xref: /openbmc/linux/fs/eventpoll.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <asm/atomic.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (spinlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a spinlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66  * It is possible to drop the "ep->mtx" and to use the global
67  * mutex "epmutex" (together with "ep->lock") to have it working,
68  * but having "ep->mtx" will make the interface more scalable.
69  * Events that require holding "epmutex" are very rare, while for
70  * normal operations the epoll private "ep->mtx" will guarantee
71  * a better scalability.
72  */
73 
74 /* Epoll private bits inside the event mask */
75 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
76 
77 /* Maximum number of nesting allowed inside epoll sets */
78 #define EP_MAX_NESTS 4
79 
80 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
81 
82 #define EP_UNACTIVE_PTR ((void *) -1L)
83 
84 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
85 
86 struct epoll_filefd {
87 	struct file *file;
88 	int fd;
89 };
90 
91 /*
92  * Structure used to track possible nested calls, for too deep recursions
93  * and loop cycles.
94  */
95 struct nested_call_node {
96 	struct list_head llink;
97 	void *cookie;
98 	void *ctx;
99 };
100 
101 /*
102  * This structure is used as collector for nested calls, to check for
103  * maximum recursion dept and loop cycles.
104  */
105 struct nested_calls {
106 	struct list_head tasks_call_list;
107 	spinlock_t lock;
108 };
109 
110 /*
111  * Each file descriptor added to the eventpoll interface will
112  * have an entry of this type linked to the "rbr" RB tree.
113  */
114 struct epitem {
115 	/* RB tree node used to link this structure to the eventpoll RB tree */
116 	struct rb_node rbn;
117 
118 	/* List header used to link this structure to the eventpoll ready list */
119 	struct list_head rdllink;
120 
121 	/*
122 	 * Works together "struct eventpoll"->ovflist in keeping the
123 	 * single linked chain of items.
124 	 */
125 	struct epitem *next;
126 
127 	/* The file descriptor information this item refers to */
128 	struct epoll_filefd ffd;
129 
130 	/* Number of active wait queue attached to poll operations */
131 	int nwait;
132 
133 	/* List containing poll wait queues */
134 	struct list_head pwqlist;
135 
136 	/* The "container" of this item */
137 	struct eventpoll *ep;
138 
139 	/* List header used to link this item to the "struct file" items list */
140 	struct list_head fllink;
141 
142 	/* The structure that describe the interested events and the source fd */
143 	struct epoll_event event;
144 };
145 
146 /*
147  * This structure is stored inside the "private_data" member of the file
148  * structure and rapresent the main data sructure for the eventpoll
149  * interface.
150  */
151 struct eventpoll {
152 	/* Protect the this structure access */
153 	spinlock_t lock;
154 
155 	/*
156 	 * This mutex is used to ensure that files are not removed
157 	 * while epoll is using them. This is held during the event
158 	 * collection loop, the file cleanup path, the epoll file exit
159 	 * code and the ctl operations.
160 	 */
161 	struct mutex mtx;
162 
163 	/* Wait queue used by sys_epoll_wait() */
164 	wait_queue_head_t wq;
165 
166 	/* Wait queue used by file->poll() */
167 	wait_queue_head_t poll_wait;
168 
169 	/* List of ready file descriptors */
170 	struct list_head rdllist;
171 
172 	/* RB tree root used to store monitored fd structs */
173 	struct rb_root rbr;
174 
175 	/*
176 	 * This is a single linked list that chains all the "struct epitem" that
177 	 * happened while transfering ready events to userspace w/out
178 	 * holding ->lock.
179 	 */
180 	struct epitem *ovflist;
181 
182 	/* The user that created the eventpoll descriptor */
183 	struct user_struct *user;
184 };
185 
186 /* Wait structure used by the poll hooks */
187 struct eppoll_entry {
188 	/* List header used to link this structure to the "struct epitem" */
189 	struct list_head llink;
190 
191 	/* The "base" pointer is set to the container "struct epitem" */
192 	struct epitem *base;
193 
194 	/*
195 	 * Wait queue item that will be linked to the target file wait
196 	 * queue head.
197 	 */
198 	wait_queue_t wait;
199 
200 	/* The wait queue head that linked the "wait" wait queue item */
201 	wait_queue_head_t *whead;
202 };
203 
204 /* Wrapper struct used by poll queueing */
205 struct ep_pqueue {
206 	poll_table pt;
207 	struct epitem *epi;
208 };
209 
210 /* Used by the ep_send_events() function as callback private data */
211 struct ep_send_events_data {
212 	int maxevents;
213 	struct epoll_event __user *events;
214 };
215 
216 /*
217  * Configuration options available inside /proc/sys/fs/epoll/
218  */
219 /* Maximum number of epoll watched descriptors, per user */
220 static long max_user_watches __read_mostly;
221 
222 /*
223  * This mutex is used to serialize ep_free() and eventpoll_release_file().
224  */
225 static DEFINE_MUTEX(epmutex);
226 
227 /* Used for safe wake up implementation */
228 static struct nested_calls poll_safewake_ncalls;
229 
230 /* Used to call file's f_op->poll() under the nested calls boundaries */
231 static struct nested_calls poll_readywalk_ncalls;
232 
233 /* Slab cache used to allocate "struct epitem" */
234 static struct kmem_cache *epi_cache __read_mostly;
235 
236 /* Slab cache used to allocate "struct eppoll_entry" */
237 static struct kmem_cache *pwq_cache __read_mostly;
238 
239 #ifdef CONFIG_SYSCTL
240 
241 #include <linux/sysctl.h>
242 
243 static long zero;
244 static long long_max = LONG_MAX;
245 
246 ctl_table epoll_table[] = {
247 	{
248 		.procname	= "max_user_watches",
249 		.data		= &max_user_watches,
250 		.maxlen		= sizeof(max_user_watches),
251 		.mode		= 0644,
252 		.proc_handler	= proc_doulongvec_minmax,
253 		.extra1		= &zero,
254 		.extra2		= &long_max,
255 	},
256 	{ }
257 };
258 #endif /* CONFIG_SYSCTL */
259 
260 
261 /* Setup the structure that is used as key for the RB tree */
262 static inline void ep_set_ffd(struct epoll_filefd *ffd,
263 			      struct file *file, int fd)
264 {
265 	ffd->file = file;
266 	ffd->fd = fd;
267 }
268 
269 /* Compare RB tree keys */
270 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
271 			     struct epoll_filefd *p2)
272 {
273 	return (p1->file > p2->file ? +1:
274 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
275 }
276 
277 /* Tells us if the item is currently linked */
278 static inline int ep_is_linked(struct list_head *p)
279 {
280 	return !list_empty(p);
281 }
282 
283 /* Get the "struct epitem" from a wait queue pointer */
284 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
285 {
286 	return container_of(p, struct eppoll_entry, wait)->base;
287 }
288 
289 /* Get the "struct epitem" from an epoll queue wrapper */
290 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
291 {
292 	return container_of(p, struct ep_pqueue, pt)->epi;
293 }
294 
295 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
296 static inline int ep_op_has_event(int op)
297 {
298 	return op != EPOLL_CTL_DEL;
299 }
300 
301 /* Initialize the poll safe wake up structure */
302 static void ep_nested_calls_init(struct nested_calls *ncalls)
303 {
304 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
305 	spin_lock_init(&ncalls->lock);
306 }
307 
308 /**
309  * ep_call_nested - Perform a bound (possibly) nested call, by checking
310  *                  that the recursion limit is not exceeded, and that
311  *                  the same nested call (by the meaning of same cookie) is
312  *                  no re-entered.
313  *
314  * @ncalls: Pointer to the nested_calls structure to be used for this call.
315  * @max_nests: Maximum number of allowed nesting calls.
316  * @nproc: Nested call core function pointer.
317  * @priv: Opaque data to be passed to the @nproc callback.
318  * @cookie: Cookie to be used to identify this nested call.
319  * @ctx: This instance context.
320  *
321  * Returns: Returns the code returned by the @nproc callback, or -1 if
322  *          the maximum recursion limit has been exceeded.
323  */
324 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
325 			  int (*nproc)(void *, void *, int), void *priv,
326 			  void *cookie, void *ctx)
327 {
328 	int error, call_nests = 0;
329 	unsigned long flags;
330 	struct list_head *lsthead = &ncalls->tasks_call_list;
331 	struct nested_call_node *tncur;
332 	struct nested_call_node tnode;
333 
334 	spin_lock_irqsave(&ncalls->lock, flags);
335 
336 	/*
337 	 * Try to see if the current task is already inside this wakeup call.
338 	 * We use a list here, since the population inside this set is always
339 	 * very much limited.
340 	 */
341 	list_for_each_entry(tncur, lsthead, llink) {
342 		if (tncur->ctx == ctx &&
343 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
344 			/*
345 			 * Ops ... loop detected or maximum nest level reached.
346 			 * We abort this wake by breaking the cycle itself.
347 			 */
348 			error = -1;
349 			goto out_unlock;
350 		}
351 	}
352 
353 	/* Add the current task and cookie to the list */
354 	tnode.ctx = ctx;
355 	tnode.cookie = cookie;
356 	list_add(&tnode.llink, lsthead);
357 
358 	spin_unlock_irqrestore(&ncalls->lock, flags);
359 
360 	/* Call the nested function */
361 	error = (*nproc)(priv, cookie, call_nests);
362 
363 	/* Remove the current task from the list */
364 	spin_lock_irqsave(&ncalls->lock, flags);
365 	list_del(&tnode.llink);
366 out_unlock:
367 	spin_unlock_irqrestore(&ncalls->lock, flags);
368 
369 	return error;
370 }
371 
372 #ifdef CONFIG_DEBUG_LOCK_ALLOC
373 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
374 				     unsigned long events, int subclass)
375 {
376 	unsigned long flags;
377 
378 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
379 	wake_up_locked_poll(wqueue, events);
380 	spin_unlock_irqrestore(&wqueue->lock, flags);
381 }
382 #else
383 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
384 				     unsigned long events, int subclass)
385 {
386 	wake_up_poll(wqueue, events);
387 }
388 #endif
389 
390 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
391 {
392 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
393 			  1 + call_nests);
394 	return 0;
395 }
396 
397 /*
398  * Perform a safe wake up of the poll wait list. The problem is that
399  * with the new callback'd wake up system, it is possible that the
400  * poll callback is reentered from inside the call to wake_up() done
401  * on the poll wait queue head. The rule is that we cannot reenter the
402  * wake up code from the same task more than EP_MAX_NESTS times,
403  * and we cannot reenter the same wait queue head at all. This will
404  * enable to have a hierarchy of epoll file descriptor of no more than
405  * EP_MAX_NESTS deep.
406  */
407 static void ep_poll_safewake(wait_queue_head_t *wq)
408 {
409 	int this_cpu = get_cpu();
410 
411 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
412 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
413 
414 	put_cpu();
415 }
416 
417 /*
418  * This function unregisters poll callbacks from the associated file
419  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
420  * ep_free).
421  */
422 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
423 {
424 	struct list_head *lsthead = &epi->pwqlist;
425 	struct eppoll_entry *pwq;
426 
427 	while (!list_empty(lsthead)) {
428 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
429 
430 		list_del(&pwq->llink);
431 		remove_wait_queue(pwq->whead, &pwq->wait);
432 		kmem_cache_free(pwq_cache, pwq);
433 	}
434 }
435 
436 /**
437  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
438  *                      the scan code, to call f_op->poll(). Also allows for
439  *                      O(NumReady) performance.
440  *
441  * @ep: Pointer to the epoll private data structure.
442  * @sproc: Pointer to the scan callback.
443  * @priv: Private opaque data passed to the @sproc callback.
444  *
445  * Returns: The same integer error code returned by the @sproc callback.
446  */
447 static int ep_scan_ready_list(struct eventpoll *ep,
448 			      int (*sproc)(struct eventpoll *,
449 					   struct list_head *, void *),
450 			      void *priv)
451 {
452 	int error, pwake = 0;
453 	unsigned long flags;
454 	struct epitem *epi, *nepi;
455 	LIST_HEAD(txlist);
456 
457 	/*
458 	 * We need to lock this because we could be hit by
459 	 * eventpoll_release_file() and epoll_ctl().
460 	 */
461 	mutex_lock(&ep->mtx);
462 
463 	/*
464 	 * Steal the ready list, and re-init the original one to the
465 	 * empty list. Also, set ep->ovflist to NULL so that events
466 	 * happening while looping w/out locks, are not lost. We cannot
467 	 * have the poll callback to queue directly on ep->rdllist,
468 	 * because we want the "sproc" callback to be able to do it
469 	 * in a lockless way.
470 	 */
471 	spin_lock_irqsave(&ep->lock, flags);
472 	list_splice_init(&ep->rdllist, &txlist);
473 	ep->ovflist = NULL;
474 	spin_unlock_irqrestore(&ep->lock, flags);
475 
476 	/*
477 	 * Now call the callback function.
478 	 */
479 	error = (*sproc)(ep, &txlist, priv);
480 
481 	spin_lock_irqsave(&ep->lock, flags);
482 	/*
483 	 * During the time we spent inside the "sproc" callback, some
484 	 * other events might have been queued by the poll callback.
485 	 * We re-insert them inside the main ready-list here.
486 	 */
487 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
488 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
489 		/*
490 		 * We need to check if the item is already in the list.
491 		 * During the "sproc" callback execution time, items are
492 		 * queued into ->ovflist but the "txlist" might already
493 		 * contain them, and the list_splice() below takes care of them.
494 		 */
495 		if (!ep_is_linked(&epi->rdllink))
496 			list_add_tail(&epi->rdllink, &ep->rdllist);
497 	}
498 	/*
499 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
500 	 * releasing the lock, events will be queued in the normal way inside
501 	 * ep->rdllist.
502 	 */
503 	ep->ovflist = EP_UNACTIVE_PTR;
504 
505 	/*
506 	 * Quickly re-inject items left on "txlist".
507 	 */
508 	list_splice(&txlist, &ep->rdllist);
509 
510 	if (!list_empty(&ep->rdllist)) {
511 		/*
512 		 * Wake up (if active) both the eventpoll wait list and
513 		 * the ->poll() wait list (delayed after we release the lock).
514 		 */
515 		if (waitqueue_active(&ep->wq))
516 			wake_up_locked(&ep->wq);
517 		if (waitqueue_active(&ep->poll_wait))
518 			pwake++;
519 	}
520 	spin_unlock_irqrestore(&ep->lock, flags);
521 
522 	mutex_unlock(&ep->mtx);
523 
524 	/* We have to call this outside the lock */
525 	if (pwake)
526 		ep_poll_safewake(&ep->poll_wait);
527 
528 	return error;
529 }
530 
531 /*
532  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
533  * all the associated resources. Must be called with "mtx" held.
534  */
535 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
536 {
537 	unsigned long flags;
538 	struct file *file = epi->ffd.file;
539 
540 	/*
541 	 * Removes poll wait queue hooks. We _have_ to do this without holding
542 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
543 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
544 	 * queue head lock when unregistering the wait queue. The wakeup callback
545 	 * will run by holding the wait queue head lock and will call our callback
546 	 * that will try to get "ep->lock".
547 	 */
548 	ep_unregister_pollwait(ep, epi);
549 
550 	/* Remove the current item from the list of epoll hooks */
551 	spin_lock(&file->f_lock);
552 	if (ep_is_linked(&epi->fllink))
553 		list_del_init(&epi->fllink);
554 	spin_unlock(&file->f_lock);
555 
556 	rb_erase(&epi->rbn, &ep->rbr);
557 
558 	spin_lock_irqsave(&ep->lock, flags);
559 	if (ep_is_linked(&epi->rdllink))
560 		list_del_init(&epi->rdllink);
561 	spin_unlock_irqrestore(&ep->lock, flags);
562 
563 	/* At this point it is safe to free the eventpoll item */
564 	kmem_cache_free(epi_cache, epi);
565 
566 	atomic_long_dec(&ep->user->epoll_watches);
567 
568 	return 0;
569 }
570 
571 static void ep_free(struct eventpoll *ep)
572 {
573 	struct rb_node *rbp;
574 	struct epitem *epi;
575 
576 	/* We need to release all tasks waiting for these file */
577 	if (waitqueue_active(&ep->poll_wait))
578 		ep_poll_safewake(&ep->poll_wait);
579 
580 	/*
581 	 * We need to lock this because we could be hit by
582 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
583 	 * We do not need to hold "ep->mtx" here because the epoll file
584 	 * is on the way to be removed and no one has references to it
585 	 * anymore. The only hit might come from eventpoll_release_file() but
586 	 * holding "epmutex" is sufficent here.
587 	 */
588 	mutex_lock(&epmutex);
589 
590 	/*
591 	 * Walks through the whole tree by unregistering poll callbacks.
592 	 */
593 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
594 		epi = rb_entry(rbp, struct epitem, rbn);
595 
596 		ep_unregister_pollwait(ep, epi);
597 	}
598 
599 	/*
600 	 * Walks through the whole tree by freeing each "struct epitem". At this
601 	 * point we are sure no poll callbacks will be lingering around, and also by
602 	 * holding "epmutex" we can be sure that no file cleanup code will hit
603 	 * us during this operation. So we can avoid the lock on "ep->lock".
604 	 */
605 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
606 		epi = rb_entry(rbp, struct epitem, rbn);
607 		ep_remove(ep, epi);
608 	}
609 
610 	mutex_unlock(&epmutex);
611 	mutex_destroy(&ep->mtx);
612 	free_uid(ep->user);
613 	kfree(ep);
614 }
615 
616 static int ep_eventpoll_release(struct inode *inode, struct file *file)
617 {
618 	struct eventpoll *ep = file->private_data;
619 
620 	if (ep)
621 		ep_free(ep);
622 
623 	return 0;
624 }
625 
626 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
627 			       void *priv)
628 {
629 	struct epitem *epi, *tmp;
630 
631 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
632 		if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
633 		    epi->event.events)
634 			return POLLIN | POLLRDNORM;
635 		else {
636 			/*
637 			 * Item has been dropped into the ready list by the poll
638 			 * callback, but it's not actually ready, as far as
639 			 * caller requested events goes. We can remove it here.
640 			 */
641 			list_del_init(&epi->rdllink);
642 		}
643 	}
644 
645 	return 0;
646 }
647 
648 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
649 {
650 	return ep_scan_ready_list(priv, ep_read_events_proc, NULL);
651 }
652 
653 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
654 {
655 	int pollflags;
656 	struct eventpoll *ep = file->private_data;
657 
658 	/* Insert inside our poll wait queue */
659 	poll_wait(file, &ep->poll_wait, wait);
660 
661 	/*
662 	 * Proceed to find out if wanted events are really available inside
663 	 * the ready list. This need to be done under ep_call_nested()
664 	 * supervision, since the call to f_op->poll() done on listed files
665 	 * could re-enter here.
666 	 */
667 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
668 				   ep_poll_readyevents_proc, ep, ep, current);
669 
670 	return pollflags != -1 ? pollflags : 0;
671 }
672 
673 /* File callbacks that implement the eventpoll file behaviour */
674 static const struct file_operations eventpoll_fops = {
675 	.release	= ep_eventpoll_release,
676 	.poll		= ep_eventpoll_poll,
677 	.llseek		= noop_llseek,
678 };
679 
680 /* Fast test to see if the file is an evenpoll file */
681 static inline int is_file_epoll(struct file *f)
682 {
683 	return f->f_op == &eventpoll_fops;
684 }
685 
686 /*
687  * This is called from eventpoll_release() to unlink files from the eventpoll
688  * interface. We need to have this facility to cleanup correctly files that are
689  * closed without being removed from the eventpoll interface.
690  */
691 void eventpoll_release_file(struct file *file)
692 {
693 	struct list_head *lsthead = &file->f_ep_links;
694 	struct eventpoll *ep;
695 	struct epitem *epi;
696 
697 	/*
698 	 * We don't want to get "file->f_lock" because it is not
699 	 * necessary. It is not necessary because we're in the "struct file"
700 	 * cleanup path, and this means that noone is using this file anymore.
701 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
702 	 * point, the file counter already went to zero and fget() would fail.
703 	 * The only hit might come from ep_free() but by holding the mutex
704 	 * will correctly serialize the operation. We do need to acquire
705 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
706 	 * from anywhere but ep_free().
707 	 *
708 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
709 	 */
710 	mutex_lock(&epmutex);
711 
712 	while (!list_empty(lsthead)) {
713 		epi = list_first_entry(lsthead, struct epitem, fllink);
714 
715 		ep = epi->ep;
716 		list_del_init(&epi->fllink);
717 		mutex_lock(&ep->mtx);
718 		ep_remove(ep, epi);
719 		mutex_unlock(&ep->mtx);
720 	}
721 
722 	mutex_unlock(&epmutex);
723 }
724 
725 static int ep_alloc(struct eventpoll **pep)
726 {
727 	int error;
728 	struct user_struct *user;
729 	struct eventpoll *ep;
730 
731 	user = get_current_user();
732 	error = -ENOMEM;
733 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
734 	if (unlikely(!ep))
735 		goto free_uid;
736 
737 	spin_lock_init(&ep->lock);
738 	mutex_init(&ep->mtx);
739 	init_waitqueue_head(&ep->wq);
740 	init_waitqueue_head(&ep->poll_wait);
741 	INIT_LIST_HEAD(&ep->rdllist);
742 	ep->rbr = RB_ROOT;
743 	ep->ovflist = EP_UNACTIVE_PTR;
744 	ep->user = user;
745 
746 	*pep = ep;
747 
748 	return 0;
749 
750 free_uid:
751 	free_uid(user);
752 	return error;
753 }
754 
755 /*
756  * Search the file inside the eventpoll tree. The RB tree operations
757  * are protected by the "mtx" mutex, and ep_find() must be called with
758  * "mtx" held.
759  */
760 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
761 {
762 	int kcmp;
763 	struct rb_node *rbp;
764 	struct epitem *epi, *epir = NULL;
765 	struct epoll_filefd ffd;
766 
767 	ep_set_ffd(&ffd, file, fd);
768 	for (rbp = ep->rbr.rb_node; rbp; ) {
769 		epi = rb_entry(rbp, struct epitem, rbn);
770 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
771 		if (kcmp > 0)
772 			rbp = rbp->rb_right;
773 		else if (kcmp < 0)
774 			rbp = rbp->rb_left;
775 		else {
776 			epir = epi;
777 			break;
778 		}
779 	}
780 
781 	return epir;
782 }
783 
784 /*
785  * This is the callback that is passed to the wait queue wakeup
786  * machanism. It is called by the stored file descriptors when they
787  * have events to report.
788  */
789 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
790 {
791 	int pwake = 0;
792 	unsigned long flags;
793 	struct epitem *epi = ep_item_from_wait(wait);
794 	struct eventpoll *ep = epi->ep;
795 
796 	spin_lock_irqsave(&ep->lock, flags);
797 
798 	/*
799 	 * If the event mask does not contain any poll(2) event, we consider the
800 	 * descriptor to be disabled. This condition is likely the effect of the
801 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
802 	 * until the next EPOLL_CTL_MOD will be issued.
803 	 */
804 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
805 		goto out_unlock;
806 
807 	/*
808 	 * Check the events coming with the callback. At this stage, not
809 	 * every device reports the events in the "key" parameter of the
810 	 * callback. We need to be able to handle both cases here, hence the
811 	 * test for "key" != NULL before the event match test.
812 	 */
813 	if (key && !((unsigned long) key & epi->event.events))
814 		goto out_unlock;
815 
816 	/*
817 	 * If we are trasfering events to userspace, we can hold no locks
818 	 * (because we're accessing user memory, and because of linux f_op->poll()
819 	 * semantics). All the events that happens during that period of time are
820 	 * chained in ep->ovflist and requeued later on.
821 	 */
822 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
823 		if (epi->next == EP_UNACTIVE_PTR) {
824 			epi->next = ep->ovflist;
825 			ep->ovflist = epi;
826 		}
827 		goto out_unlock;
828 	}
829 
830 	/* If this file is already in the ready list we exit soon */
831 	if (!ep_is_linked(&epi->rdllink))
832 		list_add_tail(&epi->rdllink, &ep->rdllist);
833 
834 	/*
835 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
836 	 * wait list.
837 	 */
838 	if (waitqueue_active(&ep->wq))
839 		wake_up_locked(&ep->wq);
840 	if (waitqueue_active(&ep->poll_wait))
841 		pwake++;
842 
843 out_unlock:
844 	spin_unlock_irqrestore(&ep->lock, flags);
845 
846 	/* We have to call this outside the lock */
847 	if (pwake)
848 		ep_poll_safewake(&ep->poll_wait);
849 
850 	return 1;
851 }
852 
853 /*
854  * This is the callback that is used to add our wait queue to the
855  * target file wakeup lists.
856  */
857 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
858 				 poll_table *pt)
859 {
860 	struct epitem *epi = ep_item_from_epqueue(pt);
861 	struct eppoll_entry *pwq;
862 
863 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
864 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
865 		pwq->whead = whead;
866 		pwq->base = epi;
867 		add_wait_queue(whead, &pwq->wait);
868 		list_add_tail(&pwq->llink, &epi->pwqlist);
869 		epi->nwait++;
870 	} else {
871 		/* We have to signal that an error occurred */
872 		epi->nwait = -1;
873 	}
874 }
875 
876 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
877 {
878 	int kcmp;
879 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
880 	struct epitem *epic;
881 
882 	while (*p) {
883 		parent = *p;
884 		epic = rb_entry(parent, struct epitem, rbn);
885 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
886 		if (kcmp > 0)
887 			p = &parent->rb_right;
888 		else
889 			p = &parent->rb_left;
890 	}
891 	rb_link_node(&epi->rbn, parent, p);
892 	rb_insert_color(&epi->rbn, &ep->rbr);
893 }
894 
895 /*
896  * Must be called with "mtx" held.
897  */
898 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
899 		     struct file *tfile, int fd)
900 {
901 	int error, revents, pwake = 0;
902 	unsigned long flags;
903 	long user_watches;
904 	struct epitem *epi;
905 	struct ep_pqueue epq;
906 
907 	user_watches = atomic_long_read(&ep->user->epoll_watches);
908 	if (unlikely(user_watches >= max_user_watches))
909 		return -ENOSPC;
910 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
911 		return -ENOMEM;
912 
913 	/* Item initialization follow here ... */
914 	INIT_LIST_HEAD(&epi->rdllink);
915 	INIT_LIST_HEAD(&epi->fllink);
916 	INIT_LIST_HEAD(&epi->pwqlist);
917 	epi->ep = ep;
918 	ep_set_ffd(&epi->ffd, tfile, fd);
919 	epi->event = *event;
920 	epi->nwait = 0;
921 	epi->next = EP_UNACTIVE_PTR;
922 
923 	/* Initialize the poll table using the queue callback */
924 	epq.epi = epi;
925 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
926 
927 	/*
928 	 * Attach the item to the poll hooks and get current event bits.
929 	 * We can safely use the file* here because its usage count has
930 	 * been increased by the caller of this function. Note that after
931 	 * this operation completes, the poll callback can start hitting
932 	 * the new item.
933 	 */
934 	revents = tfile->f_op->poll(tfile, &epq.pt);
935 
936 	/*
937 	 * We have to check if something went wrong during the poll wait queue
938 	 * install process. Namely an allocation for a wait queue failed due
939 	 * high memory pressure.
940 	 */
941 	error = -ENOMEM;
942 	if (epi->nwait < 0)
943 		goto error_unregister;
944 
945 	/* Add the current item to the list of active epoll hook for this file */
946 	spin_lock(&tfile->f_lock);
947 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
948 	spin_unlock(&tfile->f_lock);
949 
950 	/*
951 	 * Add the current item to the RB tree. All RB tree operations are
952 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
953 	 */
954 	ep_rbtree_insert(ep, epi);
955 
956 	/* We have to drop the new item inside our item list to keep track of it */
957 	spin_lock_irqsave(&ep->lock, flags);
958 
959 	/* If the file is already "ready" we drop it inside the ready list */
960 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
961 		list_add_tail(&epi->rdllink, &ep->rdllist);
962 
963 		/* Notify waiting tasks that events are available */
964 		if (waitqueue_active(&ep->wq))
965 			wake_up_locked(&ep->wq);
966 		if (waitqueue_active(&ep->poll_wait))
967 			pwake++;
968 	}
969 
970 	spin_unlock_irqrestore(&ep->lock, flags);
971 
972 	atomic_long_inc(&ep->user->epoll_watches);
973 
974 	/* We have to call this outside the lock */
975 	if (pwake)
976 		ep_poll_safewake(&ep->poll_wait);
977 
978 	return 0;
979 
980 error_unregister:
981 	ep_unregister_pollwait(ep, epi);
982 
983 	/*
984 	 * We need to do this because an event could have been arrived on some
985 	 * allocated wait queue. Note that we don't care about the ep->ovflist
986 	 * list, since that is used/cleaned only inside a section bound by "mtx".
987 	 * And ep_insert() is called with "mtx" held.
988 	 */
989 	spin_lock_irqsave(&ep->lock, flags);
990 	if (ep_is_linked(&epi->rdllink))
991 		list_del_init(&epi->rdllink);
992 	spin_unlock_irqrestore(&ep->lock, flags);
993 
994 	kmem_cache_free(epi_cache, epi);
995 
996 	return error;
997 }
998 
999 /*
1000  * Modify the interest event mask by dropping an event if the new mask
1001  * has a match in the current file status. Must be called with "mtx" held.
1002  */
1003 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1004 {
1005 	int pwake = 0;
1006 	unsigned int revents;
1007 
1008 	/*
1009 	 * Set the new event interest mask before calling f_op->poll();
1010 	 * otherwise we might miss an event that happens between the
1011 	 * f_op->poll() call and the new event set registering.
1012 	 */
1013 	epi->event.events = event->events;
1014 	epi->event.data = event->data; /* protected by mtx */
1015 
1016 	/*
1017 	 * Get current event bits. We can safely use the file* here because
1018 	 * its usage count has been increased by the caller of this function.
1019 	 */
1020 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1021 
1022 	/*
1023 	 * If the item is "hot" and it is not registered inside the ready
1024 	 * list, push it inside.
1025 	 */
1026 	if (revents & event->events) {
1027 		spin_lock_irq(&ep->lock);
1028 		if (!ep_is_linked(&epi->rdllink)) {
1029 			list_add_tail(&epi->rdllink, &ep->rdllist);
1030 
1031 			/* Notify waiting tasks that events are available */
1032 			if (waitqueue_active(&ep->wq))
1033 				wake_up_locked(&ep->wq);
1034 			if (waitqueue_active(&ep->poll_wait))
1035 				pwake++;
1036 		}
1037 		spin_unlock_irq(&ep->lock);
1038 	}
1039 
1040 	/* We have to call this outside the lock */
1041 	if (pwake)
1042 		ep_poll_safewake(&ep->poll_wait);
1043 
1044 	return 0;
1045 }
1046 
1047 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1048 			       void *priv)
1049 {
1050 	struct ep_send_events_data *esed = priv;
1051 	int eventcnt;
1052 	unsigned int revents;
1053 	struct epitem *epi;
1054 	struct epoll_event __user *uevent;
1055 
1056 	/*
1057 	 * We can loop without lock because we are passed a task private list.
1058 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1059 	 * holding "mtx" during this call.
1060 	 */
1061 	for (eventcnt = 0, uevent = esed->events;
1062 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1063 		epi = list_first_entry(head, struct epitem, rdllink);
1064 
1065 		list_del_init(&epi->rdllink);
1066 
1067 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1068 			epi->event.events;
1069 
1070 		/*
1071 		 * If the event mask intersect the caller-requested one,
1072 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1073 		 * is holding "mtx", so no operations coming from userspace
1074 		 * can change the item.
1075 		 */
1076 		if (revents) {
1077 			if (__put_user(revents, &uevent->events) ||
1078 			    __put_user(epi->event.data, &uevent->data)) {
1079 				list_add(&epi->rdllink, head);
1080 				return eventcnt ? eventcnt : -EFAULT;
1081 			}
1082 			eventcnt++;
1083 			uevent++;
1084 			if (epi->event.events & EPOLLONESHOT)
1085 				epi->event.events &= EP_PRIVATE_BITS;
1086 			else if (!(epi->event.events & EPOLLET)) {
1087 				/*
1088 				 * If this file has been added with Level
1089 				 * Trigger mode, we need to insert back inside
1090 				 * the ready list, so that the next call to
1091 				 * epoll_wait() will check again the events
1092 				 * availability. At this point, noone can insert
1093 				 * into ep->rdllist besides us. The epoll_ctl()
1094 				 * callers are locked out by
1095 				 * ep_scan_ready_list() holding "mtx" and the
1096 				 * poll callback will queue them in ep->ovflist.
1097 				 */
1098 				list_add_tail(&epi->rdllink, &ep->rdllist);
1099 			}
1100 		}
1101 	}
1102 
1103 	return eventcnt;
1104 }
1105 
1106 static int ep_send_events(struct eventpoll *ep,
1107 			  struct epoll_event __user *events, int maxevents)
1108 {
1109 	struct ep_send_events_data esed;
1110 
1111 	esed.maxevents = maxevents;
1112 	esed.events = events;
1113 
1114 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed);
1115 }
1116 
1117 static inline struct timespec ep_set_mstimeout(long ms)
1118 {
1119 	struct timespec now, ts = {
1120 		.tv_sec = ms / MSEC_PER_SEC,
1121 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1122 	};
1123 
1124 	ktime_get_ts(&now);
1125 	return timespec_add_safe(now, ts);
1126 }
1127 
1128 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1129 		   int maxevents, long timeout)
1130 {
1131 	int res, eavail, timed_out = 0;
1132 	unsigned long flags;
1133 	long slack;
1134 	wait_queue_t wait;
1135 	ktime_t expires, *to = NULL;
1136 
1137 	if (timeout > 0) {
1138 		struct timespec end_time = ep_set_mstimeout(timeout);
1139 
1140 		slack = select_estimate_accuracy(&end_time);
1141 		to = &expires;
1142 		*to = timespec_to_ktime(end_time);
1143 	} else if (timeout == 0) {
1144 		timed_out = 1;
1145 	}
1146 
1147 retry:
1148 	spin_lock_irqsave(&ep->lock, flags);
1149 
1150 	res = 0;
1151 	if (list_empty(&ep->rdllist)) {
1152 		/*
1153 		 * We don't have any available event to return to the caller.
1154 		 * We need to sleep here, and we will be wake up by
1155 		 * ep_poll_callback() when events will become available.
1156 		 */
1157 		init_waitqueue_entry(&wait, current);
1158 		__add_wait_queue_exclusive(&ep->wq, &wait);
1159 
1160 		for (;;) {
1161 			/*
1162 			 * We don't want to sleep if the ep_poll_callback() sends us
1163 			 * a wakeup in between. That's why we set the task state
1164 			 * to TASK_INTERRUPTIBLE before doing the checks.
1165 			 */
1166 			set_current_state(TASK_INTERRUPTIBLE);
1167 			if (!list_empty(&ep->rdllist) || timed_out)
1168 				break;
1169 			if (signal_pending(current)) {
1170 				res = -EINTR;
1171 				break;
1172 			}
1173 
1174 			spin_unlock_irqrestore(&ep->lock, flags);
1175 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1176 				timed_out = 1;
1177 
1178 			spin_lock_irqsave(&ep->lock, flags);
1179 		}
1180 		__remove_wait_queue(&ep->wq, &wait);
1181 
1182 		set_current_state(TASK_RUNNING);
1183 	}
1184 	/* Is it worth to try to dig for events ? */
1185 	eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
1186 
1187 	spin_unlock_irqrestore(&ep->lock, flags);
1188 
1189 	/*
1190 	 * Try to transfer events to user space. In case we get 0 events and
1191 	 * there's still timeout left over, we go trying again in search of
1192 	 * more luck.
1193 	 */
1194 	if (!res && eavail &&
1195 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1196 		goto retry;
1197 
1198 	return res;
1199 }
1200 
1201 /*
1202  * Open an eventpoll file descriptor.
1203  */
1204 SYSCALL_DEFINE1(epoll_create1, int, flags)
1205 {
1206 	int error;
1207 	struct eventpoll *ep = NULL;
1208 
1209 	/* Check the EPOLL_* constant for consistency.  */
1210 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1211 
1212 	if (flags & ~EPOLL_CLOEXEC)
1213 		return -EINVAL;
1214 	/*
1215 	 * Create the internal data structure ("struct eventpoll").
1216 	 */
1217 	error = ep_alloc(&ep);
1218 	if (error < 0)
1219 		return error;
1220 	/*
1221 	 * Creates all the items needed to setup an eventpoll file. That is,
1222 	 * a file structure and a free file descriptor.
1223 	 */
1224 	error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1225 				 O_RDWR | (flags & O_CLOEXEC));
1226 	if (error < 0)
1227 		ep_free(ep);
1228 
1229 	return error;
1230 }
1231 
1232 SYSCALL_DEFINE1(epoll_create, int, size)
1233 {
1234 	if (size <= 0)
1235 		return -EINVAL;
1236 
1237 	return sys_epoll_create1(0);
1238 }
1239 
1240 /*
1241  * The following function implements the controller interface for
1242  * the eventpoll file that enables the insertion/removal/change of
1243  * file descriptors inside the interest set.
1244  */
1245 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1246 		struct epoll_event __user *, event)
1247 {
1248 	int error;
1249 	struct file *file, *tfile;
1250 	struct eventpoll *ep;
1251 	struct epitem *epi;
1252 	struct epoll_event epds;
1253 
1254 	error = -EFAULT;
1255 	if (ep_op_has_event(op) &&
1256 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1257 		goto error_return;
1258 
1259 	/* Get the "struct file *" for the eventpoll file */
1260 	error = -EBADF;
1261 	file = fget(epfd);
1262 	if (!file)
1263 		goto error_return;
1264 
1265 	/* Get the "struct file *" for the target file */
1266 	tfile = fget(fd);
1267 	if (!tfile)
1268 		goto error_fput;
1269 
1270 	/* The target file descriptor must support poll */
1271 	error = -EPERM;
1272 	if (!tfile->f_op || !tfile->f_op->poll)
1273 		goto error_tgt_fput;
1274 
1275 	/*
1276 	 * We have to check that the file structure underneath the file descriptor
1277 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1278 	 * adding an epoll file descriptor inside itself.
1279 	 */
1280 	error = -EINVAL;
1281 	if (file == tfile || !is_file_epoll(file))
1282 		goto error_tgt_fput;
1283 
1284 	/*
1285 	 * At this point it is safe to assume that the "private_data" contains
1286 	 * our own data structure.
1287 	 */
1288 	ep = file->private_data;
1289 
1290 	mutex_lock(&ep->mtx);
1291 
1292 	/*
1293 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1294 	 * above, we can be sure to be able to use the item looked up by
1295 	 * ep_find() till we release the mutex.
1296 	 */
1297 	epi = ep_find(ep, tfile, fd);
1298 
1299 	error = -EINVAL;
1300 	switch (op) {
1301 	case EPOLL_CTL_ADD:
1302 		if (!epi) {
1303 			epds.events |= POLLERR | POLLHUP;
1304 			error = ep_insert(ep, &epds, tfile, fd);
1305 		} else
1306 			error = -EEXIST;
1307 		break;
1308 	case EPOLL_CTL_DEL:
1309 		if (epi)
1310 			error = ep_remove(ep, epi);
1311 		else
1312 			error = -ENOENT;
1313 		break;
1314 	case EPOLL_CTL_MOD:
1315 		if (epi) {
1316 			epds.events |= POLLERR | POLLHUP;
1317 			error = ep_modify(ep, epi, &epds);
1318 		} else
1319 			error = -ENOENT;
1320 		break;
1321 	}
1322 	mutex_unlock(&ep->mtx);
1323 
1324 error_tgt_fput:
1325 	fput(tfile);
1326 error_fput:
1327 	fput(file);
1328 error_return:
1329 
1330 	return error;
1331 }
1332 
1333 /*
1334  * Implement the event wait interface for the eventpoll file. It is the kernel
1335  * part of the user space epoll_wait(2).
1336  */
1337 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1338 		int, maxevents, int, timeout)
1339 {
1340 	int error;
1341 	struct file *file;
1342 	struct eventpoll *ep;
1343 
1344 	/* The maximum number of event must be greater than zero */
1345 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1346 		return -EINVAL;
1347 
1348 	/* Verify that the area passed by the user is writeable */
1349 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1350 		error = -EFAULT;
1351 		goto error_return;
1352 	}
1353 
1354 	/* Get the "struct file *" for the eventpoll file */
1355 	error = -EBADF;
1356 	file = fget(epfd);
1357 	if (!file)
1358 		goto error_return;
1359 
1360 	/*
1361 	 * We have to check that the file structure underneath the fd
1362 	 * the user passed to us _is_ an eventpoll file.
1363 	 */
1364 	error = -EINVAL;
1365 	if (!is_file_epoll(file))
1366 		goto error_fput;
1367 
1368 	/*
1369 	 * At this point it is safe to assume that the "private_data" contains
1370 	 * our own data structure.
1371 	 */
1372 	ep = file->private_data;
1373 
1374 	/* Time to fish for events ... */
1375 	error = ep_poll(ep, events, maxevents, timeout);
1376 
1377 error_fput:
1378 	fput(file);
1379 error_return:
1380 
1381 	return error;
1382 }
1383 
1384 #ifdef HAVE_SET_RESTORE_SIGMASK
1385 
1386 /*
1387  * Implement the event wait interface for the eventpoll file. It is the kernel
1388  * part of the user space epoll_pwait(2).
1389  */
1390 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1391 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1392 		size_t, sigsetsize)
1393 {
1394 	int error;
1395 	sigset_t ksigmask, sigsaved;
1396 
1397 	/*
1398 	 * If the caller wants a certain signal mask to be set during the wait,
1399 	 * we apply it here.
1400 	 */
1401 	if (sigmask) {
1402 		if (sigsetsize != sizeof(sigset_t))
1403 			return -EINVAL;
1404 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1405 			return -EFAULT;
1406 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1407 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1408 	}
1409 
1410 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1411 
1412 	/*
1413 	 * If we changed the signal mask, we need to restore the original one.
1414 	 * In case we've got a signal while waiting, we do not restore the
1415 	 * signal mask yet, and we allow do_signal() to deliver the signal on
1416 	 * the way back to userspace, before the signal mask is restored.
1417 	 */
1418 	if (sigmask) {
1419 		if (error == -EINTR) {
1420 			memcpy(&current->saved_sigmask, &sigsaved,
1421 			       sizeof(sigsaved));
1422 			set_restore_sigmask();
1423 		} else
1424 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1425 	}
1426 
1427 	return error;
1428 }
1429 
1430 #endif /* HAVE_SET_RESTORE_SIGMASK */
1431 
1432 static int __init eventpoll_init(void)
1433 {
1434 	struct sysinfo si;
1435 
1436 	si_meminfo(&si);
1437 	/*
1438 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1439 	 */
1440 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1441 		EP_ITEM_COST;
1442 	BUG_ON(max_user_watches < 0);
1443 
1444 	/* Initialize the structure used to perform safe poll wait head wake ups */
1445 	ep_nested_calls_init(&poll_safewake_ncalls);
1446 
1447 	/* Initialize the structure used to perform file's f_op->poll() calls */
1448 	ep_nested_calls_init(&poll_readywalk_ncalls);
1449 
1450 	/* Allocates slab cache used to allocate "struct epitem" items */
1451 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1452 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1453 
1454 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1455 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1456 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1457 
1458 	return 0;
1459 }
1460 fs_initcall(eventpoll_init);
1461