1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/device.h> 37 #include <asm/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 #include <linux/proc_fs.h> 42 #include <linux/seq_file.h> 43 #include <linux/compat.h> 44 45 /* 46 * LOCKING: 47 * There are three level of locking required by epoll : 48 * 49 * 1) epmutex (mutex) 50 * 2) ep->mtx (mutex) 51 * 3) ep->lock (spinlock) 52 * 53 * The acquire order is the one listed above, from 1 to 3. 54 * We need a spinlock (ep->lock) because we manipulate objects 55 * from inside the poll callback, that might be triggered from 56 * a wake_up() that in turn might be called from IRQ context. 57 * So we can't sleep inside the poll callback and hence we need 58 * a spinlock. During the event transfer loop (from kernel to 59 * user space) we could end up sleeping due a copy_to_user(), so 60 * we need a lock that will allow us to sleep. This lock is a 61 * mutex (ep->mtx). It is acquired during the event transfer loop, 62 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 63 * Then we also need a global mutex to serialize eventpoll_release_file() 64 * and ep_free(). 65 * This mutex is acquired by ep_free() during the epoll file 66 * cleanup path and it is also acquired by eventpoll_release_file() 67 * if a file has been pushed inside an epoll set and it is then 68 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 69 * It is also acquired when inserting an epoll fd onto another epoll 70 * fd. We do this so that we walk the epoll tree and ensure that this 71 * insertion does not create a cycle of epoll file descriptors, which 72 * could lead to deadlock. We need a global mutex to prevent two 73 * simultaneous inserts (A into B and B into A) from racing and 74 * constructing a cycle without either insert observing that it is 75 * going to. 76 * It is necessary to acquire multiple "ep->mtx"es at once in the 77 * case when one epoll fd is added to another. In this case, we 78 * always acquire the locks in the order of nesting (i.e. after 79 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 80 * before e2->mtx). Since we disallow cycles of epoll file 81 * descriptors, this ensures that the mutexes are well-ordered. In 82 * order to communicate this nesting to lockdep, when walking a tree 83 * of epoll file descriptors, we use the current recursion depth as 84 * the lockdep subkey. 85 * It is possible to drop the "ep->mtx" and to use the global 86 * mutex "epmutex" (together with "ep->lock") to have it working, 87 * but having "ep->mtx" will make the interface more scalable. 88 * Events that require holding "epmutex" are very rare, while for 89 * normal operations the epoll private "ep->mtx" will guarantee 90 * a better scalability. 91 */ 92 93 /* Epoll private bits inside the event mask */ 94 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET) 95 96 /* Maximum number of nesting allowed inside epoll sets */ 97 #define EP_MAX_NESTS 4 98 99 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 100 101 #define EP_UNACTIVE_PTR ((void *) -1L) 102 103 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 104 105 struct epoll_filefd { 106 struct file *file; 107 int fd; 108 } __packed; 109 110 /* 111 * Structure used to track possible nested calls, for too deep recursions 112 * and loop cycles. 113 */ 114 struct nested_call_node { 115 struct list_head llink; 116 void *cookie; 117 void *ctx; 118 }; 119 120 /* 121 * This structure is used as collector for nested calls, to check for 122 * maximum recursion dept and loop cycles. 123 */ 124 struct nested_calls { 125 struct list_head tasks_call_list; 126 spinlock_t lock; 127 }; 128 129 /* 130 * Each file descriptor added to the eventpoll interface will 131 * have an entry of this type linked to the "rbr" RB tree. 132 * Avoid increasing the size of this struct, there can be many thousands 133 * of these on a server and we do not want this to take another cache line. 134 */ 135 struct epitem { 136 /* RB tree node used to link this structure to the eventpoll RB tree */ 137 struct rb_node rbn; 138 139 /* List header used to link this structure to the eventpoll ready list */ 140 struct list_head rdllink; 141 142 /* 143 * Works together "struct eventpoll"->ovflist in keeping the 144 * single linked chain of items. 145 */ 146 struct epitem *next; 147 148 /* The file descriptor information this item refers to */ 149 struct epoll_filefd ffd; 150 151 /* Number of active wait queue attached to poll operations */ 152 int nwait; 153 154 /* List containing poll wait queues */ 155 struct list_head pwqlist; 156 157 /* The "container" of this item */ 158 struct eventpoll *ep; 159 160 /* List header used to link this item to the "struct file" items list */ 161 struct list_head fllink; 162 163 /* wakeup_source used when EPOLLWAKEUP is set */ 164 struct wakeup_source __rcu *ws; 165 166 /* The structure that describe the interested events and the source fd */ 167 struct epoll_event event; 168 }; 169 170 /* 171 * This structure is stored inside the "private_data" member of the file 172 * structure and represents the main data structure for the eventpoll 173 * interface. 174 */ 175 struct eventpoll { 176 /* Protect the access to this structure */ 177 spinlock_t lock; 178 179 /* 180 * This mutex is used to ensure that files are not removed 181 * while epoll is using them. This is held during the event 182 * collection loop, the file cleanup path, the epoll file exit 183 * code and the ctl operations. 184 */ 185 struct mutex mtx; 186 187 /* Wait queue used by sys_epoll_wait() */ 188 wait_queue_head_t wq; 189 190 /* Wait queue used by file->poll() */ 191 wait_queue_head_t poll_wait; 192 193 /* List of ready file descriptors */ 194 struct list_head rdllist; 195 196 /* RB tree root used to store monitored fd structs */ 197 struct rb_root rbr; 198 199 /* 200 * This is a single linked list that chains all the "struct epitem" that 201 * happened while transferring ready events to userspace w/out 202 * holding ->lock. 203 */ 204 struct epitem *ovflist; 205 206 /* wakeup_source used when ep_scan_ready_list is running */ 207 struct wakeup_source *ws; 208 209 /* The user that created the eventpoll descriptor */ 210 struct user_struct *user; 211 212 struct file *file; 213 214 /* used to optimize loop detection check */ 215 int visited; 216 struct list_head visited_list_link; 217 }; 218 219 /* Wait structure used by the poll hooks */ 220 struct eppoll_entry { 221 /* List header used to link this structure to the "struct epitem" */ 222 struct list_head llink; 223 224 /* The "base" pointer is set to the container "struct epitem" */ 225 struct epitem *base; 226 227 /* 228 * Wait queue item that will be linked to the target file wait 229 * queue head. 230 */ 231 wait_queue_t wait; 232 233 /* The wait queue head that linked the "wait" wait queue item */ 234 wait_queue_head_t *whead; 235 }; 236 237 /* Wrapper struct used by poll queueing */ 238 struct ep_pqueue { 239 poll_table pt; 240 struct epitem *epi; 241 }; 242 243 /* Used by the ep_send_events() function as callback private data */ 244 struct ep_send_events_data { 245 int maxevents; 246 struct epoll_event __user *events; 247 }; 248 249 /* 250 * Configuration options available inside /proc/sys/fs/epoll/ 251 */ 252 /* Maximum number of epoll watched descriptors, per user */ 253 static long max_user_watches __read_mostly; 254 255 /* 256 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 257 */ 258 static DEFINE_MUTEX(epmutex); 259 260 /* Used to check for epoll file descriptor inclusion loops */ 261 static struct nested_calls poll_loop_ncalls; 262 263 /* Used for safe wake up implementation */ 264 static struct nested_calls poll_safewake_ncalls; 265 266 /* Used to call file's f_op->poll() under the nested calls boundaries */ 267 static struct nested_calls poll_readywalk_ncalls; 268 269 /* Slab cache used to allocate "struct epitem" */ 270 static struct kmem_cache *epi_cache __read_mostly; 271 272 /* Slab cache used to allocate "struct eppoll_entry" */ 273 static struct kmem_cache *pwq_cache __read_mostly; 274 275 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 276 static LIST_HEAD(visited_list); 277 278 /* 279 * List of files with newly added links, where we may need to limit the number 280 * of emanating paths. Protected by the epmutex. 281 */ 282 static LIST_HEAD(tfile_check_list); 283 284 #ifdef CONFIG_SYSCTL 285 286 #include <linux/sysctl.h> 287 288 static long zero; 289 static long long_max = LONG_MAX; 290 291 ctl_table epoll_table[] = { 292 { 293 .procname = "max_user_watches", 294 .data = &max_user_watches, 295 .maxlen = sizeof(max_user_watches), 296 .mode = 0644, 297 .proc_handler = proc_doulongvec_minmax, 298 .extra1 = &zero, 299 .extra2 = &long_max, 300 }, 301 { } 302 }; 303 #endif /* CONFIG_SYSCTL */ 304 305 static const struct file_operations eventpoll_fops; 306 307 static inline int is_file_epoll(struct file *f) 308 { 309 return f->f_op == &eventpoll_fops; 310 } 311 312 /* Setup the structure that is used as key for the RB tree */ 313 static inline void ep_set_ffd(struct epoll_filefd *ffd, 314 struct file *file, int fd) 315 { 316 ffd->file = file; 317 ffd->fd = fd; 318 } 319 320 /* Compare RB tree keys */ 321 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 322 struct epoll_filefd *p2) 323 { 324 return (p1->file > p2->file ? +1: 325 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 326 } 327 328 /* Tells us if the item is currently linked */ 329 static inline int ep_is_linked(struct list_head *p) 330 { 331 return !list_empty(p); 332 } 333 334 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p) 335 { 336 return container_of(p, struct eppoll_entry, wait); 337 } 338 339 /* Get the "struct epitem" from a wait queue pointer */ 340 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 341 { 342 return container_of(p, struct eppoll_entry, wait)->base; 343 } 344 345 /* Get the "struct epitem" from an epoll queue wrapper */ 346 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 347 { 348 return container_of(p, struct ep_pqueue, pt)->epi; 349 } 350 351 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 352 static inline int ep_op_has_event(int op) 353 { 354 return op != EPOLL_CTL_DEL; 355 } 356 357 /* Initialize the poll safe wake up structure */ 358 static void ep_nested_calls_init(struct nested_calls *ncalls) 359 { 360 INIT_LIST_HEAD(&ncalls->tasks_call_list); 361 spin_lock_init(&ncalls->lock); 362 } 363 364 /** 365 * ep_events_available - Checks if ready events might be available. 366 * 367 * @ep: Pointer to the eventpoll context. 368 * 369 * Returns: Returns a value different than zero if ready events are available, 370 * or zero otherwise. 371 */ 372 static inline int ep_events_available(struct eventpoll *ep) 373 { 374 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 375 } 376 377 /** 378 * ep_call_nested - Perform a bound (possibly) nested call, by checking 379 * that the recursion limit is not exceeded, and that 380 * the same nested call (by the meaning of same cookie) is 381 * no re-entered. 382 * 383 * @ncalls: Pointer to the nested_calls structure to be used for this call. 384 * @max_nests: Maximum number of allowed nesting calls. 385 * @nproc: Nested call core function pointer. 386 * @priv: Opaque data to be passed to the @nproc callback. 387 * @cookie: Cookie to be used to identify this nested call. 388 * @ctx: This instance context. 389 * 390 * Returns: Returns the code returned by the @nproc callback, or -1 if 391 * the maximum recursion limit has been exceeded. 392 */ 393 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 394 int (*nproc)(void *, void *, int), void *priv, 395 void *cookie, void *ctx) 396 { 397 int error, call_nests = 0; 398 unsigned long flags; 399 struct list_head *lsthead = &ncalls->tasks_call_list; 400 struct nested_call_node *tncur; 401 struct nested_call_node tnode; 402 403 spin_lock_irqsave(&ncalls->lock, flags); 404 405 /* 406 * Try to see if the current task is already inside this wakeup call. 407 * We use a list here, since the population inside this set is always 408 * very much limited. 409 */ 410 list_for_each_entry(tncur, lsthead, llink) { 411 if (tncur->ctx == ctx && 412 (tncur->cookie == cookie || ++call_nests > max_nests)) { 413 /* 414 * Ops ... loop detected or maximum nest level reached. 415 * We abort this wake by breaking the cycle itself. 416 */ 417 error = -1; 418 goto out_unlock; 419 } 420 } 421 422 /* Add the current task and cookie to the list */ 423 tnode.ctx = ctx; 424 tnode.cookie = cookie; 425 list_add(&tnode.llink, lsthead); 426 427 spin_unlock_irqrestore(&ncalls->lock, flags); 428 429 /* Call the nested function */ 430 error = (*nproc)(priv, cookie, call_nests); 431 432 /* Remove the current task from the list */ 433 spin_lock_irqsave(&ncalls->lock, flags); 434 list_del(&tnode.llink); 435 out_unlock: 436 spin_unlock_irqrestore(&ncalls->lock, flags); 437 438 return error; 439 } 440 441 /* 442 * As described in commit 0ccf831cb lockdep: annotate epoll 443 * the use of wait queues used by epoll is done in a very controlled 444 * manner. Wake ups can nest inside each other, but are never done 445 * with the same locking. For example: 446 * 447 * dfd = socket(...); 448 * efd1 = epoll_create(); 449 * efd2 = epoll_create(); 450 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 451 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 452 * 453 * When a packet arrives to the device underneath "dfd", the net code will 454 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 455 * callback wakeup entry on that queue, and the wake_up() performed by the 456 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 457 * (efd1) notices that it may have some event ready, so it needs to wake up 458 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 459 * that ends up in another wake_up(), after having checked about the 460 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 461 * avoid stack blasting. 462 * 463 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 464 * this special case of epoll. 465 */ 466 #ifdef CONFIG_DEBUG_LOCK_ALLOC 467 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 468 unsigned long events, int subclass) 469 { 470 unsigned long flags; 471 472 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 473 wake_up_locked_poll(wqueue, events); 474 spin_unlock_irqrestore(&wqueue->lock, flags); 475 } 476 #else 477 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 478 unsigned long events, int subclass) 479 { 480 wake_up_poll(wqueue, events); 481 } 482 #endif 483 484 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 485 { 486 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 487 1 + call_nests); 488 return 0; 489 } 490 491 /* 492 * Perform a safe wake up of the poll wait list. The problem is that 493 * with the new callback'd wake up system, it is possible that the 494 * poll callback is reentered from inside the call to wake_up() done 495 * on the poll wait queue head. The rule is that we cannot reenter the 496 * wake up code from the same task more than EP_MAX_NESTS times, 497 * and we cannot reenter the same wait queue head at all. This will 498 * enable to have a hierarchy of epoll file descriptor of no more than 499 * EP_MAX_NESTS deep. 500 */ 501 static void ep_poll_safewake(wait_queue_head_t *wq) 502 { 503 int this_cpu = get_cpu(); 504 505 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 506 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 507 508 put_cpu(); 509 } 510 511 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 512 { 513 wait_queue_head_t *whead; 514 515 rcu_read_lock(); 516 /* If it is cleared by POLLFREE, it should be rcu-safe */ 517 whead = rcu_dereference(pwq->whead); 518 if (whead) 519 remove_wait_queue(whead, &pwq->wait); 520 rcu_read_unlock(); 521 } 522 523 /* 524 * This function unregisters poll callbacks from the associated file 525 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 526 * ep_free). 527 */ 528 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 529 { 530 struct list_head *lsthead = &epi->pwqlist; 531 struct eppoll_entry *pwq; 532 533 while (!list_empty(lsthead)) { 534 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 535 536 list_del(&pwq->llink); 537 ep_remove_wait_queue(pwq); 538 kmem_cache_free(pwq_cache, pwq); 539 } 540 } 541 542 /* call only when ep->mtx is held */ 543 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 544 { 545 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 546 } 547 548 /* call only when ep->mtx is held */ 549 static inline void ep_pm_stay_awake(struct epitem *epi) 550 { 551 struct wakeup_source *ws = ep_wakeup_source(epi); 552 553 if (ws) 554 __pm_stay_awake(ws); 555 } 556 557 static inline bool ep_has_wakeup_source(struct epitem *epi) 558 { 559 return rcu_access_pointer(epi->ws) ? true : false; 560 } 561 562 /* call when ep->mtx cannot be held (ep_poll_callback) */ 563 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 564 { 565 struct wakeup_source *ws; 566 567 rcu_read_lock(); 568 ws = rcu_dereference(epi->ws); 569 if (ws) 570 __pm_stay_awake(ws); 571 rcu_read_unlock(); 572 } 573 574 /** 575 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 576 * the scan code, to call f_op->poll(). Also allows for 577 * O(NumReady) performance. 578 * 579 * @ep: Pointer to the epoll private data structure. 580 * @sproc: Pointer to the scan callback. 581 * @priv: Private opaque data passed to the @sproc callback. 582 * @depth: The current depth of recursive f_op->poll calls. 583 * 584 * Returns: The same integer error code returned by the @sproc callback. 585 */ 586 static int ep_scan_ready_list(struct eventpoll *ep, 587 int (*sproc)(struct eventpoll *, 588 struct list_head *, void *), 589 void *priv, 590 int depth) 591 { 592 int error, pwake = 0; 593 unsigned long flags; 594 struct epitem *epi, *nepi; 595 LIST_HEAD(txlist); 596 597 /* 598 * We need to lock this because we could be hit by 599 * eventpoll_release_file() and epoll_ctl(). 600 */ 601 mutex_lock_nested(&ep->mtx, depth); 602 603 /* 604 * Steal the ready list, and re-init the original one to the 605 * empty list. Also, set ep->ovflist to NULL so that events 606 * happening while looping w/out locks, are not lost. We cannot 607 * have the poll callback to queue directly on ep->rdllist, 608 * because we want the "sproc" callback to be able to do it 609 * in a lockless way. 610 */ 611 spin_lock_irqsave(&ep->lock, flags); 612 list_splice_init(&ep->rdllist, &txlist); 613 ep->ovflist = NULL; 614 spin_unlock_irqrestore(&ep->lock, flags); 615 616 /* 617 * Now call the callback function. 618 */ 619 error = (*sproc)(ep, &txlist, priv); 620 621 spin_lock_irqsave(&ep->lock, flags); 622 /* 623 * During the time we spent inside the "sproc" callback, some 624 * other events might have been queued by the poll callback. 625 * We re-insert them inside the main ready-list here. 626 */ 627 for (nepi = ep->ovflist; (epi = nepi) != NULL; 628 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 629 /* 630 * We need to check if the item is already in the list. 631 * During the "sproc" callback execution time, items are 632 * queued into ->ovflist but the "txlist" might already 633 * contain them, and the list_splice() below takes care of them. 634 */ 635 if (!ep_is_linked(&epi->rdllink)) { 636 list_add_tail(&epi->rdllink, &ep->rdllist); 637 ep_pm_stay_awake(epi); 638 } 639 } 640 /* 641 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 642 * releasing the lock, events will be queued in the normal way inside 643 * ep->rdllist. 644 */ 645 ep->ovflist = EP_UNACTIVE_PTR; 646 647 /* 648 * Quickly re-inject items left on "txlist". 649 */ 650 list_splice(&txlist, &ep->rdllist); 651 __pm_relax(ep->ws); 652 653 if (!list_empty(&ep->rdllist)) { 654 /* 655 * Wake up (if active) both the eventpoll wait list and 656 * the ->poll() wait list (delayed after we release the lock). 657 */ 658 if (waitqueue_active(&ep->wq)) 659 wake_up_locked(&ep->wq); 660 if (waitqueue_active(&ep->poll_wait)) 661 pwake++; 662 } 663 spin_unlock_irqrestore(&ep->lock, flags); 664 665 mutex_unlock(&ep->mtx); 666 667 /* We have to call this outside the lock */ 668 if (pwake) 669 ep_poll_safewake(&ep->poll_wait); 670 671 return error; 672 } 673 674 /* 675 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 676 * all the associated resources. Must be called with "mtx" held. 677 */ 678 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 679 { 680 unsigned long flags; 681 struct file *file = epi->ffd.file; 682 683 /* 684 * Removes poll wait queue hooks. We _have_ to do this without holding 685 * the "ep->lock" otherwise a deadlock might occur. This because of the 686 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 687 * queue head lock when unregistering the wait queue. The wakeup callback 688 * will run by holding the wait queue head lock and will call our callback 689 * that will try to get "ep->lock". 690 */ 691 ep_unregister_pollwait(ep, epi); 692 693 /* Remove the current item from the list of epoll hooks */ 694 spin_lock(&file->f_lock); 695 if (ep_is_linked(&epi->fllink)) 696 list_del_init(&epi->fllink); 697 spin_unlock(&file->f_lock); 698 699 rb_erase(&epi->rbn, &ep->rbr); 700 701 spin_lock_irqsave(&ep->lock, flags); 702 if (ep_is_linked(&epi->rdllink)) 703 list_del_init(&epi->rdllink); 704 spin_unlock_irqrestore(&ep->lock, flags); 705 706 wakeup_source_unregister(ep_wakeup_source(epi)); 707 708 /* At this point it is safe to free the eventpoll item */ 709 kmem_cache_free(epi_cache, epi); 710 711 atomic_long_dec(&ep->user->epoll_watches); 712 713 return 0; 714 } 715 716 static void ep_free(struct eventpoll *ep) 717 { 718 struct rb_node *rbp; 719 struct epitem *epi; 720 721 /* We need to release all tasks waiting for these file */ 722 if (waitqueue_active(&ep->poll_wait)) 723 ep_poll_safewake(&ep->poll_wait); 724 725 /* 726 * We need to lock this because we could be hit by 727 * eventpoll_release_file() while we're freeing the "struct eventpoll". 728 * We do not need to hold "ep->mtx" here because the epoll file 729 * is on the way to be removed and no one has references to it 730 * anymore. The only hit might come from eventpoll_release_file() but 731 * holding "epmutex" is sufficient here. 732 */ 733 mutex_lock(&epmutex); 734 735 /* 736 * Walks through the whole tree by unregistering poll callbacks. 737 */ 738 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 739 epi = rb_entry(rbp, struct epitem, rbn); 740 741 ep_unregister_pollwait(ep, epi); 742 } 743 744 /* 745 * Walks through the whole tree by freeing each "struct epitem". At this 746 * point we are sure no poll callbacks will be lingering around, and also by 747 * holding "epmutex" we can be sure that no file cleanup code will hit 748 * us during this operation. So we can avoid the lock on "ep->lock". 749 * We do not need to lock ep->mtx, either, we only do it to prevent 750 * a lockdep warning. 751 */ 752 mutex_lock(&ep->mtx); 753 while ((rbp = rb_first(&ep->rbr)) != NULL) { 754 epi = rb_entry(rbp, struct epitem, rbn); 755 ep_remove(ep, epi); 756 } 757 mutex_unlock(&ep->mtx); 758 759 mutex_unlock(&epmutex); 760 mutex_destroy(&ep->mtx); 761 free_uid(ep->user); 762 wakeup_source_unregister(ep->ws); 763 kfree(ep); 764 } 765 766 static int ep_eventpoll_release(struct inode *inode, struct file *file) 767 { 768 struct eventpoll *ep = file->private_data; 769 770 if (ep) 771 ep_free(ep); 772 773 return 0; 774 } 775 776 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt) 777 { 778 pt->_key = epi->event.events; 779 780 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events; 781 } 782 783 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 784 void *priv) 785 { 786 struct epitem *epi, *tmp; 787 poll_table pt; 788 789 init_poll_funcptr(&pt, NULL); 790 791 list_for_each_entry_safe(epi, tmp, head, rdllink) { 792 if (ep_item_poll(epi, &pt)) 793 return POLLIN | POLLRDNORM; 794 else { 795 /* 796 * Item has been dropped into the ready list by the poll 797 * callback, but it's not actually ready, as far as 798 * caller requested events goes. We can remove it here. 799 */ 800 __pm_relax(ep_wakeup_source(epi)); 801 list_del_init(&epi->rdllink); 802 } 803 } 804 805 return 0; 806 } 807 808 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 809 { 810 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1); 811 } 812 813 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 814 { 815 int pollflags; 816 struct eventpoll *ep = file->private_data; 817 818 /* Insert inside our poll wait queue */ 819 poll_wait(file, &ep->poll_wait, wait); 820 821 /* 822 * Proceed to find out if wanted events are really available inside 823 * the ready list. This need to be done under ep_call_nested() 824 * supervision, since the call to f_op->poll() done on listed files 825 * could re-enter here. 826 */ 827 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 828 ep_poll_readyevents_proc, ep, ep, current); 829 830 return pollflags != -1 ? pollflags : 0; 831 } 832 833 #ifdef CONFIG_PROC_FS 834 static int ep_show_fdinfo(struct seq_file *m, struct file *f) 835 { 836 struct eventpoll *ep = f->private_data; 837 struct rb_node *rbp; 838 int ret = 0; 839 840 mutex_lock(&ep->mtx); 841 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 842 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 843 844 ret = seq_printf(m, "tfd: %8d events: %8x data: %16llx\n", 845 epi->ffd.fd, epi->event.events, 846 (long long)epi->event.data); 847 if (ret) 848 break; 849 } 850 mutex_unlock(&ep->mtx); 851 852 return ret; 853 } 854 #endif 855 856 /* File callbacks that implement the eventpoll file behaviour */ 857 static const struct file_operations eventpoll_fops = { 858 #ifdef CONFIG_PROC_FS 859 .show_fdinfo = ep_show_fdinfo, 860 #endif 861 .release = ep_eventpoll_release, 862 .poll = ep_eventpoll_poll, 863 .llseek = noop_llseek, 864 }; 865 866 /* 867 * This is called from eventpoll_release() to unlink files from the eventpoll 868 * interface. We need to have this facility to cleanup correctly files that are 869 * closed without being removed from the eventpoll interface. 870 */ 871 void eventpoll_release_file(struct file *file) 872 { 873 struct list_head *lsthead = &file->f_ep_links; 874 struct eventpoll *ep; 875 struct epitem *epi; 876 877 /* 878 * We don't want to get "file->f_lock" because it is not 879 * necessary. It is not necessary because we're in the "struct file" 880 * cleanup path, and this means that no one is using this file anymore. 881 * So, for example, epoll_ctl() cannot hit here since if we reach this 882 * point, the file counter already went to zero and fget() would fail. 883 * The only hit might come from ep_free() but by holding the mutex 884 * will correctly serialize the operation. We do need to acquire 885 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 886 * from anywhere but ep_free(). 887 * 888 * Besides, ep_remove() acquires the lock, so we can't hold it here. 889 */ 890 mutex_lock(&epmutex); 891 892 while (!list_empty(lsthead)) { 893 epi = list_first_entry(lsthead, struct epitem, fllink); 894 895 ep = epi->ep; 896 list_del_init(&epi->fllink); 897 mutex_lock_nested(&ep->mtx, 0); 898 ep_remove(ep, epi); 899 mutex_unlock(&ep->mtx); 900 } 901 902 mutex_unlock(&epmutex); 903 } 904 905 static int ep_alloc(struct eventpoll **pep) 906 { 907 int error; 908 struct user_struct *user; 909 struct eventpoll *ep; 910 911 user = get_current_user(); 912 error = -ENOMEM; 913 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 914 if (unlikely(!ep)) 915 goto free_uid; 916 917 spin_lock_init(&ep->lock); 918 mutex_init(&ep->mtx); 919 init_waitqueue_head(&ep->wq); 920 init_waitqueue_head(&ep->poll_wait); 921 INIT_LIST_HEAD(&ep->rdllist); 922 ep->rbr = RB_ROOT; 923 ep->ovflist = EP_UNACTIVE_PTR; 924 ep->user = user; 925 926 *pep = ep; 927 928 return 0; 929 930 free_uid: 931 free_uid(user); 932 return error; 933 } 934 935 /* 936 * Search the file inside the eventpoll tree. The RB tree operations 937 * are protected by the "mtx" mutex, and ep_find() must be called with 938 * "mtx" held. 939 */ 940 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 941 { 942 int kcmp; 943 struct rb_node *rbp; 944 struct epitem *epi, *epir = NULL; 945 struct epoll_filefd ffd; 946 947 ep_set_ffd(&ffd, file, fd); 948 for (rbp = ep->rbr.rb_node; rbp; ) { 949 epi = rb_entry(rbp, struct epitem, rbn); 950 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 951 if (kcmp > 0) 952 rbp = rbp->rb_right; 953 else if (kcmp < 0) 954 rbp = rbp->rb_left; 955 else { 956 epir = epi; 957 break; 958 } 959 } 960 961 return epir; 962 } 963 964 /* 965 * This is the callback that is passed to the wait queue wakeup 966 * mechanism. It is called by the stored file descriptors when they 967 * have events to report. 968 */ 969 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 970 { 971 int pwake = 0; 972 unsigned long flags; 973 struct epitem *epi = ep_item_from_wait(wait); 974 struct eventpoll *ep = epi->ep; 975 976 if ((unsigned long)key & POLLFREE) { 977 ep_pwq_from_wait(wait)->whead = NULL; 978 /* 979 * whead = NULL above can race with ep_remove_wait_queue() 980 * which can do another remove_wait_queue() after us, so we 981 * can't use __remove_wait_queue(). whead->lock is held by 982 * the caller. 983 */ 984 list_del_init(&wait->task_list); 985 } 986 987 spin_lock_irqsave(&ep->lock, flags); 988 989 /* 990 * If the event mask does not contain any poll(2) event, we consider the 991 * descriptor to be disabled. This condition is likely the effect of the 992 * EPOLLONESHOT bit that disables the descriptor when an event is received, 993 * until the next EPOLL_CTL_MOD will be issued. 994 */ 995 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 996 goto out_unlock; 997 998 /* 999 * Check the events coming with the callback. At this stage, not 1000 * every device reports the events in the "key" parameter of the 1001 * callback. We need to be able to handle both cases here, hence the 1002 * test for "key" != NULL before the event match test. 1003 */ 1004 if (key && !((unsigned long) key & epi->event.events)) 1005 goto out_unlock; 1006 1007 /* 1008 * If we are transferring events to userspace, we can hold no locks 1009 * (because we're accessing user memory, and because of linux f_op->poll() 1010 * semantics). All the events that happen during that period of time are 1011 * chained in ep->ovflist and requeued later on. 1012 */ 1013 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 1014 if (epi->next == EP_UNACTIVE_PTR) { 1015 epi->next = ep->ovflist; 1016 ep->ovflist = epi; 1017 if (epi->ws) { 1018 /* 1019 * Activate ep->ws since epi->ws may get 1020 * deactivated at any time. 1021 */ 1022 __pm_stay_awake(ep->ws); 1023 } 1024 1025 } 1026 goto out_unlock; 1027 } 1028 1029 /* If this file is already in the ready list we exit soon */ 1030 if (!ep_is_linked(&epi->rdllink)) { 1031 list_add_tail(&epi->rdllink, &ep->rdllist); 1032 ep_pm_stay_awake_rcu(epi); 1033 } 1034 1035 /* 1036 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1037 * wait list. 1038 */ 1039 if (waitqueue_active(&ep->wq)) 1040 wake_up_locked(&ep->wq); 1041 if (waitqueue_active(&ep->poll_wait)) 1042 pwake++; 1043 1044 out_unlock: 1045 spin_unlock_irqrestore(&ep->lock, flags); 1046 1047 /* We have to call this outside the lock */ 1048 if (pwake) 1049 ep_poll_safewake(&ep->poll_wait); 1050 1051 return 1; 1052 } 1053 1054 /* 1055 * This is the callback that is used to add our wait queue to the 1056 * target file wakeup lists. 1057 */ 1058 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1059 poll_table *pt) 1060 { 1061 struct epitem *epi = ep_item_from_epqueue(pt); 1062 struct eppoll_entry *pwq; 1063 1064 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1065 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1066 pwq->whead = whead; 1067 pwq->base = epi; 1068 add_wait_queue(whead, &pwq->wait); 1069 list_add_tail(&pwq->llink, &epi->pwqlist); 1070 epi->nwait++; 1071 } else { 1072 /* We have to signal that an error occurred */ 1073 epi->nwait = -1; 1074 } 1075 } 1076 1077 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1078 { 1079 int kcmp; 1080 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 1081 struct epitem *epic; 1082 1083 while (*p) { 1084 parent = *p; 1085 epic = rb_entry(parent, struct epitem, rbn); 1086 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1087 if (kcmp > 0) 1088 p = &parent->rb_right; 1089 else 1090 p = &parent->rb_left; 1091 } 1092 rb_link_node(&epi->rbn, parent, p); 1093 rb_insert_color(&epi->rbn, &ep->rbr); 1094 } 1095 1096 1097 1098 #define PATH_ARR_SIZE 5 1099 /* 1100 * These are the number paths of length 1 to 5, that we are allowing to emanate 1101 * from a single file of interest. For example, we allow 1000 paths of length 1102 * 1, to emanate from each file of interest. This essentially represents the 1103 * potential wakeup paths, which need to be limited in order to avoid massive 1104 * uncontrolled wakeup storms. The common use case should be a single ep which 1105 * is connected to n file sources. In this case each file source has 1 path 1106 * of length 1. Thus, the numbers below should be more than sufficient. These 1107 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1108 * and delete can't add additional paths. Protected by the epmutex. 1109 */ 1110 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1111 static int path_count[PATH_ARR_SIZE]; 1112 1113 static int path_count_inc(int nests) 1114 { 1115 /* Allow an arbitrary number of depth 1 paths */ 1116 if (nests == 0) 1117 return 0; 1118 1119 if (++path_count[nests] > path_limits[nests]) 1120 return -1; 1121 return 0; 1122 } 1123 1124 static void path_count_init(void) 1125 { 1126 int i; 1127 1128 for (i = 0; i < PATH_ARR_SIZE; i++) 1129 path_count[i] = 0; 1130 } 1131 1132 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1133 { 1134 int error = 0; 1135 struct file *file = priv; 1136 struct file *child_file; 1137 struct epitem *epi; 1138 1139 list_for_each_entry(epi, &file->f_ep_links, fllink) { 1140 child_file = epi->ep->file; 1141 if (is_file_epoll(child_file)) { 1142 if (list_empty(&child_file->f_ep_links)) { 1143 if (path_count_inc(call_nests)) { 1144 error = -1; 1145 break; 1146 } 1147 } else { 1148 error = ep_call_nested(&poll_loop_ncalls, 1149 EP_MAX_NESTS, 1150 reverse_path_check_proc, 1151 child_file, child_file, 1152 current); 1153 } 1154 if (error != 0) 1155 break; 1156 } else { 1157 printk(KERN_ERR "reverse_path_check_proc: " 1158 "file is not an ep!\n"); 1159 } 1160 } 1161 return error; 1162 } 1163 1164 /** 1165 * reverse_path_check - The tfile_check_list is list of file *, which have 1166 * links that are proposed to be newly added. We need to 1167 * make sure that those added links don't add too many 1168 * paths such that we will spend all our time waking up 1169 * eventpoll objects. 1170 * 1171 * Returns: Returns zero if the proposed links don't create too many paths, 1172 * -1 otherwise. 1173 */ 1174 static int reverse_path_check(void) 1175 { 1176 int error = 0; 1177 struct file *current_file; 1178 1179 /* let's call this for all tfiles */ 1180 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1181 path_count_init(); 1182 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1183 reverse_path_check_proc, current_file, 1184 current_file, current); 1185 if (error) 1186 break; 1187 } 1188 return error; 1189 } 1190 1191 static int ep_create_wakeup_source(struct epitem *epi) 1192 { 1193 const char *name; 1194 struct wakeup_source *ws; 1195 1196 if (!epi->ep->ws) { 1197 epi->ep->ws = wakeup_source_register("eventpoll"); 1198 if (!epi->ep->ws) 1199 return -ENOMEM; 1200 } 1201 1202 name = epi->ffd.file->f_path.dentry->d_name.name; 1203 ws = wakeup_source_register(name); 1204 1205 if (!ws) 1206 return -ENOMEM; 1207 rcu_assign_pointer(epi->ws, ws); 1208 1209 return 0; 1210 } 1211 1212 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1213 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1214 { 1215 struct wakeup_source *ws = ep_wakeup_source(epi); 1216 1217 RCU_INIT_POINTER(epi->ws, NULL); 1218 1219 /* 1220 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1221 * used internally by wakeup_source_remove, too (called by 1222 * wakeup_source_unregister), so we cannot use call_rcu 1223 */ 1224 synchronize_rcu(); 1225 wakeup_source_unregister(ws); 1226 } 1227 1228 /* 1229 * Must be called with "mtx" held. 1230 */ 1231 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 1232 struct file *tfile, int fd) 1233 { 1234 int error, revents, pwake = 0; 1235 unsigned long flags; 1236 long user_watches; 1237 struct epitem *epi; 1238 struct ep_pqueue epq; 1239 1240 user_watches = atomic_long_read(&ep->user->epoll_watches); 1241 if (unlikely(user_watches >= max_user_watches)) 1242 return -ENOSPC; 1243 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1244 return -ENOMEM; 1245 1246 /* Item initialization follow here ... */ 1247 INIT_LIST_HEAD(&epi->rdllink); 1248 INIT_LIST_HEAD(&epi->fllink); 1249 INIT_LIST_HEAD(&epi->pwqlist); 1250 epi->ep = ep; 1251 ep_set_ffd(&epi->ffd, tfile, fd); 1252 epi->event = *event; 1253 epi->nwait = 0; 1254 epi->next = EP_UNACTIVE_PTR; 1255 if (epi->event.events & EPOLLWAKEUP) { 1256 error = ep_create_wakeup_source(epi); 1257 if (error) 1258 goto error_create_wakeup_source; 1259 } else { 1260 RCU_INIT_POINTER(epi->ws, NULL); 1261 } 1262 1263 /* Initialize the poll table using the queue callback */ 1264 epq.epi = epi; 1265 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1266 1267 /* 1268 * Attach the item to the poll hooks and get current event bits. 1269 * We can safely use the file* here because its usage count has 1270 * been increased by the caller of this function. Note that after 1271 * this operation completes, the poll callback can start hitting 1272 * the new item. 1273 */ 1274 revents = ep_item_poll(epi, &epq.pt); 1275 1276 /* 1277 * We have to check if something went wrong during the poll wait queue 1278 * install process. Namely an allocation for a wait queue failed due 1279 * high memory pressure. 1280 */ 1281 error = -ENOMEM; 1282 if (epi->nwait < 0) 1283 goto error_unregister; 1284 1285 /* Add the current item to the list of active epoll hook for this file */ 1286 spin_lock(&tfile->f_lock); 1287 list_add_tail(&epi->fllink, &tfile->f_ep_links); 1288 spin_unlock(&tfile->f_lock); 1289 1290 /* 1291 * Add the current item to the RB tree. All RB tree operations are 1292 * protected by "mtx", and ep_insert() is called with "mtx" held. 1293 */ 1294 ep_rbtree_insert(ep, epi); 1295 1296 /* now check if we've created too many backpaths */ 1297 error = -EINVAL; 1298 if (reverse_path_check()) 1299 goto error_remove_epi; 1300 1301 /* We have to drop the new item inside our item list to keep track of it */ 1302 spin_lock_irqsave(&ep->lock, flags); 1303 1304 /* If the file is already "ready" we drop it inside the ready list */ 1305 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1306 list_add_tail(&epi->rdllink, &ep->rdllist); 1307 ep_pm_stay_awake(epi); 1308 1309 /* Notify waiting tasks that events are available */ 1310 if (waitqueue_active(&ep->wq)) 1311 wake_up_locked(&ep->wq); 1312 if (waitqueue_active(&ep->poll_wait)) 1313 pwake++; 1314 } 1315 1316 spin_unlock_irqrestore(&ep->lock, flags); 1317 1318 atomic_long_inc(&ep->user->epoll_watches); 1319 1320 /* We have to call this outside the lock */ 1321 if (pwake) 1322 ep_poll_safewake(&ep->poll_wait); 1323 1324 return 0; 1325 1326 error_remove_epi: 1327 spin_lock(&tfile->f_lock); 1328 if (ep_is_linked(&epi->fllink)) 1329 list_del_init(&epi->fllink); 1330 spin_unlock(&tfile->f_lock); 1331 1332 rb_erase(&epi->rbn, &ep->rbr); 1333 1334 error_unregister: 1335 ep_unregister_pollwait(ep, epi); 1336 1337 /* 1338 * We need to do this because an event could have been arrived on some 1339 * allocated wait queue. Note that we don't care about the ep->ovflist 1340 * list, since that is used/cleaned only inside a section bound by "mtx". 1341 * And ep_insert() is called with "mtx" held. 1342 */ 1343 spin_lock_irqsave(&ep->lock, flags); 1344 if (ep_is_linked(&epi->rdllink)) 1345 list_del_init(&epi->rdllink); 1346 spin_unlock_irqrestore(&ep->lock, flags); 1347 1348 wakeup_source_unregister(ep_wakeup_source(epi)); 1349 1350 error_create_wakeup_source: 1351 kmem_cache_free(epi_cache, epi); 1352 1353 return error; 1354 } 1355 1356 /* 1357 * Modify the interest event mask by dropping an event if the new mask 1358 * has a match in the current file status. Must be called with "mtx" held. 1359 */ 1360 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1361 { 1362 int pwake = 0; 1363 unsigned int revents; 1364 poll_table pt; 1365 1366 init_poll_funcptr(&pt, NULL); 1367 1368 /* 1369 * Set the new event interest mask before calling f_op->poll(); 1370 * otherwise we might miss an event that happens between the 1371 * f_op->poll() call and the new event set registering. 1372 */ 1373 epi->event.events = event->events; /* need barrier below */ 1374 epi->event.data = event->data; /* protected by mtx */ 1375 if (epi->event.events & EPOLLWAKEUP) { 1376 if (!ep_has_wakeup_source(epi)) 1377 ep_create_wakeup_source(epi); 1378 } else if (ep_has_wakeup_source(epi)) { 1379 ep_destroy_wakeup_source(epi); 1380 } 1381 1382 /* 1383 * The following barrier has two effects: 1384 * 1385 * 1) Flush epi changes above to other CPUs. This ensures 1386 * we do not miss events from ep_poll_callback if an 1387 * event occurs immediately after we call f_op->poll(). 1388 * We need this because we did not take ep->lock while 1389 * changing epi above (but ep_poll_callback does take 1390 * ep->lock). 1391 * 1392 * 2) We also need to ensure we do not miss _past_ events 1393 * when calling f_op->poll(). This barrier also 1394 * pairs with the barrier in wq_has_sleeper (see 1395 * comments for wq_has_sleeper). 1396 * 1397 * This barrier will now guarantee ep_poll_callback or f_op->poll 1398 * (or both) will notice the readiness of an item. 1399 */ 1400 smp_mb(); 1401 1402 /* 1403 * Get current event bits. We can safely use the file* here because 1404 * its usage count has been increased by the caller of this function. 1405 */ 1406 revents = ep_item_poll(epi, &pt); 1407 1408 /* 1409 * If the item is "hot" and it is not registered inside the ready 1410 * list, push it inside. 1411 */ 1412 if (revents & event->events) { 1413 spin_lock_irq(&ep->lock); 1414 if (!ep_is_linked(&epi->rdllink)) { 1415 list_add_tail(&epi->rdllink, &ep->rdllist); 1416 ep_pm_stay_awake(epi); 1417 1418 /* Notify waiting tasks that events are available */ 1419 if (waitqueue_active(&ep->wq)) 1420 wake_up_locked(&ep->wq); 1421 if (waitqueue_active(&ep->poll_wait)) 1422 pwake++; 1423 } 1424 spin_unlock_irq(&ep->lock); 1425 } 1426 1427 /* We have to call this outside the lock */ 1428 if (pwake) 1429 ep_poll_safewake(&ep->poll_wait); 1430 1431 return 0; 1432 } 1433 1434 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1435 void *priv) 1436 { 1437 struct ep_send_events_data *esed = priv; 1438 int eventcnt; 1439 unsigned int revents; 1440 struct epitem *epi; 1441 struct epoll_event __user *uevent; 1442 struct wakeup_source *ws; 1443 poll_table pt; 1444 1445 init_poll_funcptr(&pt, NULL); 1446 1447 /* 1448 * We can loop without lock because we are passed a task private list. 1449 * Items cannot vanish during the loop because ep_scan_ready_list() is 1450 * holding "mtx" during this call. 1451 */ 1452 for (eventcnt = 0, uevent = esed->events; 1453 !list_empty(head) && eventcnt < esed->maxevents;) { 1454 epi = list_first_entry(head, struct epitem, rdllink); 1455 1456 /* 1457 * Activate ep->ws before deactivating epi->ws to prevent 1458 * triggering auto-suspend here (in case we reactive epi->ws 1459 * below). 1460 * 1461 * This could be rearranged to delay the deactivation of epi->ws 1462 * instead, but then epi->ws would temporarily be out of sync 1463 * with ep_is_linked(). 1464 */ 1465 ws = ep_wakeup_source(epi); 1466 if (ws) { 1467 if (ws->active) 1468 __pm_stay_awake(ep->ws); 1469 __pm_relax(ws); 1470 } 1471 1472 list_del_init(&epi->rdllink); 1473 1474 revents = ep_item_poll(epi, &pt); 1475 1476 /* 1477 * If the event mask intersect the caller-requested one, 1478 * deliver the event to userspace. Again, ep_scan_ready_list() 1479 * is holding "mtx", so no operations coming from userspace 1480 * can change the item. 1481 */ 1482 if (revents) { 1483 if (__put_user(revents, &uevent->events) || 1484 __put_user(epi->event.data, &uevent->data)) { 1485 list_add(&epi->rdllink, head); 1486 ep_pm_stay_awake(epi); 1487 return eventcnt ? eventcnt : -EFAULT; 1488 } 1489 eventcnt++; 1490 uevent++; 1491 if (epi->event.events & EPOLLONESHOT) 1492 epi->event.events &= EP_PRIVATE_BITS; 1493 else if (!(epi->event.events & EPOLLET)) { 1494 /* 1495 * If this file has been added with Level 1496 * Trigger mode, we need to insert back inside 1497 * the ready list, so that the next call to 1498 * epoll_wait() will check again the events 1499 * availability. At this point, no one can insert 1500 * into ep->rdllist besides us. The epoll_ctl() 1501 * callers are locked out by 1502 * ep_scan_ready_list() holding "mtx" and the 1503 * poll callback will queue them in ep->ovflist. 1504 */ 1505 list_add_tail(&epi->rdllink, &ep->rdllist); 1506 ep_pm_stay_awake(epi); 1507 } 1508 } 1509 } 1510 1511 return eventcnt; 1512 } 1513 1514 static int ep_send_events(struct eventpoll *ep, 1515 struct epoll_event __user *events, int maxevents) 1516 { 1517 struct ep_send_events_data esed; 1518 1519 esed.maxevents = maxevents; 1520 esed.events = events; 1521 1522 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0); 1523 } 1524 1525 static inline struct timespec ep_set_mstimeout(long ms) 1526 { 1527 struct timespec now, ts = { 1528 .tv_sec = ms / MSEC_PER_SEC, 1529 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1530 }; 1531 1532 ktime_get_ts(&now); 1533 return timespec_add_safe(now, ts); 1534 } 1535 1536 /** 1537 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1538 * event buffer. 1539 * 1540 * @ep: Pointer to the eventpoll context. 1541 * @events: Pointer to the userspace buffer where the ready events should be 1542 * stored. 1543 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1544 * @timeout: Maximum timeout for the ready events fetch operation, in 1545 * milliseconds. If the @timeout is zero, the function will not block, 1546 * while if the @timeout is less than zero, the function will block 1547 * until at least one event has been retrieved (or an error 1548 * occurred). 1549 * 1550 * Returns: Returns the number of ready events which have been fetched, or an 1551 * error code, in case of error. 1552 */ 1553 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1554 int maxevents, long timeout) 1555 { 1556 int res = 0, eavail, timed_out = 0; 1557 unsigned long flags; 1558 long slack = 0; 1559 wait_queue_t wait; 1560 ktime_t expires, *to = NULL; 1561 1562 if (timeout > 0) { 1563 struct timespec end_time = ep_set_mstimeout(timeout); 1564 1565 slack = select_estimate_accuracy(&end_time); 1566 to = &expires; 1567 *to = timespec_to_ktime(end_time); 1568 } else if (timeout == 0) { 1569 /* 1570 * Avoid the unnecessary trip to the wait queue loop, if the 1571 * caller specified a non blocking operation. 1572 */ 1573 timed_out = 1; 1574 spin_lock_irqsave(&ep->lock, flags); 1575 goto check_events; 1576 } 1577 1578 fetch_events: 1579 spin_lock_irqsave(&ep->lock, flags); 1580 1581 if (!ep_events_available(ep)) { 1582 /* 1583 * We don't have any available event to return to the caller. 1584 * We need to sleep here, and we will be wake up by 1585 * ep_poll_callback() when events will become available. 1586 */ 1587 init_waitqueue_entry(&wait, current); 1588 __add_wait_queue_exclusive(&ep->wq, &wait); 1589 1590 for (;;) { 1591 /* 1592 * We don't want to sleep if the ep_poll_callback() sends us 1593 * a wakeup in between. That's why we set the task state 1594 * to TASK_INTERRUPTIBLE before doing the checks. 1595 */ 1596 set_current_state(TASK_INTERRUPTIBLE); 1597 if (ep_events_available(ep) || timed_out) 1598 break; 1599 if (signal_pending(current)) { 1600 res = -EINTR; 1601 break; 1602 } 1603 1604 spin_unlock_irqrestore(&ep->lock, flags); 1605 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1606 timed_out = 1; 1607 1608 spin_lock_irqsave(&ep->lock, flags); 1609 } 1610 __remove_wait_queue(&ep->wq, &wait); 1611 1612 set_current_state(TASK_RUNNING); 1613 } 1614 check_events: 1615 /* Is it worth to try to dig for events ? */ 1616 eavail = ep_events_available(ep); 1617 1618 spin_unlock_irqrestore(&ep->lock, flags); 1619 1620 /* 1621 * Try to transfer events to user space. In case we get 0 events and 1622 * there's still timeout left over, we go trying again in search of 1623 * more luck. 1624 */ 1625 if (!res && eavail && 1626 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1627 goto fetch_events; 1628 1629 return res; 1630 } 1631 1632 /** 1633 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1634 * API, to verify that adding an epoll file inside another 1635 * epoll structure, does not violate the constraints, in 1636 * terms of closed loops, or too deep chains (which can 1637 * result in excessive stack usage). 1638 * 1639 * @priv: Pointer to the epoll file to be currently checked. 1640 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1641 * data structure pointer. 1642 * @call_nests: Current dept of the @ep_call_nested() call stack. 1643 * 1644 * Returns: Returns zero if adding the epoll @file inside current epoll 1645 * structure @ep does not violate the constraints, or -1 otherwise. 1646 */ 1647 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1648 { 1649 int error = 0; 1650 struct file *file = priv; 1651 struct eventpoll *ep = file->private_data; 1652 struct eventpoll *ep_tovisit; 1653 struct rb_node *rbp; 1654 struct epitem *epi; 1655 1656 mutex_lock_nested(&ep->mtx, call_nests + 1); 1657 ep->visited = 1; 1658 list_add(&ep->visited_list_link, &visited_list); 1659 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1660 epi = rb_entry(rbp, struct epitem, rbn); 1661 if (unlikely(is_file_epoll(epi->ffd.file))) { 1662 ep_tovisit = epi->ffd.file->private_data; 1663 if (ep_tovisit->visited) 1664 continue; 1665 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1666 ep_loop_check_proc, epi->ffd.file, 1667 ep_tovisit, current); 1668 if (error != 0) 1669 break; 1670 } else { 1671 /* 1672 * If we've reached a file that is not associated with 1673 * an ep, then we need to check if the newly added 1674 * links are going to add too many wakeup paths. We do 1675 * this by adding it to the tfile_check_list, if it's 1676 * not already there, and calling reverse_path_check() 1677 * during ep_insert(). 1678 */ 1679 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1680 list_add(&epi->ffd.file->f_tfile_llink, 1681 &tfile_check_list); 1682 } 1683 } 1684 mutex_unlock(&ep->mtx); 1685 1686 return error; 1687 } 1688 1689 /** 1690 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1691 * another epoll file (represented by @ep) does not create 1692 * closed loops or too deep chains. 1693 * 1694 * @ep: Pointer to the epoll private data structure. 1695 * @file: Pointer to the epoll file to be checked. 1696 * 1697 * Returns: Returns zero if adding the epoll @file inside current epoll 1698 * structure @ep does not violate the constraints, or -1 otherwise. 1699 */ 1700 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1701 { 1702 int ret; 1703 struct eventpoll *ep_cur, *ep_next; 1704 1705 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1706 ep_loop_check_proc, file, ep, current); 1707 /* clear visited list */ 1708 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1709 visited_list_link) { 1710 ep_cur->visited = 0; 1711 list_del(&ep_cur->visited_list_link); 1712 } 1713 return ret; 1714 } 1715 1716 static void clear_tfile_check_list(void) 1717 { 1718 struct file *file; 1719 1720 /* first clear the tfile_check_list */ 1721 while (!list_empty(&tfile_check_list)) { 1722 file = list_first_entry(&tfile_check_list, struct file, 1723 f_tfile_llink); 1724 list_del_init(&file->f_tfile_llink); 1725 } 1726 INIT_LIST_HEAD(&tfile_check_list); 1727 } 1728 1729 /* 1730 * Open an eventpoll file descriptor. 1731 */ 1732 SYSCALL_DEFINE1(epoll_create1, int, flags) 1733 { 1734 int error, fd; 1735 struct eventpoll *ep = NULL; 1736 struct file *file; 1737 1738 /* Check the EPOLL_* constant for consistency. */ 1739 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1740 1741 if (flags & ~EPOLL_CLOEXEC) 1742 return -EINVAL; 1743 /* 1744 * Create the internal data structure ("struct eventpoll"). 1745 */ 1746 error = ep_alloc(&ep); 1747 if (error < 0) 1748 return error; 1749 /* 1750 * Creates all the items needed to setup an eventpoll file. That is, 1751 * a file structure and a free file descriptor. 1752 */ 1753 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1754 if (fd < 0) { 1755 error = fd; 1756 goto out_free_ep; 1757 } 1758 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1759 O_RDWR | (flags & O_CLOEXEC)); 1760 if (IS_ERR(file)) { 1761 error = PTR_ERR(file); 1762 goto out_free_fd; 1763 } 1764 ep->file = file; 1765 fd_install(fd, file); 1766 return fd; 1767 1768 out_free_fd: 1769 put_unused_fd(fd); 1770 out_free_ep: 1771 ep_free(ep); 1772 return error; 1773 } 1774 1775 SYSCALL_DEFINE1(epoll_create, int, size) 1776 { 1777 if (size <= 0) 1778 return -EINVAL; 1779 1780 return sys_epoll_create1(0); 1781 } 1782 1783 /* 1784 * The following function implements the controller interface for 1785 * the eventpoll file that enables the insertion/removal/change of 1786 * file descriptors inside the interest set. 1787 */ 1788 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1789 struct epoll_event __user *, event) 1790 { 1791 int error; 1792 int did_lock_epmutex = 0; 1793 struct file *file, *tfile; 1794 struct eventpoll *ep; 1795 struct epitem *epi; 1796 struct epoll_event epds; 1797 1798 error = -EFAULT; 1799 if (ep_op_has_event(op) && 1800 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1801 goto error_return; 1802 1803 /* Get the "struct file *" for the eventpoll file */ 1804 error = -EBADF; 1805 file = fget(epfd); 1806 if (!file) 1807 goto error_return; 1808 1809 /* Get the "struct file *" for the target file */ 1810 tfile = fget(fd); 1811 if (!tfile) 1812 goto error_fput; 1813 1814 /* The target file descriptor must support poll */ 1815 error = -EPERM; 1816 if (!tfile->f_op || !tfile->f_op->poll) 1817 goto error_tgt_fput; 1818 1819 /* Check if EPOLLWAKEUP is allowed */ 1820 if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 1821 epds.events &= ~EPOLLWAKEUP; 1822 1823 /* 1824 * We have to check that the file structure underneath the file descriptor 1825 * the user passed to us _is_ an eventpoll file. And also we do not permit 1826 * adding an epoll file descriptor inside itself. 1827 */ 1828 error = -EINVAL; 1829 if (file == tfile || !is_file_epoll(file)) 1830 goto error_tgt_fput; 1831 1832 /* 1833 * At this point it is safe to assume that the "private_data" contains 1834 * our own data structure. 1835 */ 1836 ep = file->private_data; 1837 1838 /* 1839 * When we insert an epoll file descriptor, inside another epoll file 1840 * descriptor, there is the change of creating closed loops, which are 1841 * better be handled here, than in more critical paths. While we are 1842 * checking for loops we also determine the list of files reachable 1843 * and hang them on the tfile_check_list, so we can check that we 1844 * haven't created too many possible wakeup paths. 1845 * 1846 * We need to hold the epmutex across both ep_insert and ep_remove 1847 * b/c we want to make sure we are looking at a coherent view of 1848 * epoll network. 1849 */ 1850 if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) { 1851 mutex_lock(&epmutex); 1852 did_lock_epmutex = 1; 1853 } 1854 if (op == EPOLL_CTL_ADD) { 1855 if (is_file_epoll(tfile)) { 1856 error = -ELOOP; 1857 if (ep_loop_check(ep, tfile) != 0) { 1858 clear_tfile_check_list(); 1859 goto error_tgt_fput; 1860 } 1861 } else 1862 list_add(&tfile->f_tfile_llink, &tfile_check_list); 1863 } 1864 1865 mutex_lock_nested(&ep->mtx, 0); 1866 1867 /* 1868 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1869 * above, we can be sure to be able to use the item looked up by 1870 * ep_find() till we release the mutex. 1871 */ 1872 epi = ep_find(ep, tfile, fd); 1873 1874 error = -EINVAL; 1875 switch (op) { 1876 case EPOLL_CTL_ADD: 1877 if (!epi) { 1878 epds.events |= POLLERR | POLLHUP; 1879 error = ep_insert(ep, &epds, tfile, fd); 1880 } else 1881 error = -EEXIST; 1882 clear_tfile_check_list(); 1883 break; 1884 case EPOLL_CTL_DEL: 1885 if (epi) 1886 error = ep_remove(ep, epi); 1887 else 1888 error = -ENOENT; 1889 break; 1890 case EPOLL_CTL_MOD: 1891 if (epi) { 1892 epds.events |= POLLERR | POLLHUP; 1893 error = ep_modify(ep, epi, &epds); 1894 } else 1895 error = -ENOENT; 1896 break; 1897 } 1898 mutex_unlock(&ep->mtx); 1899 1900 error_tgt_fput: 1901 if (did_lock_epmutex) 1902 mutex_unlock(&epmutex); 1903 1904 fput(tfile); 1905 error_fput: 1906 fput(file); 1907 error_return: 1908 1909 return error; 1910 } 1911 1912 /* 1913 * Implement the event wait interface for the eventpoll file. It is the kernel 1914 * part of the user space epoll_wait(2). 1915 */ 1916 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1917 int, maxevents, int, timeout) 1918 { 1919 int error; 1920 struct fd f; 1921 struct eventpoll *ep; 1922 1923 /* The maximum number of event must be greater than zero */ 1924 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1925 return -EINVAL; 1926 1927 /* Verify that the area passed by the user is writeable */ 1928 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) 1929 return -EFAULT; 1930 1931 /* Get the "struct file *" for the eventpoll file */ 1932 f = fdget(epfd); 1933 if (!f.file) 1934 return -EBADF; 1935 1936 /* 1937 * We have to check that the file structure underneath the fd 1938 * the user passed to us _is_ an eventpoll file. 1939 */ 1940 error = -EINVAL; 1941 if (!is_file_epoll(f.file)) 1942 goto error_fput; 1943 1944 /* 1945 * At this point it is safe to assume that the "private_data" contains 1946 * our own data structure. 1947 */ 1948 ep = f.file->private_data; 1949 1950 /* Time to fish for events ... */ 1951 error = ep_poll(ep, events, maxevents, timeout); 1952 1953 error_fput: 1954 fdput(f); 1955 return error; 1956 } 1957 1958 /* 1959 * Implement the event wait interface for the eventpoll file. It is the kernel 1960 * part of the user space epoll_pwait(2). 1961 */ 1962 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 1963 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 1964 size_t, sigsetsize) 1965 { 1966 int error; 1967 sigset_t ksigmask, sigsaved; 1968 1969 /* 1970 * If the caller wants a certain signal mask to be set during the wait, 1971 * we apply it here. 1972 */ 1973 if (sigmask) { 1974 if (sigsetsize != sizeof(sigset_t)) 1975 return -EINVAL; 1976 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1977 return -EFAULT; 1978 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 1979 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1980 } 1981 1982 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1983 1984 /* 1985 * If we changed the signal mask, we need to restore the original one. 1986 * In case we've got a signal while waiting, we do not restore the 1987 * signal mask yet, and we allow do_signal() to deliver the signal on 1988 * the way back to userspace, before the signal mask is restored. 1989 */ 1990 if (sigmask) { 1991 if (error == -EINTR) { 1992 memcpy(¤t->saved_sigmask, &sigsaved, 1993 sizeof(sigsaved)); 1994 set_restore_sigmask(); 1995 } else 1996 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1997 } 1998 1999 return error; 2000 } 2001 2002 #ifdef CONFIG_COMPAT 2003 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2004 struct epoll_event __user *, events, 2005 int, maxevents, int, timeout, 2006 const compat_sigset_t __user *, sigmask, 2007 compat_size_t, sigsetsize) 2008 { 2009 long err; 2010 compat_sigset_t csigmask; 2011 sigset_t ksigmask, sigsaved; 2012 2013 /* 2014 * If the caller wants a certain signal mask to be set during the wait, 2015 * we apply it here. 2016 */ 2017 if (sigmask) { 2018 if (sigsetsize != sizeof(compat_sigset_t)) 2019 return -EINVAL; 2020 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask))) 2021 return -EFAULT; 2022 sigset_from_compat(&ksigmask, &csigmask); 2023 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2024 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 2025 } 2026 2027 err = sys_epoll_wait(epfd, events, maxevents, timeout); 2028 2029 /* 2030 * If we changed the signal mask, we need to restore the original one. 2031 * In case we've got a signal while waiting, we do not restore the 2032 * signal mask yet, and we allow do_signal() to deliver the signal on 2033 * the way back to userspace, before the signal mask is restored. 2034 */ 2035 if (sigmask) { 2036 if (err == -EINTR) { 2037 memcpy(¤t->saved_sigmask, &sigsaved, 2038 sizeof(sigsaved)); 2039 set_restore_sigmask(); 2040 } else 2041 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 2042 } 2043 2044 return err; 2045 } 2046 #endif 2047 2048 static int __init eventpoll_init(void) 2049 { 2050 struct sysinfo si; 2051 2052 si_meminfo(&si); 2053 /* 2054 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2055 */ 2056 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2057 EP_ITEM_COST; 2058 BUG_ON(max_user_watches < 0); 2059 2060 /* 2061 * Initialize the structure used to perform epoll file descriptor 2062 * inclusion loops checks. 2063 */ 2064 ep_nested_calls_init(&poll_loop_ncalls); 2065 2066 /* Initialize the structure used to perform safe poll wait head wake ups */ 2067 ep_nested_calls_init(&poll_safewake_ncalls); 2068 2069 /* Initialize the structure used to perform file's f_op->poll() calls */ 2070 ep_nested_calls_init(&poll_readywalk_ncalls); 2071 2072 /* 2073 * We can have many thousands of epitems, so prevent this from 2074 * using an extra cache line on 64-bit (and smaller) CPUs 2075 */ 2076 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2077 2078 /* Allocates slab cache used to allocate "struct epitem" items */ 2079 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2080 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2081 2082 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2083 pwq_cache = kmem_cache_create("eventpoll_pwq", 2084 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 2085 2086 return 0; 2087 } 2088 fs_initcall(eventpoll_init); 2089