1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/device.h> 37 #include <linux/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 #include <linux/proc_fs.h> 42 #include <linux/seq_file.h> 43 #include <linux/compat.h> 44 #include <linux/rculist.h> 45 46 /* 47 * LOCKING: 48 * There are three level of locking required by epoll : 49 * 50 * 1) epmutex (mutex) 51 * 2) ep->mtx (mutex) 52 * 3) ep->lock (spinlock) 53 * 54 * The acquire order is the one listed above, from 1 to 3. 55 * We need a spinlock (ep->lock) because we manipulate objects 56 * from inside the poll callback, that might be triggered from 57 * a wake_up() that in turn might be called from IRQ context. 58 * So we can't sleep inside the poll callback and hence we need 59 * a spinlock. During the event transfer loop (from kernel to 60 * user space) we could end up sleeping due a copy_to_user(), so 61 * we need a lock that will allow us to sleep. This lock is a 62 * mutex (ep->mtx). It is acquired during the event transfer loop, 63 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 64 * Then we also need a global mutex to serialize eventpoll_release_file() 65 * and ep_free(). 66 * This mutex is acquired by ep_free() during the epoll file 67 * cleanup path and it is also acquired by eventpoll_release_file() 68 * if a file has been pushed inside an epoll set and it is then 69 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 70 * It is also acquired when inserting an epoll fd onto another epoll 71 * fd. We do this so that we walk the epoll tree and ensure that this 72 * insertion does not create a cycle of epoll file descriptors, which 73 * could lead to deadlock. We need a global mutex to prevent two 74 * simultaneous inserts (A into B and B into A) from racing and 75 * constructing a cycle without either insert observing that it is 76 * going to. 77 * It is necessary to acquire multiple "ep->mtx"es at once in the 78 * case when one epoll fd is added to another. In this case, we 79 * always acquire the locks in the order of nesting (i.e. after 80 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 81 * before e2->mtx). Since we disallow cycles of epoll file 82 * descriptors, this ensures that the mutexes are well-ordered. In 83 * order to communicate this nesting to lockdep, when walking a tree 84 * of epoll file descriptors, we use the current recursion depth as 85 * the lockdep subkey. 86 * It is possible to drop the "ep->mtx" and to use the global 87 * mutex "epmutex" (together with "ep->lock") to have it working, 88 * but having "ep->mtx" will make the interface more scalable. 89 * Events that require holding "epmutex" are very rare, while for 90 * normal operations the epoll private "ep->mtx" will guarantee 91 * a better scalability. 92 */ 93 94 /* Epoll private bits inside the event mask */ 95 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 96 97 #define EPOLLINOUT_BITS (POLLIN | POLLOUT) 98 99 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \ 100 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 101 102 /* Maximum number of nesting allowed inside epoll sets */ 103 #define EP_MAX_NESTS 4 104 105 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 106 107 #define EP_UNACTIVE_PTR ((void *) -1L) 108 109 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 110 111 struct epoll_filefd { 112 struct file *file; 113 int fd; 114 } __packed; 115 116 /* 117 * Structure used to track possible nested calls, for too deep recursions 118 * and loop cycles. 119 */ 120 struct nested_call_node { 121 struct list_head llink; 122 void *cookie; 123 void *ctx; 124 }; 125 126 /* 127 * This structure is used as collector for nested calls, to check for 128 * maximum recursion dept and loop cycles. 129 */ 130 struct nested_calls { 131 struct list_head tasks_call_list; 132 spinlock_t lock; 133 }; 134 135 /* 136 * Each file descriptor added to the eventpoll interface will 137 * have an entry of this type linked to the "rbr" RB tree. 138 * Avoid increasing the size of this struct, there can be many thousands 139 * of these on a server and we do not want this to take another cache line. 140 */ 141 struct epitem { 142 union { 143 /* RB tree node links this structure to the eventpoll RB tree */ 144 struct rb_node rbn; 145 /* Used to free the struct epitem */ 146 struct rcu_head rcu; 147 }; 148 149 /* List header used to link this structure to the eventpoll ready list */ 150 struct list_head rdllink; 151 152 /* 153 * Works together "struct eventpoll"->ovflist in keeping the 154 * single linked chain of items. 155 */ 156 struct epitem *next; 157 158 /* The file descriptor information this item refers to */ 159 struct epoll_filefd ffd; 160 161 /* Number of active wait queue attached to poll operations */ 162 int nwait; 163 164 /* List containing poll wait queues */ 165 struct list_head pwqlist; 166 167 /* The "container" of this item */ 168 struct eventpoll *ep; 169 170 /* List header used to link this item to the "struct file" items list */ 171 struct list_head fllink; 172 173 /* wakeup_source used when EPOLLWAKEUP is set */ 174 struct wakeup_source __rcu *ws; 175 176 /* The structure that describe the interested events and the source fd */ 177 struct epoll_event event; 178 }; 179 180 /* 181 * This structure is stored inside the "private_data" member of the file 182 * structure and represents the main data structure for the eventpoll 183 * interface. 184 */ 185 struct eventpoll { 186 /* Protect the access to this structure */ 187 spinlock_t lock; 188 189 /* 190 * This mutex is used to ensure that files are not removed 191 * while epoll is using them. This is held during the event 192 * collection loop, the file cleanup path, the epoll file exit 193 * code and the ctl operations. 194 */ 195 struct mutex mtx; 196 197 /* Wait queue used by sys_epoll_wait() */ 198 wait_queue_head_t wq; 199 200 /* Wait queue used by file->poll() */ 201 wait_queue_head_t poll_wait; 202 203 /* List of ready file descriptors */ 204 struct list_head rdllist; 205 206 /* RB tree root used to store monitored fd structs */ 207 struct rb_root rbr; 208 209 /* 210 * This is a single linked list that chains all the "struct epitem" that 211 * happened while transferring ready events to userspace w/out 212 * holding ->lock. 213 */ 214 struct epitem *ovflist; 215 216 /* wakeup_source used when ep_scan_ready_list is running */ 217 struct wakeup_source *ws; 218 219 /* The user that created the eventpoll descriptor */ 220 struct user_struct *user; 221 222 struct file *file; 223 224 /* used to optimize loop detection check */ 225 int visited; 226 struct list_head visited_list_link; 227 }; 228 229 /* Wait structure used by the poll hooks */ 230 struct eppoll_entry { 231 /* List header used to link this structure to the "struct epitem" */ 232 struct list_head llink; 233 234 /* The "base" pointer is set to the container "struct epitem" */ 235 struct epitem *base; 236 237 /* 238 * Wait queue item that will be linked to the target file wait 239 * queue head. 240 */ 241 wait_queue_t wait; 242 243 /* The wait queue head that linked the "wait" wait queue item */ 244 wait_queue_head_t *whead; 245 }; 246 247 /* Wrapper struct used by poll queueing */ 248 struct ep_pqueue { 249 poll_table pt; 250 struct epitem *epi; 251 }; 252 253 /* Used by the ep_send_events() function as callback private data */ 254 struct ep_send_events_data { 255 int maxevents; 256 struct epoll_event __user *events; 257 }; 258 259 /* 260 * Configuration options available inside /proc/sys/fs/epoll/ 261 */ 262 /* Maximum number of epoll watched descriptors, per user */ 263 static long max_user_watches __read_mostly; 264 265 /* 266 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 267 */ 268 static DEFINE_MUTEX(epmutex); 269 270 /* Used to check for epoll file descriptor inclusion loops */ 271 static struct nested_calls poll_loop_ncalls; 272 273 /* Used for safe wake up implementation */ 274 static struct nested_calls poll_safewake_ncalls; 275 276 /* Used to call file's f_op->poll() under the nested calls boundaries */ 277 static struct nested_calls poll_readywalk_ncalls; 278 279 /* Slab cache used to allocate "struct epitem" */ 280 static struct kmem_cache *epi_cache __read_mostly; 281 282 /* Slab cache used to allocate "struct eppoll_entry" */ 283 static struct kmem_cache *pwq_cache __read_mostly; 284 285 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 286 static LIST_HEAD(visited_list); 287 288 /* 289 * List of files with newly added links, where we may need to limit the number 290 * of emanating paths. Protected by the epmutex. 291 */ 292 static LIST_HEAD(tfile_check_list); 293 294 #ifdef CONFIG_SYSCTL 295 296 #include <linux/sysctl.h> 297 298 static long zero; 299 static long long_max = LONG_MAX; 300 301 struct ctl_table epoll_table[] = { 302 { 303 .procname = "max_user_watches", 304 .data = &max_user_watches, 305 .maxlen = sizeof(max_user_watches), 306 .mode = 0644, 307 .proc_handler = proc_doulongvec_minmax, 308 .extra1 = &zero, 309 .extra2 = &long_max, 310 }, 311 { } 312 }; 313 #endif /* CONFIG_SYSCTL */ 314 315 static const struct file_operations eventpoll_fops; 316 317 static inline int is_file_epoll(struct file *f) 318 { 319 return f->f_op == &eventpoll_fops; 320 } 321 322 /* Setup the structure that is used as key for the RB tree */ 323 static inline void ep_set_ffd(struct epoll_filefd *ffd, 324 struct file *file, int fd) 325 { 326 ffd->file = file; 327 ffd->fd = fd; 328 } 329 330 /* Compare RB tree keys */ 331 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 332 struct epoll_filefd *p2) 333 { 334 return (p1->file > p2->file ? +1: 335 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 336 } 337 338 /* Tells us if the item is currently linked */ 339 static inline int ep_is_linked(struct list_head *p) 340 { 341 return !list_empty(p); 342 } 343 344 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p) 345 { 346 return container_of(p, struct eppoll_entry, wait); 347 } 348 349 /* Get the "struct epitem" from a wait queue pointer */ 350 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 351 { 352 return container_of(p, struct eppoll_entry, wait)->base; 353 } 354 355 /* Get the "struct epitem" from an epoll queue wrapper */ 356 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 357 { 358 return container_of(p, struct ep_pqueue, pt)->epi; 359 } 360 361 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 362 static inline int ep_op_has_event(int op) 363 { 364 return op != EPOLL_CTL_DEL; 365 } 366 367 /* Initialize the poll safe wake up structure */ 368 static void ep_nested_calls_init(struct nested_calls *ncalls) 369 { 370 INIT_LIST_HEAD(&ncalls->tasks_call_list); 371 spin_lock_init(&ncalls->lock); 372 } 373 374 /** 375 * ep_events_available - Checks if ready events might be available. 376 * 377 * @ep: Pointer to the eventpoll context. 378 * 379 * Returns: Returns a value different than zero if ready events are available, 380 * or zero otherwise. 381 */ 382 static inline int ep_events_available(struct eventpoll *ep) 383 { 384 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 385 } 386 387 /** 388 * ep_call_nested - Perform a bound (possibly) nested call, by checking 389 * that the recursion limit is not exceeded, and that 390 * the same nested call (by the meaning of same cookie) is 391 * no re-entered. 392 * 393 * @ncalls: Pointer to the nested_calls structure to be used for this call. 394 * @max_nests: Maximum number of allowed nesting calls. 395 * @nproc: Nested call core function pointer. 396 * @priv: Opaque data to be passed to the @nproc callback. 397 * @cookie: Cookie to be used to identify this nested call. 398 * @ctx: This instance context. 399 * 400 * Returns: Returns the code returned by the @nproc callback, or -1 if 401 * the maximum recursion limit has been exceeded. 402 */ 403 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 404 int (*nproc)(void *, void *, int), void *priv, 405 void *cookie, void *ctx) 406 { 407 int error, call_nests = 0; 408 unsigned long flags; 409 struct list_head *lsthead = &ncalls->tasks_call_list; 410 struct nested_call_node *tncur; 411 struct nested_call_node tnode; 412 413 spin_lock_irqsave(&ncalls->lock, flags); 414 415 /* 416 * Try to see if the current task is already inside this wakeup call. 417 * We use a list here, since the population inside this set is always 418 * very much limited. 419 */ 420 list_for_each_entry(tncur, lsthead, llink) { 421 if (tncur->ctx == ctx && 422 (tncur->cookie == cookie || ++call_nests > max_nests)) { 423 /* 424 * Ops ... loop detected or maximum nest level reached. 425 * We abort this wake by breaking the cycle itself. 426 */ 427 error = -1; 428 goto out_unlock; 429 } 430 } 431 432 /* Add the current task and cookie to the list */ 433 tnode.ctx = ctx; 434 tnode.cookie = cookie; 435 list_add(&tnode.llink, lsthead); 436 437 spin_unlock_irqrestore(&ncalls->lock, flags); 438 439 /* Call the nested function */ 440 error = (*nproc)(priv, cookie, call_nests); 441 442 /* Remove the current task from the list */ 443 spin_lock_irqsave(&ncalls->lock, flags); 444 list_del(&tnode.llink); 445 out_unlock: 446 spin_unlock_irqrestore(&ncalls->lock, flags); 447 448 return error; 449 } 450 451 /* 452 * As described in commit 0ccf831cb lockdep: annotate epoll 453 * the use of wait queues used by epoll is done in a very controlled 454 * manner. Wake ups can nest inside each other, but are never done 455 * with the same locking. For example: 456 * 457 * dfd = socket(...); 458 * efd1 = epoll_create(); 459 * efd2 = epoll_create(); 460 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 461 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 462 * 463 * When a packet arrives to the device underneath "dfd", the net code will 464 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 465 * callback wakeup entry on that queue, and the wake_up() performed by the 466 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 467 * (efd1) notices that it may have some event ready, so it needs to wake up 468 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 469 * that ends up in another wake_up(), after having checked about the 470 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 471 * avoid stack blasting. 472 * 473 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 474 * this special case of epoll. 475 */ 476 #ifdef CONFIG_DEBUG_LOCK_ALLOC 477 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 478 unsigned long events, int subclass) 479 { 480 unsigned long flags; 481 482 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 483 wake_up_locked_poll(wqueue, events); 484 spin_unlock_irqrestore(&wqueue->lock, flags); 485 } 486 #else 487 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 488 unsigned long events, int subclass) 489 { 490 wake_up_poll(wqueue, events); 491 } 492 #endif 493 494 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 495 { 496 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 497 1 + call_nests); 498 return 0; 499 } 500 501 /* 502 * Perform a safe wake up of the poll wait list. The problem is that 503 * with the new callback'd wake up system, it is possible that the 504 * poll callback is reentered from inside the call to wake_up() done 505 * on the poll wait queue head. The rule is that we cannot reenter the 506 * wake up code from the same task more than EP_MAX_NESTS times, 507 * and we cannot reenter the same wait queue head at all. This will 508 * enable to have a hierarchy of epoll file descriptor of no more than 509 * EP_MAX_NESTS deep. 510 */ 511 static void ep_poll_safewake(wait_queue_head_t *wq) 512 { 513 int this_cpu = get_cpu(); 514 515 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 516 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 517 518 put_cpu(); 519 } 520 521 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 522 { 523 wait_queue_head_t *whead; 524 525 rcu_read_lock(); 526 /* If it is cleared by POLLFREE, it should be rcu-safe */ 527 whead = rcu_dereference(pwq->whead); 528 if (whead) 529 remove_wait_queue(whead, &pwq->wait); 530 rcu_read_unlock(); 531 } 532 533 /* 534 * This function unregisters poll callbacks from the associated file 535 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 536 * ep_free). 537 */ 538 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 539 { 540 struct list_head *lsthead = &epi->pwqlist; 541 struct eppoll_entry *pwq; 542 543 while (!list_empty(lsthead)) { 544 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 545 546 list_del(&pwq->llink); 547 ep_remove_wait_queue(pwq); 548 kmem_cache_free(pwq_cache, pwq); 549 } 550 } 551 552 /* call only when ep->mtx is held */ 553 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 554 { 555 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 556 } 557 558 /* call only when ep->mtx is held */ 559 static inline void ep_pm_stay_awake(struct epitem *epi) 560 { 561 struct wakeup_source *ws = ep_wakeup_source(epi); 562 563 if (ws) 564 __pm_stay_awake(ws); 565 } 566 567 static inline bool ep_has_wakeup_source(struct epitem *epi) 568 { 569 return rcu_access_pointer(epi->ws) ? true : false; 570 } 571 572 /* call when ep->mtx cannot be held (ep_poll_callback) */ 573 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 574 { 575 struct wakeup_source *ws; 576 577 rcu_read_lock(); 578 ws = rcu_dereference(epi->ws); 579 if (ws) 580 __pm_stay_awake(ws); 581 rcu_read_unlock(); 582 } 583 584 /** 585 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 586 * the scan code, to call f_op->poll(). Also allows for 587 * O(NumReady) performance. 588 * 589 * @ep: Pointer to the epoll private data structure. 590 * @sproc: Pointer to the scan callback. 591 * @priv: Private opaque data passed to the @sproc callback. 592 * @depth: The current depth of recursive f_op->poll calls. 593 * @ep_locked: caller already holds ep->mtx 594 * 595 * Returns: The same integer error code returned by the @sproc callback. 596 */ 597 static int ep_scan_ready_list(struct eventpoll *ep, 598 int (*sproc)(struct eventpoll *, 599 struct list_head *, void *), 600 void *priv, int depth, bool ep_locked) 601 { 602 int error, pwake = 0; 603 unsigned long flags; 604 struct epitem *epi, *nepi; 605 LIST_HEAD(txlist); 606 607 /* 608 * We need to lock this because we could be hit by 609 * eventpoll_release_file() and epoll_ctl(). 610 */ 611 612 if (!ep_locked) 613 mutex_lock_nested(&ep->mtx, depth); 614 615 /* 616 * Steal the ready list, and re-init the original one to the 617 * empty list. Also, set ep->ovflist to NULL so that events 618 * happening while looping w/out locks, are not lost. We cannot 619 * have the poll callback to queue directly on ep->rdllist, 620 * because we want the "sproc" callback to be able to do it 621 * in a lockless way. 622 */ 623 spin_lock_irqsave(&ep->lock, flags); 624 list_splice_init(&ep->rdllist, &txlist); 625 ep->ovflist = NULL; 626 spin_unlock_irqrestore(&ep->lock, flags); 627 628 /* 629 * Now call the callback function. 630 */ 631 error = (*sproc)(ep, &txlist, priv); 632 633 spin_lock_irqsave(&ep->lock, flags); 634 /* 635 * During the time we spent inside the "sproc" callback, some 636 * other events might have been queued by the poll callback. 637 * We re-insert them inside the main ready-list here. 638 */ 639 for (nepi = ep->ovflist; (epi = nepi) != NULL; 640 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 641 /* 642 * We need to check if the item is already in the list. 643 * During the "sproc" callback execution time, items are 644 * queued into ->ovflist but the "txlist" might already 645 * contain them, and the list_splice() below takes care of them. 646 */ 647 if (!ep_is_linked(&epi->rdllink)) { 648 list_add_tail(&epi->rdllink, &ep->rdllist); 649 ep_pm_stay_awake(epi); 650 } 651 } 652 /* 653 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 654 * releasing the lock, events will be queued in the normal way inside 655 * ep->rdllist. 656 */ 657 ep->ovflist = EP_UNACTIVE_PTR; 658 659 /* 660 * Quickly re-inject items left on "txlist". 661 */ 662 list_splice(&txlist, &ep->rdllist); 663 __pm_relax(ep->ws); 664 665 if (!list_empty(&ep->rdllist)) { 666 /* 667 * Wake up (if active) both the eventpoll wait list and 668 * the ->poll() wait list (delayed after we release the lock). 669 */ 670 if (waitqueue_active(&ep->wq)) 671 wake_up_locked(&ep->wq); 672 if (waitqueue_active(&ep->poll_wait)) 673 pwake++; 674 } 675 spin_unlock_irqrestore(&ep->lock, flags); 676 677 if (!ep_locked) 678 mutex_unlock(&ep->mtx); 679 680 /* We have to call this outside the lock */ 681 if (pwake) 682 ep_poll_safewake(&ep->poll_wait); 683 684 return error; 685 } 686 687 static void epi_rcu_free(struct rcu_head *head) 688 { 689 struct epitem *epi = container_of(head, struct epitem, rcu); 690 kmem_cache_free(epi_cache, epi); 691 } 692 693 /* 694 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 695 * all the associated resources. Must be called with "mtx" held. 696 */ 697 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 698 { 699 unsigned long flags; 700 struct file *file = epi->ffd.file; 701 702 /* 703 * Removes poll wait queue hooks. We _have_ to do this without holding 704 * the "ep->lock" otherwise a deadlock might occur. This because of the 705 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 706 * queue head lock when unregistering the wait queue. The wakeup callback 707 * will run by holding the wait queue head lock and will call our callback 708 * that will try to get "ep->lock". 709 */ 710 ep_unregister_pollwait(ep, epi); 711 712 /* Remove the current item from the list of epoll hooks */ 713 spin_lock(&file->f_lock); 714 list_del_rcu(&epi->fllink); 715 spin_unlock(&file->f_lock); 716 717 rb_erase(&epi->rbn, &ep->rbr); 718 719 spin_lock_irqsave(&ep->lock, flags); 720 if (ep_is_linked(&epi->rdllink)) 721 list_del_init(&epi->rdllink); 722 spin_unlock_irqrestore(&ep->lock, flags); 723 724 wakeup_source_unregister(ep_wakeup_source(epi)); 725 /* 726 * At this point it is safe to free the eventpoll item. Use the union 727 * field epi->rcu, since we are trying to minimize the size of 728 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 729 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 730 * use of the rbn field. 731 */ 732 call_rcu(&epi->rcu, epi_rcu_free); 733 734 atomic_long_dec(&ep->user->epoll_watches); 735 736 return 0; 737 } 738 739 static void ep_free(struct eventpoll *ep) 740 { 741 struct rb_node *rbp; 742 struct epitem *epi; 743 744 /* We need to release all tasks waiting for these file */ 745 if (waitqueue_active(&ep->poll_wait)) 746 ep_poll_safewake(&ep->poll_wait); 747 748 /* 749 * We need to lock this because we could be hit by 750 * eventpoll_release_file() while we're freeing the "struct eventpoll". 751 * We do not need to hold "ep->mtx" here because the epoll file 752 * is on the way to be removed and no one has references to it 753 * anymore. The only hit might come from eventpoll_release_file() but 754 * holding "epmutex" is sufficient here. 755 */ 756 mutex_lock(&epmutex); 757 758 /* 759 * Walks through the whole tree by unregistering poll callbacks. 760 */ 761 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 762 epi = rb_entry(rbp, struct epitem, rbn); 763 764 ep_unregister_pollwait(ep, epi); 765 cond_resched(); 766 } 767 768 /* 769 * Walks through the whole tree by freeing each "struct epitem". At this 770 * point we are sure no poll callbacks will be lingering around, and also by 771 * holding "epmutex" we can be sure that no file cleanup code will hit 772 * us during this operation. So we can avoid the lock on "ep->lock". 773 * We do not need to lock ep->mtx, either, we only do it to prevent 774 * a lockdep warning. 775 */ 776 mutex_lock(&ep->mtx); 777 while ((rbp = rb_first(&ep->rbr)) != NULL) { 778 epi = rb_entry(rbp, struct epitem, rbn); 779 ep_remove(ep, epi); 780 cond_resched(); 781 } 782 mutex_unlock(&ep->mtx); 783 784 mutex_unlock(&epmutex); 785 mutex_destroy(&ep->mtx); 786 free_uid(ep->user); 787 wakeup_source_unregister(ep->ws); 788 kfree(ep); 789 } 790 791 static int ep_eventpoll_release(struct inode *inode, struct file *file) 792 { 793 struct eventpoll *ep = file->private_data; 794 795 if (ep) 796 ep_free(ep); 797 798 return 0; 799 } 800 801 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt) 802 { 803 pt->_key = epi->event.events; 804 805 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events; 806 } 807 808 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 809 void *priv) 810 { 811 struct epitem *epi, *tmp; 812 poll_table pt; 813 814 init_poll_funcptr(&pt, NULL); 815 816 list_for_each_entry_safe(epi, tmp, head, rdllink) { 817 if (ep_item_poll(epi, &pt)) 818 return POLLIN | POLLRDNORM; 819 else { 820 /* 821 * Item has been dropped into the ready list by the poll 822 * callback, but it's not actually ready, as far as 823 * caller requested events goes. We can remove it here. 824 */ 825 __pm_relax(ep_wakeup_source(epi)); 826 list_del_init(&epi->rdllink); 827 } 828 } 829 830 return 0; 831 } 832 833 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 834 poll_table *pt); 835 836 struct readyevents_arg { 837 struct eventpoll *ep; 838 bool locked; 839 }; 840 841 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 842 { 843 struct readyevents_arg *arg = priv; 844 845 return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL, 846 call_nests + 1, arg->locked); 847 } 848 849 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 850 { 851 int pollflags; 852 struct eventpoll *ep = file->private_data; 853 struct readyevents_arg arg; 854 855 /* 856 * During ep_insert() we already hold the ep->mtx for the tfile. 857 * Prevent re-aquisition. 858 */ 859 arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc); 860 arg.ep = ep; 861 862 /* Insert inside our poll wait queue */ 863 poll_wait(file, &ep->poll_wait, wait); 864 865 /* 866 * Proceed to find out if wanted events are really available inside 867 * the ready list. This need to be done under ep_call_nested() 868 * supervision, since the call to f_op->poll() done on listed files 869 * could re-enter here. 870 */ 871 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 872 ep_poll_readyevents_proc, &arg, ep, current); 873 874 return pollflags != -1 ? pollflags : 0; 875 } 876 877 #ifdef CONFIG_PROC_FS 878 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 879 { 880 struct eventpoll *ep = f->private_data; 881 struct rb_node *rbp; 882 883 mutex_lock(&ep->mtx); 884 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 885 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 886 887 seq_printf(m, "tfd: %8d events: %8x data: %16llx\n", 888 epi->ffd.fd, epi->event.events, 889 (long long)epi->event.data); 890 if (seq_has_overflowed(m)) 891 break; 892 } 893 mutex_unlock(&ep->mtx); 894 } 895 #endif 896 897 /* File callbacks that implement the eventpoll file behaviour */ 898 static const struct file_operations eventpoll_fops = { 899 #ifdef CONFIG_PROC_FS 900 .show_fdinfo = ep_show_fdinfo, 901 #endif 902 .release = ep_eventpoll_release, 903 .poll = ep_eventpoll_poll, 904 .llseek = noop_llseek, 905 }; 906 907 /* 908 * This is called from eventpoll_release() to unlink files from the eventpoll 909 * interface. We need to have this facility to cleanup correctly files that are 910 * closed without being removed from the eventpoll interface. 911 */ 912 void eventpoll_release_file(struct file *file) 913 { 914 struct eventpoll *ep; 915 struct epitem *epi, *next; 916 917 /* 918 * We don't want to get "file->f_lock" because it is not 919 * necessary. It is not necessary because we're in the "struct file" 920 * cleanup path, and this means that no one is using this file anymore. 921 * So, for example, epoll_ctl() cannot hit here since if we reach this 922 * point, the file counter already went to zero and fget() would fail. 923 * The only hit might come from ep_free() but by holding the mutex 924 * will correctly serialize the operation. We do need to acquire 925 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 926 * from anywhere but ep_free(). 927 * 928 * Besides, ep_remove() acquires the lock, so we can't hold it here. 929 */ 930 mutex_lock(&epmutex); 931 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 932 ep = epi->ep; 933 mutex_lock_nested(&ep->mtx, 0); 934 ep_remove(ep, epi); 935 mutex_unlock(&ep->mtx); 936 } 937 mutex_unlock(&epmutex); 938 } 939 940 static int ep_alloc(struct eventpoll **pep) 941 { 942 int error; 943 struct user_struct *user; 944 struct eventpoll *ep; 945 946 user = get_current_user(); 947 error = -ENOMEM; 948 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 949 if (unlikely(!ep)) 950 goto free_uid; 951 952 spin_lock_init(&ep->lock); 953 mutex_init(&ep->mtx); 954 init_waitqueue_head(&ep->wq); 955 init_waitqueue_head(&ep->poll_wait); 956 INIT_LIST_HEAD(&ep->rdllist); 957 ep->rbr = RB_ROOT; 958 ep->ovflist = EP_UNACTIVE_PTR; 959 ep->user = user; 960 961 *pep = ep; 962 963 return 0; 964 965 free_uid: 966 free_uid(user); 967 return error; 968 } 969 970 /* 971 * Search the file inside the eventpoll tree. The RB tree operations 972 * are protected by the "mtx" mutex, and ep_find() must be called with 973 * "mtx" held. 974 */ 975 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 976 { 977 int kcmp; 978 struct rb_node *rbp; 979 struct epitem *epi, *epir = NULL; 980 struct epoll_filefd ffd; 981 982 ep_set_ffd(&ffd, file, fd); 983 for (rbp = ep->rbr.rb_node; rbp; ) { 984 epi = rb_entry(rbp, struct epitem, rbn); 985 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 986 if (kcmp > 0) 987 rbp = rbp->rb_right; 988 else if (kcmp < 0) 989 rbp = rbp->rb_left; 990 else { 991 epir = epi; 992 break; 993 } 994 } 995 996 return epir; 997 } 998 999 /* 1000 * This is the callback that is passed to the wait queue wakeup 1001 * mechanism. It is called by the stored file descriptors when they 1002 * have events to report. 1003 */ 1004 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 1005 { 1006 int pwake = 0; 1007 unsigned long flags; 1008 struct epitem *epi = ep_item_from_wait(wait); 1009 struct eventpoll *ep = epi->ep; 1010 int ewake = 0; 1011 1012 if ((unsigned long)key & POLLFREE) { 1013 ep_pwq_from_wait(wait)->whead = NULL; 1014 /* 1015 * whead = NULL above can race with ep_remove_wait_queue() 1016 * which can do another remove_wait_queue() after us, so we 1017 * can't use __remove_wait_queue(). whead->lock is held by 1018 * the caller. 1019 */ 1020 list_del_init(&wait->task_list); 1021 } 1022 1023 spin_lock_irqsave(&ep->lock, flags); 1024 1025 /* 1026 * If the event mask does not contain any poll(2) event, we consider the 1027 * descriptor to be disabled. This condition is likely the effect of the 1028 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1029 * until the next EPOLL_CTL_MOD will be issued. 1030 */ 1031 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1032 goto out_unlock; 1033 1034 /* 1035 * Check the events coming with the callback. At this stage, not 1036 * every device reports the events in the "key" parameter of the 1037 * callback. We need to be able to handle both cases here, hence the 1038 * test for "key" != NULL before the event match test. 1039 */ 1040 if (key && !((unsigned long) key & epi->event.events)) 1041 goto out_unlock; 1042 1043 /* 1044 * If we are transferring events to userspace, we can hold no locks 1045 * (because we're accessing user memory, and because of linux f_op->poll() 1046 * semantics). All the events that happen during that period of time are 1047 * chained in ep->ovflist and requeued later on. 1048 */ 1049 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 1050 if (epi->next == EP_UNACTIVE_PTR) { 1051 epi->next = ep->ovflist; 1052 ep->ovflist = epi; 1053 if (epi->ws) { 1054 /* 1055 * Activate ep->ws since epi->ws may get 1056 * deactivated at any time. 1057 */ 1058 __pm_stay_awake(ep->ws); 1059 } 1060 1061 } 1062 goto out_unlock; 1063 } 1064 1065 /* If this file is already in the ready list we exit soon */ 1066 if (!ep_is_linked(&epi->rdllink)) { 1067 list_add_tail(&epi->rdllink, &ep->rdllist); 1068 ep_pm_stay_awake_rcu(epi); 1069 } 1070 1071 /* 1072 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1073 * wait list. 1074 */ 1075 if (waitqueue_active(&ep->wq)) { 1076 if ((epi->event.events & EPOLLEXCLUSIVE) && 1077 !((unsigned long)key & POLLFREE)) { 1078 switch ((unsigned long)key & EPOLLINOUT_BITS) { 1079 case POLLIN: 1080 if (epi->event.events & POLLIN) 1081 ewake = 1; 1082 break; 1083 case POLLOUT: 1084 if (epi->event.events & POLLOUT) 1085 ewake = 1; 1086 break; 1087 case 0: 1088 ewake = 1; 1089 break; 1090 } 1091 } 1092 wake_up_locked(&ep->wq); 1093 } 1094 if (waitqueue_active(&ep->poll_wait)) 1095 pwake++; 1096 1097 out_unlock: 1098 spin_unlock_irqrestore(&ep->lock, flags); 1099 1100 /* We have to call this outside the lock */ 1101 if (pwake) 1102 ep_poll_safewake(&ep->poll_wait); 1103 1104 if (epi->event.events & EPOLLEXCLUSIVE) 1105 return ewake; 1106 1107 return 1; 1108 } 1109 1110 /* 1111 * This is the callback that is used to add our wait queue to the 1112 * target file wakeup lists. 1113 */ 1114 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1115 poll_table *pt) 1116 { 1117 struct epitem *epi = ep_item_from_epqueue(pt); 1118 struct eppoll_entry *pwq; 1119 1120 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1121 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1122 pwq->whead = whead; 1123 pwq->base = epi; 1124 if (epi->event.events & EPOLLEXCLUSIVE) 1125 add_wait_queue_exclusive(whead, &pwq->wait); 1126 else 1127 add_wait_queue(whead, &pwq->wait); 1128 list_add_tail(&pwq->llink, &epi->pwqlist); 1129 epi->nwait++; 1130 } else { 1131 /* We have to signal that an error occurred */ 1132 epi->nwait = -1; 1133 } 1134 } 1135 1136 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1137 { 1138 int kcmp; 1139 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 1140 struct epitem *epic; 1141 1142 while (*p) { 1143 parent = *p; 1144 epic = rb_entry(parent, struct epitem, rbn); 1145 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1146 if (kcmp > 0) 1147 p = &parent->rb_right; 1148 else 1149 p = &parent->rb_left; 1150 } 1151 rb_link_node(&epi->rbn, parent, p); 1152 rb_insert_color(&epi->rbn, &ep->rbr); 1153 } 1154 1155 1156 1157 #define PATH_ARR_SIZE 5 1158 /* 1159 * These are the number paths of length 1 to 5, that we are allowing to emanate 1160 * from a single file of interest. For example, we allow 1000 paths of length 1161 * 1, to emanate from each file of interest. This essentially represents the 1162 * potential wakeup paths, which need to be limited in order to avoid massive 1163 * uncontrolled wakeup storms. The common use case should be a single ep which 1164 * is connected to n file sources. In this case each file source has 1 path 1165 * of length 1. Thus, the numbers below should be more than sufficient. These 1166 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1167 * and delete can't add additional paths. Protected by the epmutex. 1168 */ 1169 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1170 static int path_count[PATH_ARR_SIZE]; 1171 1172 static int path_count_inc(int nests) 1173 { 1174 /* Allow an arbitrary number of depth 1 paths */ 1175 if (nests == 0) 1176 return 0; 1177 1178 if (++path_count[nests] > path_limits[nests]) 1179 return -1; 1180 return 0; 1181 } 1182 1183 static void path_count_init(void) 1184 { 1185 int i; 1186 1187 for (i = 0; i < PATH_ARR_SIZE; i++) 1188 path_count[i] = 0; 1189 } 1190 1191 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1192 { 1193 int error = 0; 1194 struct file *file = priv; 1195 struct file *child_file; 1196 struct epitem *epi; 1197 1198 /* CTL_DEL can remove links here, but that can't increase our count */ 1199 rcu_read_lock(); 1200 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1201 child_file = epi->ep->file; 1202 if (is_file_epoll(child_file)) { 1203 if (list_empty(&child_file->f_ep_links)) { 1204 if (path_count_inc(call_nests)) { 1205 error = -1; 1206 break; 1207 } 1208 } else { 1209 error = ep_call_nested(&poll_loop_ncalls, 1210 EP_MAX_NESTS, 1211 reverse_path_check_proc, 1212 child_file, child_file, 1213 current); 1214 } 1215 if (error != 0) 1216 break; 1217 } else { 1218 printk(KERN_ERR "reverse_path_check_proc: " 1219 "file is not an ep!\n"); 1220 } 1221 } 1222 rcu_read_unlock(); 1223 return error; 1224 } 1225 1226 /** 1227 * reverse_path_check - The tfile_check_list is list of file *, which have 1228 * links that are proposed to be newly added. We need to 1229 * make sure that those added links don't add too many 1230 * paths such that we will spend all our time waking up 1231 * eventpoll objects. 1232 * 1233 * Returns: Returns zero if the proposed links don't create too many paths, 1234 * -1 otherwise. 1235 */ 1236 static int reverse_path_check(void) 1237 { 1238 int error = 0; 1239 struct file *current_file; 1240 1241 /* let's call this for all tfiles */ 1242 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1243 path_count_init(); 1244 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1245 reverse_path_check_proc, current_file, 1246 current_file, current); 1247 if (error) 1248 break; 1249 } 1250 return error; 1251 } 1252 1253 static int ep_create_wakeup_source(struct epitem *epi) 1254 { 1255 const char *name; 1256 struct wakeup_source *ws; 1257 1258 if (!epi->ep->ws) { 1259 epi->ep->ws = wakeup_source_register("eventpoll"); 1260 if (!epi->ep->ws) 1261 return -ENOMEM; 1262 } 1263 1264 name = epi->ffd.file->f_path.dentry->d_name.name; 1265 ws = wakeup_source_register(name); 1266 1267 if (!ws) 1268 return -ENOMEM; 1269 rcu_assign_pointer(epi->ws, ws); 1270 1271 return 0; 1272 } 1273 1274 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1275 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1276 { 1277 struct wakeup_source *ws = ep_wakeup_source(epi); 1278 1279 RCU_INIT_POINTER(epi->ws, NULL); 1280 1281 /* 1282 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1283 * used internally by wakeup_source_remove, too (called by 1284 * wakeup_source_unregister), so we cannot use call_rcu 1285 */ 1286 synchronize_rcu(); 1287 wakeup_source_unregister(ws); 1288 } 1289 1290 /* 1291 * Must be called with "mtx" held. 1292 */ 1293 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 1294 struct file *tfile, int fd, int full_check) 1295 { 1296 int error, revents, pwake = 0; 1297 unsigned long flags; 1298 long user_watches; 1299 struct epitem *epi; 1300 struct ep_pqueue epq; 1301 1302 user_watches = atomic_long_read(&ep->user->epoll_watches); 1303 if (unlikely(user_watches >= max_user_watches)) 1304 return -ENOSPC; 1305 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1306 return -ENOMEM; 1307 1308 /* Item initialization follow here ... */ 1309 INIT_LIST_HEAD(&epi->rdllink); 1310 INIT_LIST_HEAD(&epi->fllink); 1311 INIT_LIST_HEAD(&epi->pwqlist); 1312 epi->ep = ep; 1313 ep_set_ffd(&epi->ffd, tfile, fd); 1314 epi->event = *event; 1315 epi->nwait = 0; 1316 epi->next = EP_UNACTIVE_PTR; 1317 if (epi->event.events & EPOLLWAKEUP) { 1318 error = ep_create_wakeup_source(epi); 1319 if (error) 1320 goto error_create_wakeup_source; 1321 } else { 1322 RCU_INIT_POINTER(epi->ws, NULL); 1323 } 1324 1325 /* Initialize the poll table using the queue callback */ 1326 epq.epi = epi; 1327 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1328 1329 /* 1330 * Attach the item to the poll hooks and get current event bits. 1331 * We can safely use the file* here because its usage count has 1332 * been increased by the caller of this function. Note that after 1333 * this operation completes, the poll callback can start hitting 1334 * the new item. 1335 */ 1336 revents = ep_item_poll(epi, &epq.pt); 1337 1338 /* 1339 * We have to check if something went wrong during the poll wait queue 1340 * install process. Namely an allocation for a wait queue failed due 1341 * high memory pressure. 1342 */ 1343 error = -ENOMEM; 1344 if (epi->nwait < 0) 1345 goto error_unregister; 1346 1347 /* Add the current item to the list of active epoll hook for this file */ 1348 spin_lock(&tfile->f_lock); 1349 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); 1350 spin_unlock(&tfile->f_lock); 1351 1352 /* 1353 * Add the current item to the RB tree. All RB tree operations are 1354 * protected by "mtx", and ep_insert() is called with "mtx" held. 1355 */ 1356 ep_rbtree_insert(ep, epi); 1357 1358 /* now check if we've created too many backpaths */ 1359 error = -EINVAL; 1360 if (full_check && reverse_path_check()) 1361 goto error_remove_epi; 1362 1363 /* We have to drop the new item inside our item list to keep track of it */ 1364 spin_lock_irqsave(&ep->lock, flags); 1365 1366 /* If the file is already "ready" we drop it inside the ready list */ 1367 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1368 list_add_tail(&epi->rdllink, &ep->rdllist); 1369 ep_pm_stay_awake(epi); 1370 1371 /* Notify waiting tasks that events are available */ 1372 if (waitqueue_active(&ep->wq)) 1373 wake_up_locked(&ep->wq); 1374 if (waitqueue_active(&ep->poll_wait)) 1375 pwake++; 1376 } 1377 1378 spin_unlock_irqrestore(&ep->lock, flags); 1379 1380 atomic_long_inc(&ep->user->epoll_watches); 1381 1382 /* We have to call this outside the lock */ 1383 if (pwake) 1384 ep_poll_safewake(&ep->poll_wait); 1385 1386 return 0; 1387 1388 error_remove_epi: 1389 spin_lock(&tfile->f_lock); 1390 list_del_rcu(&epi->fllink); 1391 spin_unlock(&tfile->f_lock); 1392 1393 rb_erase(&epi->rbn, &ep->rbr); 1394 1395 error_unregister: 1396 ep_unregister_pollwait(ep, epi); 1397 1398 /* 1399 * We need to do this because an event could have been arrived on some 1400 * allocated wait queue. Note that we don't care about the ep->ovflist 1401 * list, since that is used/cleaned only inside a section bound by "mtx". 1402 * And ep_insert() is called with "mtx" held. 1403 */ 1404 spin_lock_irqsave(&ep->lock, flags); 1405 if (ep_is_linked(&epi->rdllink)) 1406 list_del_init(&epi->rdllink); 1407 spin_unlock_irqrestore(&ep->lock, flags); 1408 1409 wakeup_source_unregister(ep_wakeup_source(epi)); 1410 1411 error_create_wakeup_source: 1412 kmem_cache_free(epi_cache, epi); 1413 1414 return error; 1415 } 1416 1417 /* 1418 * Modify the interest event mask by dropping an event if the new mask 1419 * has a match in the current file status. Must be called with "mtx" held. 1420 */ 1421 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1422 { 1423 int pwake = 0; 1424 unsigned int revents; 1425 poll_table pt; 1426 1427 init_poll_funcptr(&pt, NULL); 1428 1429 /* 1430 * Set the new event interest mask before calling f_op->poll(); 1431 * otherwise we might miss an event that happens between the 1432 * f_op->poll() call and the new event set registering. 1433 */ 1434 epi->event.events = event->events; /* need barrier below */ 1435 epi->event.data = event->data; /* protected by mtx */ 1436 if (epi->event.events & EPOLLWAKEUP) { 1437 if (!ep_has_wakeup_source(epi)) 1438 ep_create_wakeup_source(epi); 1439 } else if (ep_has_wakeup_source(epi)) { 1440 ep_destroy_wakeup_source(epi); 1441 } 1442 1443 /* 1444 * The following barrier has two effects: 1445 * 1446 * 1) Flush epi changes above to other CPUs. This ensures 1447 * we do not miss events from ep_poll_callback if an 1448 * event occurs immediately after we call f_op->poll(). 1449 * We need this because we did not take ep->lock while 1450 * changing epi above (but ep_poll_callback does take 1451 * ep->lock). 1452 * 1453 * 2) We also need to ensure we do not miss _past_ events 1454 * when calling f_op->poll(). This barrier also 1455 * pairs with the barrier in wq_has_sleeper (see 1456 * comments for wq_has_sleeper). 1457 * 1458 * This barrier will now guarantee ep_poll_callback or f_op->poll 1459 * (or both) will notice the readiness of an item. 1460 */ 1461 smp_mb(); 1462 1463 /* 1464 * Get current event bits. We can safely use the file* here because 1465 * its usage count has been increased by the caller of this function. 1466 */ 1467 revents = ep_item_poll(epi, &pt); 1468 1469 /* 1470 * If the item is "hot" and it is not registered inside the ready 1471 * list, push it inside. 1472 */ 1473 if (revents & event->events) { 1474 spin_lock_irq(&ep->lock); 1475 if (!ep_is_linked(&epi->rdllink)) { 1476 list_add_tail(&epi->rdllink, &ep->rdllist); 1477 ep_pm_stay_awake(epi); 1478 1479 /* Notify waiting tasks that events are available */ 1480 if (waitqueue_active(&ep->wq)) 1481 wake_up_locked(&ep->wq); 1482 if (waitqueue_active(&ep->poll_wait)) 1483 pwake++; 1484 } 1485 spin_unlock_irq(&ep->lock); 1486 } 1487 1488 /* We have to call this outside the lock */ 1489 if (pwake) 1490 ep_poll_safewake(&ep->poll_wait); 1491 1492 return 0; 1493 } 1494 1495 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1496 void *priv) 1497 { 1498 struct ep_send_events_data *esed = priv; 1499 int eventcnt; 1500 unsigned int revents; 1501 struct epitem *epi; 1502 struct epoll_event __user *uevent; 1503 struct wakeup_source *ws; 1504 poll_table pt; 1505 1506 init_poll_funcptr(&pt, NULL); 1507 1508 /* 1509 * We can loop without lock because we are passed a task private list. 1510 * Items cannot vanish during the loop because ep_scan_ready_list() is 1511 * holding "mtx" during this call. 1512 */ 1513 for (eventcnt = 0, uevent = esed->events; 1514 !list_empty(head) && eventcnt < esed->maxevents;) { 1515 epi = list_first_entry(head, struct epitem, rdllink); 1516 1517 /* 1518 * Activate ep->ws before deactivating epi->ws to prevent 1519 * triggering auto-suspend here (in case we reactive epi->ws 1520 * below). 1521 * 1522 * This could be rearranged to delay the deactivation of epi->ws 1523 * instead, but then epi->ws would temporarily be out of sync 1524 * with ep_is_linked(). 1525 */ 1526 ws = ep_wakeup_source(epi); 1527 if (ws) { 1528 if (ws->active) 1529 __pm_stay_awake(ep->ws); 1530 __pm_relax(ws); 1531 } 1532 1533 list_del_init(&epi->rdllink); 1534 1535 revents = ep_item_poll(epi, &pt); 1536 1537 /* 1538 * If the event mask intersect the caller-requested one, 1539 * deliver the event to userspace. Again, ep_scan_ready_list() 1540 * is holding "mtx", so no operations coming from userspace 1541 * can change the item. 1542 */ 1543 if (revents) { 1544 if (__put_user(revents, &uevent->events) || 1545 __put_user(epi->event.data, &uevent->data)) { 1546 list_add(&epi->rdllink, head); 1547 ep_pm_stay_awake(epi); 1548 return eventcnt ? eventcnt : -EFAULT; 1549 } 1550 eventcnt++; 1551 uevent++; 1552 if (epi->event.events & EPOLLONESHOT) 1553 epi->event.events &= EP_PRIVATE_BITS; 1554 else if (!(epi->event.events & EPOLLET)) { 1555 /* 1556 * If this file has been added with Level 1557 * Trigger mode, we need to insert back inside 1558 * the ready list, so that the next call to 1559 * epoll_wait() will check again the events 1560 * availability. At this point, no one can insert 1561 * into ep->rdllist besides us. The epoll_ctl() 1562 * callers are locked out by 1563 * ep_scan_ready_list() holding "mtx" and the 1564 * poll callback will queue them in ep->ovflist. 1565 */ 1566 list_add_tail(&epi->rdllink, &ep->rdllist); 1567 ep_pm_stay_awake(epi); 1568 } 1569 } 1570 } 1571 1572 return eventcnt; 1573 } 1574 1575 static int ep_send_events(struct eventpoll *ep, 1576 struct epoll_event __user *events, int maxevents) 1577 { 1578 struct ep_send_events_data esed; 1579 1580 esed.maxevents = maxevents; 1581 esed.events = events; 1582 1583 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1584 } 1585 1586 static inline struct timespec64 ep_set_mstimeout(long ms) 1587 { 1588 struct timespec64 now, ts = { 1589 .tv_sec = ms / MSEC_PER_SEC, 1590 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1591 }; 1592 1593 ktime_get_ts64(&now); 1594 return timespec64_add_safe(now, ts); 1595 } 1596 1597 /** 1598 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1599 * event buffer. 1600 * 1601 * @ep: Pointer to the eventpoll context. 1602 * @events: Pointer to the userspace buffer where the ready events should be 1603 * stored. 1604 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1605 * @timeout: Maximum timeout for the ready events fetch operation, in 1606 * milliseconds. If the @timeout is zero, the function will not block, 1607 * while if the @timeout is less than zero, the function will block 1608 * until at least one event has been retrieved (or an error 1609 * occurred). 1610 * 1611 * Returns: Returns the number of ready events which have been fetched, or an 1612 * error code, in case of error. 1613 */ 1614 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1615 int maxevents, long timeout) 1616 { 1617 int res = 0, eavail, timed_out = 0; 1618 unsigned long flags; 1619 u64 slack = 0; 1620 wait_queue_t wait; 1621 ktime_t expires, *to = NULL; 1622 1623 if (timeout > 0) { 1624 struct timespec64 end_time = ep_set_mstimeout(timeout); 1625 1626 slack = select_estimate_accuracy(&end_time); 1627 to = &expires; 1628 *to = timespec64_to_ktime(end_time); 1629 } else if (timeout == 0) { 1630 /* 1631 * Avoid the unnecessary trip to the wait queue loop, if the 1632 * caller specified a non blocking operation. 1633 */ 1634 timed_out = 1; 1635 spin_lock_irqsave(&ep->lock, flags); 1636 goto check_events; 1637 } 1638 1639 fetch_events: 1640 spin_lock_irqsave(&ep->lock, flags); 1641 1642 if (!ep_events_available(ep)) { 1643 /* 1644 * We don't have any available event to return to the caller. 1645 * We need to sleep here, and we will be wake up by 1646 * ep_poll_callback() when events will become available. 1647 */ 1648 init_waitqueue_entry(&wait, current); 1649 __add_wait_queue_exclusive(&ep->wq, &wait); 1650 1651 for (;;) { 1652 /* 1653 * We don't want to sleep if the ep_poll_callback() sends us 1654 * a wakeup in between. That's why we set the task state 1655 * to TASK_INTERRUPTIBLE before doing the checks. 1656 */ 1657 set_current_state(TASK_INTERRUPTIBLE); 1658 if (ep_events_available(ep) || timed_out) 1659 break; 1660 if (signal_pending(current)) { 1661 res = -EINTR; 1662 break; 1663 } 1664 1665 spin_unlock_irqrestore(&ep->lock, flags); 1666 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1667 timed_out = 1; 1668 1669 spin_lock_irqsave(&ep->lock, flags); 1670 } 1671 1672 __remove_wait_queue(&ep->wq, &wait); 1673 __set_current_state(TASK_RUNNING); 1674 } 1675 check_events: 1676 /* Is it worth to try to dig for events ? */ 1677 eavail = ep_events_available(ep); 1678 1679 spin_unlock_irqrestore(&ep->lock, flags); 1680 1681 /* 1682 * Try to transfer events to user space. In case we get 0 events and 1683 * there's still timeout left over, we go trying again in search of 1684 * more luck. 1685 */ 1686 if (!res && eavail && 1687 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1688 goto fetch_events; 1689 1690 return res; 1691 } 1692 1693 /** 1694 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1695 * API, to verify that adding an epoll file inside another 1696 * epoll structure, does not violate the constraints, in 1697 * terms of closed loops, or too deep chains (which can 1698 * result in excessive stack usage). 1699 * 1700 * @priv: Pointer to the epoll file to be currently checked. 1701 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1702 * data structure pointer. 1703 * @call_nests: Current dept of the @ep_call_nested() call stack. 1704 * 1705 * Returns: Returns zero if adding the epoll @file inside current epoll 1706 * structure @ep does not violate the constraints, or -1 otherwise. 1707 */ 1708 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1709 { 1710 int error = 0; 1711 struct file *file = priv; 1712 struct eventpoll *ep = file->private_data; 1713 struct eventpoll *ep_tovisit; 1714 struct rb_node *rbp; 1715 struct epitem *epi; 1716 1717 mutex_lock_nested(&ep->mtx, call_nests + 1); 1718 ep->visited = 1; 1719 list_add(&ep->visited_list_link, &visited_list); 1720 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1721 epi = rb_entry(rbp, struct epitem, rbn); 1722 if (unlikely(is_file_epoll(epi->ffd.file))) { 1723 ep_tovisit = epi->ffd.file->private_data; 1724 if (ep_tovisit->visited) 1725 continue; 1726 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1727 ep_loop_check_proc, epi->ffd.file, 1728 ep_tovisit, current); 1729 if (error != 0) 1730 break; 1731 } else { 1732 /* 1733 * If we've reached a file that is not associated with 1734 * an ep, then we need to check if the newly added 1735 * links are going to add too many wakeup paths. We do 1736 * this by adding it to the tfile_check_list, if it's 1737 * not already there, and calling reverse_path_check() 1738 * during ep_insert(). 1739 */ 1740 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1741 list_add(&epi->ffd.file->f_tfile_llink, 1742 &tfile_check_list); 1743 } 1744 } 1745 mutex_unlock(&ep->mtx); 1746 1747 return error; 1748 } 1749 1750 /** 1751 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1752 * another epoll file (represented by @ep) does not create 1753 * closed loops or too deep chains. 1754 * 1755 * @ep: Pointer to the epoll private data structure. 1756 * @file: Pointer to the epoll file to be checked. 1757 * 1758 * Returns: Returns zero if adding the epoll @file inside current epoll 1759 * structure @ep does not violate the constraints, or -1 otherwise. 1760 */ 1761 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1762 { 1763 int ret; 1764 struct eventpoll *ep_cur, *ep_next; 1765 1766 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1767 ep_loop_check_proc, file, ep, current); 1768 /* clear visited list */ 1769 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1770 visited_list_link) { 1771 ep_cur->visited = 0; 1772 list_del(&ep_cur->visited_list_link); 1773 } 1774 return ret; 1775 } 1776 1777 static void clear_tfile_check_list(void) 1778 { 1779 struct file *file; 1780 1781 /* first clear the tfile_check_list */ 1782 while (!list_empty(&tfile_check_list)) { 1783 file = list_first_entry(&tfile_check_list, struct file, 1784 f_tfile_llink); 1785 list_del_init(&file->f_tfile_llink); 1786 } 1787 INIT_LIST_HEAD(&tfile_check_list); 1788 } 1789 1790 /* 1791 * Open an eventpoll file descriptor. 1792 */ 1793 SYSCALL_DEFINE1(epoll_create1, int, flags) 1794 { 1795 int error, fd; 1796 struct eventpoll *ep = NULL; 1797 struct file *file; 1798 1799 /* Check the EPOLL_* constant for consistency. */ 1800 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1801 1802 if (flags & ~EPOLL_CLOEXEC) 1803 return -EINVAL; 1804 /* 1805 * Create the internal data structure ("struct eventpoll"). 1806 */ 1807 error = ep_alloc(&ep); 1808 if (error < 0) 1809 return error; 1810 /* 1811 * Creates all the items needed to setup an eventpoll file. That is, 1812 * a file structure and a free file descriptor. 1813 */ 1814 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1815 if (fd < 0) { 1816 error = fd; 1817 goto out_free_ep; 1818 } 1819 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1820 O_RDWR | (flags & O_CLOEXEC)); 1821 if (IS_ERR(file)) { 1822 error = PTR_ERR(file); 1823 goto out_free_fd; 1824 } 1825 ep->file = file; 1826 fd_install(fd, file); 1827 return fd; 1828 1829 out_free_fd: 1830 put_unused_fd(fd); 1831 out_free_ep: 1832 ep_free(ep); 1833 return error; 1834 } 1835 1836 SYSCALL_DEFINE1(epoll_create, int, size) 1837 { 1838 if (size <= 0) 1839 return -EINVAL; 1840 1841 return sys_epoll_create1(0); 1842 } 1843 1844 /* 1845 * The following function implements the controller interface for 1846 * the eventpoll file that enables the insertion/removal/change of 1847 * file descriptors inside the interest set. 1848 */ 1849 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1850 struct epoll_event __user *, event) 1851 { 1852 int error; 1853 int full_check = 0; 1854 struct fd f, tf; 1855 struct eventpoll *ep; 1856 struct epitem *epi; 1857 struct epoll_event epds; 1858 struct eventpoll *tep = NULL; 1859 1860 error = -EFAULT; 1861 if (ep_op_has_event(op) && 1862 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1863 goto error_return; 1864 1865 error = -EBADF; 1866 f = fdget(epfd); 1867 if (!f.file) 1868 goto error_return; 1869 1870 /* Get the "struct file *" for the target file */ 1871 tf = fdget(fd); 1872 if (!tf.file) 1873 goto error_fput; 1874 1875 /* The target file descriptor must support poll */ 1876 error = -EPERM; 1877 if (!tf.file->f_op->poll) 1878 goto error_tgt_fput; 1879 1880 /* Check if EPOLLWAKEUP is allowed */ 1881 if (ep_op_has_event(op)) 1882 ep_take_care_of_epollwakeup(&epds); 1883 1884 /* 1885 * We have to check that the file structure underneath the file descriptor 1886 * the user passed to us _is_ an eventpoll file. And also we do not permit 1887 * adding an epoll file descriptor inside itself. 1888 */ 1889 error = -EINVAL; 1890 if (f.file == tf.file || !is_file_epoll(f.file)) 1891 goto error_tgt_fput; 1892 1893 /* 1894 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 1895 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 1896 * Also, we do not currently supported nested exclusive wakeups. 1897 */ 1898 if (epds.events & EPOLLEXCLUSIVE) { 1899 if (op == EPOLL_CTL_MOD) 1900 goto error_tgt_fput; 1901 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 1902 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS))) 1903 goto error_tgt_fput; 1904 } 1905 1906 /* 1907 * At this point it is safe to assume that the "private_data" contains 1908 * our own data structure. 1909 */ 1910 ep = f.file->private_data; 1911 1912 /* 1913 * When we insert an epoll file descriptor, inside another epoll file 1914 * descriptor, there is the change of creating closed loops, which are 1915 * better be handled here, than in more critical paths. While we are 1916 * checking for loops we also determine the list of files reachable 1917 * and hang them on the tfile_check_list, so we can check that we 1918 * haven't created too many possible wakeup paths. 1919 * 1920 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 1921 * the epoll file descriptor is attaching directly to a wakeup source, 1922 * unless the epoll file descriptor is nested. The purpose of taking the 1923 * 'epmutex' on add is to prevent complex toplogies such as loops and 1924 * deep wakeup paths from forming in parallel through multiple 1925 * EPOLL_CTL_ADD operations. 1926 */ 1927 mutex_lock_nested(&ep->mtx, 0); 1928 if (op == EPOLL_CTL_ADD) { 1929 if (!list_empty(&f.file->f_ep_links) || 1930 is_file_epoll(tf.file)) { 1931 full_check = 1; 1932 mutex_unlock(&ep->mtx); 1933 mutex_lock(&epmutex); 1934 if (is_file_epoll(tf.file)) { 1935 error = -ELOOP; 1936 if (ep_loop_check(ep, tf.file) != 0) { 1937 clear_tfile_check_list(); 1938 goto error_tgt_fput; 1939 } 1940 } else 1941 list_add(&tf.file->f_tfile_llink, 1942 &tfile_check_list); 1943 mutex_lock_nested(&ep->mtx, 0); 1944 if (is_file_epoll(tf.file)) { 1945 tep = tf.file->private_data; 1946 mutex_lock_nested(&tep->mtx, 1); 1947 } 1948 } 1949 } 1950 1951 /* 1952 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1953 * above, we can be sure to be able to use the item looked up by 1954 * ep_find() till we release the mutex. 1955 */ 1956 epi = ep_find(ep, tf.file, fd); 1957 1958 error = -EINVAL; 1959 switch (op) { 1960 case EPOLL_CTL_ADD: 1961 if (!epi) { 1962 epds.events |= POLLERR | POLLHUP; 1963 error = ep_insert(ep, &epds, tf.file, fd, full_check); 1964 } else 1965 error = -EEXIST; 1966 if (full_check) 1967 clear_tfile_check_list(); 1968 break; 1969 case EPOLL_CTL_DEL: 1970 if (epi) 1971 error = ep_remove(ep, epi); 1972 else 1973 error = -ENOENT; 1974 break; 1975 case EPOLL_CTL_MOD: 1976 if (epi) { 1977 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 1978 epds.events |= POLLERR | POLLHUP; 1979 error = ep_modify(ep, epi, &epds); 1980 } 1981 } else 1982 error = -ENOENT; 1983 break; 1984 } 1985 if (tep != NULL) 1986 mutex_unlock(&tep->mtx); 1987 mutex_unlock(&ep->mtx); 1988 1989 error_tgt_fput: 1990 if (full_check) 1991 mutex_unlock(&epmutex); 1992 1993 fdput(tf); 1994 error_fput: 1995 fdput(f); 1996 error_return: 1997 1998 return error; 1999 } 2000 2001 /* 2002 * Implement the event wait interface for the eventpoll file. It is the kernel 2003 * part of the user space epoll_wait(2). 2004 */ 2005 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2006 int, maxevents, int, timeout) 2007 { 2008 int error; 2009 struct fd f; 2010 struct eventpoll *ep; 2011 2012 /* The maximum number of event must be greater than zero */ 2013 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2014 return -EINVAL; 2015 2016 /* Verify that the area passed by the user is writeable */ 2017 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) 2018 return -EFAULT; 2019 2020 /* Get the "struct file *" for the eventpoll file */ 2021 f = fdget(epfd); 2022 if (!f.file) 2023 return -EBADF; 2024 2025 /* 2026 * We have to check that the file structure underneath the fd 2027 * the user passed to us _is_ an eventpoll file. 2028 */ 2029 error = -EINVAL; 2030 if (!is_file_epoll(f.file)) 2031 goto error_fput; 2032 2033 /* 2034 * At this point it is safe to assume that the "private_data" contains 2035 * our own data structure. 2036 */ 2037 ep = f.file->private_data; 2038 2039 /* Time to fish for events ... */ 2040 error = ep_poll(ep, events, maxevents, timeout); 2041 2042 error_fput: 2043 fdput(f); 2044 return error; 2045 } 2046 2047 /* 2048 * Implement the event wait interface for the eventpoll file. It is the kernel 2049 * part of the user space epoll_pwait(2). 2050 */ 2051 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2052 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2053 size_t, sigsetsize) 2054 { 2055 int error; 2056 sigset_t ksigmask, sigsaved; 2057 2058 /* 2059 * If the caller wants a certain signal mask to be set during the wait, 2060 * we apply it here. 2061 */ 2062 if (sigmask) { 2063 if (sigsetsize != sizeof(sigset_t)) 2064 return -EINVAL; 2065 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 2066 return -EFAULT; 2067 sigsaved = current->blocked; 2068 set_current_blocked(&ksigmask); 2069 } 2070 2071 error = sys_epoll_wait(epfd, events, maxevents, timeout); 2072 2073 /* 2074 * If we changed the signal mask, we need to restore the original one. 2075 * In case we've got a signal while waiting, we do not restore the 2076 * signal mask yet, and we allow do_signal() to deliver the signal on 2077 * the way back to userspace, before the signal mask is restored. 2078 */ 2079 if (sigmask) { 2080 if (error == -EINTR) { 2081 memcpy(¤t->saved_sigmask, &sigsaved, 2082 sizeof(sigsaved)); 2083 set_restore_sigmask(); 2084 } else 2085 set_current_blocked(&sigsaved); 2086 } 2087 2088 return error; 2089 } 2090 2091 #ifdef CONFIG_COMPAT 2092 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2093 struct epoll_event __user *, events, 2094 int, maxevents, int, timeout, 2095 const compat_sigset_t __user *, sigmask, 2096 compat_size_t, sigsetsize) 2097 { 2098 long err; 2099 compat_sigset_t csigmask; 2100 sigset_t ksigmask, sigsaved; 2101 2102 /* 2103 * If the caller wants a certain signal mask to be set during the wait, 2104 * we apply it here. 2105 */ 2106 if (sigmask) { 2107 if (sigsetsize != sizeof(compat_sigset_t)) 2108 return -EINVAL; 2109 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask))) 2110 return -EFAULT; 2111 sigset_from_compat(&ksigmask, &csigmask); 2112 sigsaved = current->blocked; 2113 set_current_blocked(&ksigmask); 2114 } 2115 2116 err = sys_epoll_wait(epfd, events, maxevents, timeout); 2117 2118 /* 2119 * If we changed the signal mask, we need to restore the original one. 2120 * In case we've got a signal while waiting, we do not restore the 2121 * signal mask yet, and we allow do_signal() to deliver the signal on 2122 * the way back to userspace, before the signal mask is restored. 2123 */ 2124 if (sigmask) { 2125 if (err == -EINTR) { 2126 memcpy(¤t->saved_sigmask, &sigsaved, 2127 sizeof(sigsaved)); 2128 set_restore_sigmask(); 2129 } else 2130 set_current_blocked(&sigsaved); 2131 } 2132 2133 return err; 2134 } 2135 #endif 2136 2137 static int __init eventpoll_init(void) 2138 { 2139 struct sysinfo si; 2140 2141 si_meminfo(&si); 2142 /* 2143 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2144 */ 2145 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2146 EP_ITEM_COST; 2147 BUG_ON(max_user_watches < 0); 2148 2149 /* 2150 * Initialize the structure used to perform epoll file descriptor 2151 * inclusion loops checks. 2152 */ 2153 ep_nested_calls_init(&poll_loop_ncalls); 2154 2155 /* Initialize the structure used to perform safe poll wait head wake ups */ 2156 ep_nested_calls_init(&poll_safewake_ncalls); 2157 2158 /* Initialize the structure used to perform file's f_op->poll() calls */ 2159 ep_nested_calls_init(&poll_readywalk_ncalls); 2160 2161 /* 2162 * We can have many thousands of epitems, so prevent this from 2163 * using an extra cache line on 64-bit (and smaller) CPUs 2164 */ 2165 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2166 2167 /* Allocates slab cache used to allocate "struct epitem" items */ 2168 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2169 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2170 2171 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2172 pwq_cache = kmem_cache_create("eventpoll_pwq", 2173 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 2174 2175 return 0; 2176 } 2177 fs_initcall(eventpoll_init); 2178