1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <asm/uaccess.h> 37 #include <asm/system.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <asm/atomic.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (spinlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a spinlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL). 66 * It is possible to drop the "ep->mtx" and to use the global 67 * mutex "epmutex" (together with "ep->lock") to have it working, 68 * but having "ep->mtx" will make the interface more scalable. 69 * Events that require holding "epmutex" are very rare, while for 70 * normal operations the epoll private "ep->mtx" will guarantee 71 * a better scalability. 72 */ 73 74 /* Epoll private bits inside the event mask */ 75 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET) 76 77 /* Maximum number of nesting allowed inside epoll sets */ 78 #define EP_MAX_NESTS 4 79 80 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 81 82 #define EP_UNACTIVE_PTR ((void *) -1L) 83 84 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 85 86 struct epoll_filefd { 87 struct file *file; 88 int fd; 89 }; 90 91 /* 92 * Structure used to track possible nested calls, for too deep recursions 93 * and loop cycles. 94 */ 95 struct nested_call_node { 96 struct list_head llink; 97 void *cookie; 98 void *ctx; 99 }; 100 101 /* 102 * This structure is used as collector for nested calls, to check for 103 * maximum recursion dept and loop cycles. 104 */ 105 struct nested_calls { 106 struct list_head tasks_call_list; 107 spinlock_t lock; 108 }; 109 110 /* 111 * Each file descriptor added to the eventpoll interface will 112 * have an entry of this type linked to the "rbr" RB tree. 113 */ 114 struct epitem { 115 /* RB tree node used to link this structure to the eventpoll RB tree */ 116 struct rb_node rbn; 117 118 /* List header used to link this structure to the eventpoll ready list */ 119 struct list_head rdllink; 120 121 /* 122 * Works together "struct eventpoll"->ovflist in keeping the 123 * single linked chain of items. 124 */ 125 struct epitem *next; 126 127 /* The file descriptor information this item refers to */ 128 struct epoll_filefd ffd; 129 130 /* Number of active wait queue attached to poll operations */ 131 int nwait; 132 133 /* List containing poll wait queues */ 134 struct list_head pwqlist; 135 136 /* The "container" of this item */ 137 struct eventpoll *ep; 138 139 /* List header used to link this item to the "struct file" items list */ 140 struct list_head fllink; 141 142 /* The structure that describe the interested events and the source fd */ 143 struct epoll_event event; 144 }; 145 146 /* 147 * This structure is stored inside the "private_data" member of the file 148 * structure and rapresent the main data sructure for the eventpoll 149 * interface. 150 */ 151 struct eventpoll { 152 /* Protect the this structure access */ 153 spinlock_t lock; 154 155 /* 156 * This mutex is used to ensure that files are not removed 157 * while epoll is using them. This is held during the event 158 * collection loop, the file cleanup path, the epoll file exit 159 * code and the ctl operations. 160 */ 161 struct mutex mtx; 162 163 /* Wait queue used by sys_epoll_wait() */ 164 wait_queue_head_t wq; 165 166 /* Wait queue used by file->poll() */ 167 wait_queue_head_t poll_wait; 168 169 /* List of ready file descriptors */ 170 struct list_head rdllist; 171 172 /* RB tree root used to store monitored fd structs */ 173 struct rb_root rbr; 174 175 /* 176 * This is a single linked list that chains all the "struct epitem" that 177 * happened while transfering ready events to userspace w/out 178 * holding ->lock. 179 */ 180 struct epitem *ovflist; 181 182 /* The user that created the eventpoll descriptor */ 183 struct user_struct *user; 184 }; 185 186 /* Wait structure used by the poll hooks */ 187 struct eppoll_entry { 188 /* List header used to link this structure to the "struct epitem" */ 189 struct list_head llink; 190 191 /* The "base" pointer is set to the container "struct epitem" */ 192 struct epitem *base; 193 194 /* 195 * Wait queue item that will be linked to the target file wait 196 * queue head. 197 */ 198 wait_queue_t wait; 199 200 /* The wait queue head that linked the "wait" wait queue item */ 201 wait_queue_head_t *whead; 202 }; 203 204 /* Wrapper struct used by poll queueing */ 205 struct ep_pqueue { 206 poll_table pt; 207 struct epitem *epi; 208 }; 209 210 /* Used by the ep_send_events() function as callback private data */ 211 struct ep_send_events_data { 212 int maxevents; 213 struct epoll_event __user *events; 214 }; 215 216 /* 217 * Configuration options available inside /proc/sys/fs/epoll/ 218 */ 219 /* Maximum number of epoll watched descriptors, per user */ 220 static long max_user_watches __read_mostly; 221 222 /* 223 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 224 */ 225 static DEFINE_MUTEX(epmutex); 226 227 /* Used for safe wake up implementation */ 228 static struct nested_calls poll_safewake_ncalls; 229 230 /* Used to call file's f_op->poll() under the nested calls boundaries */ 231 static struct nested_calls poll_readywalk_ncalls; 232 233 /* Slab cache used to allocate "struct epitem" */ 234 static struct kmem_cache *epi_cache __read_mostly; 235 236 /* Slab cache used to allocate "struct eppoll_entry" */ 237 static struct kmem_cache *pwq_cache __read_mostly; 238 239 #ifdef CONFIG_SYSCTL 240 241 #include <linux/sysctl.h> 242 243 static long zero; 244 static long long_max = LONG_MAX; 245 246 ctl_table epoll_table[] = { 247 { 248 .procname = "max_user_watches", 249 .data = &max_user_watches, 250 .maxlen = sizeof(max_user_watches), 251 .mode = 0644, 252 .proc_handler = proc_doulongvec_minmax, 253 .extra1 = &zero, 254 .extra2 = &long_max, 255 }, 256 { } 257 }; 258 #endif /* CONFIG_SYSCTL */ 259 260 261 /* Setup the structure that is used as key for the RB tree */ 262 static inline void ep_set_ffd(struct epoll_filefd *ffd, 263 struct file *file, int fd) 264 { 265 ffd->file = file; 266 ffd->fd = fd; 267 } 268 269 /* Compare RB tree keys */ 270 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 271 struct epoll_filefd *p2) 272 { 273 return (p1->file > p2->file ? +1: 274 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 275 } 276 277 /* Tells us if the item is currently linked */ 278 static inline int ep_is_linked(struct list_head *p) 279 { 280 return !list_empty(p); 281 } 282 283 /* Get the "struct epitem" from a wait queue pointer */ 284 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 285 { 286 return container_of(p, struct eppoll_entry, wait)->base; 287 } 288 289 /* Get the "struct epitem" from an epoll queue wrapper */ 290 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 291 { 292 return container_of(p, struct ep_pqueue, pt)->epi; 293 } 294 295 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 296 static inline int ep_op_has_event(int op) 297 { 298 return op != EPOLL_CTL_DEL; 299 } 300 301 /* Initialize the poll safe wake up structure */ 302 static void ep_nested_calls_init(struct nested_calls *ncalls) 303 { 304 INIT_LIST_HEAD(&ncalls->tasks_call_list); 305 spin_lock_init(&ncalls->lock); 306 } 307 308 /** 309 * ep_call_nested - Perform a bound (possibly) nested call, by checking 310 * that the recursion limit is not exceeded, and that 311 * the same nested call (by the meaning of same cookie) is 312 * no re-entered. 313 * 314 * @ncalls: Pointer to the nested_calls structure to be used for this call. 315 * @max_nests: Maximum number of allowed nesting calls. 316 * @nproc: Nested call core function pointer. 317 * @priv: Opaque data to be passed to the @nproc callback. 318 * @cookie: Cookie to be used to identify this nested call. 319 * @ctx: This instance context. 320 * 321 * Returns: Returns the code returned by the @nproc callback, or -1 if 322 * the maximum recursion limit has been exceeded. 323 */ 324 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 325 int (*nproc)(void *, void *, int), void *priv, 326 void *cookie, void *ctx) 327 { 328 int error, call_nests = 0; 329 unsigned long flags; 330 struct list_head *lsthead = &ncalls->tasks_call_list; 331 struct nested_call_node *tncur; 332 struct nested_call_node tnode; 333 334 spin_lock_irqsave(&ncalls->lock, flags); 335 336 /* 337 * Try to see if the current task is already inside this wakeup call. 338 * We use a list here, since the population inside this set is always 339 * very much limited. 340 */ 341 list_for_each_entry(tncur, lsthead, llink) { 342 if (tncur->ctx == ctx && 343 (tncur->cookie == cookie || ++call_nests > max_nests)) { 344 /* 345 * Ops ... loop detected or maximum nest level reached. 346 * We abort this wake by breaking the cycle itself. 347 */ 348 error = -1; 349 goto out_unlock; 350 } 351 } 352 353 /* Add the current task and cookie to the list */ 354 tnode.ctx = ctx; 355 tnode.cookie = cookie; 356 list_add(&tnode.llink, lsthead); 357 358 spin_unlock_irqrestore(&ncalls->lock, flags); 359 360 /* Call the nested function */ 361 error = (*nproc)(priv, cookie, call_nests); 362 363 /* Remove the current task from the list */ 364 spin_lock_irqsave(&ncalls->lock, flags); 365 list_del(&tnode.llink); 366 out_unlock: 367 spin_unlock_irqrestore(&ncalls->lock, flags); 368 369 return error; 370 } 371 372 #ifdef CONFIG_DEBUG_LOCK_ALLOC 373 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 374 unsigned long events, int subclass) 375 { 376 unsigned long flags; 377 378 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 379 wake_up_locked_poll(wqueue, events); 380 spin_unlock_irqrestore(&wqueue->lock, flags); 381 } 382 #else 383 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 384 unsigned long events, int subclass) 385 { 386 wake_up_poll(wqueue, events); 387 } 388 #endif 389 390 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 391 { 392 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 393 1 + call_nests); 394 return 0; 395 } 396 397 /* 398 * Perform a safe wake up of the poll wait list. The problem is that 399 * with the new callback'd wake up system, it is possible that the 400 * poll callback is reentered from inside the call to wake_up() done 401 * on the poll wait queue head. The rule is that we cannot reenter the 402 * wake up code from the same task more than EP_MAX_NESTS times, 403 * and we cannot reenter the same wait queue head at all. This will 404 * enable to have a hierarchy of epoll file descriptor of no more than 405 * EP_MAX_NESTS deep. 406 */ 407 static void ep_poll_safewake(wait_queue_head_t *wq) 408 { 409 int this_cpu = get_cpu(); 410 411 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 412 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 413 414 put_cpu(); 415 } 416 417 /* 418 * This function unregisters poll callbacks from the associated file 419 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 420 * ep_free). 421 */ 422 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 423 { 424 struct list_head *lsthead = &epi->pwqlist; 425 struct eppoll_entry *pwq; 426 427 while (!list_empty(lsthead)) { 428 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 429 430 list_del(&pwq->llink); 431 remove_wait_queue(pwq->whead, &pwq->wait); 432 kmem_cache_free(pwq_cache, pwq); 433 } 434 } 435 436 /** 437 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 438 * the scan code, to call f_op->poll(). Also allows for 439 * O(NumReady) performance. 440 * 441 * @ep: Pointer to the epoll private data structure. 442 * @sproc: Pointer to the scan callback. 443 * @priv: Private opaque data passed to the @sproc callback. 444 * 445 * Returns: The same integer error code returned by the @sproc callback. 446 */ 447 static int ep_scan_ready_list(struct eventpoll *ep, 448 int (*sproc)(struct eventpoll *, 449 struct list_head *, void *), 450 void *priv) 451 { 452 int error, pwake = 0; 453 unsigned long flags; 454 struct epitem *epi, *nepi; 455 LIST_HEAD(txlist); 456 457 /* 458 * We need to lock this because we could be hit by 459 * eventpoll_release_file() and epoll_ctl(). 460 */ 461 mutex_lock(&ep->mtx); 462 463 /* 464 * Steal the ready list, and re-init the original one to the 465 * empty list. Also, set ep->ovflist to NULL so that events 466 * happening while looping w/out locks, are not lost. We cannot 467 * have the poll callback to queue directly on ep->rdllist, 468 * because we want the "sproc" callback to be able to do it 469 * in a lockless way. 470 */ 471 spin_lock_irqsave(&ep->lock, flags); 472 list_splice_init(&ep->rdllist, &txlist); 473 ep->ovflist = NULL; 474 spin_unlock_irqrestore(&ep->lock, flags); 475 476 /* 477 * Now call the callback function. 478 */ 479 error = (*sproc)(ep, &txlist, priv); 480 481 spin_lock_irqsave(&ep->lock, flags); 482 /* 483 * During the time we spent inside the "sproc" callback, some 484 * other events might have been queued by the poll callback. 485 * We re-insert them inside the main ready-list here. 486 */ 487 for (nepi = ep->ovflist; (epi = nepi) != NULL; 488 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 489 /* 490 * We need to check if the item is already in the list. 491 * During the "sproc" callback execution time, items are 492 * queued into ->ovflist but the "txlist" might already 493 * contain them, and the list_splice() below takes care of them. 494 */ 495 if (!ep_is_linked(&epi->rdllink)) 496 list_add_tail(&epi->rdllink, &ep->rdllist); 497 } 498 /* 499 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 500 * releasing the lock, events will be queued in the normal way inside 501 * ep->rdllist. 502 */ 503 ep->ovflist = EP_UNACTIVE_PTR; 504 505 /* 506 * Quickly re-inject items left on "txlist". 507 */ 508 list_splice(&txlist, &ep->rdllist); 509 510 if (!list_empty(&ep->rdllist)) { 511 /* 512 * Wake up (if active) both the eventpoll wait list and 513 * the ->poll() wait list (delayed after we release the lock). 514 */ 515 if (waitqueue_active(&ep->wq)) 516 wake_up_locked(&ep->wq); 517 if (waitqueue_active(&ep->poll_wait)) 518 pwake++; 519 } 520 spin_unlock_irqrestore(&ep->lock, flags); 521 522 mutex_unlock(&ep->mtx); 523 524 /* We have to call this outside the lock */ 525 if (pwake) 526 ep_poll_safewake(&ep->poll_wait); 527 528 return error; 529 } 530 531 /* 532 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 533 * all the associated resources. Must be called with "mtx" held. 534 */ 535 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 536 { 537 unsigned long flags; 538 struct file *file = epi->ffd.file; 539 540 /* 541 * Removes poll wait queue hooks. We _have_ to do this without holding 542 * the "ep->lock" otherwise a deadlock might occur. This because of the 543 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 544 * queue head lock when unregistering the wait queue. The wakeup callback 545 * will run by holding the wait queue head lock and will call our callback 546 * that will try to get "ep->lock". 547 */ 548 ep_unregister_pollwait(ep, epi); 549 550 /* Remove the current item from the list of epoll hooks */ 551 spin_lock(&file->f_lock); 552 if (ep_is_linked(&epi->fllink)) 553 list_del_init(&epi->fllink); 554 spin_unlock(&file->f_lock); 555 556 rb_erase(&epi->rbn, &ep->rbr); 557 558 spin_lock_irqsave(&ep->lock, flags); 559 if (ep_is_linked(&epi->rdllink)) 560 list_del_init(&epi->rdllink); 561 spin_unlock_irqrestore(&ep->lock, flags); 562 563 /* At this point it is safe to free the eventpoll item */ 564 kmem_cache_free(epi_cache, epi); 565 566 atomic_long_dec(&ep->user->epoll_watches); 567 568 return 0; 569 } 570 571 static void ep_free(struct eventpoll *ep) 572 { 573 struct rb_node *rbp; 574 struct epitem *epi; 575 576 /* We need to release all tasks waiting for these file */ 577 if (waitqueue_active(&ep->poll_wait)) 578 ep_poll_safewake(&ep->poll_wait); 579 580 /* 581 * We need to lock this because we could be hit by 582 * eventpoll_release_file() while we're freeing the "struct eventpoll". 583 * We do not need to hold "ep->mtx" here because the epoll file 584 * is on the way to be removed and no one has references to it 585 * anymore. The only hit might come from eventpoll_release_file() but 586 * holding "epmutex" is sufficent here. 587 */ 588 mutex_lock(&epmutex); 589 590 /* 591 * Walks through the whole tree by unregistering poll callbacks. 592 */ 593 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 594 epi = rb_entry(rbp, struct epitem, rbn); 595 596 ep_unregister_pollwait(ep, epi); 597 } 598 599 /* 600 * Walks through the whole tree by freeing each "struct epitem". At this 601 * point we are sure no poll callbacks will be lingering around, and also by 602 * holding "epmutex" we can be sure that no file cleanup code will hit 603 * us during this operation. So we can avoid the lock on "ep->lock". 604 */ 605 while ((rbp = rb_first(&ep->rbr)) != NULL) { 606 epi = rb_entry(rbp, struct epitem, rbn); 607 ep_remove(ep, epi); 608 } 609 610 mutex_unlock(&epmutex); 611 mutex_destroy(&ep->mtx); 612 free_uid(ep->user); 613 kfree(ep); 614 } 615 616 static int ep_eventpoll_release(struct inode *inode, struct file *file) 617 { 618 struct eventpoll *ep = file->private_data; 619 620 if (ep) 621 ep_free(ep); 622 623 return 0; 624 } 625 626 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 627 void *priv) 628 { 629 struct epitem *epi, *tmp; 630 631 list_for_each_entry_safe(epi, tmp, head, rdllink) { 632 if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & 633 epi->event.events) 634 return POLLIN | POLLRDNORM; 635 else { 636 /* 637 * Item has been dropped into the ready list by the poll 638 * callback, but it's not actually ready, as far as 639 * caller requested events goes. We can remove it here. 640 */ 641 list_del_init(&epi->rdllink); 642 } 643 } 644 645 return 0; 646 } 647 648 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 649 { 650 return ep_scan_ready_list(priv, ep_read_events_proc, NULL); 651 } 652 653 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 654 { 655 int pollflags; 656 struct eventpoll *ep = file->private_data; 657 658 /* Insert inside our poll wait queue */ 659 poll_wait(file, &ep->poll_wait, wait); 660 661 /* 662 * Proceed to find out if wanted events are really available inside 663 * the ready list. This need to be done under ep_call_nested() 664 * supervision, since the call to f_op->poll() done on listed files 665 * could re-enter here. 666 */ 667 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 668 ep_poll_readyevents_proc, ep, ep, current); 669 670 return pollflags != -1 ? pollflags : 0; 671 } 672 673 /* File callbacks that implement the eventpoll file behaviour */ 674 static const struct file_operations eventpoll_fops = { 675 .release = ep_eventpoll_release, 676 .poll = ep_eventpoll_poll, 677 .llseek = noop_llseek, 678 }; 679 680 /* Fast test to see if the file is an evenpoll file */ 681 static inline int is_file_epoll(struct file *f) 682 { 683 return f->f_op == &eventpoll_fops; 684 } 685 686 /* 687 * This is called from eventpoll_release() to unlink files from the eventpoll 688 * interface. We need to have this facility to cleanup correctly files that are 689 * closed without being removed from the eventpoll interface. 690 */ 691 void eventpoll_release_file(struct file *file) 692 { 693 struct list_head *lsthead = &file->f_ep_links; 694 struct eventpoll *ep; 695 struct epitem *epi; 696 697 /* 698 * We don't want to get "file->f_lock" because it is not 699 * necessary. It is not necessary because we're in the "struct file" 700 * cleanup path, and this means that noone is using this file anymore. 701 * So, for example, epoll_ctl() cannot hit here since if we reach this 702 * point, the file counter already went to zero and fget() would fail. 703 * The only hit might come from ep_free() but by holding the mutex 704 * will correctly serialize the operation. We do need to acquire 705 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 706 * from anywhere but ep_free(). 707 * 708 * Besides, ep_remove() acquires the lock, so we can't hold it here. 709 */ 710 mutex_lock(&epmutex); 711 712 while (!list_empty(lsthead)) { 713 epi = list_first_entry(lsthead, struct epitem, fllink); 714 715 ep = epi->ep; 716 list_del_init(&epi->fllink); 717 mutex_lock(&ep->mtx); 718 ep_remove(ep, epi); 719 mutex_unlock(&ep->mtx); 720 } 721 722 mutex_unlock(&epmutex); 723 } 724 725 static int ep_alloc(struct eventpoll **pep) 726 { 727 int error; 728 struct user_struct *user; 729 struct eventpoll *ep; 730 731 user = get_current_user(); 732 error = -ENOMEM; 733 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 734 if (unlikely(!ep)) 735 goto free_uid; 736 737 spin_lock_init(&ep->lock); 738 mutex_init(&ep->mtx); 739 init_waitqueue_head(&ep->wq); 740 init_waitqueue_head(&ep->poll_wait); 741 INIT_LIST_HEAD(&ep->rdllist); 742 ep->rbr = RB_ROOT; 743 ep->ovflist = EP_UNACTIVE_PTR; 744 ep->user = user; 745 746 *pep = ep; 747 748 return 0; 749 750 free_uid: 751 free_uid(user); 752 return error; 753 } 754 755 /* 756 * Search the file inside the eventpoll tree. The RB tree operations 757 * are protected by the "mtx" mutex, and ep_find() must be called with 758 * "mtx" held. 759 */ 760 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 761 { 762 int kcmp; 763 struct rb_node *rbp; 764 struct epitem *epi, *epir = NULL; 765 struct epoll_filefd ffd; 766 767 ep_set_ffd(&ffd, file, fd); 768 for (rbp = ep->rbr.rb_node; rbp; ) { 769 epi = rb_entry(rbp, struct epitem, rbn); 770 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 771 if (kcmp > 0) 772 rbp = rbp->rb_right; 773 else if (kcmp < 0) 774 rbp = rbp->rb_left; 775 else { 776 epir = epi; 777 break; 778 } 779 } 780 781 return epir; 782 } 783 784 /* 785 * This is the callback that is passed to the wait queue wakeup 786 * machanism. It is called by the stored file descriptors when they 787 * have events to report. 788 */ 789 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 790 { 791 int pwake = 0; 792 unsigned long flags; 793 struct epitem *epi = ep_item_from_wait(wait); 794 struct eventpoll *ep = epi->ep; 795 796 spin_lock_irqsave(&ep->lock, flags); 797 798 /* 799 * If the event mask does not contain any poll(2) event, we consider the 800 * descriptor to be disabled. This condition is likely the effect of the 801 * EPOLLONESHOT bit that disables the descriptor when an event is received, 802 * until the next EPOLL_CTL_MOD will be issued. 803 */ 804 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 805 goto out_unlock; 806 807 /* 808 * Check the events coming with the callback. At this stage, not 809 * every device reports the events in the "key" parameter of the 810 * callback. We need to be able to handle both cases here, hence the 811 * test for "key" != NULL before the event match test. 812 */ 813 if (key && !((unsigned long) key & epi->event.events)) 814 goto out_unlock; 815 816 /* 817 * If we are trasfering events to userspace, we can hold no locks 818 * (because we're accessing user memory, and because of linux f_op->poll() 819 * semantics). All the events that happens during that period of time are 820 * chained in ep->ovflist and requeued later on. 821 */ 822 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 823 if (epi->next == EP_UNACTIVE_PTR) { 824 epi->next = ep->ovflist; 825 ep->ovflist = epi; 826 } 827 goto out_unlock; 828 } 829 830 /* If this file is already in the ready list we exit soon */ 831 if (!ep_is_linked(&epi->rdllink)) 832 list_add_tail(&epi->rdllink, &ep->rdllist); 833 834 /* 835 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 836 * wait list. 837 */ 838 if (waitqueue_active(&ep->wq)) 839 wake_up_locked(&ep->wq); 840 if (waitqueue_active(&ep->poll_wait)) 841 pwake++; 842 843 out_unlock: 844 spin_unlock_irqrestore(&ep->lock, flags); 845 846 /* We have to call this outside the lock */ 847 if (pwake) 848 ep_poll_safewake(&ep->poll_wait); 849 850 return 1; 851 } 852 853 /* 854 * This is the callback that is used to add our wait queue to the 855 * target file wakeup lists. 856 */ 857 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 858 poll_table *pt) 859 { 860 struct epitem *epi = ep_item_from_epqueue(pt); 861 struct eppoll_entry *pwq; 862 863 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 864 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 865 pwq->whead = whead; 866 pwq->base = epi; 867 add_wait_queue(whead, &pwq->wait); 868 list_add_tail(&pwq->llink, &epi->pwqlist); 869 epi->nwait++; 870 } else { 871 /* We have to signal that an error occurred */ 872 epi->nwait = -1; 873 } 874 } 875 876 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 877 { 878 int kcmp; 879 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 880 struct epitem *epic; 881 882 while (*p) { 883 parent = *p; 884 epic = rb_entry(parent, struct epitem, rbn); 885 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 886 if (kcmp > 0) 887 p = &parent->rb_right; 888 else 889 p = &parent->rb_left; 890 } 891 rb_link_node(&epi->rbn, parent, p); 892 rb_insert_color(&epi->rbn, &ep->rbr); 893 } 894 895 /* 896 * Must be called with "mtx" held. 897 */ 898 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 899 struct file *tfile, int fd) 900 { 901 int error, revents, pwake = 0; 902 unsigned long flags; 903 long user_watches; 904 struct epitem *epi; 905 struct ep_pqueue epq; 906 907 user_watches = atomic_long_read(&ep->user->epoll_watches); 908 if (unlikely(user_watches >= max_user_watches)) 909 return -ENOSPC; 910 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 911 return -ENOMEM; 912 913 /* Item initialization follow here ... */ 914 INIT_LIST_HEAD(&epi->rdllink); 915 INIT_LIST_HEAD(&epi->fllink); 916 INIT_LIST_HEAD(&epi->pwqlist); 917 epi->ep = ep; 918 ep_set_ffd(&epi->ffd, tfile, fd); 919 epi->event = *event; 920 epi->nwait = 0; 921 epi->next = EP_UNACTIVE_PTR; 922 923 /* Initialize the poll table using the queue callback */ 924 epq.epi = epi; 925 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 926 927 /* 928 * Attach the item to the poll hooks and get current event bits. 929 * We can safely use the file* here because its usage count has 930 * been increased by the caller of this function. Note that after 931 * this operation completes, the poll callback can start hitting 932 * the new item. 933 */ 934 revents = tfile->f_op->poll(tfile, &epq.pt); 935 936 /* 937 * We have to check if something went wrong during the poll wait queue 938 * install process. Namely an allocation for a wait queue failed due 939 * high memory pressure. 940 */ 941 error = -ENOMEM; 942 if (epi->nwait < 0) 943 goto error_unregister; 944 945 /* Add the current item to the list of active epoll hook for this file */ 946 spin_lock(&tfile->f_lock); 947 list_add_tail(&epi->fllink, &tfile->f_ep_links); 948 spin_unlock(&tfile->f_lock); 949 950 /* 951 * Add the current item to the RB tree. All RB tree operations are 952 * protected by "mtx", and ep_insert() is called with "mtx" held. 953 */ 954 ep_rbtree_insert(ep, epi); 955 956 /* We have to drop the new item inside our item list to keep track of it */ 957 spin_lock_irqsave(&ep->lock, flags); 958 959 /* If the file is already "ready" we drop it inside the ready list */ 960 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 961 list_add_tail(&epi->rdllink, &ep->rdllist); 962 963 /* Notify waiting tasks that events are available */ 964 if (waitqueue_active(&ep->wq)) 965 wake_up_locked(&ep->wq); 966 if (waitqueue_active(&ep->poll_wait)) 967 pwake++; 968 } 969 970 spin_unlock_irqrestore(&ep->lock, flags); 971 972 atomic_long_inc(&ep->user->epoll_watches); 973 974 /* We have to call this outside the lock */ 975 if (pwake) 976 ep_poll_safewake(&ep->poll_wait); 977 978 return 0; 979 980 error_unregister: 981 ep_unregister_pollwait(ep, epi); 982 983 /* 984 * We need to do this because an event could have been arrived on some 985 * allocated wait queue. Note that we don't care about the ep->ovflist 986 * list, since that is used/cleaned only inside a section bound by "mtx". 987 * And ep_insert() is called with "mtx" held. 988 */ 989 spin_lock_irqsave(&ep->lock, flags); 990 if (ep_is_linked(&epi->rdllink)) 991 list_del_init(&epi->rdllink); 992 spin_unlock_irqrestore(&ep->lock, flags); 993 994 kmem_cache_free(epi_cache, epi); 995 996 return error; 997 } 998 999 /* 1000 * Modify the interest event mask by dropping an event if the new mask 1001 * has a match in the current file status. Must be called with "mtx" held. 1002 */ 1003 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1004 { 1005 int pwake = 0; 1006 unsigned int revents; 1007 1008 /* 1009 * Set the new event interest mask before calling f_op->poll(); 1010 * otherwise we might miss an event that happens between the 1011 * f_op->poll() call and the new event set registering. 1012 */ 1013 epi->event.events = event->events; 1014 epi->event.data = event->data; /* protected by mtx */ 1015 1016 /* 1017 * Get current event bits. We can safely use the file* here because 1018 * its usage count has been increased by the caller of this function. 1019 */ 1020 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 1021 1022 /* 1023 * If the item is "hot" and it is not registered inside the ready 1024 * list, push it inside. 1025 */ 1026 if (revents & event->events) { 1027 spin_lock_irq(&ep->lock); 1028 if (!ep_is_linked(&epi->rdllink)) { 1029 list_add_tail(&epi->rdllink, &ep->rdllist); 1030 1031 /* Notify waiting tasks that events are available */ 1032 if (waitqueue_active(&ep->wq)) 1033 wake_up_locked(&ep->wq); 1034 if (waitqueue_active(&ep->poll_wait)) 1035 pwake++; 1036 } 1037 spin_unlock_irq(&ep->lock); 1038 } 1039 1040 /* We have to call this outside the lock */ 1041 if (pwake) 1042 ep_poll_safewake(&ep->poll_wait); 1043 1044 return 0; 1045 } 1046 1047 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1048 void *priv) 1049 { 1050 struct ep_send_events_data *esed = priv; 1051 int eventcnt; 1052 unsigned int revents; 1053 struct epitem *epi; 1054 struct epoll_event __user *uevent; 1055 1056 /* 1057 * We can loop without lock because we are passed a task private list. 1058 * Items cannot vanish during the loop because ep_scan_ready_list() is 1059 * holding "mtx" during this call. 1060 */ 1061 for (eventcnt = 0, uevent = esed->events; 1062 !list_empty(head) && eventcnt < esed->maxevents;) { 1063 epi = list_first_entry(head, struct epitem, rdllink); 1064 1065 list_del_init(&epi->rdllink); 1066 1067 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & 1068 epi->event.events; 1069 1070 /* 1071 * If the event mask intersect the caller-requested one, 1072 * deliver the event to userspace. Again, ep_scan_ready_list() 1073 * is holding "mtx", so no operations coming from userspace 1074 * can change the item. 1075 */ 1076 if (revents) { 1077 if (__put_user(revents, &uevent->events) || 1078 __put_user(epi->event.data, &uevent->data)) { 1079 list_add(&epi->rdllink, head); 1080 return eventcnt ? eventcnt : -EFAULT; 1081 } 1082 eventcnt++; 1083 uevent++; 1084 if (epi->event.events & EPOLLONESHOT) 1085 epi->event.events &= EP_PRIVATE_BITS; 1086 else if (!(epi->event.events & EPOLLET)) { 1087 /* 1088 * If this file has been added with Level 1089 * Trigger mode, we need to insert back inside 1090 * the ready list, so that the next call to 1091 * epoll_wait() will check again the events 1092 * availability. At this point, noone can insert 1093 * into ep->rdllist besides us. The epoll_ctl() 1094 * callers are locked out by 1095 * ep_scan_ready_list() holding "mtx" and the 1096 * poll callback will queue them in ep->ovflist. 1097 */ 1098 list_add_tail(&epi->rdllink, &ep->rdllist); 1099 } 1100 } 1101 } 1102 1103 return eventcnt; 1104 } 1105 1106 static int ep_send_events(struct eventpoll *ep, 1107 struct epoll_event __user *events, int maxevents) 1108 { 1109 struct ep_send_events_data esed; 1110 1111 esed.maxevents = maxevents; 1112 esed.events = events; 1113 1114 return ep_scan_ready_list(ep, ep_send_events_proc, &esed); 1115 } 1116 1117 static inline struct timespec ep_set_mstimeout(long ms) 1118 { 1119 struct timespec now, ts = { 1120 .tv_sec = ms / MSEC_PER_SEC, 1121 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1122 }; 1123 1124 ktime_get_ts(&now); 1125 return timespec_add_safe(now, ts); 1126 } 1127 1128 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1129 int maxevents, long timeout) 1130 { 1131 int res, eavail, timed_out = 0; 1132 unsigned long flags; 1133 long slack; 1134 wait_queue_t wait; 1135 ktime_t expires, *to = NULL; 1136 1137 if (timeout > 0) { 1138 struct timespec end_time = ep_set_mstimeout(timeout); 1139 1140 slack = select_estimate_accuracy(&end_time); 1141 to = &expires; 1142 *to = timespec_to_ktime(end_time); 1143 } else if (timeout == 0) { 1144 timed_out = 1; 1145 } 1146 1147 retry: 1148 spin_lock_irqsave(&ep->lock, flags); 1149 1150 res = 0; 1151 if (list_empty(&ep->rdllist)) { 1152 /* 1153 * We don't have any available event to return to the caller. 1154 * We need to sleep here, and we will be wake up by 1155 * ep_poll_callback() when events will become available. 1156 */ 1157 init_waitqueue_entry(&wait, current); 1158 __add_wait_queue_exclusive(&ep->wq, &wait); 1159 1160 for (;;) { 1161 /* 1162 * We don't want to sleep if the ep_poll_callback() sends us 1163 * a wakeup in between. That's why we set the task state 1164 * to TASK_INTERRUPTIBLE before doing the checks. 1165 */ 1166 set_current_state(TASK_INTERRUPTIBLE); 1167 if (!list_empty(&ep->rdllist) || timed_out) 1168 break; 1169 if (signal_pending(current)) { 1170 res = -EINTR; 1171 break; 1172 } 1173 1174 spin_unlock_irqrestore(&ep->lock, flags); 1175 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1176 timed_out = 1; 1177 1178 spin_lock_irqsave(&ep->lock, flags); 1179 } 1180 __remove_wait_queue(&ep->wq, &wait); 1181 1182 set_current_state(TASK_RUNNING); 1183 } 1184 /* Is it worth to try to dig for events ? */ 1185 eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 1186 1187 spin_unlock_irqrestore(&ep->lock, flags); 1188 1189 /* 1190 * Try to transfer events to user space. In case we get 0 events and 1191 * there's still timeout left over, we go trying again in search of 1192 * more luck. 1193 */ 1194 if (!res && eavail && 1195 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1196 goto retry; 1197 1198 return res; 1199 } 1200 1201 /* 1202 * Open an eventpoll file descriptor. 1203 */ 1204 SYSCALL_DEFINE1(epoll_create1, int, flags) 1205 { 1206 int error; 1207 struct eventpoll *ep = NULL; 1208 1209 /* Check the EPOLL_* constant for consistency. */ 1210 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1211 1212 if (flags & ~EPOLL_CLOEXEC) 1213 return -EINVAL; 1214 /* 1215 * Create the internal data structure ("struct eventpoll"). 1216 */ 1217 error = ep_alloc(&ep); 1218 if (error < 0) 1219 return error; 1220 /* 1221 * Creates all the items needed to setup an eventpoll file. That is, 1222 * a file structure and a free file descriptor. 1223 */ 1224 error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep, 1225 O_RDWR | (flags & O_CLOEXEC)); 1226 if (error < 0) 1227 ep_free(ep); 1228 1229 return error; 1230 } 1231 1232 SYSCALL_DEFINE1(epoll_create, int, size) 1233 { 1234 if (size <= 0) 1235 return -EINVAL; 1236 1237 return sys_epoll_create1(0); 1238 } 1239 1240 /* 1241 * The following function implements the controller interface for 1242 * the eventpoll file that enables the insertion/removal/change of 1243 * file descriptors inside the interest set. 1244 */ 1245 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1246 struct epoll_event __user *, event) 1247 { 1248 int error; 1249 struct file *file, *tfile; 1250 struct eventpoll *ep; 1251 struct epitem *epi; 1252 struct epoll_event epds; 1253 1254 error = -EFAULT; 1255 if (ep_op_has_event(op) && 1256 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1257 goto error_return; 1258 1259 /* Get the "struct file *" for the eventpoll file */ 1260 error = -EBADF; 1261 file = fget(epfd); 1262 if (!file) 1263 goto error_return; 1264 1265 /* Get the "struct file *" for the target file */ 1266 tfile = fget(fd); 1267 if (!tfile) 1268 goto error_fput; 1269 1270 /* The target file descriptor must support poll */ 1271 error = -EPERM; 1272 if (!tfile->f_op || !tfile->f_op->poll) 1273 goto error_tgt_fput; 1274 1275 /* 1276 * We have to check that the file structure underneath the file descriptor 1277 * the user passed to us _is_ an eventpoll file. And also we do not permit 1278 * adding an epoll file descriptor inside itself. 1279 */ 1280 error = -EINVAL; 1281 if (file == tfile || !is_file_epoll(file)) 1282 goto error_tgt_fput; 1283 1284 /* 1285 * At this point it is safe to assume that the "private_data" contains 1286 * our own data structure. 1287 */ 1288 ep = file->private_data; 1289 1290 mutex_lock(&ep->mtx); 1291 1292 /* 1293 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1294 * above, we can be sure to be able to use the item looked up by 1295 * ep_find() till we release the mutex. 1296 */ 1297 epi = ep_find(ep, tfile, fd); 1298 1299 error = -EINVAL; 1300 switch (op) { 1301 case EPOLL_CTL_ADD: 1302 if (!epi) { 1303 epds.events |= POLLERR | POLLHUP; 1304 error = ep_insert(ep, &epds, tfile, fd); 1305 } else 1306 error = -EEXIST; 1307 break; 1308 case EPOLL_CTL_DEL: 1309 if (epi) 1310 error = ep_remove(ep, epi); 1311 else 1312 error = -ENOENT; 1313 break; 1314 case EPOLL_CTL_MOD: 1315 if (epi) { 1316 epds.events |= POLLERR | POLLHUP; 1317 error = ep_modify(ep, epi, &epds); 1318 } else 1319 error = -ENOENT; 1320 break; 1321 } 1322 mutex_unlock(&ep->mtx); 1323 1324 error_tgt_fput: 1325 fput(tfile); 1326 error_fput: 1327 fput(file); 1328 error_return: 1329 1330 return error; 1331 } 1332 1333 /* 1334 * Implement the event wait interface for the eventpoll file. It is the kernel 1335 * part of the user space epoll_wait(2). 1336 */ 1337 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1338 int, maxevents, int, timeout) 1339 { 1340 int error; 1341 struct file *file; 1342 struct eventpoll *ep; 1343 1344 /* The maximum number of event must be greater than zero */ 1345 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1346 return -EINVAL; 1347 1348 /* Verify that the area passed by the user is writeable */ 1349 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { 1350 error = -EFAULT; 1351 goto error_return; 1352 } 1353 1354 /* Get the "struct file *" for the eventpoll file */ 1355 error = -EBADF; 1356 file = fget(epfd); 1357 if (!file) 1358 goto error_return; 1359 1360 /* 1361 * We have to check that the file structure underneath the fd 1362 * the user passed to us _is_ an eventpoll file. 1363 */ 1364 error = -EINVAL; 1365 if (!is_file_epoll(file)) 1366 goto error_fput; 1367 1368 /* 1369 * At this point it is safe to assume that the "private_data" contains 1370 * our own data structure. 1371 */ 1372 ep = file->private_data; 1373 1374 /* Time to fish for events ... */ 1375 error = ep_poll(ep, events, maxevents, timeout); 1376 1377 error_fput: 1378 fput(file); 1379 error_return: 1380 1381 return error; 1382 } 1383 1384 #ifdef HAVE_SET_RESTORE_SIGMASK 1385 1386 /* 1387 * Implement the event wait interface for the eventpoll file. It is the kernel 1388 * part of the user space epoll_pwait(2). 1389 */ 1390 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 1391 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 1392 size_t, sigsetsize) 1393 { 1394 int error; 1395 sigset_t ksigmask, sigsaved; 1396 1397 /* 1398 * If the caller wants a certain signal mask to be set during the wait, 1399 * we apply it here. 1400 */ 1401 if (sigmask) { 1402 if (sigsetsize != sizeof(sigset_t)) 1403 return -EINVAL; 1404 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1405 return -EFAULT; 1406 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 1407 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1408 } 1409 1410 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1411 1412 /* 1413 * If we changed the signal mask, we need to restore the original one. 1414 * In case we've got a signal while waiting, we do not restore the 1415 * signal mask yet, and we allow do_signal() to deliver the signal on 1416 * the way back to userspace, before the signal mask is restored. 1417 */ 1418 if (sigmask) { 1419 if (error == -EINTR) { 1420 memcpy(¤t->saved_sigmask, &sigsaved, 1421 sizeof(sigsaved)); 1422 set_restore_sigmask(); 1423 } else 1424 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1425 } 1426 1427 return error; 1428 } 1429 1430 #endif /* HAVE_SET_RESTORE_SIGMASK */ 1431 1432 static int __init eventpoll_init(void) 1433 { 1434 struct sysinfo si; 1435 1436 si_meminfo(&si); 1437 /* 1438 * Allows top 4% of lomem to be allocated for epoll watches (per user). 1439 */ 1440 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 1441 EP_ITEM_COST; 1442 BUG_ON(max_user_watches < 0); 1443 1444 /* Initialize the structure used to perform safe poll wait head wake ups */ 1445 ep_nested_calls_init(&poll_safewake_ncalls); 1446 1447 /* Initialize the structure used to perform file's f_op->poll() calls */ 1448 ep_nested_calls_init(&poll_readywalk_ncalls); 1449 1450 /* Allocates slab cache used to allocate "struct epitem" items */ 1451 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 1452 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1453 1454 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 1455 pwq_cache = kmem_cache_create("eventpoll_pwq", 1456 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 1457 1458 return 0; 1459 } 1460 fs_initcall(eventpoll_init); 1461