1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <net/busy_poll.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (rwlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a rwlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 66 * It is also acquired when inserting an epoll fd onto another epoll 67 * fd. We do this so that we walk the epoll tree and ensure that this 68 * insertion does not create a cycle of epoll file descriptors, which 69 * could lead to deadlock. We need a global mutex to prevent two 70 * simultaneous inserts (A into B and B into A) from racing and 71 * constructing a cycle without either insert observing that it is 72 * going to. 73 * It is necessary to acquire multiple "ep->mtx"es at once in the 74 * case when one epoll fd is added to another. In this case, we 75 * always acquire the locks in the order of nesting (i.e. after 76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 77 * before e2->mtx). Since we disallow cycles of epoll file 78 * descriptors, this ensures that the mutexes are well-ordered. In 79 * order to communicate this nesting to lockdep, when walking a tree 80 * of epoll file descriptors, we use the current recursion depth as 81 * the lockdep subkey. 82 * It is possible to drop the "ep->mtx" and to use the global 83 * mutex "epmutex" (together with "ep->lock") to have it working, 84 * but having "ep->mtx" will make the interface more scalable. 85 * Events that require holding "epmutex" are very rare, while for 86 * normal operations the epoll private "ep->mtx" will guarantee 87 * a better scalability. 88 */ 89 90 /* Epoll private bits inside the event mask */ 91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 92 93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 94 95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 97 98 /* Maximum number of nesting allowed inside epoll sets */ 99 #define EP_MAX_NESTS 4 100 101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 102 103 #define EP_UNACTIVE_PTR ((void *) -1L) 104 105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 106 107 struct epoll_filefd { 108 struct file *file; 109 int fd; 110 } __packed; 111 112 /* 113 * Structure used to track possible nested calls, for too deep recursions 114 * and loop cycles. 115 */ 116 struct nested_call_node { 117 struct list_head llink; 118 void *cookie; 119 void *ctx; 120 }; 121 122 /* 123 * This structure is used as collector for nested calls, to check for 124 * maximum recursion dept and loop cycles. 125 */ 126 struct nested_calls { 127 struct list_head tasks_call_list; 128 spinlock_t lock; 129 }; 130 131 /* 132 * Each file descriptor added to the eventpoll interface will 133 * have an entry of this type linked to the "rbr" RB tree. 134 * Avoid increasing the size of this struct, there can be many thousands 135 * of these on a server and we do not want this to take another cache line. 136 */ 137 struct epitem { 138 union { 139 /* RB tree node links this structure to the eventpoll RB tree */ 140 struct rb_node rbn; 141 /* Used to free the struct epitem */ 142 struct rcu_head rcu; 143 }; 144 145 /* List header used to link this structure to the eventpoll ready list */ 146 struct list_head rdllink; 147 148 /* 149 * Works together "struct eventpoll"->ovflist in keeping the 150 * single linked chain of items. 151 */ 152 struct epitem *next; 153 154 /* The file descriptor information this item refers to */ 155 struct epoll_filefd ffd; 156 157 /* Number of active wait queue attached to poll operations */ 158 int nwait; 159 160 /* List containing poll wait queues */ 161 struct list_head pwqlist; 162 163 /* The "container" of this item */ 164 struct eventpoll *ep; 165 166 /* List header used to link this item to the "struct file" items list */ 167 struct list_head fllink; 168 169 /* wakeup_source used when EPOLLWAKEUP is set */ 170 struct wakeup_source __rcu *ws; 171 172 /* The structure that describe the interested events and the source fd */ 173 struct epoll_event event; 174 }; 175 176 /* 177 * This structure is stored inside the "private_data" member of the file 178 * structure and represents the main data structure for the eventpoll 179 * interface. 180 */ 181 struct eventpoll { 182 /* 183 * This mutex is used to ensure that files are not removed 184 * while epoll is using them. This is held during the event 185 * collection loop, the file cleanup path, the epoll file exit 186 * code and the ctl operations. 187 */ 188 struct mutex mtx; 189 190 /* Wait queue used by sys_epoll_wait() */ 191 wait_queue_head_t wq; 192 193 /* Wait queue used by file->poll() */ 194 wait_queue_head_t poll_wait; 195 196 /* List of ready file descriptors */ 197 struct list_head rdllist; 198 199 /* Lock which protects rdllist and ovflist */ 200 rwlock_t lock; 201 202 /* RB tree root used to store monitored fd structs */ 203 struct rb_root_cached rbr; 204 205 /* 206 * This is a single linked list that chains all the "struct epitem" that 207 * happened while transferring ready events to userspace w/out 208 * holding ->lock. 209 */ 210 struct epitem *ovflist; 211 212 /* wakeup_source used when ep_scan_ready_list is running */ 213 struct wakeup_source *ws; 214 215 /* The user that created the eventpoll descriptor */ 216 struct user_struct *user; 217 218 struct file *file; 219 220 /* used to optimize loop detection check */ 221 int visited; 222 struct list_head visited_list_link; 223 224 #ifdef CONFIG_NET_RX_BUSY_POLL 225 /* used to track busy poll napi_id */ 226 unsigned int napi_id; 227 #endif 228 }; 229 230 /* Wait structure used by the poll hooks */ 231 struct eppoll_entry { 232 /* List header used to link this structure to the "struct epitem" */ 233 struct list_head llink; 234 235 /* The "base" pointer is set to the container "struct epitem" */ 236 struct epitem *base; 237 238 /* 239 * Wait queue item that will be linked to the target file wait 240 * queue head. 241 */ 242 wait_queue_entry_t wait; 243 244 /* The wait queue head that linked the "wait" wait queue item */ 245 wait_queue_head_t *whead; 246 }; 247 248 /* Wrapper struct used by poll queueing */ 249 struct ep_pqueue { 250 poll_table pt; 251 struct epitem *epi; 252 }; 253 254 /* Used by the ep_send_events() function as callback private data */ 255 struct ep_send_events_data { 256 int maxevents; 257 struct epoll_event __user *events; 258 int res; 259 }; 260 261 /* 262 * Configuration options available inside /proc/sys/fs/epoll/ 263 */ 264 /* Maximum number of epoll watched descriptors, per user */ 265 static long max_user_watches __read_mostly; 266 267 /* 268 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 269 */ 270 static DEFINE_MUTEX(epmutex); 271 272 /* Used to check for epoll file descriptor inclusion loops */ 273 static struct nested_calls poll_loop_ncalls; 274 275 /* Slab cache used to allocate "struct epitem" */ 276 static struct kmem_cache *epi_cache __read_mostly; 277 278 /* Slab cache used to allocate "struct eppoll_entry" */ 279 static struct kmem_cache *pwq_cache __read_mostly; 280 281 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 282 static LIST_HEAD(visited_list); 283 284 /* 285 * List of files with newly added links, where we may need to limit the number 286 * of emanating paths. Protected by the epmutex. 287 */ 288 static LIST_HEAD(tfile_check_list); 289 290 #ifdef CONFIG_SYSCTL 291 292 #include <linux/sysctl.h> 293 294 static long long_zero; 295 static long long_max = LONG_MAX; 296 297 struct ctl_table epoll_table[] = { 298 { 299 .procname = "max_user_watches", 300 .data = &max_user_watches, 301 .maxlen = sizeof(max_user_watches), 302 .mode = 0644, 303 .proc_handler = proc_doulongvec_minmax, 304 .extra1 = &long_zero, 305 .extra2 = &long_max, 306 }, 307 { } 308 }; 309 #endif /* CONFIG_SYSCTL */ 310 311 static const struct file_operations eventpoll_fops; 312 313 static inline int is_file_epoll(struct file *f) 314 { 315 return f->f_op == &eventpoll_fops; 316 } 317 318 /* Setup the structure that is used as key for the RB tree */ 319 static inline void ep_set_ffd(struct epoll_filefd *ffd, 320 struct file *file, int fd) 321 { 322 ffd->file = file; 323 ffd->fd = fd; 324 } 325 326 /* Compare RB tree keys */ 327 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 328 struct epoll_filefd *p2) 329 { 330 return (p1->file > p2->file ? +1: 331 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 332 } 333 334 /* Tells us if the item is currently linked */ 335 static inline int ep_is_linked(struct epitem *epi) 336 { 337 return !list_empty(&epi->rdllink); 338 } 339 340 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 341 { 342 return container_of(p, struct eppoll_entry, wait); 343 } 344 345 /* Get the "struct epitem" from a wait queue pointer */ 346 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 347 { 348 return container_of(p, struct eppoll_entry, wait)->base; 349 } 350 351 /* Get the "struct epitem" from an epoll queue wrapper */ 352 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 353 { 354 return container_of(p, struct ep_pqueue, pt)->epi; 355 } 356 357 /* Initialize the poll safe wake up structure */ 358 static void ep_nested_calls_init(struct nested_calls *ncalls) 359 { 360 INIT_LIST_HEAD(&ncalls->tasks_call_list); 361 spin_lock_init(&ncalls->lock); 362 } 363 364 /** 365 * ep_events_available - Checks if ready events might be available. 366 * 367 * @ep: Pointer to the eventpoll context. 368 * 369 * Returns: Returns a value different than zero if ready events are available, 370 * or zero otherwise. 371 */ 372 static inline int ep_events_available(struct eventpoll *ep) 373 { 374 return !list_empty_careful(&ep->rdllist) || 375 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 376 } 377 378 #ifdef CONFIG_NET_RX_BUSY_POLL 379 static bool ep_busy_loop_end(void *p, unsigned long start_time) 380 { 381 struct eventpoll *ep = p; 382 383 return ep_events_available(ep) || busy_loop_timeout(start_time); 384 } 385 386 /* 387 * Busy poll if globally on and supporting sockets found && no events, 388 * busy loop will return if need_resched or ep_events_available. 389 * 390 * we must do our busy polling with irqs enabled 391 */ 392 static void ep_busy_loop(struct eventpoll *ep, int nonblock) 393 { 394 unsigned int napi_id = READ_ONCE(ep->napi_id); 395 396 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) 397 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep); 398 } 399 400 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 401 { 402 if (ep->napi_id) 403 ep->napi_id = 0; 404 } 405 406 /* 407 * Set epoll busy poll NAPI ID from sk. 408 */ 409 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 410 { 411 struct eventpoll *ep; 412 unsigned int napi_id; 413 struct socket *sock; 414 struct sock *sk; 415 int err; 416 417 if (!net_busy_loop_on()) 418 return; 419 420 sock = sock_from_file(epi->ffd.file, &err); 421 if (!sock) 422 return; 423 424 sk = sock->sk; 425 if (!sk) 426 return; 427 428 napi_id = READ_ONCE(sk->sk_napi_id); 429 ep = epi->ep; 430 431 /* Non-NAPI IDs can be rejected 432 * or 433 * Nothing to do if we already have this ID 434 */ 435 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 436 return; 437 438 /* record NAPI ID for use in next busy poll */ 439 ep->napi_id = napi_id; 440 } 441 442 #else 443 444 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock) 445 { 446 } 447 448 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 449 { 450 } 451 452 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 453 { 454 } 455 456 #endif /* CONFIG_NET_RX_BUSY_POLL */ 457 458 /** 459 * ep_call_nested - Perform a bound (possibly) nested call, by checking 460 * that the recursion limit is not exceeded, and that 461 * the same nested call (by the meaning of same cookie) is 462 * no re-entered. 463 * 464 * @ncalls: Pointer to the nested_calls structure to be used for this call. 465 * @nproc: Nested call core function pointer. 466 * @priv: Opaque data to be passed to the @nproc callback. 467 * @cookie: Cookie to be used to identify this nested call. 468 * @ctx: This instance context. 469 * 470 * Returns: Returns the code returned by the @nproc callback, or -1 if 471 * the maximum recursion limit has been exceeded. 472 */ 473 static int ep_call_nested(struct nested_calls *ncalls, 474 int (*nproc)(void *, void *, int), void *priv, 475 void *cookie, void *ctx) 476 { 477 int error, call_nests = 0; 478 unsigned long flags; 479 struct list_head *lsthead = &ncalls->tasks_call_list; 480 struct nested_call_node *tncur; 481 struct nested_call_node tnode; 482 483 spin_lock_irqsave(&ncalls->lock, flags); 484 485 /* 486 * Try to see if the current task is already inside this wakeup call. 487 * We use a list here, since the population inside this set is always 488 * very much limited. 489 */ 490 list_for_each_entry(tncur, lsthead, llink) { 491 if (tncur->ctx == ctx && 492 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) { 493 /* 494 * Ops ... loop detected or maximum nest level reached. 495 * We abort this wake by breaking the cycle itself. 496 */ 497 error = -1; 498 goto out_unlock; 499 } 500 } 501 502 /* Add the current task and cookie to the list */ 503 tnode.ctx = ctx; 504 tnode.cookie = cookie; 505 list_add(&tnode.llink, lsthead); 506 507 spin_unlock_irqrestore(&ncalls->lock, flags); 508 509 /* Call the nested function */ 510 error = (*nproc)(priv, cookie, call_nests); 511 512 /* Remove the current task from the list */ 513 spin_lock_irqsave(&ncalls->lock, flags); 514 list_del(&tnode.llink); 515 out_unlock: 516 spin_unlock_irqrestore(&ncalls->lock, flags); 517 518 return error; 519 } 520 521 /* 522 * As described in commit 0ccf831cb lockdep: annotate epoll 523 * the use of wait queues used by epoll is done in a very controlled 524 * manner. Wake ups can nest inside each other, but are never done 525 * with the same locking. For example: 526 * 527 * dfd = socket(...); 528 * efd1 = epoll_create(); 529 * efd2 = epoll_create(); 530 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 531 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 532 * 533 * When a packet arrives to the device underneath "dfd", the net code will 534 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 535 * callback wakeup entry on that queue, and the wake_up() performed by the 536 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 537 * (efd1) notices that it may have some event ready, so it needs to wake up 538 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 539 * that ends up in another wake_up(), after having checked about the 540 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 541 * avoid stack blasting. 542 * 543 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 544 * this special case of epoll. 545 */ 546 #ifdef CONFIG_DEBUG_LOCK_ALLOC 547 548 static DEFINE_PER_CPU(int, wakeup_nest); 549 550 static void ep_poll_safewake(wait_queue_head_t *wq) 551 { 552 unsigned long flags; 553 int subclass; 554 555 local_irq_save(flags); 556 preempt_disable(); 557 subclass = __this_cpu_read(wakeup_nest); 558 spin_lock_nested(&wq->lock, subclass + 1); 559 __this_cpu_inc(wakeup_nest); 560 wake_up_locked_poll(wq, POLLIN); 561 __this_cpu_dec(wakeup_nest); 562 spin_unlock(&wq->lock); 563 local_irq_restore(flags); 564 preempt_enable(); 565 } 566 567 #else 568 569 static void ep_poll_safewake(wait_queue_head_t *wq) 570 { 571 wake_up_poll(wq, EPOLLIN); 572 } 573 574 #endif 575 576 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 577 { 578 wait_queue_head_t *whead; 579 580 rcu_read_lock(); 581 /* 582 * If it is cleared by POLLFREE, it should be rcu-safe. 583 * If we read NULL we need a barrier paired with 584 * smp_store_release() in ep_poll_callback(), otherwise 585 * we rely on whead->lock. 586 */ 587 whead = smp_load_acquire(&pwq->whead); 588 if (whead) 589 remove_wait_queue(whead, &pwq->wait); 590 rcu_read_unlock(); 591 } 592 593 /* 594 * This function unregisters poll callbacks from the associated file 595 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 596 * ep_free). 597 */ 598 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 599 { 600 struct list_head *lsthead = &epi->pwqlist; 601 struct eppoll_entry *pwq; 602 603 while (!list_empty(lsthead)) { 604 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 605 606 list_del(&pwq->llink); 607 ep_remove_wait_queue(pwq); 608 kmem_cache_free(pwq_cache, pwq); 609 } 610 } 611 612 /* call only when ep->mtx is held */ 613 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 614 { 615 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 616 } 617 618 /* call only when ep->mtx is held */ 619 static inline void ep_pm_stay_awake(struct epitem *epi) 620 { 621 struct wakeup_source *ws = ep_wakeup_source(epi); 622 623 if (ws) 624 __pm_stay_awake(ws); 625 } 626 627 static inline bool ep_has_wakeup_source(struct epitem *epi) 628 { 629 return rcu_access_pointer(epi->ws) ? true : false; 630 } 631 632 /* call when ep->mtx cannot be held (ep_poll_callback) */ 633 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 634 { 635 struct wakeup_source *ws; 636 637 rcu_read_lock(); 638 ws = rcu_dereference(epi->ws); 639 if (ws) 640 __pm_stay_awake(ws); 641 rcu_read_unlock(); 642 } 643 644 /** 645 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 646 * the scan code, to call f_op->poll(). Also allows for 647 * O(NumReady) performance. 648 * 649 * @ep: Pointer to the epoll private data structure. 650 * @sproc: Pointer to the scan callback. 651 * @priv: Private opaque data passed to the @sproc callback. 652 * @depth: The current depth of recursive f_op->poll calls. 653 * @ep_locked: caller already holds ep->mtx 654 * 655 * Returns: The same integer error code returned by the @sproc callback. 656 */ 657 static __poll_t ep_scan_ready_list(struct eventpoll *ep, 658 __poll_t (*sproc)(struct eventpoll *, 659 struct list_head *, void *), 660 void *priv, int depth, bool ep_locked) 661 { 662 __poll_t res; 663 struct epitem *epi, *nepi; 664 LIST_HEAD(txlist); 665 666 lockdep_assert_irqs_enabled(); 667 668 /* 669 * We need to lock this because we could be hit by 670 * eventpoll_release_file() and epoll_ctl(). 671 */ 672 673 if (!ep_locked) 674 mutex_lock_nested(&ep->mtx, depth); 675 676 /* 677 * Steal the ready list, and re-init the original one to the 678 * empty list. Also, set ep->ovflist to NULL so that events 679 * happening while looping w/out locks, are not lost. We cannot 680 * have the poll callback to queue directly on ep->rdllist, 681 * because we want the "sproc" callback to be able to do it 682 * in a lockless way. 683 */ 684 write_lock_irq(&ep->lock); 685 list_splice_init(&ep->rdllist, &txlist); 686 WRITE_ONCE(ep->ovflist, NULL); 687 write_unlock_irq(&ep->lock); 688 689 /* 690 * Now call the callback function. 691 */ 692 res = (*sproc)(ep, &txlist, priv); 693 694 write_lock_irq(&ep->lock); 695 /* 696 * During the time we spent inside the "sproc" callback, some 697 * other events might have been queued by the poll callback. 698 * We re-insert them inside the main ready-list here. 699 */ 700 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 701 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 702 /* 703 * We need to check if the item is already in the list. 704 * During the "sproc" callback execution time, items are 705 * queued into ->ovflist but the "txlist" might already 706 * contain them, and the list_splice() below takes care of them. 707 */ 708 if (!ep_is_linked(epi)) { 709 /* 710 * ->ovflist is LIFO, so we have to reverse it in order 711 * to keep in FIFO. 712 */ 713 list_add(&epi->rdllink, &ep->rdllist); 714 ep_pm_stay_awake(epi); 715 } 716 } 717 /* 718 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 719 * releasing the lock, events will be queued in the normal way inside 720 * ep->rdllist. 721 */ 722 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 723 724 /* 725 * Quickly re-inject items left on "txlist". 726 */ 727 list_splice(&txlist, &ep->rdllist); 728 __pm_relax(ep->ws); 729 write_unlock_irq(&ep->lock); 730 731 if (!ep_locked) 732 mutex_unlock(&ep->mtx); 733 734 return res; 735 } 736 737 static void epi_rcu_free(struct rcu_head *head) 738 { 739 struct epitem *epi = container_of(head, struct epitem, rcu); 740 kmem_cache_free(epi_cache, epi); 741 } 742 743 /* 744 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 745 * all the associated resources. Must be called with "mtx" held. 746 */ 747 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 748 { 749 struct file *file = epi->ffd.file; 750 751 lockdep_assert_irqs_enabled(); 752 753 /* 754 * Removes poll wait queue hooks. 755 */ 756 ep_unregister_pollwait(ep, epi); 757 758 /* Remove the current item from the list of epoll hooks */ 759 spin_lock(&file->f_lock); 760 list_del_rcu(&epi->fllink); 761 spin_unlock(&file->f_lock); 762 763 rb_erase_cached(&epi->rbn, &ep->rbr); 764 765 write_lock_irq(&ep->lock); 766 if (ep_is_linked(epi)) 767 list_del_init(&epi->rdllink); 768 write_unlock_irq(&ep->lock); 769 770 wakeup_source_unregister(ep_wakeup_source(epi)); 771 /* 772 * At this point it is safe to free the eventpoll item. Use the union 773 * field epi->rcu, since we are trying to minimize the size of 774 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 775 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 776 * use of the rbn field. 777 */ 778 call_rcu(&epi->rcu, epi_rcu_free); 779 780 atomic_long_dec(&ep->user->epoll_watches); 781 782 return 0; 783 } 784 785 static void ep_free(struct eventpoll *ep) 786 { 787 struct rb_node *rbp; 788 struct epitem *epi; 789 790 /* We need to release all tasks waiting for these file */ 791 if (waitqueue_active(&ep->poll_wait)) 792 ep_poll_safewake(&ep->poll_wait); 793 794 /* 795 * We need to lock this because we could be hit by 796 * eventpoll_release_file() while we're freeing the "struct eventpoll". 797 * We do not need to hold "ep->mtx" here because the epoll file 798 * is on the way to be removed and no one has references to it 799 * anymore. The only hit might come from eventpoll_release_file() but 800 * holding "epmutex" is sufficient here. 801 */ 802 mutex_lock(&epmutex); 803 804 /* 805 * Walks through the whole tree by unregistering poll callbacks. 806 */ 807 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 808 epi = rb_entry(rbp, struct epitem, rbn); 809 810 ep_unregister_pollwait(ep, epi); 811 cond_resched(); 812 } 813 814 /* 815 * Walks through the whole tree by freeing each "struct epitem". At this 816 * point we are sure no poll callbacks will be lingering around, and also by 817 * holding "epmutex" we can be sure that no file cleanup code will hit 818 * us during this operation. So we can avoid the lock on "ep->lock". 819 * We do not need to lock ep->mtx, either, we only do it to prevent 820 * a lockdep warning. 821 */ 822 mutex_lock(&ep->mtx); 823 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 824 epi = rb_entry(rbp, struct epitem, rbn); 825 ep_remove(ep, epi); 826 cond_resched(); 827 } 828 mutex_unlock(&ep->mtx); 829 830 mutex_unlock(&epmutex); 831 mutex_destroy(&ep->mtx); 832 free_uid(ep->user); 833 wakeup_source_unregister(ep->ws); 834 kfree(ep); 835 } 836 837 static int ep_eventpoll_release(struct inode *inode, struct file *file) 838 { 839 struct eventpoll *ep = file->private_data; 840 841 if (ep) 842 ep_free(ep); 843 844 return 0; 845 } 846 847 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 848 void *priv); 849 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 850 poll_table *pt); 851 852 /* 853 * Differs from ep_eventpoll_poll() in that internal callers already have 854 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 855 * is correctly annotated. 856 */ 857 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 858 int depth) 859 { 860 struct eventpoll *ep; 861 bool locked; 862 863 pt->_key = epi->event.events; 864 if (!is_file_epoll(epi->ffd.file)) 865 return vfs_poll(epi->ffd.file, pt) & epi->event.events; 866 867 ep = epi->ffd.file->private_data; 868 poll_wait(epi->ffd.file, &ep->poll_wait, pt); 869 locked = pt && (pt->_qproc == ep_ptable_queue_proc); 870 871 return ep_scan_ready_list(epi->ffd.file->private_data, 872 ep_read_events_proc, &depth, depth, 873 locked) & epi->event.events; 874 } 875 876 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 877 void *priv) 878 { 879 struct epitem *epi, *tmp; 880 poll_table pt; 881 int depth = *(int *)priv; 882 883 init_poll_funcptr(&pt, NULL); 884 depth++; 885 886 list_for_each_entry_safe(epi, tmp, head, rdllink) { 887 if (ep_item_poll(epi, &pt, depth)) { 888 return EPOLLIN | EPOLLRDNORM; 889 } else { 890 /* 891 * Item has been dropped into the ready list by the poll 892 * callback, but it's not actually ready, as far as 893 * caller requested events goes. We can remove it here. 894 */ 895 __pm_relax(ep_wakeup_source(epi)); 896 list_del_init(&epi->rdllink); 897 } 898 } 899 900 return 0; 901 } 902 903 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 904 { 905 struct eventpoll *ep = file->private_data; 906 int depth = 0; 907 908 /* Insert inside our poll wait queue */ 909 poll_wait(file, &ep->poll_wait, wait); 910 911 /* 912 * Proceed to find out if wanted events are really available inside 913 * the ready list. 914 */ 915 return ep_scan_ready_list(ep, ep_read_events_proc, 916 &depth, depth, false); 917 } 918 919 #ifdef CONFIG_PROC_FS 920 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 921 { 922 struct eventpoll *ep = f->private_data; 923 struct rb_node *rbp; 924 925 mutex_lock(&ep->mtx); 926 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 927 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 928 struct inode *inode = file_inode(epi->ffd.file); 929 930 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 931 " pos:%lli ino:%lx sdev:%x\n", 932 epi->ffd.fd, epi->event.events, 933 (long long)epi->event.data, 934 (long long)epi->ffd.file->f_pos, 935 inode->i_ino, inode->i_sb->s_dev); 936 if (seq_has_overflowed(m)) 937 break; 938 } 939 mutex_unlock(&ep->mtx); 940 } 941 #endif 942 943 /* File callbacks that implement the eventpoll file behaviour */ 944 static const struct file_operations eventpoll_fops = { 945 #ifdef CONFIG_PROC_FS 946 .show_fdinfo = ep_show_fdinfo, 947 #endif 948 .release = ep_eventpoll_release, 949 .poll = ep_eventpoll_poll, 950 .llseek = noop_llseek, 951 }; 952 953 /* 954 * This is called from eventpoll_release() to unlink files from the eventpoll 955 * interface. We need to have this facility to cleanup correctly files that are 956 * closed without being removed from the eventpoll interface. 957 */ 958 void eventpoll_release_file(struct file *file) 959 { 960 struct eventpoll *ep; 961 struct epitem *epi, *next; 962 963 /* 964 * We don't want to get "file->f_lock" because it is not 965 * necessary. It is not necessary because we're in the "struct file" 966 * cleanup path, and this means that no one is using this file anymore. 967 * So, for example, epoll_ctl() cannot hit here since if we reach this 968 * point, the file counter already went to zero and fget() would fail. 969 * The only hit might come from ep_free() but by holding the mutex 970 * will correctly serialize the operation. We do need to acquire 971 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 972 * from anywhere but ep_free(). 973 * 974 * Besides, ep_remove() acquires the lock, so we can't hold it here. 975 */ 976 mutex_lock(&epmutex); 977 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 978 ep = epi->ep; 979 mutex_lock_nested(&ep->mtx, 0); 980 ep_remove(ep, epi); 981 mutex_unlock(&ep->mtx); 982 } 983 mutex_unlock(&epmutex); 984 } 985 986 static int ep_alloc(struct eventpoll **pep) 987 { 988 int error; 989 struct user_struct *user; 990 struct eventpoll *ep; 991 992 user = get_current_user(); 993 error = -ENOMEM; 994 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 995 if (unlikely(!ep)) 996 goto free_uid; 997 998 mutex_init(&ep->mtx); 999 rwlock_init(&ep->lock); 1000 init_waitqueue_head(&ep->wq); 1001 init_waitqueue_head(&ep->poll_wait); 1002 INIT_LIST_HEAD(&ep->rdllist); 1003 ep->rbr = RB_ROOT_CACHED; 1004 ep->ovflist = EP_UNACTIVE_PTR; 1005 ep->user = user; 1006 1007 *pep = ep; 1008 1009 return 0; 1010 1011 free_uid: 1012 free_uid(user); 1013 return error; 1014 } 1015 1016 /* 1017 * Search the file inside the eventpoll tree. The RB tree operations 1018 * are protected by the "mtx" mutex, and ep_find() must be called with 1019 * "mtx" held. 1020 */ 1021 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1022 { 1023 int kcmp; 1024 struct rb_node *rbp; 1025 struct epitem *epi, *epir = NULL; 1026 struct epoll_filefd ffd; 1027 1028 ep_set_ffd(&ffd, file, fd); 1029 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1030 epi = rb_entry(rbp, struct epitem, rbn); 1031 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1032 if (kcmp > 0) 1033 rbp = rbp->rb_right; 1034 else if (kcmp < 0) 1035 rbp = rbp->rb_left; 1036 else { 1037 epir = epi; 1038 break; 1039 } 1040 } 1041 1042 return epir; 1043 } 1044 1045 #ifdef CONFIG_CHECKPOINT_RESTORE 1046 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1047 { 1048 struct rb_node *rbp; 1049 struct epitem *epi; 1050 1051 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1052 epi = rb_entry(rbp, struct epitem, rbn); 1053 if (epi->ffd.fd == tfd) { 1054 if (toff == 0) 1055 return epi; 1056 else 1057 toff--; 1058 } 1059 cond_resched(); 1060 } 1061 1062 return NULL; 1063 } 1064 1065 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1066 unsigned long toff) 1067 { 1068 struct file *file_raw; 1069 struct eventpoll *ep; 1070 struct epitem *epi; 1071 1072 if (!is_file_epoll(file)) 1073 return ERR_PTR(-EINVAL); 1074 1075 ep = file->private_data; 1076 1077 mutex_lock(&ep->mtx); 1078 epi = ep_find_tfd(ep, tfd, toff); 1079 if (epi) 1080 file_raw = epi->ffd.file; 1081 else 1082 file_raw = ERR_PTR(-ENOENT); 1083 mutex_unlock(&ep->mtx); 1084 1085 return file_raw; 1086 } 1087 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1088 1089 /** 1090 * Adds a new entry to the tail of the list in a lockless way, i.e. 1091 * multiple CPUs are allowed to call this function concurrently. 1092 * 1093 * Beware: it is necessary to prevent any other modifications of the 1094 * existing list until all changes are completed, in other words 1095 * concurrent list_add_tail_lockless() calls should be protected 1096 * with a read lock, where write lock acts as a barrier which 1097 * makes sure all list_add_tail_lockless() calls are fully 1098 * completed. 1099 * 1100 * Also an element can be locklessly added to the list only in one 1101 * direction i.e. either to the tail either to the head, otherwise 1102 * concurrent access will corrupt the list. 1103 * 1104 * Returns %false if element has been already added to the list, %true 1105 * otherwise. 1106 */ 1107 static inline bool list_add_tail_lockless(struct list_head *new, 1108 struct list_head *head) 1109 { 1110 struct list_head *prev; 1111 1112 /* 1113 * This is simple 'new->next = head' operation, but cmpxchg() 1114 * is used in order to detect that same element has been just 1115 * added to the list from another CPU: the winner observes 1116 * new->next == new. 1117 */ 1118 if (cmpxchg(&new->next, new, head) != new) 1119 return false; 1120 1121 /* 1122 * Initially ->next of a new element must be updated with the head 1123 * (we are inserting to the tail) and only then pointers are atomically 1124 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1125 * updated before pointers are actually swapped and pointers are 1126 * swapped before prev->next is updated. 1127 */ 1128 1129 prev = xchg(&head->prev, new); 1130 1131 /* 1132 * It is safe to modify prev->next and new->prev, because a new element 1133 * is added only to the tail and new->next is updated before XCHG. 1134 */ 1135 1136 prev->next = new; 1137 new->prev = prev; 1138 1139 return true; 1140 } 1141 1142 /** 1143 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1144 * i.e. multiple CPUs are allowed to call this function concurrently. 1145 * 1146 * Returns %false if epi element has been already chained, %true otherwise. 1147 */ 1148 static inline bool chain_epi_lockless(struct epitem *epi) 1149 { 1150 struct eventpoll *ep = epi->ep; 1151 1152 /* Check that the same epi has not been just chained from another CPU */ 1153 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1154 return false; 1155 1156 /* Atomically exchange tail */ 1157 epi->next = xchg(&ep->ovflist, epi); 1158 1159 return true; 1160 } 1161 1162 /* 1163 * This is the callback that is passed to the wait queue wakeup 1164 * mechanism. It is called by the stored file descriptors when they 1165 * have events to report. 1166 * 1167 * This callback takes a read lock in order not to content with concurrent 1168 * events from another file descriptors, thus all modifications to ->rdllist 1169 * or ->ovflist are lockless. Read lock is paired with the write lock from 1170 * ep_scan_ready_list(), which stops all list modifications and guarantees 1171 * that lists state is seen correctly. 1172 * 1173 * Another thing worth to mention is that ep_poll_callback() can be called 1174 * concurrently for the same @epi from different CPUs if poll table was inited 1175 * with several wait queues entries. Plural wakeup from different CPUs of a 1176 * single wait queue is serialized by wq.lock, but the case when multiple wait 1177 * queues are used should be detected accordingly. This is detected using 1178 * cmpxchg() operation. 1179 */ 1180 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1181 { 1182 int pwake = 0; 1183 struct epitem *epi = ep_item_from_wait(wait); 1184 struct eventpoll *ep = epi->ep; 1185 __poll_t pollflags = key_to_poll(key); 1186 unsigned long flags; 1187 int ewake = 0; 1188 1189 read_lock_irqsave(&ep->lock, flags); 1190 1191 ep_set_busy_poll_napi_id(epi); 1192 1193 /* 1194 * If the event mask does not contain any poll(2) event, we consider the 1195 * descriptor to be disabled. This condition is likely the effect of the 1196 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1197 * until the next EPOLL_CTL_MOD will be issued. 1198 */ 1199 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1200 goto out_unlock; 1201 1202 /* 1203 * Check the events coming with the callback. At this stage, not 1204 * every device reports the events in the "key" parameter of the 1205 * callback. We need to be able to handle both cases here, hence the 1206 * test for "key" != NULL before the event match test. 1207 */ 1208 if (pollflags && !(pollflags & epi->event.events)) 1209 goto out_unlock; 1210 1211 /* 1212 * If we are transferring events to userspace, we can hold no locks 1213 * (because we're accessing user memory, and because of linux f_op->poll() 1214 * semantics). All the events that happen during that period of time are 1215 * chained in ep->ovflist and requeued later on. 1216 */ 1217 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1218 if (epi->next == EP_UNACTIVE_PTR && 1219 chain_epi_lockless(epi)) 1220 ep_pm_stay_awake_rcu(epi); 1221 goto out_unlock; 1222 } 1223 1224 /* If this file is already in the ready list we exit soon */ 1225 if (!ep_is_linked(epi) && 1226 list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) { 1227 ep_pm_stay_awake_rcu(epi); 1228 } 1229 1230 /* 1231 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1232 * wait list. 1233 */ 1234 if (waitqueue_active(&ep->wq)) { 1235 if ((epi->event.events & EPOLLEXCLUSIVE) && 1236 !(pollflags & POLLFREE)) { 1237 switch (pollflags & EPOLLINOUT_BITS) { 1238 case EPOLLIN: 1239 if (epi->event.events & EPOLLIN) 1240 ewake = 1; 1241 break; 1242 case EPOLLOUT: 1243 if (epi->event.events & EPOLLOUT) 1244 ewake = 1; 1245 break; 1246 case 0: 1247 ewake = 1; 1248 break; 1249 } 1250 } 1251 wake_up(&ep->wq); 1252 } 1253 if (waitqueue_active(&ep->poll_wait)) 1254 pwake++; 1255 1256 out_unlock: 1257 read_unlock_irqrestore(&ep->lock, flags); 1258 1259 /* We have to call this outside the lock */ 1260 if (pwake) 1261 ep_poll_safewake(&ep->poll_wait); 1262 1263 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1264 ewake = 1; 1265 1266 if (pollflags & POLLFREE) { 1267 /* 1268 * If we race with ep_remove_wait_queue() it can miss 1269 * ->whead = NULL and do another remove_wait_queue() after 1270 * us, so we can't use __remove_wait_queue(). 1271 */ 1272 list_del_init(&wait->entry); 1273 /* 1274 * ->whead != NULL protects us from the race with ep_free() 1275 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1276 * held by the caller. Once we nullify it, nothing protects 1277 * ep/epi or even wait. 1278 */ 1279 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1280 } 1281 1282 return ewake; 1283 } 1284 1285 /* 1286 * This is the callback that is used to add our wait queue to the 1287 * target file wakeup lists. 1288 */ 1289 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1290 poll_table *pt) 1291 { 1292 struct epitem *epi = ep_item_from_epqueue(pt); 1293 struct eppoll_entry *pwq; 1294 1295 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1296 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1297 pwq->whead = whead; 1298 pwq->base = epi; 1299 if (epi->event.events & EPOLLEXCLUSIVE) 1300 add_wait_queue_exclusive(whead, &pwq->wait); 1301 else 1302 add_wait_queue(whead, &pwq->wait); 1303 list_add_tail(&pwq->llink, &epi->pwqlist); 1304 epi->nwait++; 1305 } else { 1306 /* We have to signal that an error occurred */ 1307 epi->nwait = -1; 1308 } 1309 } 1310 1311 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1312 { 1313 int kcmp; 1314 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1315 struct epitem *epic; 1316 bool leftmost = true; 1317 1318 while (*p) { 1319 parent = *p; 1320 epic = rb_entry(parent, struct epitem, rbn); 1321 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1322 if (kcmp > 0) { 1323 p = &parent->rb_right; 1324 leftmost = false; 1325 } else 1326 p = &parent->rb_left; 1327 } 1328 rb_link_node(&epi->rbn, parent, p); 1329 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1330 } 1331 1332 1333 1334 #define PATH_ARR_SIZE 5 1335 /* 1336 * These are the number paths of length 1 to 5, that we are allowing to emanate 1337 * from a single file of interest. For example, we allow 1000 paths of length 1338 * 1, to emanate from each file of interest. This essentially represents the 1339 * potential wakeup paths, which need to be limited in order to avoid massive 1340 * uncontrolled wakeup storms. The common use case should be a single ep which 1341 * is connected to n file sources. In this case each file source has 1 path 1342 * of length 1. Thus, the numbers below should be more than sufficient. These 1343 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1344 * and delete can't add additional paths. Protected by the epmutex. 1345 */ 1346 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1347 static int path_count[PATH_ARR_SIZE]; 1348 1349 static int path_count_inc(int nests) 1350 { 1351 /* Allow an arbitrary number of depth 1 paths */ 1352 if (nests == 0) 1353 return 0; 1354 1355 if (++path_count[nests] > path_limits[nests]) 1356 return -1; 1357 return 0; 1358 } 1359 1360 static void path_count_init(void) 1361 { 1362 int i; 1363 1364 for (i = 0; i < PATH_ARR_SIZE; i++) 1365 path_count[i] = 0; 1366 } 1367 1368 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1369 { 1370 int error = 0; 1371 struct file *file = priv; 1372 struct file *child_file; 1373 struct epitem *epi; 1374 1375 /* CTL_DEL can remove links here, but that can't increase our count */ 1376 rcu_read_lock(); 1377 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1378 child_file = epi->ep->file; 1379 if (is_file_epoll(child_file)) { 1380 if (list_empty(&child_file->f_ep_links)) { 1381 if (path_count_inc(call_nests)) { 1382 error = -1; 1383 break; 1384 } 1385 } else { 1386 error = ep_call_nested(&poll_loop_ncalls, 1387 reverse_path_check_proc, 1388 child_file, child_file, 1389 current); 1390 } 1391 if (error != 0) 1392 break; 1393 } else { 1394 printk(KERN_ERR "reverse_path_check_proc: " 1395 "file is not an ep!\n"); 1396 } 1397 } 1398 rcu_read_unlock(); 1399 return error; 1400 } 1401 1402 /** 1403 * reverse_path_check - The tfile_check_list is list of file *, which have 1404 * links that are proposed to be newly added. We need to 1405 * make sure that those added links don't add too many 1406 * paths such that we will spend all our time waking up 1407 * eventpoll objects. 1408 * 1409 * Returns: Returns zero if the proposed links don't create too many paths, 1410 * -1 otherwise. 1411 */ 1412 static int reverse_path_check(void) 1413 { 1414 int error = 0; 1415 struct file *current_file; 1416 1417 /* let's call this for all tfiles */ 1418 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1419 path_count_init(); 1420 error = ep_call_nested(&poll_loop_ncalls, 1421 reverse_path_check_proc, current_file, 1422 current_file, current); 1423 if (error) 1424 break; 1425 } 1426 return error; 1427 } 1428 1429 static int ep_create_wakeup_source(struct epitem *epi) 1430 { 1431 const char *name; 1432 struct wakeup_source *ws; 1433 1434 if (!epi->ep->ws) { 1435 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1436 if (!epi->ep->ws) 1437 return -ENOMEM; 1438 } 1439 1440 name = epi->ffd.file->f_path.dentry->d_name.name; 1441 ws = wakeup_source_register(NULL, name); 1442 1443 if (!ws) 1444 return -ENOMEM; 1445 rcu_assign_pointer(epi->ws, ws); 1446 1447 return 0; 1448 } 1449 1450 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1451 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1452 { 1453 struct wakeup_source *ws = ep_wakeup_source(epi); 1454 1455 RCU_INIT_POINTER(epi->ws, NULL); 1456 1457 /* 1458 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1459 * used internally by wakeup_source_remove, too (called by 1460 * wakeup_source_unregister), so we cannot use call_rcu 1461 */ 1462 synchronize_rcu(); 1463 wakeup_source_unregister(ws); 1464 } 1465 1466 /* 1467 * Must be called with "mtx" held. 1468 */ 1469 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1470 struct file *tfile, int fd, int full_check) 1471 { 1472 int error, pwake = 0; 1473 __poll_t revents; 1474 long user_watches; 1475 struct epitem *epi; 1476 struct ep_pqueue epq; 1477 1478 lockdep_assert_irqs_enabled(); 1479 1480 user_watches = atomic_long_read(&ep->user->epoll_watches); 1481 if (unlikely(user_watches >= max_user_watches)) 1482 return -ENOSPC; 1483 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1484 return -ENOMEM; 1485 1486 /* Item initialization follow here ... */ 1487 INIT_LIST_HEAD(&epi->rdllink); 1488 INIT_LIST_HEAD(&epi->fllink); 1489 INIT_LIST_HEAD(&epi->pwqlist); 1490 epi->ep = ep; 1491 ep_set_ffd(&epi->ffd, tfile, fd); 1492 epi->event = *event; 1493 epi->nwait = 0; 1494 epi->next = EP_UNACTIVE_PTR; 1495 if (epi->event.events & EPOLLWAKEUP) { 1496 error = ep_create_wakeup_source(epi); 1497 if (error) 1498 goto error_create_wakeup_source; 1499 } else { 1500 RCU_INIT_POINTER(epi->ws, NULL); 1501 } 1502 1503 /* Initialize the poll table using the queue callback */ 1504 epq.epi = epi; 1505 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1506 1507 /* 1508 * Attach the item to the poll hooks and get current event bits. 1509 * We can safely use the file* here because its usage count has 1510 * been increased by the caller of this function. Note that after 1511 * this operation completes, the poll callback can start hitting 1512 * the new item. 1513 */ 1514 revents = ep_item_poll(epi, &epq.pt, 1); 1515 1516 /* 1517 * We have to check if something went wrong during the poll wait queue 1518 * install process. Namely an allocation for a wait queue failed due 1519 * high memory pressure. 1520 */ 1521 error = -ENOMEM; 1522 if (epi->nwait < 0) 1523 goto error_unregister; 1524 1525 /* Add the current item to the list of active epoll hook for this file */ 1526 spin_lock(&tfile->f_lock); 1527 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); 1528 spin_unlock(&tfile->f_lock); 1529 1530 /* 1531 * Add the current item to the RB tree. All RB tree operations are 1532 * protected by "mtx", and ep_insert() is called with "mtx" held. 1533 */ 1534 ep_rbtree_insert(ep, epi); 1535 1536 /* now check if we've created too many backpaths */ 1537 error = -EINVAL; 1538 if (full_check && reverse_path_check()) 1539 goto error_remove_epi; 1540 1541 /* We have to drop the new item inside our item list to keep track of it */ 1542 write_lock_irq(&ep->lock); 1543 1544 /* record NAPI ID of new item if present */ 1545 ep_set_busy_poll_napi_id(epi); 1546 1547 /* If the file is already "ready" we drop it inside the ready list */ 1548 if (revents && !ep_is_linked(epi)) { 1549 list_add_tail(&epi->rdllink, &ep->rdllist); 1550 ep_pm_stay_awake(epi); 1551 1552 /* Notify waiting tasks that events are available */ 1553 if (waitqueue_active(&ep->wq)) 1554 wake_up(&ep->wq); 1555 if (waitqueue_active(&ep->poll_wait)) 1556 pwake++; 1557 } 1558 1559 write_unlock_irq(&ep->lock); 1560 1561 atomic_long_inc(&ep->user->epoll_watches); 1562 1563 /* We have to call this outside the lock */ 1564 if (pwake) 1565 ep_poll_safewake(&ep->poll_wait); 1566 1567 return 0; 1568 1569 error_remove_epi: 1570 spin_lock(&tfile->f_lock); 1571 list_del_rcu(&epi->fllink); 1572 spin_unlock(&tfile->f_lock); 1573 1574 rb_erase_cached(&epi->rbn, &ep->rbr); 1575 1576 error_unregister: 1577 ep_unregister_pollwait(ep, epi); 1578 1579 /* 1580 * We need to do this because an event could have been arrived on some 1581 * allocated wait queue. Note that we don't care about the ep->ovflist 1582 * list, since that is used/cleaned only inside a section bound by "mtx". 1583 * And ep_insert() is called with "mtx" held. 1584 */ 1585 write_lock_irq(&ep->lock); 1586 if (ep_is_linked(epi)) 1587 list_del_init(&epi->rdllink); 1588 write_unlock_irq(&ep->lock); 1589 1590 wakeup_source_unregister(ep_wakeup_source(epi)); 1591 1592 error_create_wakeup_source: 1593 kmem_cache_free(epi_cache, epi); 1594 1595 return error; 1596 } 1597 1598 /* 1599 * Modify the interest event mask by dropping an event if the new mask 1600 * has a match in the current file status. Must be called with "mtx" held. 1601 */ 1602 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1603 const struct epoll_event *event) 1604 { 1605 int pwake = 0; 1606 poll_table pt; 1607 1608 lockdep_assert_irqs_enabled(); 1609 1610 init_poll_funcptr(&pt, NULL); 1611 1612 /* 1613 * Set the new event interest mask before calling f_op->poll(); 1614 * otherwise we might miss an event that happens between the 1615 * f_op->poll() call and the new event set registering. 1616 */ 1617 epi->event.events = event->events; /* need barrier below */ 1618 epi->event.data = event->data; /* protected by mtx */ 1619 if (epi->event.events & EPOLLWAKEUP) { 1620 if (!ep_has_wakeup_source(epi)) 1621 ep_create_wakeup_source(epi); 1622 } else if (ep_has_wakeup_source(epi)) { 1623 ep_destroy_wakeup_source(epi); 1624 } 1625 1626 /* 1627 * The following barrier has two effects: 1628 * 1629 * 1) Flush epi changes above to other CPUs. This ensures 1630 * we do not miss events from ep_poll_callback if an 1631 * event occurs immediately after we call f_op->poll(). 1632 * We need this because we did not take ep->lock while 1633 * changing epi above (but ep_poll_callback does take 1634 * ep->lock). 1635 * 1636 * 2) We also need to ensure we do not miss _past_ events 1637 * when calling f_op->poll(). This barrier also 1638 * pairs with the barrier in wq_has_sleeper (see 1639 * comments for wq_has_sleeper). 1640 * 1641 * This barrier will now guarantee ep_poll_callback or f_op->poll 1642 * (or both) will notice the readiness of an item. 1643 */ 1644 smp_mb(); 1645 1646 /* 1647 * Get current event bits. We can safely use the file* here because 1648 * its usage count has been increased by the caller of this function. 1649 * If the item is "hot" and it is not registered inside the ready 1650 * list, push it inside. 1651 */ 1652 if (ep_item_poll(epi, &pt, 1)) { 1653 write_lock_irq(&ep->lock); 1654 if (!ep_is_linked(epi)) { 1655 list_add_tail(&epi->rdllink, &ep->rdllist); 1656 ep_pm_stay_awake(epi); 1657 1658 /* Notify waiting tasks that events are available */ 1659 if (waitqueue_active(&ep->wq)) 1660 wake_up(&ep->wq); 1661 if (waitqueue_active(&ep->poll_wait)) 1662 pwake++; 1663 } 1664 write_unlock_irq(&ep->lock); 1665 } 1666 1667 /* We have to call this outside the lock */ 1668 if (pwake) 1669 ep_poll_safewake(&ep->poll_wait); 1670 1671 return 0; 1672 } 1673 1674 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1675 void *priv) 1676 { 1677 struct ep_send_events_data *esed = priv; 1678 __poll_t revents; 1679 struct epitem *epi, *tmp; 1680 struct epoll_event __user *uevent = esed->events; 1681 struct wakeup_source *ws; 1682 poll_table pt; 1683 1684 init_poll_funcptr(&pt, NULL); 1685 esed->res = 0; 1686 1687 /* 1688 * We can loop without lock because we are passed a task private list. 1689 * Items cannot vanish during the loop because ep_scan_ready_list() is 1690 * holding "mtx" during this call. 1691 */ 1692 lockdep_assert_held(&ep->mtx); 1693 1694 list_for_each_entry_safe(epi, tmp, head, rdllink) { 1695 if (esed->res >= esed->maxevents) 1696 break; 1697 1698 /* 1699 * Activate ep->ws before deactivating epi->ws to prevent 1700 * triggering auto-suspend here (in case we reactive epi->ws 1701 * below). 1702 * 1703 * This could be rearranged to delay the deactivation of epi->ws 1704 * instead, but then epi->ws would temporarily be out of sync 1705 * with ep_is_linked(). 1706 */ 1707 ws = ep_wakeup_source(epi); 1708 if (ws) { 1709 if (ws->active) 1710 __pm_stay_awake(ep->ws); 1711 __pm_relax(ws); 1712 } 1713 1714 list_del_init(&epi->rdllink); 1715 1716 /* 1717 * If the event mask intersect the caller-requested one, 1718 * deliver the event to userspace. Again, ep_scan_ready_list() 1719 * is holding ep->mtx, so no operations coming from userspace 1720 * can change the item. 1721 */ 1722 revents = ep_item_poll(epi, &pt, 1); 1723 if (!revents) 1724 continue; 1725 1726 if (__put_user(revents, &uevent->events) || 1727 __put_user(epi->event.data, &uevent->data)) { 1728 list_add(&epi->rdllink, head); 1729 ep_pm_stay_awake(epi); 1730 if (!esed->res) 1731 esed->res = -EFAULT; 1732 return 0; 1733 } 1734 esed->res++; 1735 uevent++; 1736 if (epi->event.events & EPOLLONESHOT) 1737 epi->event.events &= EP_PRIVATE_BITS; 1738 else if (!(epi->event.events & EPOLLET)) { 1739 /* 1740 * If this file has been added with Level 1741 * Trigger mode, we need to insert back inside 1742 * the ready list, so that the next call to 1743 * epoll_wait() will check again the events 1744 * availability. At this point, no one can insert 1745 * into ep->rdllist besides us. The epoll_ctl() 1746 * callers are locked out by 1747 * ep_scan_ready_list() holding "mtx" and the 1748 * poll callback will queue them in ep->ovflist. 1749 */ 1750 list_add_tail(&epi->rdllink, &ep->rdllist); 1751 ep_pm_stay_awake(epi); 1752 } 1753 } 1754 1755 return 0; 1756 } 1757 1758 static int ep_send_events(struct eventpoll *ep, 1759 struct epoll_event __user *events, int maxevents) 1760 { 1761 struct ep_send_events_data esed; 1762 1763 esed.maxevents = maxevents; 1764 esed.events = events; 1765 1766 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1767 return esed.res; 1768 } 1769 1770 static inline struct timespec64 ep_set_mstimeout(long ms) 1771 { 1772 struct timespec64 now, ts = { 1773 .tv_sec = ms / MSEC_PER_SEC, 1774 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1775 }; 1776 1777 ktime_get_ts64(&now); 1778 return timespec64_add_safe(now, ts); 1779 } 1780 1781 /** 1782 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1783 * event buffer. 1784 * 1785 * @ep: Pointer to the eventpoll context. 1786 * @events: Pointer to the userspace buffer where the ready events should be 1787 * stored. 1788 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1789 * @timeout: Maximum timeout for the ready events fetch operation, in 1790 * milliseconds. If the @timeout is zero, the function will not block, 1791 * while if the @timeout is less than zero, the function will block 1792 * until at least one event has been retrieved (or an error 1793 * occurred). 1794 * 1795 * Returns: Returns the number of ready events which have been fetched, or an 1796 * error code, in case of error. 1797 */ 1798 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1799 int maxevents, long timeout) 1800 { 1801 int res = 0, eavail, timed_out = 0; 1802 u64 slack = 0; 1803 bool waiter = false; 1804 wait_queue_entry_t wait; 1805 ktime_t expires, *to = NULL; 1806 1807 lockdep_assert_irqs_enabled(); 1808 1809 if (timeout > 0) { 1810 struct timespec64 end_time = ep_set_mstimeout(timeout); 1811 1812 slack = select_estimate_accuracy(&end_time); 1813 to = &expires; 1814 *to = timespec64_to_ktime(end_time); 1815 } else if (timeout == 0) { 1816 /* 1817 * Avoid the unnecessary trip to the wait queue loop, if the 1818 * caller specified a non blocking operation. We still need 1819 * lock because we could race and not see an epi being added 1820 * to the ready list while in irq callback. Thus incorrectly 1821 * returning 0 back to userspace. 1822 */ 1823 timed_out = 1; 1824 1825 write_lock_irq(&ep->lock); 1826 eavail = ep_events_available(ep); 1827 write_unlock_irq(&ep->lock); 1828 1829 goto send_events; 1830 } 1831 1832 fetch_events: 1833 1834 if (!ep_events_available(ep)) 1835 ep_busy_loop(ep, timed_out); 1836 1837 eavail = ep_events_available(ep); 1838 if (eavail) 1839 goto send_events; 1840 1841 /* 1842 * Busy poll timed out. Drop NAPI ID for now, we can add 1843 * it back in when we have moved a socket with a valid NAPI 1844 * ID onto the ready list. 1845 */ 1846 ep_reset_busy_poll_napi_id(ep); 1847 1848 /* 1849 * We don't have any available event to return to the caller. We need 1850 * to sleep here, and we will be woken by ep_poll_callback() when events 1851 * become available. 1852 */ 1853 if (!waiter) { 1854 waiter = true; 1855 init_waitqueue_entry(&wait, current); 1856 1857 spin_lock_irq(&ep->wq.lock); 1858 __add_wait_queue_exclusive(&ep->wq, &wait); 1859 spin_unlock_irq(&ep->wq.lock); 1860 } 1861 1862 for (;;) { 1863 /* 1864 * We don't want to sleep if the ep_poll_callback() sends us 1865 * a wakeup in between. That's why we set the task state 1866 * to TASK_INTERRUPTIBLE before doing the checks. 1867 */ 1868 set_current_state(TASK_INTERRUPTIBLE); 1869 /* 1870 * Always short-circuit for fatal signals to allow 1871 * threads to make a timely exit without the chance of 1872 * finding more events available and fetching 1873 * repeatedly. 1874 */ 1875 if (fatal_signal_pending(current)) { 1876 res = -EINTR; 1877 break; 1878 } 1879 1880 eavail = ep_events_available(ep); 1881 if (eavail) 1882 break; 1883 if (signal_pending(current)) { 1884 res = -EINTR; 1885 break; 1886 } 1887 1888 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) { 1889 timed_out = 1; 1890 break; 1891 } 1892 } 1893 1894 __set_current_state(TASK_RUNNING); 1895 1896 send_events: 1897 /* 1898 * Try to transfer events to user space. In case we get 0 events and 1899 * there's still timeout left over, we go trying again in search of 1900 * more luck. 1901 */ 1902 if (!res && eavail && 1903 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1904 goto fetch_events; 1905 1906 if (waiter) { 1907 spin_lock_irq(&ep->wq.lock); 1908 __remove_wait_queue(&ep->wq, &wait); 1909 spin_unlock_irq(&ep->wq.lock); 1910 } 1911 1912 return res; 1913 } 1914 1915 /** 1916 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1917 * API, to verify that adding an epoll file inside another 1918 * epoll structure, does not violate the constraints, in 1919 * terms of closed loops, or too deep chains (which can 1920 * result in excessive stack usage). 1921 * 1922 * @priv: Pointer to the epoll file to be currently checked. 1923 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1924 * data structure pointer. 1925 * @call_nests: Current dept of the @ep_call_nested() call stack. 1926 * 1927 * Returns: Returns zero if adding the epoll @file inside current epoll 1928 * structure @ep does not violate the constraints, or -1 otherwise. 1929 */ 1930 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1931 { 1932 int error = 0; 1933 struct file *file = priv; 1934 struct eventpoll *ep = file->private_data; 1935 struct eventpoll *ep_tovisit; 1936 struct rb_node *rbp; 1937 struct epitem *epi; 1938 1939 mutex_lock_nested(&ep->mtx, call_nests + 1); 1940 ep->visited = 1; 1941 list_add(&ep->visited_list_link, &visited_list); 1942 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1943 epi = rb_entry(rbp, struct epitem, rbn); 1944 if (unlikely(is_file_epoll(epi->ffd.file))) { 1945 ep_tovisit = epi->ffd.file->private_data; 1946 if (ep_tovisit->visited) 1947 continue; 1948 error = ep_call_nested(&poll_loop_ncalls, 1949 ep_loop_check_proc, epi->ffd.file, 1950 ep_tovisit, current); 1951 if (error != 0) 1952 break; 1953 } else { 1954 /* 1955 * If we've reached a file that is not associated with 1956 * an ep, then we need to check if the newly added 1957 * links are going to add too many wakeup paths. We do 1958 * this by adding it to the tfile_check_list, if it's 1959 * not already there, and calling reverse_path_check() 1960 * during ep_insert(). 1961 */ 1962 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1963 list_add(&epi->ffd.file->f_tfile_llink, 1964 &tfile_check_list); 1965 } 1966 } 1967 mutex_unlock(&ep->mtx); 1968 1969 return error; 1970 } 1971 1972 /** 1973 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1974 * another epoll file (represented by @ep) does not create 1975 * closed loops or too deep chains. 1976 * 1977 * @ep: Pointer to the epoll private data structure. 1978 * @file: Pointer to the epoll file to be checked. 1979 * 1980 * Returns: Returns zero if adding the epoll @file inside current epoll 1981 * structure @ep does not violate the constraints, or -1 otherwise. 1982 */ 1983 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1984 { 1985 int ret; 1986 struct eventpoll *ep_cur, *ep_next; 1987 1988 ret = ep_call_nested(&poll_loop_ncalls, 1989 ep_loop_check_proc, file, ep, current); 1990 /* clear visited list */ 1991 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1992 visited_list_link) { 1993 ep_cur->visited = 0; 1994 list_del(&ep_cur->visited_list_link); 1995 } 1996 return ret; 1997 } 1998 1999 static void clear_tfile_check_list(void) 2000 { 2001 struct file *file; 2002 2003 /* first clear the tfile_check_list */ 2004 while (!list_empty(&tfile_check_list)) { 2005 file = list_first_entry(&tfile_check_list, struct file, 2006 f_tfile_llink); 2007 list_del_init(&file->f_tfile_llink); 2008 } 2009 INIT_LIST_HEAD(&tfile_check_list); 2010 } 2011 2012 /* 2013 * Open an eventpoll file descriptor. 2014 */ 2015 static int do_epoll_create(int flags) 2016 { 2017 int error, fd; 2018 struct eventpoll *ep = NULL; 2019 struct file *file; 2020 2021 /* Check the EPOLL_* constant for consistency. */ 2022 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2023 2024 if (flags & ~EPOLL_CLOEXEC) 2025 return -EINVAL; 2026 /* 2027 * Create the internal data structure ("struct eventpoll"). 2028 */ 2029 error = ep_alloc(&ep); 2030 if (error < 0) 2031 return error; 2032 /* 2033 * Creates all the items needed to setup an eventpoll file. That is, 2034 * a file structure and a free file descriptor. 2035 */ 2036 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2037 if (fd < 0) { 2038 error = fd; 2039 goto out_free_ep; 2040 } 2041 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2042 O_RDWR | (flags & O_CLOEXEC)); 2043 if (IS_ERR(file)) { 2044 error = PTR_ERR(file); 2045 goto out_free_fd; 2046 } 2047 ep->file = file; 2048 fd_install(fd, file); 2049 return fd; 2050 2051 out_free_fd: 2052 put_unused_fd(fd); 2053 out_free_ep: 2054 ep_free(ep); 2055 return error; 2056 } 2057 2058 SYSCALL_DEFINE1(epoll_create1, int, flags) 2059 { 2060 return do_epoll_create(flags); 2061 } 2062 2063 SYSCALL_DEFINE1(epoll_create, int, size) 2064 { 2065 if (size <= 0) 2066 return -EINVAL; 2067 2068 return do_epoll_create(0); 2069 } 2070 2071 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2072 bool nonblock) 2073 { 2074 if (!nonblock) { 2075 mutex_lock_nested(mutex, depth); 2076 return 0; 2077 } 2078 if (mutex_trylock(mutex)) 2079 return 0; 2080 return -EAGAIN; 2081 } 2082 2083 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2084 bool nonblock) 2085 { 2086 int error; 2087 int full_check = 0; 2088 struct fd f, tf; 2089 struct eventpoll *ep; 2090 struct epitem *epi; 2091 struct eventpoll *tep = NULL; 2092 2093 error = -EBADF; 2094 f = fdget(epfd); 2095 if (!f.file) 2096 goto error_return; 2097 2098 /* Get the "struct file *" for the target file */ 2099 tf = fdget(fd); 2100 if (!tf.file) 2101 goto error_fput; 2102 2103 /* The target file descriptor must support poll */ 2104 error = -EPERM; 2105 if (!file_can_poll(tf.file)) 2106 goto error_tgt_fput; 2107 2108 /* Check if EPOLLWAKEUP is allowed */ 2109 if (ep_op_has_event(op)) 2110 ep_take_care_of_epollwakeup(epds); 2111 2112 /* 2113 * We have to check that the file structure underneath the file descriptor 2114 * the user passed to us _is_ an eventpoll file. And also we do not permit 2115 * adding an epoll file descriptor inside itself. 2116 */ 2117 error = -EINVAL; 2118 if (f.file == tf.file || !is_file_epoll(f.file)) 2119 goto error_tgt_fput; 2120 2121 /* 2122 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2123 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2124 * Also, we do not currently supported nested exclusive wakeups. 2125 */ 2126 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2127 if (op == EPOLL_CTL_MOD) 2128 goto error_tgt_fput; 2129 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2130 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2131 goto error_tgt_fput; 2132 } 2133 2134 /* 2135 * At this point it is safe to assume that the "private_data" contains 2136 * our own data structure. 2137 */ 2138 ep = f.file->private_data; 2139 2140 /* 2141 * When we insert an epoll file descriptor, inside another epoll file 2142 * descriptor, there is the change of creating closed loops, which are 2143 * better be handled here, than in more critical paths. While we are 2144 * checking for loops we also determine the list of files reachable 2145 * and hang them on the tfile_check_list, so we can check that we 2146 * haven't created too many possible wakeup paths. 2147 * 2148 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2149 * the epoll file descriptor is attaching directly to a wakeup source, 2150 * unless the epoll file descriptor is nested. The purpose of taking the 2151 * 'epmutex' on add is to prevent complex toplogies such as loops and 2152 * deep wakeup paths from forming in parallel through multiple 2153 * EPOLL_CTL_ADD operations. 2154 */ 2155 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2156 if (error) 2157 goto error_tgt_fput; 2158 if (op == EPOLL_CTL_ADD) { 2159 if (!list_empty(&f.file->f_ep_links) || 2160 is_file_epoll(tf.file)) { 2161 mutex_unlock(&ep->mtx); 2162 error = epoll_mutex_lock(&epmutex, 0, nonblock); 2163 if (error) 2164 goto error_tgt_fput; 2165 full_check = 1; 2166 if (is_file_epoll(tf.file)) { 2167 error = -ELOOP; 2168 if (ep_loop_check(ep, tf.file) != 0) { 2169 clear_tfile_check_list(); 2170 goto error_tgt_fput; 2171 } 2172 } else 2173 list_add(&tf.file->f_tfile_llink, 2174 &tfile_check_list); 2175 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2176 if (error) { 2177 out_del: 2178 list_del(&tf.file->f_tfile_llink); 2179 goto error_tgt_fput; 2180 } 2181 if (is_file_epoll(tf.file)) { 2182 tep = tf.file->private_data; 2183 error = epoll_mutex_lock(&tep->mtx, 1, nonblock); 2184 if (error) { 2185 mutex_unlock(&ep->mtx); 2186 goto out_del; 2187 } 2188 } 2189 } 2190 } 2191 2192 /* 2193 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 2194 * above, we can be sure to be able to use the item looked up by 2195 * ep_find() till we release the mutex. 2196 */ 2197 epi = ep_find(ep, tf.file, fd); 2198 2199 error = -EINVAL; 2200 switch (op) { 2201 case EPOLL_CTL_ADD: 2202 if (!epi) { 2203 epds->events |= EPOLLERR | EPOLLHUP; 2204 error = ep_insert(ep, epds, tf.file, fd, full_check); 2205 } else 2206 error = -EEXIST; 2207 if (full_check) 2208 clear_tfile_check_list(); 2209 break; 2210 case EPOLL_CTL_DEL: 2211 if (epi) 2212 error = ep_remove(ep, epi); 2213 else 2214 error = -ENOENT; 2215 break; 2216 case EPOLL_CTL_MOD: 2217 if (epi) { 2218 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2219 epds->events |= EPOLLERR | EPOLLHUP; 2220 error = ep_modify(ep, epi, epds); 2221 } 2222 } else 2223 error = -ENOENT; 2224 break; 2225 } 2226 if (tep != NULL) 2227 mutex_unlock(&tep->mtx); 2228 mutex_unlock(&ep->mtx); 2229 2230 error_tgt_fput: 2231 if (full_check) 2232 mutex_unlock(&epmutex); 2233 2234 fdput(tf); 2235 error_fput: 2236 fdput(f); 2237 error_return: 2238 2239 return error; 2240 } 2241 2242 /* 2243 * The following function implements the controller interface for 2244 * the eventpoll file that enables the insertion/removal/change of 2245 * file descriptors inside the interest set. 2246 */ 2247 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2248 struct epoll_event __user *, event) 2249 { 2250 struct epoll_event epds; 2251 2252 if (ep_op_has_event(op) && 2253 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2254 return -EFAULT; 2255 2256 return do_epoll_ctl(epfd, op, fd, &epds, false); 2257 } 2258 2259 /* 2260 * Implement the event wait interface for the eventpoll file. It is the kernel 2261 * part of the user space epoll_wait(2). 2262 */ 2263 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2264 int maxevents, int timeout) 2265 { 2266 int error; 2267 struct fd f; 2268 struct eventpoll *ep; 2269 2270 /* The maximum number of event must be greater than zero */ 2271 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2272 return -EINVAL; 2273 2274 /* Verify that the area passed by the user is writeable */ 2275 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2276 return -EFAULT; 2277 2278 /* Get the "struct file *" for the eventpoll file */ 2279 f = fdget(epfd); 2280 if (!f.file) 2281 return -EBADF; 2282 2283 /* 2284 * We have to check that the file structure underneath the fd 2285 * the user passed to us _is_ an eventpoll file. 2286 */ 2287 error = -EINVAL; 2288 if (!is_file_epoll(f.file)) 2289 goto error_fput; 2290 2291 /* 2292 * At this point it is safe to assume that the "private_data" contains 2293 * our own data structure. 2294 */ 2295 ep = f.file->private_data; 2296 2297 /* Time to fish for events ... */ 2298 error = ep_poll(ep, events, maxevents, timeout); 2299 2300 error_fput: 2301 fdput(f); 2302 return error; 2303 } 2304 2305 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2306 int, maxevents, int, timeout) 2307 { 2308 return do_epoll_wait(epfd, events, maxevents, timeout); 2309 } 2310 2311 /* 2312 * Implement the event wait interface for the eventpoll file. It is the kernel 2313 * part of the user space epoll_pwait(2). 2314 */ 2315 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2316 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2317 size_t, sigsetsize) 2318 { 2319 int error; 2320 2321 /* 2322 * If the caller wants a certain signal mask to be set during the wait, 2323 * we apply it here. 2324 */ 2325 error = set_user_sigmask(sigmask, sigsetsize); 2326 if (error) 2327 return error; 2328 2329 error = do_epoll_wait(epfd, events, maxevents, timeout); 2330 restore_saved_sigmask_unless(error == -EINTR); 2331 2332 return error; 2333 } 2334 2335 #ifdef CONFIG_COMPAT 2336 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2337 struct epoll_event __user *, events, 2338 int, maxevents, int, timeout, 2339 const compat_sigset_t __user *, sigmask, 2340 compat_size_t, sigsetsize) 2341 { 2342 long err; 2343 2344 /* 2345 * If the caller wants a certain signal mask to be set during the wait, 2346 * we apply it here. 2347 */ 2348 err = set_compat_user_sigmask(sigmask, sigsetsize); 2349 if (err) 2350 return err; 2351 2352 err = do_epoll_wait(epfd, events, maxevents, timeout); 2353 restore_saved_sigmask_unless(err == -EINTR); 2354 2355 return err; 2356 } 2357 #endif 2358 2359 static int __init eventpoll_init(void) 2360 { 2361 struct sysinfo si; 2362 2363 si_meminfo(&si); 2364 /* 2365 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2366 */ 2367 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2368 EP_ITEM_COST; 2369 BUG_ON(max_user_watches < 0); 2370 2371 /* 2372 * Initialize the structure used to perform epoll file descriptor 2373 * inclusion loops checks. 2374 */ 2375 ep_nested_calls_init(&poll_loop_ncalls); 2376 2377 /* 2378 * We can have many thousands of epitems, so prevent this from 2379 * using an extra cache line on 64-bit (and smaller) CPUs 2380 */ 2381 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2382 2383 /* Allocates slab cache used to allocate "struct epitem" items */ 2384 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2385 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2386 2387 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2388 pwq_cache = kmem_cache_create("eventpoll_pwq", 2389 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2390 2391 return 0; 2392 } 2393 fs_initcall(eventpoll_init); 2394