xref: /openbmc/linux/fs/eventpoll.c (revision ee89bd6b)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 
45 /*
46  * LOCKING:
47  * There are three level of locking required by epoll :
48  *
49  * 1) epmutex (mutex)
50  * 2) ep->mtx (mutex)
51  * 3) ep->lock (spinlock)
52  *
53  * The acquire order is the one listed above, from 1 to 3.
54  * We need a spinlock (ep->lock) because we manipulate objects
55  * from inside the poll callback, that might be triggered from
56  * a wake_up() that in turn might be called from IRQ context.
57  * So we can't sleep inside the poll callback and hence we need
58  * a spinlock. During the event transfer loop (from kernel to
59  * user space) we could end up sleeping due a copy_to_user(), so
60  * we need a lock that will allow us to sleep. This lock is a
61  * mutex (ep->mtx). It is acquired during the event transfer loop,
62  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
63  * Then we also need a global mutex to serialize eventpoll_release_file()
64  * and ep_free().
65  * This mutex is acquired by ep_free() during the epoll file
66  * cleanup path and it is also acquired by eventpoll_release_file()
67  * if a file has been pushed inside an epoll set and it is then
68  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
69  * It is also acquired when inserting an epoll fd onto another epoll
70  * fd. We do this so that we walk the epoll tree and ensure that this
71  * insertion does not create a cycle of epoll file descriptors, which
72  * could lead to deadlock. We need a global mutex to prevent two
73  * simultaneous inserts (A into B and B into A) from racing and
74  * constructing a cycle without either insert observing that it is
75  * going to.
76  * It is necessary to acquire multiple "ep->mtx"es at once in the
77  * case when one epoll fd is added to another. In this case, we
78  * always acquire the locks in the order of nesting (i.e. after
79  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
80  * before e2->mtx). Since we disallow cycles of epoll file
81  * descriptors, this ensures that the mutexes are well-ordered. In
82  * order to communicate this nesting to lockdep, when walking a tree
83  * of epoll file descriptors, we use the current recursion depth as
84  * the lockdep subkey.
85  * It is possible to drop the "ep->mtx" and to use the global
86  * mutex "epmutex" (together with "ep->lock") to have it working,
87  * but having "ep->mtx" will make the interface more scalable.
88  * Events that require holding "epmutex" are very rare, while for
89  * normal operations the epoll private "ep->mtx" will guarantee
90  * a better scalability.
91  */
92 
93 /* Epoll private bits inside the event mask */
94 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
95 
96 /* Maximum number of nesting allowed inside epoll sets */
97 #define EP_MAX_NESTS 4
98 
99 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
100 
101 #define EP_UNACTIVE_PTR ((void *) -1L)
102 
103 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
104 
105 struct epoll_filefd {
106 	struct file *file;
107 	int fd;
108 } __packed;
109 
110 /*
111  * Structure used to track possible nested calls, for too deep recursions
112  * and loop cycles.
113  */
114 struct nested_call_node {
115 	struct list_head llink;
116 	void *cookie;
117 	void *ctx;
118 };
119 
120 /*
121  * This structure is used as collector for nested calls, to check for
122  * maximum recursion dept and loop cycles.
123  */
124 struct nested_calls {
125 	struct list_head tasks_call_list;
126 	spinlock_t lock;
127 };
128 
129 /*
130  * Each file descriptor added to the eventpoll interface will
131  * have an entry of this type linked to the "rbr" RB tree.
132  * Avoid increasing the size of this struct, there can be many thousands
133  * of these on a server and we do not want this to take another cache line.
134  */
135 struct epitem {
136 	/* RB tree node used to link this structure to the eventpoll RB tree */
137 	struct rb_node rbn;
138 
139 	/* List header used to link this structure to the eventpoll ready list */
140 	struct list_head rdllink;
141 
142 	/*
143 	 * Works together "struct eventpoll"->ovflist in keeping the
144 	 * single linked chain of items.
145 	 */
146 	struct epitem *next;
147 
148 	/* The file descriptor information this item refers to */
149 	struct epoll_filefd ffd;
150 
151 	/* Number of active wait queue attached to poll operations */
152 	int nwait;
153 
154 	/* List containing poll wait queues */
155 	struct list_head pwqlist;
156 
157 	/* The "container" of this item */
158 	struct eventpoll *ep;
159 
160 	/* List header used to link this item to the "struct file" items list */
161 	struct list_head fllink;
162 
163 	/* wakeup_source used when EPOLLWAKEUP is set */
164 	struct wakeup_source __rcu *ws;
165 
166 	/* The structure that describe the interested events and the source fd */
167 	struct epoll_event event;
168 };
169 
170 /*
171  * This structure is stored inside the "private_data" member of the file
172  * structure and represents the main data structure for the eventpoll
173  * interface.
174  */
175 struct eventpoll {
176 	/* Protect the access to this structure */
177 	spinlock_t lock;
178 
179 	/*
180 	 * This mutex is used to ensure that files are not removed
181 	 * while epoll is using them. This is held during the event
182 	 * collection loop, the file cleanup path, the epoll file exit
183 	 * code and the ctl operations.
184 	 */
185 	struct mutex mtx;
186 
187 	/* Wait queue used by sys_epoll_wait() */
188 	wait_queue_head_t wq;
189 
190 	/* Wait queue used by file->poll() */
191 	wait_queue_head_t poll_wait;
192 
193 	/* List of ready file descriptors */
194 	struct list_head rdllist;
195 
196 	/* RB tree root used to store monitored fd structs */
197 	struct rb_root rbr;
198 
199 	/*
200 	 * This is a single linked list that chains all the "struct epitem" that
201 	 * happened while transferring ready events to userspace w/out
202 	 * holding ->lock.
203 	 */
204 	struct epitem *ovflist;
205 
206 	/* wakeup_source used when ep_scan_ready_list is running */
207 	struct wakeup_source *ws;
208 
209 	/* The user that created the eventpoll descriptor */
210 	struct user_struct *user;
211 
212 	struct file *file;
213 
214 	/* used to optimize loop detection check */
215 	int visited;
216 	struct list_head visited_list_link;
217 };
218 
219 /* Wait structure used by the poll hooks */
220 struct eppoll_entry {
221 	/* List header used to link this structure to the "struct epitem" */
222 	struct list_head llink;
223 
224 	/* The "base" pointer is set to the container "struct epitem" */
225 	struct epitem *base;
226 
227 	/*
228 	 * Wait queue item that will be linked to the target file wait
229 	 * queue head.
230 	 */
231 	wait_queue_t wait;
232 
233 	/* The wait queue head that linked the "wait" wait queue item */
234 	wait_queue_head_t *whead;
235 };
236 
237 /* Wrapper struct used by poll queueing */
238 struct ep_pqueue {
239 	poll_table pt;
240 	struct epitem *epi;
241 };
242 
243 /* Used by the ep_send_events() function as callback private data */
244 struct ep_send_events_data {
245 	int maxevents;
246 	struct epoll_event __user *events;
247 };
248 
249 /*
250  * Configuration options available inside /proc/sys/fs/epoll/
251  */
252 /* Maximum number of epoll watched descriptors, per user */
253 static long max_user_watches __read_mostly;
254 
255 /*
256  * This mutex is used to serialize ep_free() and eventpoll_release_file().
257  */
258 static DEFINE_MUTEX(epmutex);
259 
260 /* Used to check for epoll file descriptor inclusion loops */
261 static struct nested_calls poll_loop_ncalls;
262 
263 /* Used for safe wake up implementation */
264 static struct nested_calls poll_safewake_ncalls;
265 
266 /* Used to call file's f_op->poll() under the nested calls boundaries */
267 static struct nested_calls poll_readywalk_ncalls;
268 
269 /* Slab cache used to allocate "struct epitem" */
270 static struct kmem_cache *epi_cache __read_mostly;
271 
272 /* Slab cache used to allocate "struct eppoll_entry" */
273 static struct kmem_cache *pwq_cache __read_mostly;
274 
275 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
276 static LIST_HEAD(visited_list);
277 
278 /*
279  * List of files with newly added links, where we may need to limit the number
280  * of emanating paths. Protected by the epmutex.
281  */
282 static LIST_HEAD(tfile_check_list);
283 
284 #ifdef CONFIG_SYSCTL
285 
286 #include <linux/sysctl.h>
287 
288 static long zero;
289 static long long_max = LONG_MAX;
290 
291 ctl_table epoll_table[] = {
292 	{
293 		.procname	= "max_user_watches",
294 		.data		= &max_user_watches,
295 		.maxlen		= sizeof(max_user_watches),
296 		.mode		= 0644,
297 		.proc_handler	= proc_doulongvec_minmax,
298 		.extra1		= &zero,
299 		.extra2		= &long_max,
300 	},
301 	{ }
302 };
303 #endif /* CONFIG_SYSCTL */
304 
305 static const struct file_operations eventpoll_fops;
306 
307 static inline int is_file_epoll(struct file *f)
308 {
309 	return f->f_op == &eventpoll_fops;
310 }
311 
312 /* Setup the structure that is used as key for the RB tree */
313 static inline void ep_set_ffd(struct epoll_filefd *ffd,
314 			      struct file *file, int fd)
315 {
316 	ffd->file = file;
317 	ffd->fd = fd;
318 }
319 
320 /* Compare RB tree keys */
321 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
322 			     struct epoll_filefd *p2)
323 {
324 	return (p1->file > p2->file ? +1:
325 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
326 }
327 
328 /* Tells us if the item is currently linked */
329 static inline int ep_is_linked(struct list_head *p)
330 {
331 	return !list_empty(p);
332 }
333 
334 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
335 {
336 	return container_of(p, struct eppoll_entry, wait);
337 }
338 
339 /* Get the "struct epitem" from a wait queue pointer */
340 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
341 {
342 	return container_of(p, struct eppoll_entry, wait)->base;
343 }
344 
345 /* Get the "struct epitem" from an epoll queue wrapper */
346 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
347 {
348 	return container_of(p, struct ep_pqueue, pt)->epi;
349 }
350 
351 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
352 static inline int ep_op_has_event(int op)
353 {
354 	return op != EPOLL_CTL_DEL;
355 }
356 
357 /* Initialize the poll safe wake up structure */
358 static void ep_nested_calls_init(struct nested_calls *ncalls)
359 {
360 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
361 	spin_lock_init(&ncalls->lock);
362 }
363 
364 /**
365  * ep_events_available - Checks if ready events might be available.
366  *
367  * @ep: Pointer to the eventpoll context.
368  *
369  * Returns: Returns a value different than zero if ready events are available,
370  *          or zero otherwise.
371  */
372 static inline int ep_events_available(struct eventpoll *ep)
373 {
374 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
375 }
376 
377 /**
378  * ep_call_nested - Perform a bound (possibly) nested call, by checking
379  *                  that the recursion limit is not exceeded, and that
380  *                  the same nested call (by the meaning of same cookie) is
381  *                  no re-entered.
382  *
383  * @ncalls: Pointer to the nested_calls structure to be used for this call.
384  * @max_nests: Maximum number of allowed nesting calls.
385  * @nproc: Nested call core function pointer.
386  * @priv: Opaque data to be passed to the @nproc callback.
387  * @cookie: Cookie to be used to identify this nested call.
388  * @ctx: This instance context.
389  *
390  * Returns: Returns the code returned by the @nproc callback, or -1 if
391  *          the maximum recursion limit has been exceeded.
392  */
393 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
394 			  int (*nproc)(void *, void *, int), void *priv,
395 			  void *cookie, void *ctx)
396 {
397 	int error, call_nests = 0;
398 	unsigned long flags;
399 	struct list_head *lsthead = &ncalls->tasks_call_list;
400 	struct nested_call_node *tncur;
401 	struct nested_call_node tnode;
402 
403 	spin_lock_irqsave(&ncalls->lock, flags);
404 
405 	/*
406 	 * Try to see if the current task is already inside this wakeup call.
407 	 * We use a list here, since the population inside this set is always
408 	 * very much limited.
409 	 */
410 	list_for_each_entry(tncur, lsthead, llink) {
411 		if (tncur->ctx == ctx &&
412 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
413 			/*
414 			 * Ops ... loop detected or maximum nest level reached.
415 			 * We abort this wake by breaking the cycle itself.
416 			 */
417 			error = -1;
418 			goto out_unlock;
419 		}
420 	}
421 
422 	/* Add the current task and cookie to the list */
423 	tnode.ctx = ctx;
424 	tnode.cookie = cookie;
425 	list_add(&tnode.llink, lsthead);
426 
427 	spin_unlock_irqrestore(&ncalls->lock, flags);
428 
429 	/* Call the nested function */
430 	error = (*nproc)(priv, cookie, call_nests);
431 
432 	/* Remove the current task from the list */
433 	spin_lock_irqsave(&ncalls->lock, flags);
434 	list_del(&tnode.llink);
435 out_unlock:
436 	spin_unlock_irqrestore(&ncalls->lock, flags);
437 
438 	return error;
439 }
440 
441 /*
442  * As described in commit 0ccf831cb lockdep: annotate epoll
443  * the use of wait queues used by epoll is done in a very controlled
444  * manner. Wake ups can nest inside each other, but are never done
445  * with the same locking. For example:
446  *
447  *   dfd = socket(...);
448  *   efd1 = epoll_create();
449  *   efd2 = epoll_create();
450  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
451  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
452  *
453  * When a packet arrives to the device underneath "dfd", the net code will
454  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
455  * callback wakeup entry on that queue, and the wake_up() performed by the
456  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
457  * (efd1) notices that it may have some event ready, so it needs to wake up
458  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
459  * that ends up in another wake_up(), after having checked about the
460  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
461  * avoid stack blasting.
462  *
463  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
464  * this special case of epoll.
465  */
466 #ifdef CONFIG_DEBUG_LOCK_ALLOC
467 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
468 				     unsigned long events, int subclass)
469 {
470 	unsigned long flags;
471 
472 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
473 	wake_up_locked_poll(wqueue, events);
474 	spin_unlock_irqrestore(&wqueue->lock, flags);
475 }
476 #else
477 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
478 				     unsigned long events, int subclass)
479 {
480 	wake_up_poll(wqueue, events);
481 }
482 #endif
483 
484 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
485 {
486 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
487 			  1 + call_nests);
488 	return 0;
489 }
490 
491 /*
492  * Perform a safe wake up of the poll wait list. The problem is that
493  * with the new callback'd wake up system, it is possible that the
494  * poll callback is reentered from inside the call to wake_up() done
495  * on the poll wait queue head. The rule is that we cannot reenter the
496  * wake up code from the same task more than EP_MAX_NESTS times,
497  * and we cannot reenter the same wait queue head at all. This will
498  * enable to have a hierarchy of epoll file descriptor of no more than
499  * EP_MAX_NESTS deep.
500  */
501 static void ep_poll_safewake(wait_queue_head_t *wq)
502 {
503 	int this_cpu = get_cpu();
504 
505 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
506 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
507 
508 	put_cpu();
509 }
510 
511 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
512 {
513 	wait_queue_head_t *whead;
514 
515 	rcu_read_lock();
516 	/* If it is cleared by POLLFREE, it should be rcu-safe */
517 	whead = rcu_dereference(pwq->whead);
518 	if (whead)
519 		remove_wait_queue(whead, &pwq->wait);
520 	rcu_read_unlock();
521 }
522 
523 /*
524  * This function unregisters poll callbacks from the associated file
525  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
526  * ep_free).
527  */
528 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
529 {
530 	struct list_head *lsthead = &epi->pwqlist;
531 	struct eppoll_entry *pwq;
532 
533 	while (!list_empty(lsthead)) {
534 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
535 
536 		list_del(&pwq->llink);
537 		ep_remove_wait_queue(pwq);
538 		kmem_cache_free(pwq_cache, pwq);
539 	}
540 }
541 
542 /* call only when ep->mtx is held */
543 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
544 {
545 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
546 }
547 
548 /* call only when ep->mtx is held */
549 static inline void ep_pm_stay_awake(struct epitem *epi)
550 {
551 	struct wakeup_source *ws = ep_wakeup_source(epi);
552 
553 	if (ws)
554 		__pm_stay_awake(ws);
555 }
556 
557 static inline bool ep_has_wakeup_source(struct epitem *epi)
558 {
559 	return rcu_access_pointer(epi->ws) ? true : false;
560 }
561 
562 /* call when ep->mtx cannot be held (ep_poll_callback) */
563 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
564 {
565 	struct wakeup_source *ws;
566 
567 	rcu_read_lock();
568 	ws = rcu_dereference(epi->ws);
569 	if (ws)
570 		__pm_stay_awake(ws);
571 	rcu_read_unlock();
572 }
573 
574 /**
575  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
576  *                      the scan code, to call f_op->poll(). Also allows for
577  *                      O(NumReady) performance.
578  *
579  * @ep: Pointer to the epoll private data structure.
580  * @sproc: Pointer to the scan callback.
581  * @priv: Private opaque data passed to the @sproc callback.
582  * @depth: The current depth of recursive f_op->poll calls.
583  *
584  * Returns: The same integer error code returned by the @sproc callback.
585  */
586 static int ep_scan_ready_list(struct eventpoll *ep,
587 			      int (*sproc)(struct eventpoll *,
588 					   struct list_head *, void *),
589 			      void *priv,
590 			      int depth)
591 {
592 	int error, pwake = 0;
593 	unsigned long flags;
594 	struct epitem *epi, *nepi;
595 	LIST_HEAD(txlist);
596 
597 	/*
598 	 * We need to lock this because we could be hit by
599 	 * eventpoll_release_file() and epoll_ctl().
600 	 */
601 	mutex_lock_nested(&ep->mtx, depth);
602 
603 	/*
604 	 * Steal the ready list, and re-init the original one to the
605 	 * empty list. Also, set ep->ovflist to NULL so that events
606 	 * happening while looping w/out locks, are not lost. We cannot
607 	 * have the poll callback to queue directly on ep->rdllist,
608 	 * because we want the "sproc" callback to be able to do it
609 	 * in a lockless way.
610 	 */
611 	spin_lock_irqsave(&ep->lock, flags);
612 	list_splice_init(&ep->rdllist, &txlist);
613 	ep->ovflist = NULL;
614 	spin_unlock_irqrestore(&ep->lock, flags);
615 
616 	/*
617 	 * Now call the callback function.
618 	 */
619 	error = (*sproc)(ep, &txlist, priv);
620 
621 	spin_lock_irqsave(&ep->lock, flags);
622 	/*
623 	 * During the time we spent inside the "sproc" callback, some
624 	 * other events might have been queued by the poll callback.
625 	 * We re-insert them inside the main ready-list here.
626 	 */
627 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
628 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
629 		/*
630 		 * We need to check if the item is already in the list.
631 		 * During the "sproc" callback execution time, items are
632 		 * queued into ->ovflist but the "txlist" might already
633 		 * contain them, and the list_splice() below takes care of them.
634 		 */
635 		if (!ep_is_linked(&epi->rdllink)) {
636 			list_add_tail(&epi->rdllink, &ep->rdllist);
637 			ep_pm_stay_awake(epi);
638 		}
639 	}
640 	/*
641 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
642 	 * releasing the lock, events will be queued in the normal way inside
643 	 * ep->rdllist.
644 	 */
645 	ep->ovflist = EP_UNACTIVE_PTR;
646 
647 	/*
648 	 * Quickly re-inject items left on "txlist".
649 	 */
650 	list_splice(&txlist, &ep->rdllist);
651 	__pm_relax(ep->ws);
652 
653 	if (!list_empty(&ep->rdllist)) {
654 		/*
655 		 * Wake up (if active) both the eventpoll wait list and
656 		 * the ->poll() wait list (delayed after we release the lock).
657 		 */
658 		if (waitqueue_active(&ep->wq))
659 			wake_up_locked(&ep->wq);
660 		if (waitqueue_active(&ep->poll_wait))
661 			pwake++;
662 	}
663 	spin_unlock_irqrestore(&ep->lock, flags);
664 
665 	mutex_unlock(&ep->mtx);
666 
667 	/* We have to call this outside the lock */
668 	if (pwake)
669 		ep_poll_safewake(&ep->poll_wait);
670 
671 	return error;
672 }
673 
674 /*
675  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
676  * all the associated resources. Must be called with "mtx" held.
677  */
678 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
679 {
680 	unsigned long flags;
681 	struct file *file = epi->ffd.file;
682 
683 	/*
684 	 * Removes poll wait queue hooks. We _have_ to do this without holding
685 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
686 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
687 	 * queue head lock when unregistering the wait queue. The wakeup callback
688 	 * will run by holding the wait queue head lock and will call our callback
689 	 * that will try to get "ep->lock".
690 	 */
691 	ep_unregister_pollwait(ep, epi);
692 
693 	/* Remove the current item from the list of epoll hooks */
694 	spin_lock(&file->f_lock);
695 	if (ep_is_linked(&epi->fllink))
696 		list_del_init(&epi->fllink);
697 	spin_unlock(&file->f_lock);
698 
699 	rb_erase(&epi->rbn, &ep->rbr);
700 
701 	spin_lock_irqsave(&ep->lock, flags);
702 	if (ep_is_linked(&epi->rdllink))
703 		list_del_init(&epi->rdllink);
704 	spin_unlock_irqrestore(&ep->lock, flags);
705 
706 	wakeup_source_unregister(ep_wakeup_source(epi));
707 
708 	/* At this point it is safe to free the eventpoll item */
709 	kmem_cache_free(epi_cache, epi);
710 
711 	atomic_long_dec(&ep->user->epoll_watches);
712 
713 	return 0;
714 }
715 
716 static void ep_free(struct eventpoll *ep)
717 {
718 	struct rb_node *rbp;
719 	struct epitem *epi;
720 
721 	/* We need to release all tasks waiting for these file */
722 	if (waitqueue_active(&ep->poll_wait))
723 		ep_poll_safewake(&ep->poll_wait);
724 
725 	/*
726 	 * We need to lock this because we could be hit by
727 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
728 	 * We do not need to hold "ep->mtx" here because the epoll file
729 	 * is on the way to be removed and no one has references to it
730 	 * anymore. The only hit might come from eventpoll_release_file() but
731 	 * holding "epmutex" is sufficient here.
732 	 */
733 	mutex_lock(&epmutex);
734 
735 	/*
736 	 * Walks through the whole tree by unregistering poll callbacks.
737 	 */
738 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
739 		epi = rb_entry(rbp, struct epitem, rbn);
740 
741 		ep_unregister_pollwait(ep, epi);
742 	}
743 
744 	/*
745 	 * Walks through the whole tree by freeing each "struct epitem". At this
746 	 * point we are sure no poll callbacks will be lingering around, and also by
747 	 * holding "epmutex" we can be sure that no file cleanup code will hit
748 	 * us during this operation. So we can avoid the lock on "ep->lock".
749 	 * We do not need to lock ep->mtx, either, we only do it to prevent
750 	 * a lockdep warning.
751 	 */
752 	mutex_lock(&ep->mtx);
753 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
754 		epi = rb_entry(rbp, struct epitem, rbn);
755 		ep_remove(ep, epi);
756 	}
757 	mutex_unlock(&ep->mtx);
758 
759 	mutex_unlock(&epmutex);
760 	mutex_destroy(&ep->mtx);
761 	free_uid(ep->user);
762 	wakeup_source_unregister(ep->ws);
763 	kfree(ep);
764 }
765 
766 static int ep_eventpoll_release(struct inode *inode, struct file *file)
767 {
768 	struct eventpoll *ep = file->private_data;
769 
770 	if (ep)
771 		ep_free(ep);
772 
773 	return 0;
774 }
775 
776 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
777 {
778 	pt->_key = epi->event.events;
779 
780 	return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
781 }
782 
783 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
784 			       void *priv)
785 {
786 	struct epitem *epi, *tmp;
787 	poll_table pt;
788 
789 	init_poll_funcptr(&pt, NULL);
790 
791 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
792 		if (ep_item_poll(epi, &pt))
793 			return POLLIN | POLLRDNORM;
794 		else {
795 			/*
796 			 * Item has been dropped into the ready list by the poll
797 			 * callback, but it's not actually ready, as far as
798 			 * caller requested events goes. We can remove it here.
799 			 */
800 			__pm_relax(ep_wakeup_source(epi));
801 			list_del_init(&epi->rdllink);
802 		}
803 	}
804 
805 	return 0;
806 }
807 
808 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
809 {
810 	return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
811 }
812 
813 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
814 {
815 	int pollflags;
816 	struct eventpoll *ep = file->private_data;
817 
818 	/* Insert inside our poll wait queue */
819 	poll_wait(file, &ep->poll_wait, wait);
820 
821 	/*
822 	 * Proceed to find out if wanted events are really available inside
823 	 * the ready list. This need to be done under ep_call_nested()
824 	 * supervision, since the call to f_op->poll() done on listed files
825 	 * could re-enter here.
826 	 */
827 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
828 				   ep_poll_readyevents_proc, ep, ep, current);
829 
830 	return pollflags != -1 ? pollflags : 0;
831 }
832 
833 #ifdef CONFIG_PROC_FS
834 static int ep_show_fdinfo(struct seq_file *m, struct file *f)
835 {
836 	struct eventpoll *ep = f->private_data;
837 	struct rb_node *rbp;
838 	int ret = 0;
839 
840 	mutex_lock(&ep->mtx);
841 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
842 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
843 
844 		ret = seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
845 				 epi->ffd.fd, epi->event.events,
846 				 (long long)epi->event.data);
847 		if (ret)
848 			break;
849 	}
850 	mutex_unlock(&ep->mtx);
851 
852 	return ret;
853 }
854 #endif
855 
856 /* File callbacks that implement the eventpoll file behaviour */
857 static const struct file_operations eventpoll_fops = {
858 #ifdef CONFIG_PROC_FS
859 	.show_fdinfo	= ep_show_fdinfo,
860 #endif
861 	.release	= ep_eventpoll_release,
862 	.poll		= ep_eventpoll_poll,
863 	.llseek		= noop_llseek,
864 };
865 
866 /*
867  * This is called from eventpoll_release() to unlink files from the eventpoll
868  * interface. We need to have this facility to cleanup correctly files that are
869  * closed without being removed from the eventpoll interface.
870  */
871 void eventpoll_release_file(struct file *file)
872 {
873 	struct list_head *lsthead = &file->f_ep_links;
874 	struct eventpoll *ep;
875 	struct epitem *epi;
876 
877 	/*
878 	 * We don't want to get "file->f_lock" because it is not
879 	 * necessary. It is not necessary because we're in the "struct file"
880 	 * cleanup path, and this means that no one is using this file anymore.
881 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
882 	 * point, the file counter already went to zero and fget() would fail.
883 	 * The only hit might come from ep_free() but by holding the mutex
884 	 * will correctly serialize the operation. We do need to acquire
885 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
886 	 * from anywhere but ep_free().
887 	 *
888 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
889 	 */
890 	mutex_lock(&epmutex);
891 
892 	while (!list_empty(lsthead)) {
893 		epi = list_first_entry(lsthead, struct epitem, fllink);
894 
895 		ep = epi->ep;
896 		list_del_init(&epi->fllink);
897 		mutex_lock_nested(&ep->mtx, 0);
898 		ep_remove(ep, epi);
899 		mutex_unlock(&ep->mtx);
900 	}
901 
902 	mutex_unlock(&epmutex);
903 }
904 
905 static int ep_alloc(struct eventpoll **pep)
906 {
907 	int error;
908 	struct user_struct *user;
909 	struct eventpoll *ep;
910 
911 	user = get_current_user();
912 	error = -ENOMEM;
913 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
914 	if (unlikely(!ep))
915 		goto free_uid;
916 
917 	spin_lock_init(&ep->lock);
918 	mutex_init(&ep->mtx);
919 	init_waitqueue_head(&ep->wq);
920 	init_waitqueue_head(&ep->poll_wait);
921 	INIT_LIST_HEAD(&ep->rdllist);
922 	ep->rbr = RB_ROOT;
923 	ep->ovflist = EP_UNACTIVE_PTR;
924 	ep->user = user;
925 
926 	*pep = ep;
927 
928 	return 0;
929 
930 free_uid:
931 	free_uid(user);
932 	return error;
933 }
934 
935 /*
936  * Search the file inside the eventpoll tree. The RB tree operations
937  * are protected by the "mtx" mutex, and ep_find() must be called with
938  * "mtx" held.
939  */
940 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
941 {
942 	int kcmp;
943 	struct rb_node *rbp;
944 	struct epitem *epi, *epir = NULL;
945 	struct epoll_filefd ffd;
946 
947 	ep_set_ffd(&ffd, file, fd);
948 	for (rbp = ep->rbr.rb_node; rbp; ) {
949 		epi = rb_entry(rbp, struct epitem, rbn);
950 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
951 		if (kcmp > 0)
952 			rbp = rbp->rb_right;
953 		else if (kcmp < 0)
954 			rbp = rbp->rb_left;
955 		else {
956 			epir = epi;
957 			break;
958 		}
959 	}
960 
961 	return epir;
962 }
963 
964 /*
965  * This is the callback that is passed to the wait queue wakeup
966  * mechanism. It is called by the stored file descriptors when they
967  * have events to report.
968  */
969 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
970 {
971 	int pwake = 0;
972 	unsigned long flags;
973 	struct epitem *epi = ep_item_from_wait(wait);
974 	struct eventpoll *ep = epi->ep;
975 
976 	if ((unsigned long)key & POLLFREE) {
977 		ep_pwq_from_wait(wait)->whead = NULL;
978 		/*
979 		 * whead = NULL above can race with ep_remove_wait_queue()
980 		 * which can do another remove_wait_queue() after us, so we
981 		 * can't use __remove_wait_queue(). whead->lock is held by
982 		 * the caller.
983 		 */
984 		list_del_init(&wait->task_list);
985 	}
986 
987 	spin_lock_irqsave(&ep->lock, flags);
988 
989 	/*
990 	 * If the event mask does not contain any poll(2) event, we consider the
991 	 * descriptor to be disabled. This condition is likely the effect of the
992 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
993 	 * until the next EPOLL_CTL_MOD will be issued.
994 	 */
995 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
996 		goto out_unlock;
997 
998 	/*
999 	 * Check the events coming with the callback. At this stage, not
1000 	 * every device reports the events in the "key" parameter of the
1001 	 * callback. We need to be able to handle both cases here, hence the
1002 	 * test for "key" != NULL before the event match test.
1003 	 */
1004 	if (key && !((unsigned long) key & epi->event.events))
1005 		goto out_unlock;
1006 
1007 	/*
1008 	 * If we are transferring events to userspace, we can hold no locks
1009 	 * (because we're accessing user memory, and because of linux f_op->poll()
1010 	 * semantics). All the events that happen during that period of time are
1011 	 * chained in ep->ovflist and requeued later on.
1012 	 */
1013 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1014 		if (epi->next == EP_UNACTIVE_PTR) {
1015 			epi->next = ep->ovflist;
1016 			ep->ovflist = epi;
1017 			if (epi->ws) {
1018 				/*
1019 				 * Activate ep->ws since epi->ws may get
1020 				 * deactivated at any time.
1021 				 */
1022 				__pm_stay_awake(ep->ws);
1023 			}
1024 
1025 		}
1026 		goto out_unlock;
1027 	}
1028 
1029 	/* If this file is already in the ready list we exit soon */
1030 	if (!ep_is_linked(&epi->rdllink)) {
1031 		list_add_tail(&epi->rdllink, &ep->rdllist);
1032 		ep_pm_stay_awake_rcu(epi);
1033 	}
1034 
1035 	/*
1036 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1037 	 * wait list.
1038 	 */
1039 	if (waitqueue_active(&ep->wq))
1040 		wake_up_locked(&ep->wq);
1041 	if (waitqueue_active(&ep->poll_wait))
1042 		pwake++;
1043 
1044 out_unlock:
1045 	spin_unlock_irqrestore(&ep->lock, flags);
1046 
1047 	/* We have to call this outside the lock */
1048 	if (pwake)
1049 		ep_poll_safewake(&ep->poll_wait);
1050 
1051 	return 1;
1052 }
1053 
1054 /*
1055  * This is the callback that is used to add our wait queue to the
1056  * target file wakeup lists.
1057  */
1058 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1059 				 poll_table *pt)
1060 {
1061 	struct epitem *epi = ep_item_from_epqueue(pt);
1062 	struct eppoll_entry *pwq;
1063 
1064 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1065 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1066 		pwq->whead = whead;
1067 		pwq->base = epi;
1068 		add_wait_queue(whead, &pwq->wait);
1069 		list_add_tail(&pwq->llink, &epi->pwqlist);
1070 		epi->nwait++;
1071 	} else {
1072 		/* We have to signal that an error occurred */
1073 		epi->nwait = -1;
1074 	}
1075 }
1076 
1077 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1078 {
1079 	int kcmp;
1080 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1081 	struct epitem *epic;
1082 
1083 	while (*p) {
1084 		parent = *p;
1085 		epic = rb_entry(parent, struct epitem, rbn);
1086 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1087 		if (kcmp > 0)
1088 			p = &parent->rb_right;
1089 		else
1090 			p = &parent->rb_left;
1091 	}
1092 	rb_link_node(&epi->rbn, parent, p);
1093 	rb_insert_color(&epi->rbn, &ep->rbr);
1094 }
1095 
1096 
1097 
1098 #define PATH_ARR_SIZE 5
1099 /*
1100  * These are the number paths of length 1 to 5, that we are allowing to emanate
1101  * from a single file of interest. For example, we allow 1000 paths of length
1102  * 1, to emanate from each file of interest. This essentially represents the
1103  * potential wakeup paths, which need to be limited in order to avoid massive
1104  * uncontrolled wakeup storms. The common use case should be a single ep which
1105  * is connected to n file sources. In this case each file source has 1 path
1106  * of length 1. Thus, the numbers below should be more than sufficient. These
1107  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1108  * and delete can't add additional paths. Protected by the epmutex.
1109  */
1110 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1111 static int path_count[PATH_ARR_SIZE];
1112 
1113 static int path_count_inc(int nests)
1114 {
1115 	/* Allow an arbitrary number of depth 1 paths */
1116 	if (nests == 0)
1117 		return 0;
1118 
1119 	if (++path_count[nests] > path_limits[nests])
1120 		return -1;
1121 	return 0;
1122 }
1123 
1124 static void path_count_init(void)
1125 {
1126 	int i;
1127 
1128 	for (i = 0; i < PATH_ARR_SIZE; i++)
1129 		path_count[i] = 0;
1130 }
1131 
1132 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1133 {
1134 	int error = 0;
1135 	struct file *file = priv;
1136 	struct file *child_file;
1137 	struct epitem *epi;
1138 
1139 	list_for_each_entry(epi, &file->f_ep_links, fllink) {
1140 		child_file = epi->ep->file;
1141 		if (is_file_epoll(child_file)) {
1142 			if (list_empty(&child_file->f_ep_links)) {
1143 				if (path_count_inc(call_nests)) {
1144 					error = -1;
1145 					break;
1146 				}
1147 			} else {
1148 				error = ep_call_nested(&poll_loop_ncalls,
1149 							EP_MAX_NESTS,
1150 							reverse_path_check_proc,
1151 							child_file, child_file,
1152 							current);
1153 			}
1154 			if (error != 0)
1155 				break;
1156 		} else {
1157 			printk(KERN_ERR "reverse_path_check_proc: "
1158 				"file is not an ep!\n");
1159 		}
1160 	}
1161 	return error;
1162 }
1163 
1164 /**
1165  * reverse_path_check - The tfile_check_list is list of file *, which have
1166  *                      links that are proposed to be newly added. We need to
1167  *                      make sure that those added links don't add too many
1168  *                      paths such that we will spend all our time waking up
1169  *                      eventpoll objects.
1170  *
1171  * Returns: Returns zero if the proposed links don't create too many paths,
1172  *	    -1 otherwise.
1173  */
1174 static int reverse_path_check(void)
1175 {
1176 	int error = 0;
1177 	struct file *current_file;
1178 
1179 	/* let's call this for all tfiles */
1180 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1181 		path_count_init();
1182 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1183 					reverse_path_check_proc, current_file,
1184 					current_file, current);
1185 		if (error)
1186 			break;
1187 	}
1188 	return error;
1189 }
1190 
1191 static int ep_create_wakeup_source(struct epitem *epi)
1192 {
1193 	const char *name;
1194 	struct wakeup_source *ws;
1195 
1196 	if (!epi->ep->ws) {
1197 		epi->ep->ws = wakeup_source_register("eventpoll");
1198 		if (!epi->ep->ws)
1199 			return -ENOMEM;
1200 	}
1201 
1202 	name = epi->ffd.file->f_path.dentry->d_name.name;
1203 	ws = wakeup_source_register(name);
1204 
1205 	if (!ws)
1206 		return -ENOMEM;
1207 	rcu_assign_pointer(epi->ws, ws);
1208 
1209 	return 0;
1210 }
1211 
1212 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1213 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1214 {
1215 	struct wakeup_source *ws = ep_wakeup_source(epi);
1216 
1217 	RCU_INIT_POINTER(epi->ws, NULL);
1218 
1219 	/*
1220 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1221 	 * used internally by wakeup_source_remove, too (called by
1222 	 * wakeup_source_unregister), so we cannot use call_rcu
1223 	 */
1224 	synchronize_rcu();
1225 	wakeup_source_unregister(ws);
1226 }
1227 
1228 /*
1229  * Must be called with "mtx" held.
1230  */
1231 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1232 		     struct file *tfile, int fd)
1233 {
1234 	int error, revents, pwake = 0;
1235 	unsigned long flags;
1236 	long user_watches;
1237 	struct epitem *epi;
1238 	struct ep_pqueue epq;
1239 
1240 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1241 	if (unlikely(user_watches >= max_user_watches))
1242 		return -ENOSPC;
1243 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1244 		return -ENOMEM;
1245 
1246 	/* Item initialization follow here ... */
1247 	INIT_LIST_HEAD(&epi->rdllink);
1248 	INIT_LIST_HEAD(&epi->fllink);
1249 	INIT_LIST_HEAD(&epi->pwqlist);
1250 	epi->ep = ep;
1251 	ep_set_ffd(&epi->ffd, tfile, fd);
1252 	epi->event = *event;
1253 	epi->nwait = 0;
1254 	epi->next = EP_UNACTIVE_PTR;
1255 	if (epi->event.events & EPOLLWAKEUP) {
1256 		error = ep_create_wakeup_source(epi);
1257 		if (error)
1258 			goto error_create_wakeup_source;
1259 	} else {
1260 		RCU_INIT_POINTER(epi->ws, NULL);
1261 	}
1262 
1263 	/* Initialize the poll table using the queue callback */
1264 	epq.epi = epi;
1265 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1266 
1267 	/*
1268 	 * Attach the item to the poll hooks and get current event bits.
1269 	 * We can safely use the file* here because its usage count has
1270 	 * been increased by the caller of this function. Note that after
1271 	 * this operation completes, the poll callback can start hitting
1272 	 * the new item.
1273 	 */
1274 	revents = ep_item_poll(epi, &epq.pt);
1275 
1276 	/*
1277 	 * We have to check if something went wrong during the poll wait queue
1278 	 * install process. Namely an allocation for a wait queue failed due
1279 	 * high memory pressure.
1280 	 */
1281 	error = -ENOMEM;
1282 	if (epi->nwait < 0)
1283 		goto error_unregister;
1284 
1285 	/* Add the current item to the list of active epoll hook for this file */
1286 	spin_lock(&tfile->f_lock);
1287 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
1288 	spin_unlock(&tfile->f_lock);
1289 
1290 	/*
1291 	 * Add the current item to the RB tree. All RB tree operations are
1292 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1293 	 */
1294 	ep_rbtree_insert(ep, epi);
1295 
1296 	/* now check if we've created too many backpaths */
1297 	error = -EINVAL;
1298 	if (reverse_path_check())
1299 		goto error_remove_epi;
1300 
1301 	/* We have to drop the new item inside our item list to keep track of it */
1302 	spin_lock_irqsave(&ep->lock, flags);
1303 
1304 	/* If the file is already "ready" we drop it inside the ready list */
1305 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1306 		list_add_tail(&epi->rdllink, &ep->rdllist);
1307 		ep_pm_stay_awake(epi);
1308 
1309 		/* Notify waiting tasks that events are available */
1310 		if (waitqueue_active(&ep->wq))
1311 			wake_up_locked(&ep->wq);
1312 		if (waitqueue_active(&ep->poll_wait))
1313 			pwake++;
1314 	}
1315 
1316 	spin_unlock_irqrestore(&ep->lock, flags);
1317 
1318 	atomic_long_inc(&ep->user->epoll_watches);
1319 
1320 	/* We have to call this outside the lock */
1321 	if (pwake)
1322 		ep_poll_safewake(&ep->poll_wait);
1323 
1324 	return 0;
1325 
1326 error_remove_epi:
1327 	spin_lock(&tfile->f_lock);
1328 	if (ep_is_linked(&epi->fllink))
1329 		list_del_init(&epi->fllink);
1330 	spin_unlock(&tfile->f_lock);
1331 
1332 	rb_erase(&epi->rbn, &ep->rbr);
1333 
1334 error_unregister:
1335 	ep_unregister_pollwait(ep, epi);
1336 
1337 	/*
1338 	 * We need to do this because an event could have been arrived on some
1339 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1340 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1341 	 * And ep_insert() is called with "mtx" held.
1342 	 */
1343 	spin_lock_irqsave(&ep->lock, flags);
1344 	if (ep_is_linked(&epi->rdllink))
1345 		list_del_init(&epi->rdllink);
1346 	spin_unlock_irqrestore(&ep->lock, flags);
1347 
1348 	wakeup_source_unregister(ep_wakeup_source(epi));
1349 
1350 error_create_wakeup_source:
1351 	kmem_cache_free(epi_cache, epi);
1352 
1353 	return error;
1354 }
1355 
1356 /*
1357  * Modify the interest event mask by dropping an event if the new mask
1358  * has a match in the current file status. Must be called with "mtx" held.
1359  */
1360 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1361 {
1362 	int pwake = 0;
1363 	unsigned int revents;
1364 	poll_table pt;
1365 
1366 	init_poll_funcptr(&pt, NULL);
1367 
1368 	/*
1369 	 * Set the new event interest mask before calling f_op->poll();
1370 	 * otherwise we might miss an event that happens between the
1371 	 * f_op->poll() call and the new event set registering.
1372 	 */
1373 	epi->event.events = event->events; /* need barrier below */
1374 	epi->event.data = event->data; /* protected by mtx */
1375 	if (epi->event.events & EPOLLWAKEUP) {
1376 		if (!ep_has_wakeup_source(epi))
1377 			ep_create_wakeup_source(epi);
1378 	} else if (ep_has_wakeup_source(epi)) {
1379 		ep_destroy_wakeup_source(epi);
1380 	}
1381 
1382 	/*
1383 	 * The following barrier has two effects:
1384 	 *
1385 	 * 1) Flush epi changes above to other CPUs.  This ensures
1386 	 *    we do not miss events from ep_poll_callback if an
1387 	 *    event occurs immediately after we call f_op->poll().
1388 	 *    We need this because we did not take ep->lock while
1389 	 *    changing epi above (but ep_poll_callback does take
1390 	 *    ep->lock).
1391 	 *
1392 	 * 2) We also need to ensure we do not miss _past_ events
1393 	 *    when calling f_op->poll().  This barrier also
1394 	 *    pairs with the barrier in wq_has_sleeper (see
1395 	 *    comments for wq_has_sleeper).
1396 	 *
1397 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1398 	 * (or both) will notice the readiness of an item.
1399 	 */
1400 	smp_mb();
1401 
1402 	/*
1403 	 * Get current event bits. We can safely use the file* here because
1404 	 * its usage count has been increased by the caller of this function.
1405 	 */
1406 	revents = ep_item_poll(epi, &pt);
1407 
1408 	/*
1409 	 * If the item is "hot" and it is not registered inside the ready
1410 	 * list, push it inside.
1411 	 */
1412 	if (revents & event->events) {
1413 		spin_lock_irq(&ep->lock);
1414 		if (!ep_is_linked(&epi->rdllink)) {
1415 			list_add_tail(&epi->rdllink, &ep->rdllist);
1416 			ep_pm_stay_awake(epi);
1417 
1418 			/* Notify waiting tasks that events are available */
1419 			if (waitqueue_active(&ep->wq))
1420 				wake_up_locked(&ep->wq);
1421 			if (waitqueue_active(&ep->poll_wait))
1422 				pwake++;
1423 		}
1424 		spin_unlock_irq(&ep->lock);
1425 	}
1426 
1427 	/* We have to call this outside the lock */
1428 	if (pwake)
1429 		ep_poll_safewake(&ep->poll_wait);
1430 
1431 	return 0;
1432 }
1433 
1434 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1435 			       void *priv)
1436 {
1437 	struct ep_send_events_data *esed = priv;
1438 	int eventcnt;
1439 	unsigned int revents;
1440 	struct epitem *epi;
1441 	struct epoll_event __user *uevent;
1442 	struct wakeup_source *ws;
1443 	poll_table pt;
1444 
1445 	init_poll_funcptr(&pt, NULL);
1446 
1447 	/*
1448 	 * We can loop without lock because we are passed a task private list.
1449 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1450 	 * holding "mtx" during this call.
1451 	 */
1452 	for (eventcnt = 0, uevent = esed->events;
1453 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1454 		epi = list_first_entry(head, struct epitem, rdllink);
1455 
1456 		/*
1457 		 * Activate ep->ws before deactivating epi->ws to prevent
1458 		 * triggering auto-suspend here (in case we reactive epi->ws
1459 		 * below).
1460 		 *
1461 		 * This could be rearranged to delay the deactivation of epi->ws
1462 		 * instead, but then epi->ws would temporarily be out of sync
1463 		 * with ep_is_linked().
1464 		 */
1465 		ws = ep_wakeup_source(epi);
1466 		if (ws) {
1467 			if (ws->active)
1468 				__pm_stay_awake(ep->ws);
1469 			__pm_relax(ws);
1470 		}
1471 
1472 		list_del_init(&epi->rdllink);
1473 
1474 		revents = ep_item_poll(epi, &pt);
1475 
1476 		/*
1477 		 * If the event mask intersect the caller-requested one,
1478 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1479 		 * is holding "mtx", so no operations coming from userspace
1480 		 * can change the item.
1481 		 */
1482 		if (revents) {
1483 			if (__put_user(revents, &uevent->events) ||
1484 			    __put_user(epi->event.data, &uevent->data)) {
1485 				list_add(&epi->rdllink, head);
1486 				ep_pm_stay_awake(epi);
1487 				return eventcnt ? eventcnt : -EFAULT;
1488 			}
1489 			eventcnt++;
1490 			uevent++;
1491 			if (epi->event.events & EPOLLONESHOT)
1492 				epi->event.events &= EP_PRIVATE_BITS;
1493 			else if (!(epi->event.events & EPOLLET)) {
1494 				/*
1495 				 * If this file has been added with Level
1496 				 * Trigger mode, we need to insert back inside
1497 				 * the ready list, so that the next call to
1498 				 * epoll_wait() will check again the events
1499 				 * availability. At this point, no one can insert
1500 				 * into ep->rdllist besides us. The epoll_ctl()
1501 				 * callers are locked out by
1502 				 * ep_scan_ready_list() holding "mtx" and the
1503 				 * poll callback will queue them in ep->ovflist.
1504 				 */
1505 				list_add_tail(&epi->rdllink, &ep->rdllist);
1506 				ep_pm_stay_awake(epi);
1507 			}
1508 		}
1509 	}
1510 
1511 	return eventcnt;
1512 }
1513 
1514 static int ep_send_events(struct eventpoll *ep,
1515 			  struct epoll_event __user *events, int maxevents)
1516 {
1517 	struct ep_send_events_data esed;
1518 
1519 	esed.maxevents = maxevents;
1520 	esed.events = events;
1521 
1522 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1523 }
1524 
1525 static inline struct timespec ep_set_mstimeout(long ms)
1526 {
1527 	struct timespec now, ts = {
1528 		.tv_sec = ms / MSEC_PER_SEC,
1529 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1530 	};
1531 
1532 	ktime_get_ts(&now);
1533 	return timespec_add_safe(now, ts);
1534 }
1535 
1536 /**
1537  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1538  *           event buffer.
1539  *
1540  * @ep: Pointer to the eventpoll context.
1541  * @events: Pointer to the userspace buffer where the ready events should be
1542  *          stored.
1543  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1544  * @timeout: Maximum timeout for the ready events fetch operation, in
1545  *           milliseconds. If the @timeout is zero, the function will not block,
1546  *           while if the @timeout is less than zero, the function will block
1547  *           until at least one event has been retrieved (or an error
1548  *           occurred).
1549  *
1550  * Returns: Returns the number of ready events which have been fetched, or an
1551  *          error code, in case of error.
1552  */
1553 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1554 		   int maxevents, long timeout)
1555 {
1556 	int res = 0, eavail, timed_out = 0;
1557 	unsigned long flags;
1558 	long slack = 0;
1559 	wait_queue_t wait;
1560 	ktime_t expires, *to = NULL;
1561 
1562 	if (timeout > 0) {
1563 		struct timespec end_time = ep_set_mstimeout(timeout);
1564 
1565 		slack = select_estimate_accuracy(&end_time);
1566 		to = &expires;
1567 		*to = timespec_to_ktime(end_time);
1568 	} else if (timeout == 0) {
1569 		/*
1570 		 * Avoid the unnecessary trip to the wait queue loop, if the
1571 		 * caller specified a non blocking operation.
1572 		 */
1573 		timed_out = 1;
1574 		spin_lock_irqsave(&ep->lock, flags);
1575 		goto check_events;
1576 	}
1577 
1578 fetch_events:
1579 	spin_lock_irqsave(&ep->lock, flags);
1580 
1581 	if (!ep_events_available(ep)) {
1582 		/*
1583 		 * We don't have any available event to return to the caller.
1584 		 * We need to sleep here, and we will be wake up by
1585 		 * ep_poll_callback() when events will become available.
1586 		 */
1587 		init_waitqueue_entry(&wait, current);
1588 		__add_wait_queue_exclusive(&ep->wq, &wait);
1589 
1590 		for (;;) {
1591 			/*
1592 			 * We don't want to sleep if the ep_poll_callback() sends us
1593 			 * a wakeup in between. That's why we set the task state
1594 			 * to TASK_INTERRUPTIBLE before doing the checks.
1595 			 */
1596 			set_current_state(TASK_INTERRUPTIBLE);
1597 			if (ep_events_available(ep) || timed_out)
1598 				break;
1599 			if (signal_pending(current)) {
1600 				res = -EINTR;
1601 				break;
1602 			}
1603 
1604 			spin_unlock_irqrestore(&ep->lock, flags);
1605 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1606 				timed_out = 1;
1607 
1608 			spin_lock_irqsave(&ep->lock, flags);
1609 		}
1610 		__remove_wait_queue(&ep->wq, &wait);
1611 
1612 		set_current_state(TASK_RUNNING);
1613 	}
1614 check_events:
1615 	/* Is it worth to try to dig for events ? */
1616 	eavail = ep_events_available(ep);
1617 
1618 	spin_unlock_irqrestore(&ep->lock, flags);
1619 
1620 	/*
1621 	 * Try to transfer events to user space. In case we get 0 events and
1622 	 * there's still timeout left over, we go trying again in search of
1623 	 * more luck.
1624 	 */
1625 	if (!res && eavail &&
1626 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1627 		goto fetch_events;
1628 
1629 	return res;
1630 }
1631 
1632 /**
1633  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1634  *                      API, to verify that adding an epoll file inside another
1635  *                      epoll structure, does not violate the constraints, in
1636  *                      terms of closed loops, or too deep chains (which can
1637  *                      result in excessive stack usage).
1638  *
1639  * @priv: Pointer to the epoll file to be currently checked.
1640  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1641  *          data structure pointer.
1642  * @call_nests: Current dept of the @ep_call_nested() call stack.
1643  *
1644  * Returns: Returns zero if adding the epoll @file inside current epoll
1645  *          structure @ep does not violate the constraints, or -1 otherwise.
1646  */
1647 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1648 {
1649 	int error = 0;
1650 	struct file *file = priv;
1651 	struct eventpoll *ep = file->private_data;
1652 	struct eventpoll *ep_tovisit;
1653 	struct rb_node *rbp;
1654 	struct epitem *epi;
1655 
1656 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1657 	ep->visited = 1;
1658 	list_add(&ep->visited_list_link, &visited_list);
1659 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1660 		epi = rb_entry(rbp, struct epitem, rbn);
1661 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1662 			ep_tovisit = epi->ffd.file->private_data;
1663 			if (ep_tovisit->visited)
1664 				continue;
1665 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1666 					ep_loop_check_proc, epi->ffd.file,
1667 					ep_tovisit, current);
1668 			if (error != 0)
1669 				break;
1670 		} else {
1671 			/*
1672 			 * If we've reached a file that is not associated with
1673 			 * an ep, then we need to check if the newly added
1674 			 * links are going to add too many wakeup paths. We do
1675 			 * this by adding it to the tfile_check_list, if it's
1676 			 * not already there, and calling reverse_path_check()
1677 			 * during ep_insert().
1678 			 */
1679 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1680 				list_add(&epi->ffd.file->f_tfile_llink,
1681 					 &tfile_check_list);
1682 		}
1683 	}
1684 	mutex_unlock(&ep->mtx);
1685 
1686 	return error;
1687 }
1688 
1689 /**
1690  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1691  *                 another epoll file (represented by @ep) does not create
1692  *                 closed loops or too deep chains.
1693  *
1694  * @ep: Pointer to the epoll private data structure.
1695  * @file: Pointer to the epoll file to be checked.
1696  *
1697  * Returns: Returns zero if adding the epoll @file inside current epoll
1698  *          structure @ep does not violate the constraints, or -1 otherwise.
1699  */
1700 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1701 {
1702 	int ret;
1703 	struct eventpoll *ep_cur, *ep_next;
1704 
1705 	ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1706 			      ep_loop_check_proc, file, ep, current);
1707 	/* clear visited list */
1708 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1709 							visited_list_link) {
1710 		ep_cur->visited = 0;
1711 		list_del(&ep_cur->visited_list_link);
1712 	}
1713 	return ret;
1714 }
1715 
1716 static void clear_tfile_check_list(void)
1717 {
1718 	struct file *file;
1719 
1720 	/* first clear the tfile_check_list */
1721 	while (!list_empty(&tfile_check_list)) {
1722 		file = list_first_entry(&tfile_check_list, struct file,
1723 					f_tfile_llink);
1724 		list_del_init(&file->f_tfile_llink);
1725 	}
1726 	INIT_LIST_HEAD(&tfile_check_list);
1727 }
1728 
1729 /*
1730  * Open an eventpoll file descriptor.
1731  */
1732 SYSCALL_DEFINE1(epoll_create1, int, flags)
1733 {
1734 	int error, fd;
1735 	struct eventpoll *ep = NULL;
1736 	struct file *file;
1737 
1738 	/* Check the EPOLL_* constant for consistency.  */
1739 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1740 
1741 	if (flags & ~EPOLL_CLOEXEC)
1742 		return -EINVAL;
1743 	/*
1744 	 * Create the internal data structure ("struct eventpoll").
1745 	 */
1746 	error = ep_alloc(&ep);
1747 	if (error < 0)
1748 		return error;
1749 	/*
1750 	 * Creates all the items needed to setup an eventpoll file. That is,
1751 	 * a file structure and a free file descriptor.
1752 	 */
1753 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1754 	if (fd < 0) {
1755 		error = fd;
1756 		goto out_free_ep;
1757 	}
1758 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1759 				 O_RDWR | (flags & O_CLOEXEC));
1760 	if (IS_ERR(file)) {
1761 		error = PTR_ERR(file);
1762 		goto out_free_fd;
1763 	}
1764 	ep->file = file;
1765 	fd_install(fd, file);
1766 	return fd;
1767 
1768 out_free_fd:
1769 	put_unused_fd(fd);
1770 out_free_ep:
1771 	ep_free(ep);
1772 	return error;
1773 }
1774 
1775 SYSCALL_DEFINE1(epoll_create, int, size)
1776 {
1777 	if (size <= 0)
1778 		return -EINVAL;
1779 
1780 	return sys_epoll_create1(0);
1781 }
1782 
1783 /*
1784  * The following function implements the controller interface for
1785  * the eventpoll file that enables the insertion/removal/change of
1786  * file descriptors inside the interest set.
1787  */
1788 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1789 		struct epoll_event __user *, event)
1790 {
1791 	int error;
1792 	int did_lock_epmutex = 0;
1793 	struct file *file, *tfile;
1794 	struct eventpoll *ep;
1795 	struct epitem *epi;
1796 	struct epoll_event epds;
1797 
1798 	error = -EFAULT;
1799 	if (ep_op_has_event(op) &&
1800 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1801 		goto error_return;
1802 
1803 	/* Get the "struct file *" for the eventpoll file */
1804 	error = -EBADF;
1805 	file = fget(epfd);
1806 	if (!file)
1807 		goto error_return;
1808 
1809 	/* Get the "struct file *" for the target file */
1810 	tfile = fget(fd);
1811 	if (!tfile)
1812 		goto error_fput;
1813 
1814 	/* The target file descriptor must support poll */
1815 	error = -EPERM;
1816 	if (!tfile->f_op || !tfile->f_op->poll)
1817 		goto error_tgt_fput;
1818 
1819 	/* Check if EPOLLWAKEUP is allowed */
1820 	if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
1821 		epds.events &= ~EPOLLWAKEUP;
1822 
1823 	/*
1824 	 * We have to check that the file structure underneath the file descriptor
1825 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1826 	 * adding an epoll file descriptor inside itself.
1827 	 */
1828 	error = -EINVAL;
1829 	if (file == tfile || !is_file_epoll(file))
1830 		goto error_tgt_fput;
1831 
1832 	/*
1833 	 * At this point it is safe to assume that the "private_data" contains
1834 	 * our own data structure.
1835 	 */
1836 	ep = file->private_data;
1837 
1838 	/*
1839 	 * When we insert an epoll file descriptor, inside another epoll file
1840 	 * descriptor, there is the change of creating closed loops, which are
1841 	 * better be handled here, than in more critical paths. While we are
1842 	 * checking for loops we also determine the list of files reachable
1843 	 * and hang them on the tfile_check_list, so we can check that we
1844 	 * haven't created too many possible wakeup paths.
1845 	 *
1846 	 * We need to hold the epmutex across both ep_insert and ep_remove
1847 	 * b/c we want to make sure we are looking at a coherent view of
1848 	 * epoll network.
1849 	 */
1850 	if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) {
1851 		mutex_lock(&epmutex);
1852 		did_lock_epmutex = 1;
1853 	}
1854 	if (op == EPOLL_CTL_ADD) {
1855 		if (is_file_epoll(tfile)) {
1856 			error = -ELOOP;
1857 			if (ep_loop_check(ep, tfile) != 0) {
1858 				clear_tfile_check_list();
1859 				goto error_tgt_fput;
1860 			}
1861 		} else
1862 			list_add(&tfile->f_tfile_llink, &tfile_check_list);
1863 	}
1864 
1865 	mutex_lock_nested(&ep->mtx, 0);
1866 
1867 	/*
1868 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1869 	 * above, we can be sure to be able to use the item looked up by
1870 	 * ep_find() till we release the mutex.
1871 	 */
1872 	epi = ep_find(ep, tfile, fd);
1873 
1874 	error = -EINVAL;
1875 	switch (op) {
1876 	case EPOLL_CTL_ADD:
1877 		if (!epi) {
1878 			epds.events |= POLLERR | POLLHUP;
1879 			error = ep_insert(ep, &epds, tfile, fd);
1880 		} else
1881 			error = -EEXIST;
1882 		clear_tfile_check_list();
1883 		break;
1884 	case EPOLL_CTL_DEL:
1885 		if (epi)
1886 			error = ep_remove(ep, epi);
1887 		else
1888 			error = -ENOENT;
1889 		break;
1890 	case EPOLL_CTL_MOD:
1891 		if (epi) {
1892 			epds.events |= POLLERR | POLLHUP;
1893 			error = ep_modify(ep, epi, &epds);
1894 		} else
1895 			error = -ENOENT;
1896 		break;
1897 	}
1898 	mutex_unlock(&ep->mtx);
1899 
1900 error_tgt_fput:
1901 	if (did_lock_epmutex)
1902 		mutex_unlock(&epmutex);
1903 
1904 	fput(tfile);
1905 error_fput:
1906 	fput(file);
1907 error_return:
1908 
1909 	return error;
1910 }
1911 
1912 /*
1913  * Implement the event wait interface for the eventpoll file. It is the kernel
1914  * part of the user space epoll_wait(2).
1915  */
1916 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1917 		int, maxevents, int, timeout)
1918 {
1919 	int error;
1920 	struct fd f;
1921 	struct eventpoll *ep;
1922 
1923 	/* The maximum number of event must be greater than zero */
1924 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1925 		return -EINVAL;
1926 
1927 	/* Verify that the area passed by the user is writeable */
1928 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
1929 		return -EFAULT;
1930 
1931 	/* Get the "struct file *" for the eventpoll file */
1932 	f = fdget(epfd);
1933 	if (!f.file)
1934 		return -EBADF;
1935 
1936 	/*
1937 	 * We have to check that the file structure underneath the fd
1938 	 * the user passed to us _is_ an eventpoll file.
1939 	 */
1940 	error = -EINVAL;
1941 	if (!is_file_epoll(f.file))
1942 		goto error_fput;
1943 
1944 	/*
1945 	 * At this point it is safe to assume that the "private_data" contains
1946 	 * our own data structure.
1947 	 */
1948 	ep = f.file->private_data;
1949 
1950 	/* Time to fish for events ... */
1951 	error = ep_poll(ep, events, maxevents, timeout);
1952 
1953 error_fput:
1954 	fdput(f);
1955 	return error;
1956 }
1957 
1958 /*
1959  * Implement the event wait interface for the eventpoll file. It is the kernel
1960  * part of the user space epoll_pwait(2).
1961  */
1962 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1963 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1964 		size_t, sigsetsize)
1965 {
1966 	int error;
1967 	sigset_t ksigmask, sigsaved;
1968 
1969 	/*
1970 	 * If the caller wants a certain signal mask to be set during the wait,
1971 	 * we apply it here.
1972 	 */
1973 	if (sigmask) {
1974 		if (sigsetsize != sizeof(sigset_t))
1975 			return -EINVAL;
1976 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1977 			return -EFAULT;
1978 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1979 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1980 	}
1981 
1982 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1983 
1984 	/*
1985 	 * If we changed the signal mask, we need to restore the original one.
1986 	 * In case we've got a signal while waiting, we do not restore the
1987 	 * signal mask yet, and we allow do_signal() to deliver the signal on
1988 	 * the way back to userspace, before the signal mask is restored.
1989 	 */
1990 	if (sigmask) {
1991 		if (error == -EINTR) {
1992 			memcpy(&current->saved_sigmask, &sigsaved,
1993 			       sizeof(sigsaved));
1994 			set_restore_sigmask();
1995 		} else
1996 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1997 	}
1998 
1999 	return error;
2000 }
2001 
2002 #ifdef CONFIG_COMPAT
2003 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2004 			struct epoll_event __user *, events,
2005 			int, maxevents, int, timeout,
2006 			const compat_sigset_t __user *, sigmask,
2007 			compat_size_t, sigsetsize)
2008 {
2009 	long err;
2010 	compat_sigset_t csigmask;
2011 	sigset_t ksigmask, sigsaved;
2012 
2013 	/*
2014 	 * If the caller wants a certain signal mask to be set during the wait,
2015 	 * we apply it here.
2016 	 */
2017 	if (sigmask) {
2018 		if (sigsetsize != sizeof(compat_sigset_t))
2019 			return -EINVAL;
2020 		if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2021 			return -EFAULT;
2022 		sigset_from_compat(&ksigmask, &csigmask);
2023 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2024 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2025 	}
2026 
2027 	err = sys_epoll_wait(epfd, events, maxevents, timeout);
2028 
2029 	/*
2030 	 * If we changed the signal mask, we need to restore the original one.
2031 	 * In case we've got a signal while waiting, we do not restore the
2032 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2033 	 * the way back to userspace, before the signal mask is restored.
2034 	 */
2035 	if (sigmask) {
2036 		if (err == -EINTR) {
2037 			memcpy(&current->saved_sigmask, &sigsaved,
2038 			       sizeof(sigsaved));
2039 			set_restore_sigmask();
2040 		} else
2041 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2042 	}
2043 
2044 	return err;
2045 }
2046 #endif
2047 
2048 static int __init eventpoll_init(void)
2049 {
2050 	struct sysinfo si;
2051 
2052 	si_meminfo(&si);
2053 	/*
2054 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2055 	 */
2056 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2057 		EP_ITEM_COST;
2058 	BUG_ON(max_user_watches < 0);
2059 
2060 	/*
2061 	 * Initialize the structure used to perform epoll file descriptor
2062 	 * inclusion loops checks.
2063 	 */
2064 	ep_nested_calls_init(&poll_loop_ncalls);
2065 
2066 	/* Initialize the structure used to perform safe poll wait head wake ups */
2067 	ep_nested_calls_init(&poll_safewake_ncalls);
2068 
2069 	/* Initialize the structure used to perform file's f_op->poll() calls */
2070 	ep_nested_calls_init(&poll_readywalk_ncalls);
2071 
2072 	/*
2073 	 * We can have many thousands of epitems, so prevent this from
2074 	 * using an extra cache line on 64-bit (and smaller) CPUs
2075 	 */
2076 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2077 
2078 	/* Allocates slab cache used to allocate "struct epitem" items */
2079 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2080 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2081 
2082 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2083 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2084 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2085 
2086 	return 0;
2087 }
2088 fs_initcall(eventpoll_init);
2089