return error;
2333 }
2334 
2335 #ifdef CONFIG_COMPAT
2336 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2337 			struct epoll_event __user *, events,
2338 			int, maxevents, int, timeout,
2339 			const compat_sigset_t __user *, sigmask,
2340 			compat_size_t, sigsetsize)
2341 {
2342 	long err;
2343 
2344 	/*
2345 	 * If the caller wants a certain signal mask to be set during the wait,
2346 	 * we apply it here.
2347 	 */
2348 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2349 	if (err)
2350 		return err;
2351 
2352 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2353 	restore_saved_sigmask_unless(err == -EINTR);
2354 
2355 	return err;
2356 }
2357 #endif
2358 
2359 static int __init eventpoll_init(void)
2360 {
2361 	struct sysinfo si;
2362 
2363 	si_meminfo(&si);
2364 	/*
2365 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2366 	 */
2367 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2368 		EP_ITEM_COST;
2369 	BUG_ON(max_user_watches < 0);
2370 
2371 	/*
2372 	 * Initialize the structure used to perform epoll file descriptor
2373 	 * inclusion loops checks.
2374 	 */
2375 	ep_nested_calls_init(&poll_loop_ncalls);
2376 
2377 	/*
2378 	 * We can have many thousands of epitems, so prevent this from
2379 	 * using an extra cache line on 64-bit (and smaller) CPUs
2380 	 */
2381 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2382 
2383 	/* Allocates slab cache used to allocate "struct epitem" items */
2384 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2385 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2386 
2387 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2388 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2389 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2390 
2391 	return 0;
2392 }
2393 fs_initcall(eventpoll_init);
2394