1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <net/busy_poll.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (rwlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a rwlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 66 * It is also acquired when inserting an epoll fd onto another epoll 67 * fd. We do this so that we walk the epoll tree and ensure that this 68 * insertion does not create a cycle of epoll file descriptors, which 69 * could lead to deadlock. We need a global mutex to prevent two 70 * simultaneous inserts (A into B and B into A) from racing and 71 * constructing a cycle without either insert observing that it is 72 * going to. 73 * It is necessary to acquire multiple "ep->mtx"es at once in the 74 * case when one epoll fd is added to another. In this case, we 75 * always acquire the locks in the order of nesting (i.e. after 76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 77 * before e2->mtx). Since we disallow cycles of epoll file 78 * descriptors, this ensures that the mutexes are well-ordered. In 79 * order to communicate this nesting to lockdep, when walking a tree 80 * of epoll file descriptors, we use the current recursion depth as 81 * the lockdep subkey. 82 * It is possible to drop the "ep->mtx" and to use the global 83 * mutex "epmutex" (together with "ep->lock") to have it working, 84 * but having "ep->mtx" will make the interface more scalable. 85 * Events that require holding "epmutex" are very rare, while for 86 * normal operations the epoll private "ep->mtx" will guarantee 87 * a better scalability. 88 */ 89 90 /* Epoll private bits inside the event mask */ 91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 92 93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 94 95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 97 98 /* Maximum number of nesting allowed inside epoll sets */ 99 #define EP_MAX_NESTS 4 100 101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 102 103 #define EP_UNACTIVE_PTR ((void *) -1L) 104 105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 106 107 struct epoll_filefd { 108 struct file *file; 109 int fd; 110 } __packed; 111 112 /* 113 * Structure used to track possible nested calls, for too deep recursions 114 * and loop cycles. 115 */ 116 struct nested_call_node { 117 struct list_head llink; 118 void *cookie; 119 void *ctx; 120 }; 121 122 /* 123 * This structure is used as collector for nested calls, to check for 124 * maximum recursion dept and loop cycles. 125 */ 126 struct nested_calls { 127 struct list_head tasks_call_list; 128 spinlock_t lock; 129 }; 130 131 /* 132 * Each file descriptor added to the eventpoll interface will 133 * have an entry of this type linked to the "rbr" RB tree. 134 * Avoid increasing the size of this struct, there can be many thousands 135 * of these on a server and we do not want this to take another cache line. 136 */ 137 struct epitem { 138 union { 139 /* RB tree node links this structure to the eventpoll RB tree */ 140 struct rb_node rbn; 141 /* Used to free the struct epitem */ 142 struct rcu_head rcu; 143 }; 144 145 /* List header used to link this structure to the eventpoll ready list */ 146 struct list_head rdllink; 147 148 /* 149 * Works together "struct eventpoll"->ovflist in keeping the 150 * single linked chain of items. 151 */ 152 struct epitem *next; 153 154 /* The file descriptor information this item refers to */ 155 struct epoll_filefd ffd; 156 157 /* Number of active wait queue attached to poll operations */ 158 int nwait; 159 160 /* List containing poll wait queues */ 161 struct list_head pwqlist; 162 163 /* The "container" of this item */ 164 struct eventpoll *ep; 165 166 /* List header used to link this item to the "struct file" items list */ 167 struct list_head fllink; 168 169 /* wakeup_source used when EPOLLWAKEUP is set */ 170 struct wakeup_source __rcu *ws; 171 172 /* The structure that describe the interested events and the source fd */ 173 struct epoll_event event; 174 }; 175 176 /* 177 * This structure is stored inside the "private_data" member of the file 178 * structure and represents the main data structure for the eventpoll 179 * interface. 180 */ 181 struct eventpoll { 182 /* 183 * This mutex is used to ensure that files are not removed 184 * while epoll is using them. This is held during the event 185 * collection loop, the file cleanup path, the epoll file exit 186 * code and the ctl operations. 187 */ 188 struct mutex mtx; 189 190 /* Wait queue used by sys_epoll_wait() */ 191 wait_queue_head_t wq; 192 193 /* Wait queue used by file->poll() */ 194 wait_queue_head_t poll_wait; 195 196 /* List of ready file descriptors */ 197 struct list_head rdllist; 198 199 /* Lock which protects rdllist and ovflist */ 200 rwlock_t lock; 201 202 /* RB tree root used to store monitored fd structs */ 203 struct rb_root_cached rbr; 204 205 /* 206 * This is a single linked list that chains all the "struct epitem" that 207 * happened while transferring ready events to userspace w/out 208 * holding ->lock. 209 */ 210 struct epitem *ovflist; 211 212 /* wakeup_source used when ep_scan_ready_list is running */ 213 struct wakeup_source *ws; 214 215 /* The user that created the eventpoll descriptor */ 216 struct user_struct *user; 217 218 struct file *file; 219 220 /* used to optimize loop detection check */ 221 int visited; 222 struct list_head visited_list_link; 223 224 #ifdef CONFIG_NET_RX_BUSY_POLL 225 /* used to track busy poll napi_id */ 226 unsigned int napi_id; 227 #endif 228 }; 229 230 /* Wait structure used by the poll hooks */ 231 struct eppoll_entry { 232 /* List header used to link this structure to the "struct epitem" */ 233 struct list_head llink; 234 235 /* The "base" pointer is set to the container "struct epitem" */ 236 struct epitem *base; 237 238 /* 239 * Wait queue item that will be linked to the target file wait 240 * queue head. 241 */ 242 wait_queue_entry_t wait; 243 244 /* The wait queue head that linked the "wait" wait queue item */ 245 wait_queue_head_t *whead; 246 }; 247 248 /* Wrapper struct used by poll queueing */ 249 struct ep_pqueue { 250 poll_table pt; 251 struct epitem *epi; 252 }; 253 254 /* Used by the ep_send_events() function as callback private data */ 255 struct ep_send_events_data { 256 int maxevents; 257 struct epoll_event __user *events; 258 int res; 259 }; 260 261 /* 262 * Configuration options available inside /proc/sys/fs/epoll/ 263 */ 264 /* Maximum number of epoll watched descriptors, per user */ 265 static long max_user_watches __read_mostly; 266 267 /* 268 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 269 */ 270 static DEFINE_MUTEX(epmutex); 271 272 /* Used to check for epoll file descriptor inclusion loops */ 273 static struct nested_calls poll_loop_ncalls; 274 275 /* Slab cache used to allocate "struct epitem" */ 276 static struct kmem_cache *epi_cache __read_mostly; 277 278 /* Slab cache used to allocate "struct eppoll_entry" */ 279 static struct kmem_cache *pwq_cache __read_mostly; 280 281 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 282 static LIST_HEAD(visited_list); 283 284 /* 285 * List of files with newly added links, where we may need to limit the number 286 * of emanating paths. Protected by the epmutex. 287 */ 288 static LIST_HEAD(tfile_check_list); 289 290 #ifdef CONFIG_SYSCTL 291 292 #include <linux/sysctl.h> 293 294 static long long_zero; 295 static long long_max = LONG_MAX; 296 297 struct ctl_table epoll_table[] = { 298 { 299 .procname = "max_user_watches", 300 .data = &max_user_watches, 301 .maxlen = sizeof(max_user_watches), 302 .mode = 0644, 303 .proc_handler = proc_doulongvec_minmax, 304 .extra1 = &long_zero, 305 .extra2 = &long_max, 306 }, 307 { } 308 }; 309 #endif /* CONFIG_SYSCTL */ 310 311 static const struct file_operations eventpoll_fops; 312 313 static inline int is_file_epoll(struct file *f) 314 { 315 return f->f_op == &eventpoll_fops; 316 } 317 318 /* Setup the structure that is used as key for the RB tree */ 319 static inline void ep_set_ffd(struct epoll_filefd *ffd, 320 struct file *file, int fd) 321 { 322 ffd->file = file; 323 ffd->fd = fd; 324 } 325 326 /* Compare RB tree keys */ 327 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 328 struct epoll_filefd *p2) 329 { 330 return (p1->file > p2->file ? +1: 331 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 332 } 333 334 /* Tells us if the item is currently linked */ 335 static inline int ep_is_linked(struct epitem *epi) 336 { 337 return !list_empty(&epi->rdllink); 338 } 339 340 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 341 { 342 return container_of(p, struct eppoll_entry, wait); 343 } 344 345 /* Get the "struct epitem" from a wait queue pointer */ 346 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 347 { 348 return container_of(p, struct eppoll_entry, wait)->base; 349 } 350 351 /* Get the "struct epitem" from an epoll queue wrapper */ 352 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 353 { 354 return container_of(p, struct ep_pqueue, pt)->epi; 355 } 356 357 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 358 static inline int ep_op_has_event(int op) 359 { 360 return op != EPOLL_CTL_DEL; 361 } 362 363 /* Initialize the poll safe wake up structure */ 364 static void ep_nested_calls_init(struct nested_calls *ncalls) 365 { 366 INIT_LIST_HEAD(&ncalls->tasks_call_list); 367 spin_lock_init(&ncalls->lock); 368 } 369 370 /** 371 * ep_events_available - Checks if ready events might be available. 372 * 373 * @ep: Pointer to the eventpoll context. 374 * 375 * Returns: Returns a value different than zero if ready events are available, 376 * or zero otherwise. 377 */ 378 static inline int ep_events_available(struct eventpoll *ep) 379 { 380 return !list_empty_careful(&ep->rdllist) || 381 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 382 } 383 384 #ifdef CONFIG_NET_RX_BUSY_POLL 385 static bool ep_busy_loop_end(void *p, unsigned long start_time) 386 { 387 struct eventpoll *ep = p; 388 389 return ep_events_available(ep) || busy_loop_timeout(start_time); 390 } 391 392 /* 393 * Busy poll if globally on and supporting sockets found && no events, 394 * busy loop will return if need_resched or ep_events_available. 395 * 396 * we must do our busy polling with irqs enabled 397 */ 398 static void ep_busy_loop(struct eventpoll *ep, int nonblock) 399 { 400 unsigned int napi_id = READ_ONCE(ep->napi_id); 401 402 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) 403 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep); 404 } 405 406 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 407 { 408 if (ep->napi_id) 409 ep->napi_id = 0; 410 } 411 412 /* 413 * Set epoll busy poll NAPI ID from sk. 414 */ 415 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 416 { 417 struct eventpoll *ep; 418 unsigned int napi_id; 419 struct socket *sock; 420 struct sock *sk; 421 int err; 422 423 if (!net_busy_loop_on()) 424 return; 425 426 sock = sock_from_file(epi->ffd.file, &err); 427 if (!sock) 428 return; 429 430 sk = sock->sk; 431 if (!sk) 432 return; 433 434 napi_id = READ_ONCE(sk->sk_napi_id); 435 ep = epi->ep; 436 437 /* Non-NAPI IDs can be rejected 438 * or 439 * Nothing to do if we already have this ID 440 */ 441 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 442 return; 443 444 /* record NAPI ID for use in next busy poll */ 445 ep->napi_id = napi_id; 446 } 447 448 #else 449 450 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock) 451 { 452 } 453 454 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 455 { 456 } 457 458 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 459 { 460 } 461 462 #endif /* CONFIG_NET_RX_BUSY_POLL */ 463 464 /** 465 * ep_call_nested - Perform a bound (possibly) nested call, by checking 466 * that the recursion limit is not exceeded, and that 467 * the same nested call (by the meaning of same cookie) is 468 * no re-entered. 469 * 470 * @ncalls: Pointer to the nested_calls structure to be used for this call. 471 * @nproc: Nested call core function pointer. 472 * @priv: Opaque data to be passed to the @nproc callback. 473 * @cookie: Cookie to be used to identify this nested call. 474 * @ctx: This instance context. 475 * 476 * Returns: Returns the code returned by the @nproc callback, or -1 if 477 * the maximum recursion limit has been exceeded. 478 */ 479 static int ep_call_nested(struct nested_calls *ncalls, 480 int (*nproc)(void *, void *, int), void *priv, 481 void *cookie, void *ctx) 482 { 483 int error, call_nests = 0; 484 unsigned long flags; 485 struct list_head *lsthead = &ncalls->tasks_call_list; 486 struct nested_call_node *tncur; 487 struct nested_call_node tnode; 488 489 spin_lock_irqsave(&ncalls->lock, flags); 490 491 /* 492 * Try to see if the current task is already inside this wakeup call. 493 * We use a list here, since the population inside this set is always 494 * very much limited. 495 */ 496 list_for_each_entry(tncur, lsthead, llink) { 497 if (tncur->ctx == ctx && 498 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) { 499 /* 500 * Ops ... loop detected or maximum nest level reached. 501 * We abort this wake by breaking the cycle itself. 502 */ 503 error = -1; 504 goto out_unlock; 505 } 506 } 507 508 /* Add the current task and cookie to the list */ 509 tnode.ctx = ctx; 510 tnode.cookie = cookie; 511 list_add(&tnode.llink, lsthead); 512 513 spin_unlock_irqrestore(&ncalls->lock, flags); 514 515 /* Call the nested function */ 516 error = (*nproc)(priv, cookie, call_nests); 517 518 /* Remove the current task from the list */ 519 spin_lock_irqsave(&ncalls->lock, flags); 520 list_del(&tnode.llink); 521 out_unlock: 522 spin_unlock_irqrestore(&ncalls->lock, flags); 523 524 return error; 525 } 526 527 /* 528 * As described in commit 0ccf831cb lockdep: annotate epoll 529 * the use of wait queues used by epoll is done in a very controlled 530 * manner. Wake ups can nest inside each other, but are never done 531 * with the same locking. For example: 532 * 533 * dfd = socket(...); 534 * efd1 = epoll_create(); 535 * efd2 = epoll_create(); 536 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 537 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 538 * 539 * When a packet arrives to the device underneath "dfd", the net code will 540 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 541 * callback wakeup entry on that queue, and the wake_up() performed by the 542 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 543 * (efd1) notices that it may have some event ready, so it needs to wake up 544 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 545 * that ends up in another wake_up(), after having checked about the 546 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 547 * avoid stack blasting. 548 * 549 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 550 * this special case of epoll. 551 */ 552 #ifdef CONFIG_DEBUG_LOCK_ALLOC 553 554 static DEFINE_PER_CPU(int, wakeup_nest); 555 556 static void ep_poll_safewake(wait_queue_head_t *wq) 557 { 558 unsigned long flags; 559 int subclass; 560 561 local_irq_save(flags); 562 preempt_disable(); 563 subclass = __this_cpu_read(wakeup_nest); 564 spin_lock_nested(&wq->lock, subclass + 1); 565 __this_cpu_inc(wakeup_nest); 566 wake_up_locked_poll(wq, POLLIN); 567 __this_cpu_dec(wakeup_nest); 568 spin_unlock(&wq->lock); 569 local_irq_restore(flags); 570 preempt_enable(); 571 } 572 573 #else 574 575 static void ep_poll_safewake(wait_queue_head_t *wq) 576 { 577 wake_up_poll(wq, EPOLLIN); 578 } 579 580 #endif 581 582 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 583 { 584 wait_queue_head_t *whead; 585 586 rcu_read_lock(); 587 /* 588 * If it is cleared by POLLFREE, it should be rcu-safe. 589 * If we read NULL we need a barrier paired with 590 * smp_store_release() in ep_poll_callback(), otherwise 591 * we rely on whead->lock. 592 */ 593 whead = smp_load_acquire(&pwq->whead); 594 if (whead) 595 remove_wait_queue(whead, &pwq->wait); 596 rcu_read_unlock(); 597 } 598 599 /* 600 * This function unregisters poll callbacks from the associated file 601 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 602 * ep_free). 603 */ 604 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 605 { 606 struct list_head *lsthead = &epi->pwqlist; 607 struct eppoll_entry *pwq; 608 609 while (!list_empty(lsthead)) { 610 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 611 612 list_del(&pwq->llink); 613 ep_remove_wait_queue(pwq); 614 kmem_cache_free(pwq_cache, pwq); 615 } 616 } 617 618 /* call only when ep->mtx is held */ 619 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 620 { 621 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 622 } 623 624 /* call only when ep->mtx is held */ 625 static inline void ep_pm_stay_awake(struct epitem *epi) 626 { 627 struct wakeup_source *ws = ep_wakeup_source(epi); 628 629 if (ws) 630 __pm_stay_awake(ws); 631 } 632 633 static inline bool ep_has_wakeup_source(struct epitem *epi) 634 { 635 return rcu_access_pointer(epi->ws) ? true : false; 636 } 637 638 /* call when ep->mtx cannot be held (ep_poll_callback) */ 639 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 640 { 641 struct wakeup_source *ws; 642 643 rcu_read_lock(); 644 ws = rcu_dereference(epi->ws); 645 if (ws) 646 __pm_stay_awake(ws); 647 rcu_read_unlock(); 648 } 649 650 /** 651 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 652 * the scan code, to call f_op->poll(). Also allows for 653 * O(NumReady) performance. 654 * 655 * @ep: Pointer to the epoll private data structure. 656 * @sproc: Pointer to the scan callback. 657 * @priv: Private opaque data passed to the @sproc callback. 658 * @depth: The current depth of recursive f_op->poll calls. 659 * @ep_locked: caller already holds ep->mtx 660 * 661 * Returns: The same integer error code returned by the @sproc callback. 662 */ 663 static __poll_t ep_scan_ready_list(struct eventpoll *ep, 664 __poll_t (*sproc)(struct eventpoll *, 665 struct list_head *, void *), 666 void *priv, int depth, bool ep_locked) 667 { 668 __poll_t res; 669 struct epitem *epi, *nepi; 670 LIST_HEAD(txlist); 671 672 lockdep_assert_irqs_enabled(); 673 674 /* 675 * We need to lock this because we could be hit by 676 * eventpoll_release_file() and epoll_ctl(). 677 */ 678 679 if (!ep_locked) 680 mutex_lock_nested(&ep->mtx, depth); 681 682 /* 683 * Steal the ready list, and re-init the original one to the 684 * empty list. Also, set ep->ovflist to NULL so that events 685 * happening while looping w/out locks, are not lost. We cannot 686 * have the poll callback to queue directly on ep->rdllist, 687 * because we want the "sproc" callback to be able to do it 688 * in a lockless way. 689 */ 690 write_lock_irq(&ep->lock); 691 list_splice_init(&ep->rdllist, &txlist); 692 WRITE_ONCE(ep->ovflist, NULL); 693 write_unlock_irq(&ep->lock); 694 695 /* 696 * Now call the callback function. 697 */ 698 res = (*sproc)(ep, &txlist, priv); 699 700 write_lock_irq(&ep->lock); 701 /* 702 * During the time we spent inside the "sproc" callback, some 703 * other events might have been queued by the poll callback. 704 * We re-insert them inside the main ready-list here. 705 */ 706 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 707 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 708 /* 709 * We need to check if the item is already in the list. 710 * During the "sproc" callback execution time, items are 711 * queued into ->ovflist but the "txlist" might already 712 * contain them, and the list_splice() below takes care of them. 713 */ 714 if (!ep_is_linked(epi)) { 715 /* 716 * ->ovflist is LIFO, so we have to reverse it in order 717 * to keep in FIFO. 718 */ 719 list_add(&epi->rdllink, &ep->rdllist); 720 ep_pm_stay_awake(epi); 721 } 722 } 723 /* 724 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 725 * releasing the lock, events will be queued in the normal way inside 726 * ep->rdllist. 727 */ 728 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 729 730 /* 731 * Quickly re-inject items left on "txlist". 732 */ 733 list_splice(&txlist, &ep->rdllist); 734 __pm_relax(ep->ws); 735 write_unlock_irq(&ep->lock); 736 737 if (!ep_locked) 738 mutex_unlock(&ep->mtx); 739 740 return res; 741 } 742 743 static void epi_rcu_free(struct rcu_head *head) 744 { 745 struct epitem *epi = container_of(head, struct epitem, rcu); 746 kmem_cache_free(epi_cache, epi); 747 } 748 749 /* 750 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 751 * all the associated resources. Must be called with "mtx" held. 752 */ 753 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 754 { 755 struct file *file = epi->ffd.file; 756 757 lockdep_assert_irqs_enabled(); 758 759 /* 760 * Removes poll wait queue hooks. 761 */ 762 ep_unregister_pollwait(ep, epi); 763 764 /* Remove the current item from the list of epoll hooks */ 765 spin_lock(&file->f_lock); 766 list_del_rcu(&epi->fllink); 767 spin_unlock(&file->f_lock); 768 769 rb_erase_cached(&epi->rbn, &ep->rbr); 770 771 write_lock_irq(&ep->lock); 772 if (ep_is_linked(epi)) 773 list_del_init(&epi->rdllink); 774 write_unlock_irq(&ep->lock); 775 776 wakeup_source_unregister(ep_wakeup_source(epi)); 777 /* 778 * At this point it is safe to free the eventpoll item. Use the union 779 * field epi->rcu, since we are trying to minimize the size of 780 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 781 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 782 * use of the rbn field. 783 */ 784 call_rcu(&epi->rcu, epi_rcu_free); 785 786 atomic_long_dec(&ep->user->epoll_watches); 787 788 return 0; 789 } 790 791 static void ep_free(struct eventpoll *ep) 792 { 793 struct rb_node *rbp; 794 struct epitem *epi; 795 796 /* We need to release all tasks waiting for these file */ 797 if (waitqueue_active(&ep->poll_wait)) 798 ep_poll_safewake(&ep->poll_wait); 799 800 /* 801 * We need to lock this because we could be hit by 802 * eventpoll_release_file() while we're freeing the "struct eventpoll". 803 * We do not need to hold "ep->mtx" here because the epoll file 804 * is on the way to be removed and no one has references to it 805 * anymore. The only hit might come from eventpoll_release_file() but 806 * holding "epmutex" is sufficient here. 807 */ 808 mutex_lock(&epmutex); 809 810 /* 811 * Walks through the whole tree by unregistering poll callbacks. 812 */ 813 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 814 epi = rb_entry(rbp, struct epitem, rbn); 815 816 ep_unregister_pollwait(ep, epi); 817 cond_resched(); 818 } 819 820 /* 821 * Walks through the whole tree by freeing each "struct epitem". At this 822 * point we are sure no poll callbacks will be lingering around, and also by 823 * holding "epmutex" we can be sure that no file cleanup code will hit 824 * us during this operation. So we can avoid the lock on "ep->lock". 825 * We do not need to lock ep->mtx, either, we only do it to prevent 826 * a lockdep warning. 827 */ 828 mutex_lock(&ep->mtx); 829 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 830 epi = rb_entry(rbp, struct epitem, rbn); 831 ep_remove(ep, epi); 832 cond_resched(); 833 } 834 mutex_unlock(&ep->mtx); 835 836 mutex_unlock(&epmutex); 837 mutex_destroy(&ep->mtx); 838 free_uid(ep->user); 839 wakeup_source_unregister(ep->ws); 840 kfree(ep); 841 } 842 843 static int ep_eventpoll_release(struct inode *inode, struct file *file) 844 { 845 struct eventpoll *ep = file->private_data; 846 847 if (ep) 848 ep_free(ep); 849 850 return 0; 851 } 852 853 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 854 void *priv); 855 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 856 poll_table *pt); 857 858 /* 859 * Differs from ep_eventpoll_poll() in that internal callers already have 860 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 861 * is correctly annotated. 862 */ 863 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 864 int depth) 865 { 866 struct eventpoll *ep; 867 bool locked; 868 869 pt->_key = epi->event.events; 870 if (!is_file_epoll(epi->ffd.file)) 871 return vfs_poll(epi->ffd.file, pt) & epi->event.events; 872 873 ep = epi->ffd.file->private_data; 874 poll_wait(epi->ffd.file, &ep->poll_wait, pt); 875 locked = pt && (pt->_qproc == ep_ptable_queue_proc); 876 877 return ep_scan_ready_list(epi->ffd.file->private_data, 878 ep_read_events_proc, &depth, depth, 879 locked) & epi->event.events; 880 } 881 882 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 883 void *priv) 884 { 885 struct epitem *epi, *tmp; 886 poll_table pt; 887 int depth = *(int *)priv; 888 889 init_poll_funcptr(&pt, NULL); 890 depth++; 891 892 list_for_each_entry_safe(epi, tmp, head, rdllink) { 893 if (ep_item_poll(epi, &pt, depth)) { 894 return EPOLLIN | EPOLLRDNORM; 895 } else { 896 /* 897 * Item has been dropped into the ready list by the poll 898 * callback, but it's not actually ready, as far as 899 * caller requested events goes. We can remove it here. 900 */ 901 __pm_relax(ep_wakeup_source(epi)); 902 list_del_init(&epi->rdllink); 903 } 904 } 905 906 return 0; 907 } 908 909 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 910 { 911 struct eventpoll *ep = file->private_data; 912 int depth = 0; 913 914 /* Insert inside our poll wait queue */ 915 poll_wait(file, &ep->poll_wait, wait); 916 917 /* 918 * Proceed to find out if wanted events are really available inside 919 * the ready list. 920 */ 921 return ep_scan_ready_list(ep, ep_read_events_proc, 922 &depth, depth, false); 923 } 924 925 #ifdef CONFIG_PROC_FS 926 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 927 { 928 struct eventpoll *ep = f->private_data; 929 struct rb_node *rbp; 930 931 mutex_lock(&ep->mtx); 932 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 933 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 934 struct inode *inode = file_inode(epi->ffd.file); 935 936 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 937 " pos:%lli ino:%lx sdev:%x\n", 938 epi->ffd.fd, epi->event.events, 939 (long long)epi->event.data, 940 (long long)epi->ffd.file->f_pos, 941 inode->i_ino, inode->i_sb->s_dev); 942 if (seq_has_overflowed(m)) 943 break; 944 } 945 mutex_unlock(&ep->mtx); 946 } 947 #endif 948 949 /* File callbacks that implement the eventpoll file behaviour */ 950 static const struct file_operations eventpoll_fops = { 951 #ifdef CONFIG_PROC_FS 952 .show_fdinfo = ep_show_fdinfo, 953 #endif 954 .release = ep_eventpoll_release, 955 .poll = ep_eventpoll_poll, 956 .llseek = noop_llseek, 957 }; 958 959 /* 960 * This is called from eventpoll_release() to unlink files from the eventpoll 961 * interface. We need to have this facility to cleanup correctly files that are 962 * closed without being removed from the eventpoll interface. 963 */ 964 void eventpoll_release_file(struct file *file) 965 { 966 struct eventpoll *ep; 967 struct epitem *epi, *next; 968 969 /* 970 * We don't want to get "file->f_lock" because it is not 971 * necessary. It is not necessary because we're in the "struct file" 972 * cleanup path, and this means that no one is using this file anymore. 973 * So, for example, epoll_ctl() cannot hit here since if we reach this 974 * point, the file counter already went to zero and fget() would fail. 975 * The only hit might come from ep_free() but by holding the mutex 976 * will correctly serialize the operation. We do need to acquire 977 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 978 * from anywhere but ep_free(). 979 * 980 * Besides, ep_remove() acquires the lock, so we can't hold it here. 981 */ 982 mutex_lock(&epmutex); 983 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 984 ep = epi->ep; 985 mutex_lock_nested(&ep->mtx, 0); 986 ep_remove(ep, epi); 987 mutex_unlock(&ep->mtx); 988 } 989 mutex_unlock(&epmutex); 990 } 991 992 static int ep_alloc(struct eventpoll **pep) 993 { 994 int error; 995 struct user_struct *user; 996 struct eventpoll *ep; 997 998 user = get_current_user(); 999 error = -ENOMEM; 1000 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1001 if (unlikely(!ep)) 1002 goto free_uid; 1003 1004 mutex_init(&ep->mtx); 1005 rwlock_init(&ep->lock); 1006 init_waitqueue_head(&ep->wq); 1007 init_waitqueue_head(&ep->poll_wait); 1008 INIT_LIST_HEAD(&ep->rdllist); 1009 ep->rbr = RB_ROOT_CACHED; 1010 ep->ovflist = EP_UNACTIVE_PTR; 1011 ep->user = user; 1012 1013 *pep = ep; 1014 1015 return 0; 1016 1017 free_uid: 1018 free_uid(user); 1019 return error; 1020 } 1021 1022 /* 1023 * Search the file inside the eventpoll tree. The RB tree operations 1024 * are protected by the "mtx" mutex, and ep_find() must be called with 1025 * "mtx" held. 1026 */ 1027 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1028 { 1029 int kcmp; 1030 struct rb_node *rbp; 1031 struct epitem *epi, *epir = NULL; 1032 struct epoll_filefd ffd; 1033 1034 ep_set_ffd(&ffd, file, fd); 1035 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1036 epi = rb_entry(rbp, struct epitem, rbn); 1037 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1038 if (kcmp > 0) 1039 rbp = rbp->rb_right; 1040 else if (kcmp < 0) 1041 rbp = rbp->rb_left; 1042 else { 1043 epir = epi; 1044 break; 1045 } 1046 } 1047 1048 return epir; 1049 } 1050 1051 #ifdef CONFIG_CHECKPOINT_RESTORE 1052 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1053 { 1054 struct rb_node *rbp; 1055 struct epitem *epi; 1056 1057 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1058 epi = rb_entry(rbp, struct epitem, rbn); 1059 if (epi->ffd.fd == tfd) { 1060 if (toff == 0) 1061 return epi; 1062 else 1063 toff--; 1064 } 1065 cond_resched(); 1066 } 1067 1068 return NULL; 1069 } 1070 1071 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1072 unsigned long toff) 1073 { 1074 struct file *file_raw; 1075 struct eventpoll *ep; 1076 struct epitem *epi; 1077 1078 if (!is_file_epoll(file)) 1079 return ERR_PTR(-EINVAL); 1080 1081 ep = file->private_data; 1082 1083 mutex_lock(&ep->mtx); 1084 epi = ep_find_tfd(ep, tfd, toff); 1085 if (epi) 1086 file_raw = epi->ffd.file; 1087 else 1088 file_raw = ERR_PTR(-ENOENT); 1089 mutex_unlock(&ep->mtx); 1090 1091 return file_raw; 1092 } 1093 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1094 1095 /** 1096 * Adds a new entry to the tail of the list in a lockless way, i.e. 1097 * multiple CPUs are allowed to call this function concurrently. 1098 * 1099 * Beware: it is necessary to prevent any other modifications of the 1100 * existing list until all changes are completed, in other words 1101 * concurrent list_add_tail_lockless() calls should be protected 1102 * with a read lock, where write lock acts as a barrier which 1103 * makes sure all list_add_tail_lockless() calls are fully 1104 * completed. 1105 * 1106 * Also an element can be locklessly added to the list only in one 1107 * direction i.e. either to the tail either to the head, otherwise 1108 * concurrent access will corrupt the list. 1109 * 1110 * Returns %false if element has been already added to the list, %true 1111 * otherwise. 1112 */ 1113 static inline bool list_add_tail_lockless(struct list_head *new, 1114 struct list_head *head) 1115 { 1116 struct list_head *prev; 1117 1118 /* 1119 * This is simple 'new->next = head' operation, but cmpxchg() 1120 * is used in order to detect that same element has been just 1121 * added to the list from another CPU: the winner observes 1122 * new->next == new. 1123 */ 1124 if (cmpxchg(&new->next, new, head) != new) 1125 return false; 1126 1127 /* 1128 * Initially ->next of a new element must be updated with the head 1129 * (we are inserting to the tail) and only then pointers are atomically 1130 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1131 * updated before pointers are actually swapped and pointers are 1132 * swapped before prev->next is updated. 1133 */ 1134 1135 prev = xchg(&head->prev, new); 1136 1137 /* 1138 * It is safe to modify prev->next and new->prev, because a new element 1139 * is added only to the tail and new->next is updated before XCHG. 1140 */ 1141 1142 prev->next = new; 1143 new->prev = prev; 1144 1145 return true; 1146 } 1147 1148 /** 1149 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1150 * i.e. multiple CPUs are allowed to call this function concurrently. 1151 * 1152 * Returns %false if epi element has been already chained, %true otherwise. 1153 */ 1154 static inline bool chain_epi_lockless(struct epitem *epi) 1155 { 1156 struct eventpoll *ep = epi->ep; 1157 1158 /* Check that the same epi has not been just chained from another CPU */ 1159 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1160 return false; 1161 1162 /* Atomically exchange tail */ 1163 epi->next = xchg(&ep->ovflist, epi); 1164 1165 return true; 1166 } 1167 1168 /* 1169 * This is the callback that is passed to the wait queue wakeup 1170 * mechanism. It is called by the stored file descriptors when they 1171 * have events to report. 1172 * 1173 * This callback takes a read lock in order not to content with concurrent 1174 * events from another file descriptors, thus all modifications to ->rdllist 1175 * or ->ovflist are lockless. Read lock is paired with the write lock from 1176 * ep_scan_ready_list(), which stops all list modifications and guarantees 1177 * that lists state is seen correctly. 1178 * 1179 * Another thing worth to mention is that ep_poll_callback() can be called 1180 * concurrently for the same @epi from different CPUs if poll table was inited 1181 * with several wait queues entries. Plural wakeup from different CPUs of a 1182 * single wait queue is serialized by wq.lock, but the case when multiple wait 1183 * queues are used should be detected accordingly. This is detected using 1184 * cmpxchg() operation. 1185 */ 1186 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1187 { 1188 int pwake = 0; 1189 struct epitem *epi = ep_item_from_wait(wait); 1190 struct eventpoll *ep = epi->ep; 1191 __poll_t pollflags = key_to_poll(key); 1192 unsigned long flags; 1193 int ewake = 0; 1194 1195 read_lock_irqsave(&ep->lock, flags); 1196 1197 ep_set_busy_poll_napi_id(epi); 1198 1199 /* 1200 * If the event mask does not contain any poll(2) event, we consider the 1201 * descriptor to be disabled. This condition is likely the effect of the 1202 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1203 * until the next EPOLL_CTL_MOD will be issued. 1204 */ 1205 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1206 goto out_unlock; 1207 1208 /* 1209 * Check the events coming with the callback. At this stage, not 1210 * every device reports the events in the "key" parameter of the 1211 * callback. We need to be able to handle both cases here, hence the 1212 * test for "key" != NULL before the event match test. 1213 */ 1214 if (pollflags && !(pollflags & epi->event.events)) 1215 goto out_unlock; 1216 1217 /* 1218 * If we are transferring events to userspace, we can hold no locks 1219 * (because we're accessing user memory, and because of linux f_op->poll() 1220 * semantics). All the events that happen during that period of time are 1221 * chained in ep->ovflist and requeued later on. 1222 */ 1223 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1224 if (epi->next == EP_UNACTIVE_PTR && 1225 chain_epi_lockless(epi)) 1226 ep_pm_stay_awake_rcu(epi); 1227 goto out_unlock; 1228 } 1229 1230 /* If this file is already in the ready list we exit soon */ 1231 if (!ep_is_linked(epi) && 1232 list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) { 1233 ep_pm_stay_awake_rcu(epi); 1234 } 1235 1236 /* 1237 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1238 * wait list. 1239 */ 1240 if (waitqueue_active(&ep->wq)) { 1241 if ((epi->event.events & EPOLLEXCLUSIVE) && 1242 !(pollflags & POLLFREE)) { 1243 switch (pollflags & EPOLLINOUT_BITS) { 1244 case EPOLLIN: 1245 if (epi->event.events & EPOLLIN) 1246 ewake = 1; 1247 break; 1248 case EPOLLOUT: 1249 if (epi->event.events & EPOLLOUT) 1250 ewake = 1; 1251 break; 1252 case 0: 1253 ewake = 1; 1254 break; 1255 } 1256 } 1257 wake_up(&ep->wq); 1258 } 1259 if (waitqueue_active(&ep->poll_wait)) 1260 pwake++; 1261 1262 out_unlock: 1263 read_unlock_irqrestore(&ep->lock, flags); 1264 1265 /* We have to call this outside the lock */ 1266 if (pwake) 1267 ep_poll_safewake(&ep->poll_wait); 1268 1269 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1270 ewake = 1; 1271 1272 if (pollflags & POLLFREE) { 1273 /* 1274 * If we race with ep_remove_wait_queue() it can miss 1275 * ->whead = NULL and do another remove_wait_queue() after 1276 * us, so we can't use __remove_wait_queue(). 1277 */ 1278 list_del_init(&wait->entry); 1279 /* 1280 * ->whead != NULL protects us from the race with ep_free() 1281 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1282 * held by the caller. Once we nullify it, nothing protects 1283 * ep/epi or even wait. 1284 */ 1285 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1286 } 1287 1288 return ewake; 1289 } 1290 1291 /* 1292 * This is the callback that is used to add our wait queue to the 1293 * target file wakeup lists. 1294 */ 1295 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1296 poll_table *pt) 1297 { 1298 struct epitem *epi = ep_item_from_epqueue(pt); 1299 struct eppoll_entry *pwq; 1300 1301 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1302 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1303 pwq->whead = whead; 1304 pwq->base = epi; 1305 if (epi->event.events & EPOLLEXCLUSIVE) 1306 add_wait_queue_exclusive(whead, &pwq->wait); 1307 else 1308 add_wait_queue(whead, &pwq->wait); 1309 list_add_tail(&pwq->llink, &epi->pwqlist); 1310 epi->nwait++; 1311 } else { 1312 /* We have to signal that an error occurred */ 1313 epi->nwait = -1; 1314 } 1315 } 1316 1317 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1318 { 1319 int kcmp; 1320 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1321 struct epitem *epic; 1322 bool leftmost = true; 1323 1324 while (*p) { 1325 parent = *p; 1326 epic = rb_entry(parent, struct epitem, rbn); 1327 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1328 if (kcmp > 0) { 1329 p = &parent->rb_right; 1330 leftmost = false; 1331 } else 1332 p = &parent->rb_left; 1333 } 1334 rb_link_node(&epi->rbn, parent, p); 1335 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1336 } 1337 1338 1339 1340 #define PATH_ARR_SIZE 5 1341 /* 1342 * These are the number paths of length 1 to 5, that we are allowing to emanate 1343 * from a single file of interest. For example, we allow 1000 paths of length 1344 * 1, to emanate from each file of interest. This essentially represents the 1345 * potential wakeup paths, which need to be limited in order to avoid massive 1346 * uncontrolled wakeup storms. The common use case should be a single ep which 1347 * is connected to n file sources. In this case each file source has 1 path 1348 * of length 1. Thus, the numbers below should be more than sufficient. These 1349 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1350 * and delete can't add additional paths. Protected by the epmutex. 1351 */ 1352 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1353 static int path_count[PATH_ARR_SIZE]; 1354 1355 static int path_count_inc(int nests) 1356 { 1357 /* Allow an arbitrary number of depth 1 paths */ 1358 if (nests == 0) 1359 return 0; 1360 1361 if (++path_count[nests] > path_limits[nests]) 1362 return -1; 1363 return 0; 1364 } 1365 1366 static void path_count_init(void) 1367 { 1368 int i; 1369 1370 for (i = 0; i < PATH_ARR_SIZE; i++) 1371 path_count[i] = 0; 1372 } 1373 1374 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1375 { 1376 int error = 0; 1377 struct file *file = priv; 1378 struct file *child_file; 1379 struct epitem *epi; 1380 1381 /* CTL_DEL can remove links here, but that can't increase our count */ 1382 rcu_read_lock(); 1383 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1384 child_file = epi->ep->file; 1385 if (is_file_epoll(child_file)) { 1386 if (list_empty(&child_file->f_ep_links)) { 1387 if (path_count_inc(call_nests)) { 1388 error = -1; 1389 break; 1390 } 1391 } else { 1392 error = ep_call_nested(&poll_loop_ncalls, 1393 reverse_path_check_proc, 1394 child_file, child_file, 1395 current); 1396 } 1397 if (error != 0) 1398 break; 1399 } else { 1400 printk(KERN_ERR "reverse_path_check_proc: " 1401 "file is not an ep!\n"); 1402 } 1403 } 1404 rcu_read_unlock(); 1405 return error; 1406 } 1407 1408 /** 1409 * reverse_path_check - The tfile_check_list is list of file *, which have 1410 * links that are proposed to be newly added. We need to 1411 * make sure that those added links don't add too many 1412 * paths such that we will spend all our time waking up 1413 * eventpoll objects. 1414 * 1415 * Returns: Returns zero if the proposed links don't create too many paths, 1416 * -1 otherwise. 1417 */ 1418 static int reverse_path_check(void) 1419 { 1420 int error = 0; 1421 struct file *current_file; 1422 1423 /* let's call this for all tfiles */ 1424 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1425 path_count_init(); 1426 error = ep_call_nested(&poll_loop_ncalls, 1427 reverse_path_check_proc, current_file, 1428 current_file, current); 1429 if (error) 1430 break; 1431 } 1432 return error; 1433 } 1434 1435 static int ep_create_wakeup_source(struct epitem *epi) 1436 { 1437 const char *name; 1438 struct wakeup_source *ws; 1439 1440 if (!epi->ep->ws) { 1441 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1442 if (!epi->ep->ws) 1443 return -ENOMEM; 1444 } 1445 1446 name = epi->ffd.file->f_path.dentry->d_name.name; 1447 ws = wakeup_source_register(NULL, name); 1448 1449 if (!ws) 1450 return -ENOMEM; 1451 rcu_assign_pointer(epi->ws, ws); 1452 1453 return 0; 1454 } 1455 1456 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1457 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1458 { 1459 struct wakeup_source *ws = ep_wakeup_source(epi); 1460 1461 RCU_INIT_POINTER(epi->ws, NULL); 1462 1463 /* 1464 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1465 * used internally by wakeup_source_remove, too (called by 1466 * wakeup_source_unregister), so we cannot use call_rcu 1467 */ 1468 synchronize_rcu(); 1469 wakeup_source_unregister(ws); 1470 } 1471 1472 /* 1473 * Must be called with "mtx" held. 1474 */ 1475 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1476 struct file *tfile, int fd, int full_check) 1477 { 1478 int error, pwake = 0; 1479 __poll_t revents; 1480 long user_watches; 1481 struct epitem *epi; 1482 struct ep_pqueue epq; 1483 1484 lockdep_assert_irqs_enabled(); 1485 1486 user_watches = atomic_long_read(&ep->user->epoll_watches); 1487 if (unlikely(user_watches >= max_user_watches)) 1488 return -ENOSPC; 1489 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1490 return -ENOMEM; 1491 1492 /* Item initialization follow here ... */ 1493 INIT_LIST_HEAD(&epi->rdllink); 1494 INIT_LIST_HEAD(&epi->fllink); 1495 INIT_LIST_HEAD(&epi->pwqlist); 1496 epi->ep = ep; 1497 ep_set_ffd(&epi->ffd, tfile, fd); 1498 epi->event = *event; 1499 epi->nwait = 0; 1500 epi->next = EP_UNACTIVE_PTR; 1501 if (epi->event.events & EPOLLWAKEUP) { 1502 error = ep_create_wakeup_source(epi); 1503 if (error) 1504 goto error_create_wakeup_source; 1505 } else { 1506 RCU_INIT_POINTER(epi->ws, NULL); 1507 } 1508 1509 /* Initialize the poll table using the queue callback */ 1510 epq.epi = epi; 1511 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1512 1513 /* 1514 * Attach the item to the poll hooks and get current event bits. 1515 * We can safely use the file* here because its usage count has 1516 * been increased by the caller of this function. Note that after 1517 * this operation completes, the poll callback can start hitting 1518 * the new item. 1519 */ 1520 revents = ep_item_poll(epi, &epq.pt, 1); 1521 1522 /* 1523 * We have to check if something went wrong during the poll wait queue 1524 * install process. Namely an allocation for a wait queue failed due 1525 * high memory pressure. 1526 */ 1527 error = -ENOMEM; 1528 if (epi->nwait < 0) 1529 goto error_unregister; 1530 1531 /* Add the current item to the list of active epoll hook for this file */ 1532 spin_lock(&tfile->f_lock); 1533 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); 1534 spin_unlock(&tfile->f_lock); 1535 1536 /* 1537 * Add the current item to the RB tree. All RB tree operations are 1538 * protected by "mtx", and ep_insert() is called with "mtx" held. 1539 */ 1540 ep_rbtree_insert(ep, epi); 1541 1542 /* now check if we've created too many backpaths */ 1543 error = -EINVAL; 1544 if (full_check && reverse_path_check()) 1545 goto error_remove_epi; 1546 1547 /* We have to drop the new item inside our item list to keep track of it */ 1548 write_lock_irq(&ep->lock); 1549 1550 /* record NAPI ID of new item if present */ 1551 ep_set_busy_poll_napi_id(epi); 1552 1553 /* If the file is already "ready" we drop it inside the ready list */ 1554 if (revents && !ep_is_linked(epi)) { 1555 list_add_tail(&epi->rdllink, &ep->rdllist); 1556 ep_pm_stay_awake(epi); 1557 1558 /* Notify waiting tasks that events are available */ 1559 if (waitqueue_active(&ep->wq)) 1560 wake_up(&ep->wq); 1561 if (waitqueue_active(&ep->poll_wait)) 1562 pwake++; 1563 } 1564 1565 write_unlock_irq(&ep->lock); 1566 1567 atomic_long_inc(&ep->user->epoll_watches); 1568 1569 /* We have to call this outside the lock */ 1570 if (pwake) 1571 ep_poll_safewake(&ep->poll_wait); 1572 1573 return 0; 1574 1575 error_remove_epi: 1576 spin_lock(&tfile->f_lock); 1577 list_del_rcu(&epi->fllink); 1578 spin_unlock(&tfile->f_lock); 1579 1580 rb_erase_cached(&epi->rbn, &ep->rbr); 1581 1582 error_unregister: 1583 ep_unregister_pollwait(ep, epi); 1584 1585 /* 1586 * We need to do this because an event could have been arrived on some 1587 * allocated wait queue. Note that we don't care about the ep->ovflist 1588 * list, since that is used/cleaned only inside a section bound by "mtx". 1589 * And ep_insert() is called with "mtx" held. 1590 */ 1591 write_lock_irq(&ep->lock); 1592 if (ep_is_linked(epi)) 1593 list_del_init(&epi->rdllink); 1594 write_unlock_irq(&ep->lock); 1595 1596 wakeup_source_unregister(ep_wakeup_source(epi)); 1597 1598 error_create_wakeup_source: 1599 kmem_cache_free(epi_cache, epi); 1600 1601 return error; 1602 } 1603 1604 /* 1605 * Modify the interest event mask by dropping an event if the new mask 1606 * has a match in the current file status. Must be called with "mtx" held. 1607 */ 1608 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1609 const struct epoll_event *event) 1610 { 1611 int pwake = 0; 1612 poll_table pt; 1613 1614 lockdep_assert_irqs_enabled(); 1615 1616 init_poll_funcptr(&pt, NULL); 1617 1618 /* 1619 * Set the new event interest mask before calling f_op->poll(); 1620 * otherwise we might miss an event that happens between the 1621 * f_op->poll() call and the new event set registering. 1622 */ 1623 epi->event.events = event->events; /* need barrier below */ 1624 epi->event.data = event->data; /* protected by mtx */ 1625 if (epi->event.events & EPOLLWAKEUP) { 1626 if (!ep_has_wakeup_source(epi)) 1627 ep_create_wakeup_source(epi); 1628 } else if (ep_has_wakeup_source(epi)) { 1629 ep_destroy_wakeup_source(epi); 1630 } 1631 1632 /* 1633 * The following barrier has two effects: 1634 * 1635 * 1) Flush epi changes above to other CPUs. This ensures 1636 * we do not miss events from ep_poll_callback if an 1637 * event occurs immediately after we call f_op->poll(). 1638 * We need this because we did not take ep->lock while 1639 * changing epi above (but ep_poll_callback does take 1640 * ep->lock). 1641 * 1642 * 2) We also need to ensure we do not miss _past_ events 1643 * when calling f_op->poll(). This barrier also 1644 * pairs with the barrier in wq_has_sleeper (see 1645 * comments for wq_has_sleeper). 1646 * 1647 * This barrier will now guarantee ep_poll_callback or f_op->poll 1648 * (or both) will notice the readiness of an item. 1649 */ 1650 smp_mb(); 1651 1652 /* 1653 * Get current event bits. We can safely use the file* here because 1654 * its usage count has been increased by the caller of this function. 1655 * If the item is "hot" and it is not registered inside the ready 1656 * list, push it inside. 1657 */ 1658 if (ep_item_poll(epi, &pt, 1)) { 1659 write_lock_irq(&ep->lock); 1660 if (!ep_is_linked(epi)) { 1661 list_add_tail(&epi->rdllink, &ep->rdllist); 1662 ep_pm_stay_awake(epi); 1663 1664 /* Notify waiting tasks that events are available */ 1665 if (waitqueue_active(&ep->wq)) 1666 wake_up(&ep->wq); 1667 if (waitqueue_active(&ep->poll_wait)) 1668 pwake++; 1669 } 1670 write_unlock_irq(&ep->lock); 1671 } 1672 1673 /* We have to call this outside the lock */ 1674 if (pwake) 1675 ep_poll_safewake(&ep->poll_wait); 1676 1677 return 0; 1678 } 1679 1680 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1681 void *priv) 1682 { 1683 struct ep_send_events_data *esed = priv; 1684 __poll_t revents; 1685 struct epitem *epi, *tmp; 1686 struct epoll_event __user *uevent = esed->events; 1687 struct wakeup_source *ws; 1688 poll_table pt; 1689 1690 init_poll_funcptr(&pt, NULL); 1691 esed->res = 0; 1692 1693 /* 1694 * We can loop without lock because we are passed a task private list. 1695 * Items cannot vanish during the loop because ep_scan_ready_list() is 1696 * holding "mtx" during this call. 1697 */ 1698 lockdep_assert_held(&ep->mtx); 1699 1700 list_for_each_entry_safe(epi, tmp, head, rdllink) { 1701 if (esed->res >= esed->maxevents) 1702 break; 1703 1704 /* 1705 * Activate ep->ws before deactivating epi->ws to prevent 1706 * triggering auto-suspend here (in case we reactive epi->ws 1707 * below). 1708 * 1709 * This could be rearranged to delay the deactivation of epi->ws 1710 * instead, but then epi->ws would temporarily be out of sync 1711 * with ep_is_linked(). 1712 */ 1713 ws = ep_wakeup_source(epi); 1714 if (ws) { 1715 if (ws->active) 1716 __pm_stay_awake(ep->ws); 1717 __pm_relax(ws); 1718 } 1719 1720 list_del_init(&epi->rdllink); 1721 1722 /* 1723 * If the event mask intersect the caller-requested one, 1724 * deliver the event to userspace. Again, ep_scan_ready_list() 1725 * is holding ep->mtx, so no operations coming from userspace 1726 * can change the item. 1727 */ 1728 revents = ep_item_poll(epi, &pt, 1); 1729 if (!revents) 1730 continue; 1731 1732 if (__put_user(revents, &uevent->events) || 1733 __put_user(epi->event.data, &uevent->data)) { 1734 list_add(&epi->rdllink, head); 1735 ep_pm_stay_awake(epi); 1736 if (!esed->res) 1737 esed->res = -EFAULT; 1738 return 0; 1739 } 1740 esed->res++; 1741 uevent++; 1742 if (epi->event.events & EPOLLONESHOT) 1743 epi->event.events &= EP_PRIVATE_BITS; 1744 else if (!(epi->event.events & EPOLLET)) { 1745 /* 1746 * If this file has been added with Level 1747 * Trigger mode, we need to insert back inside 1748 * the ready list, so that the next call to 1749 * epoll_wait() will check again the events 1750 * availability. At this point, no one can insert 1751 * into ep->rdllist besides us. The epoll_ctl() 1752 * callers are locked out by 1753 * ep_scan_ready_list() holding "mtx" and the 1754 * poll callback will queue them in ep->ovflist. 1755 */ 1756 list_add_tail(&epi->rdllink, &ep->rdllist); 1757 ep_pm_stay_awake(epi); 1758 } 1759 } 1760 1761 return 0; 1762 } 1763 1764 static int ep_send_events(struct eventpoll *ep, 1765 struct epoll_event __user *events, int maxevents) 1766 { 1767 struct ep_send_events_data esed; 1768 1769 esed.maxevents = maxevents; 1770 esed.events = events; 1771 1772 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1773 return esed.res; 1774 } 1775 1776 static inline struct timespec64 ep_set_mstimeout(long ms) 1777 { 1778 struct timespec64 now, ts = { 1779 .tv_sec = ms / MSEC_PER_SEC, 1780 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1781 }; 1782 1783 ktime_get_ts64(&now); 1784 return timespec64_add_safe(now, ts); 1785 } 1786 1787 /** 1788 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1789 * event buffer. 1790 * 1791 * @ep: Pointer to the eventpoll context. 1792 * @events: Pointer to the userspace buffer where the ready events should be 1793 * stored. 1794 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1795 * @timeout: Maximum timeout for the ready events fetch operation, in 1796 * milliseconds. If the @timeout is zero, the function will not block, 1797 * while if the @timeout is less than zero, the function will block 1798 * until at least one event has been retrieved (or an error 1799 * occurred). 1800 * 1801 * Returns: Returns the number of ready events which have been fetched, or an 1802 * error code, in case of error. 1803 */ 1804 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1805 int maxevents, long timeout) 1806 { 1807 int res = 0, eavail, timed_out = 0; 1808 u64 slack = 0; 1809 bool waiter = false; 1810 wait_queue_entry_t wait; 1811 ktime_t expires, *to = NULL; 1812 1813 lockdep_assert_irqs_enabled(); 1814 1815 if (timeout > 0) { 1816 struct timespec64 end_time = ep_set_mstimeout(timeout); 1817 1818 slack = select_estimate_accuracy(&end_time); 1819 to = &expires; 1820 *to = timespec64_to_ktime(end_time); 1821 } else if (timeout == 0) { 1822 /* 1823 * Avoid the unnecessary trip to the wait queue loop, if the 1824 * caller specified a non blocking operation. We still need 1825 * lock because we could race and not see an epi being added 1826 * to the ready list while in irq callback. Thus incorrectly 1827 * returning 0 back to userspace. 1828 */ 1829 timed_out = 1; 1830 1831 write_lock_irq(&ep->lock); 1832 eavail = ep_events_available(ep); 1833 write_unlock_irq(&ep->lock); 1834 1835 goto send_events; 1836 } 1837 1838 fetch_events: 1839 1840 if (!ep_events_available(ep)) 1841 ep_busy_loop(ep, timed_out); 1842 1843 eavail = ep_events_available(ep); 1844 if (eavail) 1845 goto send_events; 1846 1847 /* 1848 * Busy poll timed out. Drop NAPI ID for now, we can add 1849 * it back in when we have moved a socket with a valid NAPI 1850 * ID onto the ready list. 1851 */ 1852 ep_reset_busy_poll_napi_id(ep); 1853 1854 /* 1855 * We don't have any available event to return to the caller. We need 1856 * to sleep here, and we will be woken by ep_poll_callback() when events 1857 * become available. 1858 */ 1859 if (!waiter) { 1860 waiter = true; 1861 init_waitqueue_entry(&wait, current); 1862 1863 spin_lock_irq(&ep->wq.lock); 1864 __add_wait_queue_exclusive(&ep->wq, &wait); 1865 spin_unlock_irq(&ep->wq.lock); 1866 } 1867 1868 for (;;) { 1869 /* 1870 * We don't want to sleep if the ep_poll_callback() sends us 1871 * a wakeup in between. That's why we set the task state 1872 * to TASK_INTERRUPTIBLE before doing the checks. 1873 */ 1874 set_current_state(TASK_INTERRUPTIBLE); 1875 /* 1876 * Always short-circuit for fatal signals to allow 1877 * threads to make a timely exit without the chance of 1878 * finding more events available and fetching 1879 * repeatedly. 1880 */ 1881 if (fatal_signal_pending(current)) { 1882 res = -EINTR; 1883 break; 1884 } 1885 1886 eavail = ep_events_available(ep); 1887 if (eavail) 1888 break; 1889 if (signal_pending(current)) { 1890 res = -EINTR; 1891 break; 1892 } 1893 1894 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) { 1895 timed_out = 1; 1896 break; 1897 } 1898 } 1899 1900 __set_current_state(TASK_RUNNING); 1901 1902 send_events: 1903 /* 1904 * Try to transfer events to user space. In case we get 0 events and 1905 * there's still timeout left over, we go trying again in search of 1906 * more luck. 1907 */ 1908 if (!res && eavail && 1909 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1910 goto fetch_events; 1911 1912 if (waiter) { 1913 spin_lock_irq(&ep->wq.lock); 1914 __remove_wait_queue(&ep->wq, &wait); 1915 spin_unlock_irq(&ep->wq.lock); 1916 } 1917 1918 return res; 1919 } 1920 1921 /** 1922 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1923 * API, to verify that adding an epoll file inside another 1924 * epoll structure, does not violate the constraints, in 1925 * terms of closed loops, or too deep chains (which can 1926 * result in excessive stack usage). 1927 * 1928 * @priv: Pointer to the epoll file to be currently checked. 1929 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1930 * data structure pointer. 1931 * @call_nests: Current dept of the @ep_call_nested() call stack. 1932 * 1933 * Returns: Returns zero if adding the epoll @file inside current epoll 1934 * structure @ep does not violate the constraints, or -1 otherwise. 1935 */ 1936 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1937 { 1938 int error = 0; 1939 struct file *file = priv; 1940 struct eventpoll *ep = file->private_data; 1941 struct eventpoll *ep_tovisit; 1942 struct rb_node *rbp; 1943 struct epitem *epi; 1944 1945 mutex_lock_nested(&ep->mtx, call_nests + 1); 1946 ep->visited = 1; 1947 list_add(&ep->visited_list_link, &visited_list); 1948 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1949 epi = rb_entry(rbp, struct epitem, rbn); 1950 if (unlikely(is_file_epoll(epi->ffd.file))) { 1951 ep_tovisit = epi->ffd.file->private_data; 1952 if (ep_tovisit->visited) 1953 continue; 1954 error = ep_call_nested(&poll_loop_ncalls, 1955 ep_loop_check_proc, epi->ffd.file, 1956 ep_tovisit, current); 1957 if (error != 0) 1958 break; 1959 } else { 1960 /* 1961 * If we've reached a file that is not associated with 1962 * an ep, then we need to check if the newly added 1963 * links are going to add too many wakeup paths. We do 1964 * this by adding it to the tfile_check_list, if it's 1965 * not already there, and calling reverse_path_check() 1966 * during ep_insert(). 1967 */ 1968 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1969 list_add(&epi->ffd.file->f_tfile_llink, 1970 &tfile_check_list); 1971 } 1972 } 1973 mutex_unlock(&ep->mtx); 1974 1975 return error; 1976 } 1977 1978 /** 1979 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1980 * another epoll file (represented by @ep) does not create 1981 * closed loops or too deep chains. 1982 * 1983 * @ep: Pointer to the epoll private data structure. 1984 * @file: Pointer to the epoll file to be checked. 1985 * 1986 * Returns: Returns zero if adding the epoll @file inside current epoll 1987 * structure @ep does not violate the constraints, or -1 otherwise. 1988 */ 1989 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1990 { 1991 int ret; 1992 struct eventpoll *ep_cur, *ep_next; 1993 1994 ret = ep_call_nested(&poll_loop_ncalls, 1995 ep_loop_check_proc, file, ep, current); 1996 /* clear visited list */ 1997 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1998 visited_list_link) { 1999 ep_cur->visited = 0; 2000 list_del(&ep_cur->visited_list_link); 2001 } 2002 return ret; 2003 } 2004 2005 static void clear_tfile_check_list(void) 2006 { 2007 struct file *file; 2008 2009 /* first clear the tfile_check_list */ 2010 while (!list_empty(&tfile_check_list)) { 2011 file = list_first_entry(&tfile_check_list, struct file, 2012 f_tfile_llink); 2013 list_del_init(&file->f_tfile_llink); 2014 } 2015 INIT_LIST_HEAD(&tfile_check_list); 2016 } 2017 2018 /* 2019 * Open an eventpoll file descriptor. 2020 */ 2021 static int do_epoll_create(int flags) 2022 { 2023 int error, fd; 2024 struct eventpoll *ep = NULL; 2025 struct file *file; 2026 2027 /* Check the EPOLL_* constant for consistency. */ 2028 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2029 2030 if (flags & ~EPOLL_CLOEXEC) 2031 return -EINVAL; 2032 /* 2033 * Create the internal data structure ("struct eventpoll"). 2034 */ 2035 error = ep_alloc(&ep); 2036 if (error < 0) 2037 return error; 2038 /* 2039 * Creates all the items needed to setup an eventpoll file. That is, 2040 * a file structure and a free file descriptor. 2041 */ 2042 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2043 if (fd < 0) { 2044 error = fd; 2045 goto out_free_ep; 2046 } 2047 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2048 O_RDWR | (flags & O_CLOEXEC)); 2049 if (IS_ERR(file)) { 2050 error = PTR_ERR(file); 2051 goto out_free_fd; 2052 } 2053 ep->file = file; 2054 fd_install(fd, file); 2055 return fd; 2056 2057 out_free_fd: 2058 put_unused_fd(fd); 2059 out_free_ep: 2060 ep_free(ep); 2061 return error; 2062 } 2063 2064 SYSCALL_DEFINE1(epoll_create1, int, flags) 2065 { 2066 return do_epoll_create(flags); 2067 } 2068 2069 SYSCALL_DEFINE1(epoll_create, int, size) 2070 { 2071 if (size <= 0) 2072 return -EINVAL; 2073 2074 return do_epoll_create(0); 2075 } 2076 2077 /* 2078 * The following function implements the controller interface for 2079 * the eventpoll file that enables the insertion/removal/change of 2080 * file descriptors inside the interest set. 2081 */ 2082 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2083 struct epoll_event __user *, event) 2084 { 2085 int error; 2086 int full_check = 0; 2087 struct fd f, tf; 2088 struct eventpoll *ep; 2089 struct epitem *epi; 2090 struct epoll_event epds; 2091 struct eventpoll *tep = NULL; 2092 2093 error = -EFAULT; 2094 if (ep_op_has_event(op) && 2095 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2096 goto error_return; 2097 2098 error = -EBADF; 2099 f = fdget(epfd); 2100 if (!f.file) 2101 goto error_return; 2102 2103 /* Get the "struct file *" for the target file */ 2104 tf = fdget(fd); 2105 if (!tf.file) 2106 goto error_fput; 2107 2108 /* The target file descriptor must support poll */ 2109 error = -EPERM; 2110 if (!file_can_poll(tf.file)) 2111 goto error_tgt_fput; 2112 2113 /* Check if EPOLLWAKEUP is allowed */ 2114 if (ep_op_has_event(op)) 2115 ep_take_care_of_epollwakeup(&epds); 2116 2117 /* 2118 * We have to check that the file structure underneath the file descriptor 2119 * the user passed to us _is_ an eventpoll file. And also we do not permit 2120 * adding an epoll file descriptor inside itself. 2121 */ 2122 error = -EINVAL; 2123 if (f.file == tf.file || !is_file_epoll(f.file)) 2124 goto error_tgt_fput; 2125 2126 /* 2127 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2128 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2129 * Also, we do not currently supported nested exclusive wakeups. 2130 */ 2131 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) { 2132 if (op == EPOLL_CTL_MOD) 2133 goto error_tgt_fput; 2134 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2135 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS))) 2136 goto error_tgt_fput; 2137 } 2138 2139 /* 2140 * At this point it is safe to assume that the "private_data" contains 2141 * our own data structure. 2142 */ 2143 ep = f.file->private_data; 2144 2145 /* 2146 * When we insert an epoll file descriptor, inside another epoll file 2147 * descriptor, there is the change of creating closed loops, which are 2148 * better be handled here, than in more critical paths. While we are 2149 * checking for loops we also determine the list of files reachable 2150 * and hang them on the tfile_check_list, so we can check that we 2151 * haven't created too many possible wakeup paths. 2152 * 2153 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2154 * the epoll file descriptor is attaching directly to a wakeup source, 2155 * unless the epoll file descriptor is nested. The purpose of taking the 2156 * 'epmutex' on add is to prevent complex toplogies such as loops and 2157 * deep wakeup paths from forming in parallel through multiple 2158 * EPOLL_CTL_ADD operations. 2159 */ 2160 mutex_lock_nested(&ep->mtx, 0); 2161 if (op == EPOLL_CTL_ADD) { 2162 if (!list_empty(&f.file->f_ep_links) || 2163 is_file_epoll(tf.file)) { 2164 full_check = 1; 2165 mutex_unlock(&ep->mtx); 2166 mutex_lock(&epmutex); 2167 if (is_file_epoll(tf.file)) { 2168 error = -ELOOP; 2169 if (ep_loop_check(ep, tf.file) != 0) { 2170 clear_tfile_check_list(); 2171 goto error_tgt_fput; 2172 } 2173 } else 2174 list_add(&tf.file->f_tfile_llink, 2175 &tfile_check_list); 2176 mutex_lock_nested(&ep->mtx, 0); 2177 if (is_file_epoll(tf.file)) { 2178 tep = tf.file->private_data; 2179 mutex_lock_nested(&tep->mtx, 1); 2180 } 2181 } 2182 } 2183 2184 /* 2185 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 2186 * above, we can be sure to be able to use the item looked up by 2187 * ep_find() till we release the mutex. 2188 */ 2189 epi = ep_find(ep, tf.file, fd); 2190 2191 error = -EINVAL; 2192 switch (op) { 2193 case EPOLL_CTL_ADD: 2194 if (!epi) { 2195 epds.events |= EPOLLERR | EPOLLHUP; 2196 error = ep_insert(ep, &epds, tf.file, fd, full_check); 2197 } else 2198 error = -EEXIST; 2199 if (full_check) 2200 clear_tfile_check_list(); 2201 break; 2202 case EPOLL_CTL_DEL: 2203 if (epi) 2204 error = ep_remove(ep, epi); 2205 else 2206 error = -ENOENT; 2207 break; 2208 case EPOLL_CTL_MOD: 2209 if (epi) { 2210 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2211 epds.events |= EPOLLERR | EPOLLHUP; 2212 error = ep_modify(ep, epi, &epds); 2213 } 2214 } else 2215 error = -ENOENT; 2216 break; 2217 } 2218 if (tep != NULL) 2219 mutex_unlock(&tep->mtx); 2220 mutex_unlock(&ep->mtx); 2221 2222 error_tgt_fput: 2223 if (full_check) 2224 mutex_unlock(&epmutex); 2225 2226 fdput(tf); 2227 error_fput: 2228 fdput(f); 2229 error_return: 2230 2231 return error; 2232 } 2233 2234 /* 2235 * Implement the event wait interface for the eventpoll file. It is the kernel 2236 * part of the user space epoll_wait(2). 2237 */ 2238 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2239 int maxevents, int timeout) 2240 { 2241 int error; 2242 struct fd f; 2243 struct eventpoll *ep; 2244 2245 /* The maximum number of event must be greater than zero */ 2246 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2247 return -EINVAL; 2248 2249 /* Verify that the area passed by the user is writeable */ 2250 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2251 return -EFAULT; 2252 2253 /* Get the "struct file *" for the eventpoll file */ 2254 f = fdget(epfd); 2255 if (!f.file) 2256 return -EBADF; 2257 2258 /* 2259 * We have to check that the file structure underneath the fd 2260 * the user passed to us _is_ an eventpoll file. 2261 */ 2262 error = -EINVAL; 2263 if (!is_file_epoll(f.file)) 2264 goto error_fput; 2265 2266 /* 2267 * At this point it is safe to assume that the "private_data" contains 2268 * our own data structure. 2269 */ 2270 ep = f.file->private_data; 2271 2272 /* Time to fish for events ... */ 2273 error = ep_poll(ep, events, maxevents, timeout); 2274 2275 error_fput: 2276 fdput(f); 2277 return error; 2278 } 2279 2280 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2281 int, maxevents, int, timeout) 2282 { 2283 return do_epoll_wait(epfd, events, maxevents, timeout); 2284 } 2285 2286 /* 2287 * Implement the event wait interface for the eventpoll file. It is the kernel 2288 * part of the user space epoll_pwait(2). 2289 */ 2290 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2291 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2292 size_t, sigsetsize) 2293 { 2294 int error; 2295 2296 /* 2297 * If the caller wants a certain signal mask to be set during the wait, 2298 * we apply it here. 2299 */ 2300 error = set_user_sigmask(sigmask, sigsetsize); 2301 if (error) 2302 return error; 2303 2304 error = do_epoll_wait(epfd, events, maxevents, timeout); 2305 restore_saved_sigmask_unless(error == -EINTR); 2306 2307 return error; 2308 } 2309 2310 #ifdef CONFIG_COMPAT 2311 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2312 struct epoll_event __user *, events, 2313 int, maxevents, int, timeout, 2314 const compat_sigset_t __user *, sigmask, 2315 compat_size_t, sigsetsize) 2316 { 2317 long err; 2318 2319 /* 2320 * If the caller wants a certain signal mask to be set during the wait, 2321 * we apply it here. 2322 */ 2323 err = set_compat_user_sigmask(sigmask, sigsetsize); 2324 if (err) 2325 return err; 2326 2327 err = do_epoll_wait(epfd, events, maxevents, timeout); 2328 restore_saved_sigmask_unless(err == -EINTR); 2329 2330 return err; 2331 } 2332 #endif 2333 2334 static int __init eventpoll_init(void) 2335 { 2336 struct sysinfo si; 2337 2338 si_meminfo(&si); 2339 /* 2340 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2341 */ 2342 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2343 EP_ITEM_COST; 2344 BUG_ON(max_user_watches < 0); 2345 2346 /* 2347 * Initialize the structure used to perform epoll file descriptor 2348 * inclusion loops checks. 2349 */ 2350 ep_nested_calls_init(&poll_loop_ncalls); 2351 2352 /* 2353 * We can have many thousands of epitems, so prevent this from 2354 * using an extra cache line on 64-bit (and smaller) CPUs 2355 */ 2356 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2357 2358 /* Allocates slab cache used to allocate "struct epitem" items */ 2359 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2360 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2361 2362 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2363 pwq_cache = kmem_cache_create("eventpoll_pwq", 2364 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2365 2366 return 0; 2367 } 2368 fs_initcall(eventpoll_init); 2369