1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/signal.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/device.h> 37 #include <linux/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 #include <linux/proc_fs.h> 42 #include <linux/seq_file.h> 43 #include <linux/compat.h> 44 #include <linux/rculist.h> 45 #include <net/busy_poll.h> 46 47 /* 48 * LOCKING: 49 * There are three level of locking required by epoll : 50 * 51 * 1) epmutex (mutex) 52 * 2) ep->mtx (mutex) 53 * 3) ep->lock (rwlock) 54 * 55 * The acquire order is the one listed above, from 1 to 3. 56 * We need a rwlock (ep->lock) because we manipulate objects 57 * from inside the poll callback, that might be triggered from 58 * a wake_up() that in turn might be called from IRQ context. 59 * So we can't sleep inside the poll callback and hence we need 60 * a spinlock. During the event transfer loop (from kernel to 61 * user space) we could end up sleeping due a copy_to_user(), so 62 * we need a lock that will allow us to sleep. This lock is a 63 * mutex (ep->mtx). It is acquired during the event transfer loop, 64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 65 * Then we also need a global mutex to serialize eventpoll_release_file() 66 * and ep_free(). 67 * This mutex is acquired by ep_free() during the epoll file 68 * cleanup path and it is also acquired by eventpoll_release_file() 69 * if a file has been pushed inside an epoll set and it is then 70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 71 * It is also acquired when inserting an epoll fd onto another epoll 72 * fd. We do this so that we walk the epoll tree and ensure that this 73 * insertion does not create a cycle of epoll file descriptors, which 74 * could lead to deadlock. We need a global mutex to prevent two 75 * simultaneous inserts (A into B and B into A) from racing and 76 * constructing a cycle without either insert observing that it is 77 * going to. 78 * It is necessary to acquire multiple "ep->mtx"es at once in the 79 * case when one epoll fd is added to another. In this case, we 80 * always acquire the locks in the order of nesting (i.e. after 81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 82 * before e2->mtx). Since we disallow cycles of epoll file 83 * descriptors, this ensures that the mutexes are well-ordered. In 84 * order to communicate this nesting to lockdep, when walking a tree 85 * of epoll file descriptors, we use the current recursion depth as 86 * the lockdep subkey. 87 * It is possible to drop the "ep->mtx" and to use the global 88 * mutex "epmutex" (together with "ep->lock") to have it working, 89 * but having "ep->mtx" will make the interface more scalable. 90 * Events that require holding "epmutex" are very rare, while for 91 * normal operations the epoll private "ep->mtx" will guarantee 92 * a better scalability. 93 */ 94 95 /* Epoll private bits inside the event mask */ 96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 97 98 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 99 100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 102 103 /* Maximum number of nesting allowed inside epoll sets */ 104 #define EP_MAX_NESTS 4 105 106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 107 108 #define EP_UNACTIVE_PTR ((void *) -1L) 109 110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 111 112 struct epoll_filefd { 113 struct file *file; 114 int fd; 115 } __packed; 116 117 /* 118 * Structure used to track possible nested calls, for too deep recursions 119 * and loop cycles. 120 */ 121 struct nested_call_node { 122 struct list_head llink; 123 void *cookie; 124 void *ctx; 125 }; 126 127 /* 128 * This structure is used as collector for nested calls, to check for 129 * maximum recursion dept and loop cycles. 130 */ 131 struct nested_calls { 132 struct list_head tasks_call_list; 133 spinlock_t lock; 134 }; 135 136 /* 137 * Each file descriptor added to the eventpoll interface will 138 * have an entry of this type linked to the "rbr" RB tree. 139 * Avoid increasing the size of this struct, there can be many thousands 140 * of these on a server and we do not want this to take another cache line. 141 */ 142 struct epitem { 143 union { 144 /* RB tree node links this structure to the eventpoll RB tree */ 145 struct rb_node rbn; 146 /* Used to free the struct epitem */ 147 struct rcu_head rcu; 148 }; 149 150 /* List header used to link this structure to the eventpoll ready list */ 151 struct list_head rdllink; 152 153 /* 154 * Works together "struct eventpoll"->ovflist in keeping the 155 * single linked chain of items. 156 */ 157 struct epitem *next; 158 159 /* The file descriptor information this item refers to */ 160 struct epoll_filefd ffd; 161 162 /* Number of active wait queue attached to poll operations */ 163 int nwait; 164 165 /* List containing poll wait queues */ 166 struct list_head pwqlist; 167 168 /* The "container" of this item */ 169 struct eventpoll *ep; 170 171 /* List header used to link this item to the "struct file" items list */ 172 struct list_head fllink; 173 174 /* wakeup_source used when EPOLLWAKEUP is set */ 175 struct wakeup_source __rcu *ws; 176 177 /* The structure that describe the interested events and the source fd */ 178 struct epoll_event event; 179 }; 180 181 /* 182 * This structure is stored inside the "private_data" member of the file 183 * structure and represents the main data structure for the eventpoll 184 * interface. 185 */ 186 struct eventpoll { 187 /* 188 * This mutex is used to ensure that files are not removed 189 * while epoll is using them. This is held during the event 190 * collection loop, the file cleanup path, the epoll file exit 191 * code and the ctl operations. 192 */ 193 struct mutex mtx; 194 195 /* Wait queue used by sys_epoll_wait() */ 196 wait_queue_head_t wq; 197 198 /* Wait queue used by file->poll() */ 199 wait_queue_head_t poll_wait; 200 201 /* List of ready file descriptors */ 202 struct list_head rdllist; 203 204 /* Lock which protects rdllist and ovflist */ 205 rwlock_t lock; 206 207 /* RB tree root used to store monitored fd structs */ 208 struct rb_root_cached rbr; 209 210 /* 211 * This is a single linked list that chains all the "struct epitem" that 212 * happened while transferring ready events to userspace w/out 213 * holding ->lock. 214 */ 215 struct epitem *ovflist; 216 217 /* wakeup_source used when ep_scan_ready_list is running */ 218 struct wakeup_source *ws; 219 220 /* The user that created the eventpoll descriptor */ 221 struct user_struct *user; 222 223 struct file *file; 224 225 /* used to optimize loop detection check */ 226 int visited; 227 struct list_head visited_list_link; 228 229 #ifdef CONFIG_NET_RX_BUSY_POLL 230 /* used to track busy poll napi_id */ 231 unsigned int napi_id; 232 #endif 233 }; 234 235 /* Wait structure used by the poll hooks */ 236 struct eppoll_entry { 237 /* List header used to link this structure to the "struct epitem" */ 238 struct list_head llink; 239 240 /* The "base" pointer is set to the container "struct epitem" */ 241 struct epitem *base; 242 243 /* 244 * Wait queue item that will be linked to the target file wait 245 * queue head. 246 */ 247 wait_queue_entry_t wait; 248 249 /* The wait queue head that linked the "wait" wait queue item */ 250 wait_queue_head_t *whead; 251 }; 252 253 /* Wrapper struct used by poll queueing */ 254 struct ep_pqueue { 255 poll_table pt; 256 struct epitem *epi; 257 }; 258 259 /* Used by the ep_send_events() function as callback private data */ 260 struct ep_send_events_data { 261 int maxevents; 262 struct epoll_event __user *events; 263 int res; 264 }; 265 266 /* 267 * Configuration options available inside /proc/sys/fs/epoll/ 268 */ 269 /* Maximum number of epoll watched descriptors, per user */ 270 static long max_user_watches __read_mostly; 271 272 /* 273 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 274 */ 275 static DEFINE_MUTEX(epmutex); 276 277 /* Used to check for epoll file descriptor inclusion loops */ 278 static struct nested_calls poll_loop_ncalls; 279 280 /* Slab cache used to allocate "struct epitem" */ 281 static struct kmem_cache *epi_cache __read_mostly; 282 283 /* Slab cache used to allocate "struct eppoll_entry" */ 284 static struct kmem_cache *pwq_cache __read_mostly; 285 286 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 287 static LIST_HEAD(visited_list); 288 289 /* 290 * List of files with newly added links, where we may need to limit the number 291 * of emanating paths. Protected by the epmutex. 292 */ 293 static LIST_HEAD(tfile_check_list); 294 295 #ifdef CONFIG_SYSCTL 296 297 #include <linux/sysctl.h> 298 299 static long zero; 300 static long long_max = LONG_MAX; 301 302 struct ctl_table epoll_table[] = { 303 { 304 .procname = "max_user_watches", 305 .data = &max_user_watches, 306 .maxlen = sizeof(max_user_watches), 307 .mode = 0644, 308 .proc_handler = proc_doulongvec_minmax, 309 .extra1 = &zero, 310 .extra2 = &long_max, 311 }, 312 { } 313 }; 314 #endif /* CONFIG_SYSCTL */ 315 316 static const struct file_operations eventpoll_fops; 317 318 static inline int is_file_epoll(struct file *f) 319 { 320 return f->f_op == &eventpoll_fops; 321 } 322 323 /* Setup the structure that is used as key for the RB tree */ 324 static inline void ep_set_ffd(struct epoll_filefd *ffd, 325 struct file *file, int fd) 326 { 327 ffd->file = file; 328 ffd->fd = fd; 329 } 330 331 /* Compare RB tree keys */ 332 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 333 struct epoll_filefd *p2) 334 { 335 return (p1->file > p2->file ? +1: 336 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 337 } 338 339 /* Tells us if the item is currently linked */ 340 static inline int ep_is_linked(struct epitem *epi) 341 { 342 return !list_empty(&epi->rdllink); 343 } 344 345 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 346 { 347 return container_of(p, struct eppoll_entry, wait); 348 } 349 350 /* Get the "struct epitem" from a wait queue pointer */ 351 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 352 { 353 return container_of(p, struct eppoll_entry, wait)->base; 354 } 355 356 /* Get the "struct epitem" from an epoll queue wrapper */ 357 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 358 { 359 return container_of(p, struct ep_pqueue, pt)->epi; 360 } 361 362 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 363 static inline int ep_op_has_event(int op) 364 { 365 return op != EPOLL_CTL_DEL; 366 } 367 368 /* Initialize the poll safe wake up structure */ 369 static void ep_nested_calls_init(struct nested_calls *ncalls) 370 { 371 INIT_LIST_HEAD(&ncalls->tasks_call_list); 372 spin_lock_init(&ncalls->lock); 373 } 374 375 /** 376 * ep_events_available - Checks if ready events might be available. 377 * 378 * @ep: Pointer to the eventpoll context. 379 * 380 * Returns: Returns a value different than zero if ready events are available, 381 * or zero otherwise. 382 */ 383 static inline int ep_events_available(struct eventpoll *ep) 384 { 385 return !list_empty_careful(&ep->rdllist) || 386 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 387 } 388 389 #ifdef CONFIG_NET_RX_BUSY_POLL 390 static bool ep_busy_loop_end(void *p, unsigned long start_time) 391 { 392 struct eventpoll *ep = p; 393 394 return ep_events_available(ep) || busy_loop_timeout(start_time); 395 } 396 397 /* 398 * Busy poll if globally on and supporting sockets found && no events, 399 * busy loop will return if need_resched or ep_events_available. 400 * 401 * we must do our busy polling with irqs enabled 402 */ 403 static void ep_busy_loop(struct eventpoll *ep, int nonblock) 404 { 405 unsigned int napi_id = READ_ONCE(ep->napi_id); 406 407 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) 408 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep); 409 } 410 411 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 412 { 413 if (ep->napi_id) 414 ep->napi_id = 0; 415 } 416 417 /* 418 * Set epoll busy poll NAPI ID from sk. 419 */ 420 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 421 { 422 struct eventpoll *ep; 423 unsigned int napi_id; 424 struct socket *sock; 425 struct sock *sk; 426 int err; 427 428 if (!net_busy_loop_on()) 429 return; 430 431 sock = sock_from_file(epi->ffd.file, &err); 432 if (!sock) 433 return; 434 435 sk = sock->sk; 436 if (!sk) 437 return; 438 439 napi_id = READ_ONCE(sk->sk_napi_id); 440 ep = epi->ep; 441 442 /* Non-NAPI IDs can be rejected 443 * or 444 * Nothing to do if we already have this ID 445 */ 446 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 447 return; 448 449 /* record NAPI ID for use in next busy poll */ 450 ep->napi_id = napi_id; 451 } 452 453 #else 454 455 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock) 456 { 457 } 458 459 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 460 { 461 } 462 463 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 464 { 465 } 466 467 #endif /* CONFIG_NET_RX_BUSY_POLL */ 468 469 /** 470 * ep_call_nested - Perform a bound (possibly) nested call, by checking 471 * that the recursion limit is not exceeded, and that 472 * the same nested call (by the meaning of same cookie) is 473 * no re-entered. 474 * 475 * @ncalls: Pointer to the nested_calls structure to be used for this call. 476 * @nproc: Nested call core function pointer. 477 * @priv: Opaque data to be passed to the @nproc callback. 478 * @cookie: Cookie to be used to identify this nested call. 479 * @ctx: This instance context. 480 * 481 * Returns: Returns the code returned by the @nproc callback, or -1 if 482 * the maximum recursion limit has been exceeded. 483 */ 484 static int ep_call_nested(struct nested_calls *ncalls, 485 int (*nproc)(void *, void *, int), void *priv, 486 void *cookie, void *ctx) 487 { 488 int error, call_nests = 0; 489 unsigned long flags; 490 struct list_head *lsthead = &ncalls->tasks_call_list; 491 struct nested_call_node *tncur; 492 struct nested_call_node tnode; 493 494 spin_lock_irqsave(&ncalls->lock, flags); 495 496 /* 497 * Try to see if the current task is already inside this wakeup call. 498 * We use a list here, since the population inside this set is always 499 * very much limited. 500 */ 501 list_for_each_entry(tncur, lsthead, llink) { 502 if (tncur->ctx == ctx && 503 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) { 504 /* 505 * Ops ... loop detected or maximum nest level reached. 506 * We abort this wake by breaking the cycle itself. 507 */ 508 error = -1; 509 goto out_unlock; 510 } 511 } 512 513 /* Add the current task and cookie to the list */ 514 tnode.ctx = ctx; 515 tnode.cookie = cookie; 516 list_add(&tnode.llink, lsthead); 517 518 spin_unlock_irqrestore(&ncalls->lock, flags); 519 520 /* Call the nested function */ 521 error = (*nproc)(priv, cookie, call_nests); 522 523 /* Remove the current task from the list */ 524 spin_lock_irqsave(&ncalls->lock, flags); 525 list_del(&tnode.llink); 526 out_unlock: 527 spin_unlock_irqrestore(&ncalls->lock, flags); 528 529 return error; 530 } 531 532 /* 533 * As described in commit 0ccf831cb lockdep: annotate epoll 534 * the use of wait queues used by epoll is done in a very controlled 535 * manner. Wake ups can nest inside each other, but are never done 536 * with the same locking. For example: 537 * 538 * dfd = socket(...); 539 * efd1 = epoll_create(); 540 * efd2 = epoll_create(); 541 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 542 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 543 * 544 * When a packet arrives to the device underneath "dfd", the net code will 545 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 546 * callback wakeup entry on that queue, and the wake_up() performed by the 547 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 548 * (efd1) notices that it may have some event ready, so it needs to wake up 549 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 550 * that ends up in another wake_up(), after having checked about the 551 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 552 * avoid stack blasting. 553 * 554 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 555 * this special case of epoll. 556 */ 557 #ifdef CONFIG_DEBUG_LOCK_ALLOC 558 559 static struct nested_calls poll_safewake_ncalls; 560 561 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 562 { 563 unsigned long flags; 564 wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie; 565 566 spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1); 567 wake_up_locked_poll(wqueue, EPOLLIN); 568 spin_unlock_irqrestore(&wqueue->lock, flags); 569 570 return 0; 571 } 572 573 static void ep_poll_safewake(wait_queue_head_t *wq) 574 { 575 int this_cpu = get_cpu(); 576 577 ep_call_nested(&poll_safewake_ncalls, 578 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 579 580 put_cpu(); 581 } 582 583 #else 584 585 static void ep_poll_safewake(wait_queue_head_t *wq) 586 { 587 wake_up_poll(wq, EPOLLIN); 588 } 589 590 #endif 591 592 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 593 { 594 wait_queue_head_t *whead; 595 596 rcu_read_lock(); 597 /* 598 * If it is cleared by POLLFREE, it should be rcu-safe. 599 * If we read NULL we need a barrier paired with 600 * smp_store_release() in ep_poll_callback(), otherwise 601 * we rely on whead->lock. 602 */ 603 whead = smp_load_acquire(&pwq->whead); 604 if (whead) 605 remove_wait_queue(whead, &pwq->wait); 606 rcu_read_unlock(); 607 } 608 609 /* 610 * This function unregisters poll callbacks from the associated file 611 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 612 * ep_free). 613 */ 614 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 615 { 616 struct list_head *lsthead = &epi->pwqlist; 617 struct eppoll_entry *pwq; 618 619 while (!list_empty(lsthead)) { 620 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 621 622 list_del(&pwq->llink); 623 ep_remove_wait_queue(pwq); 624 kmem_cache_free(pwq_cache, pwq); 625 } 626 } 627 628 /* call only when ep->mtx is held */ 629 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 630 { 631 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 632 } 633 634 /* call only when ep->mtx is held */ 635 static inline void ep_pm_stay_awake(struct epitem *epi) 636 { 637 struct wakeup_source *ws = ep_wakeup_source(epi); 638 639 if (ws) 640 __pm_stay_awake(ws); 641 } 642 643 static inline bool ep_has_wakeup_source(struct epitem *epi) 644 { 645 return rcu_access_pointer(epi->ws) ? true : false; 646 } 647 648 /* call when ep->mtx cannot be held (ep_poll_callback) */ 649 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 650 { 651 struct wakeup_source *ws; 652 653 rcu_read_lock(); 654 ws = rcu_dereference(epi->ws); 655 if (ws) 656 __pm_stay_awake(ws); 657 rcu_read_unlock(); 658 } 659 660 /** 661 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 662 * the scan code, to call f_op->poll(). Also allows for 663 * O(NumReady) performance. 664 * 665 * @ep: Pointer to the epoll private data structure. 666 * @sproc: Pointer to the scan callback. 667 * @priv: Private opaque data passed to the @sproc callback. 668 * @depth: The current depth of recursive f_op->poll calls. 669 * @ep_locked: caller already holds ep->mtx 670 * 671 * Returns: The same integer error code returned by the @sproc callback. 672 */ 673 static __poll_t ep_scan_ready_list(struct eventpoll *ep, 674 __poll_t (*sproc)(struct eventpoll *, 675 struct list_head *, void *), 676 void *priv, int depth, bool ep_locked) 677 { 678 __poll_t res; 679 int pwake = 0; 680 struct epitem *epi, *nepi; 681 LIST_HEAD(txlist); 682 683 lockdep_assert_irqs_enabled(); 684 685 /* 686 * We need to lock this because we could be hit by 687 * eventpoll_release_file() and epoll_ctl(). 688 */ 689 690 if (!ep_locked) 691 mutex_lock_nested(&ep->mtx, depth); 692 693 /* 694 * Steal the ready list, and re-init the original one to the 695 * empty list. Also, set ep->ovflist to NULL so that events 696 * happening while looping w/out locks, are not lost. We cannot 697 * have the poll callback to queue directly on ep->rdllist, 698 * because we want the "sproc" callback to be able to do it 699 * in a lockless way. 700 */ 701 write_lock_irq(&ep->lock); 702 list_splice_init(&ep->rdllist, &txlist); 703 WRITE_ONCE(ep->ovflist, NULL); 704 write_unlock_irq(&ep->lock); 705 706 /* 707 * Now call the callback function. 708 */ 709 res = (*sproc)(ep, &txlist, priv); 710 711 write_lock_irq(&ep->lock); 712 /* 713 * During the time we spent inside the "sproc" callback, some 714 * other events might have been queued by the poll callback. 715 * We re-insert them inside the main ready-list here. 716 */ 717 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 718 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 719 /* 720 * We need to check if the item is already in the list. 721 * During the "sproc" callback execution time, items are 722 * queued into ->ovflist but the "txlist" might already 723 * contain them, and the list_splice() below takes care of them. 724 */ 725 if (!ep_is_linked(epi)) { 726 /* 727 * ->ovflist is LIFO, so we have to reverse it in order 728 * to keep in FIFO. 729 */ 730 list_add(&epi->rdllink, &ep->rdllist); 731 ep_pm_stay_awake(epi); 732 } 733 } 734 /* 735 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 736 * releasing the lock, events will be queued in the normal way inside 737 * ep->rdllist. 738 */ 739 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 740 741 /* 742 * Quickly re-inject items left on "txlist". 743 */ 744 list_splice(&txlist, &ep->rdllist); 745 __pm_relax(ep->ws); 746 747 if (!list_empty(&ep->rdllist)) { 748 /* 749 * Wake up (if active) both the eventpoll wait list and 750 * the ->poll() wait list (delayed after we release the lock). 751 */ 752 if (waitqueue_active(&ep->wq)) 753 wake_up(&ep->wq); 754 if (waitqueue_active(&ep->poll_wait)) 755 pwake++; 756 } 757 write_unlock_irq(&ep->lock); 758 759 if (!ep_locked) 760 mutex_unlock(&ep->mtx); 761 762 /* We have to call this outside the lock */ 763 if (pwake) 764 ep_poll_safewake(&ep->poll_wait); 765 766 return res; 767 } 768 769 static void epi_rcu_free(struct rcu_head *head) 770 { 771 struct epitem *epi = container_of(head, struct epitem, rcu); 772 kmem_cache_free(epi_cache, epi); 773 } 774 775 /* 776 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 777 * all the associated resources. Must be called with "mtx" held. 778 */ 779 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 780 { 781 struct file *file = epi->ffd.file; 782 783 lockdep_assert_irqs_enabled(); 784 785 /* 786 * Removes poll wait queue hooks. 787 */ 788 ep_unregister_pollwait(ep, epi); 789 790 /* Remove the current item from the list of epoll hooks */ 791 spin_lock(&file->f_lock); 792 list_del_rcu(&epi->fllink); 793 spin_unlock(&file->f_lock); 794 795 rb_erase_cached(&epi->rbn, &ep->rbr); 796 797 write_lock_irq(&ep->lock); 798 if (ep_is_linked(epi)) 799 list_del_init(&epi->rdllink); 800 write_unlock_irq(&ep->lock); 801 802 wakeup_source_unregister(ep_wakeup_source(epi)); 803 /* 804 * At this point it is safe to free the eventpoll item. Use the union 805 * field epi->rcu, since we are trying to minimize the size of 806 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 807 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 808 * use of the rbn field. 809 */ 810 call_rcu(&epi->rcu, epi_rcu_free); 811 812 atomic_long_dec(&ep->user->epoll_watches); 813 814 return 0; 815 } 816 817 static void ep_free(struct eventpoll *ep) 818 { 819 struct rb_node *rbp; 820 struct epitem *epi; 821 822 /* We need to release all tasks waiting for these file */ 823 if (waitqueue_active(&ep->poll_wait)) 824 ep_poll_safewake(&ep->poll_wait); 825 826 /* 827 * We need to lock this because we could be hit by 828 * eventpoll_release_file() while we're freeing the "struct eventpoll". 829 * We do not need to hold "ep->mtx" here because the epoll file 830 * is on the way to be removed and no one has references to it 831 * anymore. The only hit might come from eventpoll_release_file() but 832 * holding "epmutex" is sufficient here. 833 */ 834 mutex_lock(&epmutex); 835 836 /* 837 * Walks through the whole tree by unregistering poll callbacks. 838 */ 839 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 840 epi = rb_entry(rbp, struct epitem, rbn); 841 842 ep_unregister_pollwait(ep, epi); 843 cond_resched(); 844 } 845 846 /* 847 * Walks through the whole tree by freeing each "struct epitem". At this 848 * point we are sure no poll callbacks will be lingering around, and also by 849 * holding "epmutex" we can be sure that no file cleanup code will hit 850 * us during this operation. So we can avoid the lock on "ep->lock". 851 * We do not need to lock ep->mtx, either, we only do it to prevent 852 * a lockdep warning. 853 */ 854 mutex_lock(&ep->mtx); 855 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 856 epi = rb_entry(rbp, struct epitem, rbn); 857 ep_remove(ep, epi); 858 cond_resched(); 859 } 860 mutex_unlock(&ep->mtx); 861 862 mutex_unlock(&epmutex); 863 mutex_destroy(&ep->mtx); 864 free_uid(ep->user); 865 wakeup_source_unregister(ep->ws); 866 kfree(ep); 867 } 868 869 static int ep_eventpoll_release(struct inode *inode, struct file *file) 870 { 871 struct eventpoll *ep = file->private_data; 872 873 if (ep) 874 ep_free(ep); 875 876 return 0; 877 } 878 879 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 880 void *priv); 881 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 882 poll_table *pt); 883 884 /* 885 * Differs from ep_eventpoll_poll() in that internal callers already have 886 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 887 * is correctly annotated. 888 */ 889 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 890 int depth) 891 { 892 struct eventpoll *ep; 893 bool locked; 894 895 pt->_key = epi->event.events; 896 if (!is_file_epoll(epi->ffd.file)) 897 return vfs_poll(epi->ffd.file, pt) & epi->event.events; 898 899 ep = epi->ffd.file->private_data; 900 poll_wait(epi->ffd.file, &ep->poll_wait, pt); 901 locked = pt && (pt->_qproc == ep_ptable_queue_proc); 902 903 return ep_scan_ready_list(epi->ffd.file->private_data, 904 ep_read_events_proc, &depth, depth, 905 locked) & epi->event.events; 906 } 907 908 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 909 void *priv) 910 { 911 struct epitem *epi, *tmp; 912 poll_table pt; 913 int depth = *(int *)priv; 914 915 init_poll_funcptr(&pt, NULL); 916 depth++; 917 918 list_for_each_entry_safe(epi, tmp, head, rdllink) { 919 if (ep_item_poll(epi, &pt, depth)) { 920 return EPOLLIN | EPOLLRDNORM; 921 } else { 922 /* 923 * Item has been dropped into the ready list by the poll 924 * callback, but it's not actually ready, as far as 925 * caller requested events goes. We can remove it here. 926 */ 927 __pm_relax(ep_wakeup_source(epi)); 928 list_del_init(&epi->rdllink); 929 } 930 } 931 932 return 0; 933 } 934 935 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 936 { 937 struct eventpoll *ep = file->private_data; 938 int depth = 0; 939 940 /* Insert inside our poll wait queue */ 941 poll_wait(file, &ep->poll_wait, wait); 942 943 /* 944 * Proceed to find out if wanted events are really available inside 945 * the ready list. 946 */ 947 return ep_scan_ready_list(ep, ep_read_events_proc, 948 &depth, depth, false); 949 } 950 951 #ifdef CONFIG_PROC_FS 952 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 953 { 954 struct eventpoll *ep = f->private_data; 955 struct rb_node *rbp; 956 957 mutex_lock(&ep->mtx); 958 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 959 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 960 struct inode *inode = file_inode(epi->ffd.file); 961 962 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 963 " pos:%lli ino:%lx sdev:%x\n", 964 epi->ffd.fd, epi->event.events, 965 (long long)epi->event.data, 966 (long long)epi->ffd.file->f_pos, 967 inode->i_ino, inode->i_sb->s_dev); 968 if (seq_has_overflowed(m)) 969 break; 970 } 971 mutex_unlock(&ep->mtx); 972 } 973 #endif 974 975 /* File callbacks that implement the eventpoll file behaviour */ 976 static const struct file_operations eventpoll_fops = { 977 #ifdef CONFIG_PROC_FS 978 .show_fdinfo = ep_show_fdinfo, 979 #endif 980 .release = ep_eventpoll_release, 981 .poll = ep_eventpoll_poll, 982 .llseek = noop_llseek, 983 }; 984 985 /* 986 * This is called from eventpoll_release() to unlink files from the eventpoll 987 * interface. We need to have this facility to cleanup correctly files that are 988 * closed without being removed from the eventpoll interface. 989 */ 990 void eventpoll_release_file(struct file *file) 991 { 992 struct eventpoll *ep; 993 struct epitem *epi, *next; 994 995 /* 996 * We don't want to get "file->f_lock" because it is not 997 * necessary. It is not necessary because we're in the "struct file" 998 * cleanup path, and this means that no one is using this file anymore. 999 * So, for example, epoll_ctl() cannot hit here since if we reach this 1000 * point, the file counter already went to zero and fget() would fail. 1001 * The only hit might come from ep_free() but by holding the mutex 1002 * will correctly serialize the operation. We do need to acquire 1003 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 1004 * from anywhere but ep_free(). 1005 * 1006 * Besides, ep_remove() acquires the lock, so we can't hold it here. 1007 */ 1008 mutex_lock(&epmutex); 1009 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 1010 ep = epi->ep; 1011 mutex_lock_nested(&ep->mtx, 0); 1012 ep_remove(ep, epi); 1013 mutex_unlock(&ep->mtx); 1014 } 1015 mutex_unlock(&epmutex); 1016 } 1017 1018 static int ep_alloc(struct eventpoll **pep) 1019 { 1020 int error; 1021 struct user_struct *user; 1022 struct eventpoll *ep; 1023 1024 user = get_current_user(); 1025 error = -ENOMEM; 1026 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1027 if (unlikely(!ep)) 1028 goto free_uid; 1029 1030 mutex_init(&ep->mtx); 1031 rwlock_init(&ep->lock); 1032 init_waitqueue_head(&ep->wq); 1033 init_waitqueue_head(&ep->poll_wait); 1034 INIT_LIST_HEAD(&ep->rdllist); 1035 ep->rbr = RB_ROOT_CACHED; 1036 ep->ovflist = EP_UNACTIVE_PTR; 1037 ep->user = user; 1038 1039 *pep = ep; 1040 1041 return 0; 1042 1043 free_uid: 1044 free_uid(user); 1045 return error; 1046 } 1047 1048 /* 1049 * Search the file inside the eventpoll tree. The RB tree operations 1050 * are protected by the "mtx" mutex, and ep_find() must be called with 1051 * "mtx" held. 1052 */ 1053 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1054 { 1055 int kcmp; 1056 struct rb_node *rbp; 1057 struct epitem *epi, *epir = NULL; 1058 struct epoll_filefd ffd; 1059 1060 ep_set_ffd(&ffd, file, fd); 1061 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1062 epi = rb_entry(rbp, struct epitem, rbn); 1063 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1064 if (kcmp > 0) 1065 rbp = rbp->rb_right; 1066 else if (kcmp < 0) 1067 rbp = rbp->rb_left; 1068 else { 1069 epir = epi; 1070 break; 1071 } 1072 } 1073 1074 return epir; 1075 } 1076 1077 #ifdef CONFIG_CHECKPOINT_RESTORE 1078 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1079 { 1080 struct rb_node *rbp; 1081 struct epitem *epi; 1082 1083 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1084 epi = rb_entry(rbp, struct epitem, rbn); 1085 if (epi->ffd.fd == tfd) { 1086 if (toff == 0) 1087 return epi; 1088 else 1089 toff--; 1090 } 1091 cond_resched(); 1092 } 1093 1094 return NULL; 1095 } 1096 1097 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1098 unsigned long toff) 1099 { 1100 struct file *file_raw; 1101 struct eventpoll *ep; 1102 struct epitem *epi; 1103 1104 if (!is_file_epoll(file)) 1105 return ERR_PTR(-EINVAL); 1106 1107 ep = file->private_data; 1108 1109 mutex_lock(&ep->mtx); 1110 epi = ep_find_tfd(ep, tfd, toff); 1111 if (epi) 1112 file_raw = epi->ffd.file; 1113 else 1114 file_raw = ERR_PTR(-ENOENT); 1115 mutex_unlock(&ep->mtx); 1116 1117 return file_raw; 1118 } 1119 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1120 1121 /** 1122 * Adds a new entry to the tail of the list in a lockless way, i.e. 1123 * multiple CPUs are allowed to call this function concurrently. 1124 * 1125 * Beware: it is necessary to prevent any other modifications of the 1126 * existing list until all changes are completed, in other words 1127 * concurrent list_add_tail_lockless() calls should be protected 1128 * with a read lock, where write lock acts as a barrier which 1129 * makes sure all list_add_tail_lockless() calls are fully 1130 * completed. 1131 * 1132 * Also an element can be locklessly added to the list only in one 1133 * direction i.e. either to the tail either to the head, otherwise 1134 * concurrent access will corrupt the list. 1135 * 1136 * Returns %false if element has been already added to the list, %true 1137 * otherwise. 1138 */ 1139 static inline bool list_add_tail_lockless(struct list_head *new, 1140 struct list_head *head) 1141 { 1142 struct list_head *prev; 1143 1144 /* 1145 * This is simple 'new->next = head' operation, but cmpxchg() 1146 * is used in order to detect that same element has been just 1147 * added to the list from another CPU: the winner observes 1148 * new->next == new. 1149 */ 1150 if (cmpxchg(&new->next, new, head) != new) 1151 return false; 1152 1153 /* 1154 * Initially ->next of a new element must be updated with the head 1155 * (we are inserting to the tail) and only then pointers are atomically 1156 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1157 * updated before pointers are actually swapped and pointers are 1158 * swapped before prev->next is updated. 1159 */ 1160 1161 prev = xchg(&head->prev, new); 1162 1163 /* 1164 * It is safe to modify prev->next and new->prev, because a new element 1165 * is added only to the tail and new->next is updated before XCHG. 1166 */ 1167 1168 prev->next = new; 1169 new->prev = prev; 1170 1171 return true; 1172 } 1173 1174 /** 1175 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1176 * i.e. multiple CPUs are allowed to call this function concurrently. 1177 * 1178 * Returns %false if epi element has been already chained, %true otherwise. 1179 */ 1180 static inline bool chain_epi_lockless(struct epitem *epi) 1181 { 1182 struct eventpoll *ep = epi->ep; 1183 1184 /* Check that the same epi has not been just chained from another CPU */ 1185 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1186 return false; 1187 1188 /* Atomically exchange tail */ 1189 epi->next = xchg(&ep->ovflist, epi); 1190 1191 return true; 1192 } 1193 1194 /* 1195 * This is the callback that is passed to the wait queue wakeup 1196 * mechanism. It is called by the stored file descriptors when they 1197 * have events to report. 1198 * 1199 * This callback takes a read lock in order not to content with concurrent 1200 * events from another file descriptors, thus all modifications to ->rdllist 1201 * or ->ovflist are lockless. Read lock is paired with the write lock from 1202 * ep_scan_ready_list(), which stops all list modifications and guarantees 1203 * that lists state is seen correctly. 1204 * 1205 * Another thing worth to mention is that ep_poll_callback() can be called 1206 * concurrently for the same @epi from different CPUs if poll table was inited 1207 * with several wait queues entries. Plural wakeup from different CPUs of a 1208 * single wait queue is serialized by wq.lock, but the case when multiple wait 1209 * queues are used should be detected accordingly. This is detected using 1210 * cmpxchg() operation. 1211 */ 1212 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1213 { 1214 int pwake = 0; 1215 struct epitem *epi = ep_item_from_wait(wait); 1216 struct eventpoll *ep = epi->ep; 1217 __poll_t pollflags = key_to_poll(key); 1218 unsigned long flags; 1219 int ewake = 0; 1220 1221 read_lock_irqsave(&ep->lock, flags); 1222 1223 ep_set_busy_poll_napi_id(epi); 1224 1225 /* 1226 * If the event mask does not contain any poll(2) event, we consider the 1227 * descriptor to be disabled. This condition is likely the effect of the 1228 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1229 * until the next EPOLL_CTL_MOD will be issued. 1230 */ 1231 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1232 goto out_unlock; 1233 1234 /* 1235 * Check the events coming with the callback. At this stage, not 1236 * every device reports the events in the "key" parameter of the 1237 * callback. We need to be able to handle both cases here, hence the 1238 * test for "key" != NULL before the event match test. 1239 */ 1240 if (pollflags && !(pollflags & epi->event.events)) 1241 goto out_unlock; 1242 1243 /* 1244 * If we are transferring events to userspace, we can hold no locks 1245 * (because we're accessing user memory, and because of linux f_op->poll() 1246 * semantics). All the events that happen during that period of time are 1247 * chained in ep->ovflist and requeued later on. 1248 */ 1249 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1250 if (epi->next == EP_UNACTIVE_PTR && 1251 chain_epi_lockless(epi)) 1252 ep_pm_stay_awake_rcu(epi); 1253 goto out_unlock; 1254 } 1255 1256 /* If this file is already in the ready list we exit soon */ 1257 if (!ep_is_linked(epi) && 1258 list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) { 1259 ep_pm_stay_awake_rcu(epi); 1260 } 1261 1262 /* 1263 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1264 * wait list. 1265 */ 1266 if (waitqueue_active(&ep->wq)) { 1267 if ((epi->event.events & EPOLLEXCLUSIVE) && 1268 !(pollflags & POLLFREE)) { 1269 switch (pollflags & EPOLLINOUT_BITS) { 1270 case EPOLLIN: 1271 if (epi->event.events & EPOLLIN) 1272 ewake = 1; 1273 break; 1274 case EPOLLOUT: 1275 if (epi->event.events & EPOLLOUT) 1276 ewake = 1; 1277 break; 1278 case 0: 1279 ewake = 1; 1280 break; 1281 } 1282 } 1283 wake_up(&ep->wq); 1284 } 1285 if (waitqueue_active(&ep->poll_wait)) 1286 pwake++; 1287 1288 out_unlock: 1289 read_unlock_irqrestore(&ep->lock, flags); 1290 1291 /* We have to call this outside the lock */ 1292 if (pwake) 1293 ep_poll_safewake(&ep->poll_wait); 1294 1295 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1296 ewake = 1; 1297 1298 if (pollflags & POLLFREE) { 1299 /* 1300 * If we race with ep_remove_wait_queue() it can miss 1301 * ->whead = NULL and do another remove_wait_queue() after 1302 * us, so we can't use __remove_wait_queue(). 1303 */ 1304 list_del_init(&wait->entry); 1305 /* 1306 * ->whead != NULL protects us from the race with ep_free() 1307 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1308 * held by the caller. Once we nullify it, nothing protects 1309 * ep/epi or even wait. 1310 */ 1311 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1312 } 1313 1314 return ewake; 1315 } 1316 1317 /* 1318 * This is the callback that is used to add our wait queue to the 1319 * target file wakeup lists. 1320 */ 1321 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1322 poll_table *pt) 1323 { 1324 struct epitem *epi = ep_item_from_epqueue(pt); 1325 struct eppoll_entry *pwq; 1326 1327 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1328 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1329 pwq->whead = whead; 1330 pwq->base = epi; 1331 if (epi->event.events & EPOLLEXCLUSIVE) 1332 add_wait_queue_exclusive(whead, &pwq->wait); 1333 else 1334 add_wait_queue(whead, &pwq->wait); 1335 list_add_tail(&pwq->llink, &epi->pwqlist); 1336 epi->nwait++; 1337 } else { 1338 /* We have to signal that an error occurred */ 1339 epi->nwait = -1; 1340 } 1341 } 1342 1343 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1344 { 1345 int kcmp; 1346 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1347 struct epitem *epic; 1348 bool leftmost = true; 1349 1350 while (*p) { 1351 parent = *p; 1352 epic = rb_entry(parent, struct epitem, rbn); 1353 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1354 if (kcmp > 0) { 1355 p = &parent->rb_right; 1356 leftmost = false; 1357 } else 1358 p = &parent->rb_left; 1359 } 1360 rb_link_node(&epi->rbn, parent, p); 1361 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1362 } 1363 1364 1365 1366 #define PATH_ARR_SIZE 5 1367 /* 1368 * These are the number paths of length 1 to 5, that we are allowing to emanate 1369 * from a single file of interest. For example, we allow 1000 paths of length 1370 * 1, to emanate from each file of interest. This essentially represents the 1371 * potential wakeup paths, which need to be limited in order to avoid massive 1372 * uncontrolled wakeup storms. The common use case should be a single ep which 1373 * is connected to n file sources. In this case each file source has 1 path 1374 * of length 1. Thus, the numbers below should be more than sufficient. These 1375 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1376 * and delete can't add additional paths. Protected by the epmutex. 1377 */ 1378 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1379 static int path_count[PATH_ARR_SIZE]; 1380 1381 static int path_count_inc(int nests) 1382 { 1383 /* Allow an arbitrary number of depth 1 paths */ 1384 if (nests == 0) 1385 return 0; 1386 1387 if (++path_count[nests] > path_limits[nests]) 1388 return -1; 1389 return 0; 1390 } 1391 1392 static void path_count_init(void) 1393 { 1394 int i; 1395 1396 for (i = 0; i < PATH_ARR_SIZE; i++) 1397 path_count[i] = 0; 1398 } 1399 1400 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1401 { 1402 int error = 0; 1403 struct file *file = priv; 1404 struct file *child_file; 1405 struct epitem *epi; 1406 1407 /* CTL_DEL can remove links here, but that can't increase our count */ 1408 rcu_read_lock(); 1409 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1410 child_file = epi->ep->file; 1411 if (is_file_epoll(child_file)) { 1412 if (list_empty(&child_file->f_ep_links)) { 1413 if (path_count_inc(call_nests)) { 1414 error = -1; 1415 break; 1416 } 1417 } else { 1418 error = ep_call_nested(&poll_loop_ncalls, 1419 reverse_path_check_proc, 1420 child_file, child_file, 1421 current); 1422 } 1423 if (error != 0) 1424 break; 1425 } else { 1426 printk(KERN_ERR "reverse_path_check_proc: " 1427 "file is not an ep!\n"); 1428 } 1429 } 1430 rcu_read_unlock(); 1431 return error; 1432 } 1433 1434 /** 1435 * reverse_path_check - The tfile_check_list is list of file *, which have 1436 * links that are proposed to be newly added. We need to 1437 * make sure that those added links don't add too many 1438 * paths such that we will spend all our time waking up 1439 * eventpoll objects. 1440 * 1441 * Returns: Returns zero if the proposed links don't create too many paths, 1442 * -1 otherwise. 1443 */ 1444 static int reverse_path_check(void) 1445 { 1446 int error = 0; 1447 struct file *current_file; 1448 1449 /* let's call this for all tfiles */ 1450 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1451 path_count_init(); 1452 error = ep_call_nested(&poll_loop_ncalls, 1453 reverse_path_check_proc, current_file, 1454 current_file, current); 1455 if (error) 1456 break; 1457 } 1458 return error; 1459 } 1460 1461 static int ep_create_wakeup_source(struct epitem *epi) 1462 { 1463 const char *name; 1464 struct wakeup_source *ws; 1465 1466 if (!epi->ep->ws) { 1467 epi->ep->ws = wakeup_source_register("eventpoll"); 1468 if (!epi->ep->ws) 1469 return -ENOMEM; 1470 } 1471 1472 name = epi->ffd.file->f_path.dentry->d_name.name; 1473 ws = wakeup_source_register(name); 1474 1475 if (!ws) 1476 return -ENOMEM; 1477 rcu_assign_pointer(epi->ws, ws); 1478 1479 return 0; 1480 } 1481 1482 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1483 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1484 { 1485 struct wakeup_source *ws = ep_wakeup_source(epi); 1486 1487 RCU_INIT_POINTER(epi->ws, NULL); 1488 1489 /* 1490 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1491 * used internally by wakeup_source_remove, too (called by 1492 * wakeup_source_unregister), so we cannot use call_rcu 1493 */ 1494 synchronize_rcu(); 1495 wakeup_source_unregister(ws); 1496 } 1497 1498 /* 1499 * Must be called with "mtx" held. 1500 */ 1501 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1502 struct file *tfile, int fd, int full_check) 1503 { 1504 int error, pwake = 0; 1505 __poll_t revents; 1506 long user_watches; 1507 struct epitem *epi; 1508 struct ep_pqueue epq; 1509 1510 lockdep_assert_irqs_enabled(); 1511 1512 user_watches = atomic_long_read(&ep->user->epoll_watches); 1513 if (unlikely(user_watches >= max_user_watches)) 1514 return -ENOSPC; 1515 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1516 return -ENOMEM; 1517 1518 /* Item initialization follow here ... */ 1519 INIT_LIST_HEAD(&epi->rdllink); 1520 INIT_LIST_HEAD(&epi->fllink); 1521 INIT_LIST_HEAD(&epi->pwqlist); 1522 epi->ep = ep; 1523 ep_set_ffd(&epi->ffd, tfile, fd); 1524 epi->event = *event; 1525 epi->nwait = 0; 1526 epi->next = EP_UNACTIVE_PTR; 1527 if (epi->event.events & EPOLLWAKEUP) { 1528 error = ep_create_wakeup_source(epi); 1529 if (error) 1530 goto error_create_wakeup_source; 1531 } else { 1532 RCU_INIT_POINTER(epi->ws, NULL); 1533 } 1534 1535 /* Initialize the poll table using the queue callback */ 1536 epq.epi = epi; 1537 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1538 1539 /* 1540 * Attach the item to the poll hooks and get current event bits. 1541 * We can safely use the file* here because its usage count has 1542 * been increased by the caller of this function. Note that after 1543 * this operation completes, the poll callback can start hitting 1544 * the new item. 1545 */ 1546 revents = ep_item_poll(epi, &epq.pt, 1); 1547 1548 /* 1549 * We have to check if something went wrong during the poll wait queue 1550 * install process. Namely an allocation for a wait queue failed due 1551 * high memory pressure. 1552 */ 1553 error = -ENOMEM; 1554 if (epi->nwait < 0) 1555 goto error_unregister; 1556 1557 /* Add the current item to the list of active epoll hook for this file */ 1558 spin_lock(&tfile->f_lock); 1559 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); 1560 spin_unlock(&tfile->f_lock); 1561 1562 /* 1563 * Add the current item to the RB tree. All RB tree operations are 1564 * protected by "mtx", and ep_insert() is called with "mtx" held. 1565 */ 1566 ep_rbtree_insert(ep, epi); 1567 1568 /* now check if we've created too many backpaths */ 1569 error = -EINVAL; 1570 if (full_check && reverse_path_check()) 1571 goto error_remove_epi; 1572 1573 /* We have to drop the new item inside our item list to keep track of it */ 1574 write_lock_irq(&ep->lock); 1575 1576 /* record NAPI ID of new item if present */ 1577 ep_set_busy_poll_napi_id(epi); 1578 1579 /* If the file is already "ready" we drop it inside the ready list */ 1580 if (revents && !ep_is_linked(epi)) { 1581 list_add_tail(&epi->rdllink, &ep->rdllist); 1582 ep_pm_stay_awake(epi); 1583 1584 /* Notify waiting tasks that events are available */ 1585 if (waitqueue_active(&ep->wq)) 1586 wake_up(&ep->wq); 1587 if (waitqueue_active(&ep->poll_wait)) 1588 pwake++; 1589 } 1590 1591 write_unlock_irq(&ep->lock); 1592 1593 atomic_long_inc(&ep->user->epoll_watches); 1594 1595 /* We have to call this outside the lock */ 1596 if (pwake) 1597 ep_poll_safewake(&ep->poll_wait); 1598 1599 return 0; 1600 1601 error_remove_epi: 1602 spin_lock(&tfile->f_lock); 1603 list_del_rcu(&epi->fllink); 1604 spin_unlock(&tfile->f_lock); 1605 1606 rb_erase_cached(&epi->rbn, &ep->rbr); 1607 1608 error_unregister: 1609 ep_unregister_pollwait(ep, epi); 1610 1611 /* 1612 * We need to do this because an event could have been arrived on some 1613 * allocated wait queue. Note that we don't care about the ep->ovflist 1614 * list, since that is used/cleaned only inside a section bound by "mtx". 1615 * And ep_insert() is called with "mtx" held. 1616 */ 1617 write_lock_irq(&ep->lock); 1618 if (ep_is_linked(epi)) 1619 list_del_init(&epi->rdllink); 1620 write_unlock_irq(&ep->lock); 1621 1622 wakeup_source_unregister(ep_wakeup_source(epi)); 1623 1624 error_create_wakeup_source: 1625 kmem_cache_free(epi_cache, epi); 1626 1627 return error; 1628 } 1629 1630 /* 1631 * Modify the interest event mask by dropping an event if the new mask 1632 * has a match in the current file status. Must be called with "mtx" held. 1633 */ 1634 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1635 const struct epoll_event *event) 1636 { 1637 int pwake = 0; 1638 poll_table pt; 1639 1640 lockdep_assert_irqs_enabled(); 1641 1642 init_poll_funcptr(&pt, NULL); 1643 1644 /* 1645 * Set the new event interest mask before calling f_op->poll(); 1646 * otherwise we might miss an event that happens between the 1647 * f_op->poll() call and the new event set registering. 1648 */ 1649 epi->event.events = event->events; /* need barrier below */ 1650 epi->event.data = event->data; /* protected by mtx */ 1651 if (epi->event.events & EPOLLWAKEUP) { 1652 if (!ep_has_wakeup_source(epi)) 1653 ep_create_wakeup_source(epi); 1654 } else if (ep_has_wakeup_source(epi)) { 1655 ep_destroy_wakeup_source(epi); 1656 } 1657 1658 /* 1659 * The following barrier has two effects: 1660 * 1661 * 1) Flush epi changes above to other CPUs. This ensures 1662 * we do not miss events from ep_poll_callback if an 1663 * event occurs immediately after we call f_op->poll(). 1664 * We need this because we did not take ep->lock while 1665 * changing epi above (but ep_poll_callback does take 1666 * ep->lock). 1667 * 1668 * 2) We also need to ensure we do not miss _past_ events 1669 * when calling f_op->poll(). This barrier also 1670 * pairs with the barrier in wq_has_sleeper (see 1671 * comments for wq_has_sleeper). 1672 * 1673 * This barrier will now guarantee ep_poll_callback or f_op->poll 1674 * (or both) will notice the readiness of an item. 1675 */ 1676 smp_mb(); 1677 1678 /* 1679 * Get current event bits. We can safely use the file* here because 1680 * its usage count has been increased by the caller of this function. 1681 * If the item is "hot" and it is not registered inside the ready 1682 * list, push it inside. 1683 */ 1684 if (ep_item_poll(epi, &pt, 1)) { 1685 write_lock_irq(&ep->lock); 1686 if (!ep_is_linked(epi)) { 1687 list_add_tail(&epi->rdllink, &ep->rdllist); 1688 ep_pm_stay_awake(epi); 1689 1690 /* Notify waiting tasks that events are available */ 1691 if (waitqueue_active(&ep->wq)) 1692 wake_up(&ep->wq); 1693 if (waitqueue_active(&ep->poll_wait)) 1694 pwake++; 1695 } 1696 write_unlock_irq(&ep->lock); 1697 } 1698 1699 /* We have to call this outside the lock */ 1700 if (pwake) 1701 ep_poll_safewake(&ep->poll_wait); 1702 1703 return 0; 1704 } 1705 1706 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1707 void *priv) 1708 { 1709 struct ep_send_events_data *esed = priv; 1710 __poll_t revents; 1711 struct epitem *epi, *tmp; 1712 struct epoll_event __user *uevent = esed->events; 1713 struct wakeup_source *ws; 1714 poll_table pt; 1715 1716 init_poll_funcptr(&pt, NULL); 1717 esed->res = 0; 1718 1719 /* 1720 * We can loop without lock because we are passed a task private list. 1721 * Items cannot vanish during the loop because ep_scan_ready_list() is 1722 * holding "mtx" during this call. 1723 */ 1724 lockdep_assert_held(&ep->mtx); 1725 1726 list_for_each_entry_safe(epi, tmp, head, rdllink) { 1727 if (esed->res >= esed->maxevents) 1728 break; 1729 1730 /* 1731 * Activate ep->ws before deactivating epi->ws to prevent 1732 * triggering auto-suspend here (in case we reactive epi->ws 1733 * below). 1734 * 1735 * This could be rearranged to delay the deactivation of epi->ws 1736 * instead, but then epi->ws would temporarily be out of sync 1737 * with ep_is_linked(). 1738 */ 1739 ws = ep_wakeup_source(epi); 1740 if (ws) { 1741 if (ws->active) 1742 __pm_stay_awake(ep->ws); 1743 __pm_relax(ws); 1744 } 1745 1746 list_del_init(&epi->rdllink); 1747 1748 /* 1749 * If the event mask intersect the caller-requested one, 1750 * deliver the event to userspace. Again, ep_scan_ready_list() 1751 * is holding ep->mtx, so no operations coming from userspace 1752 * can change the item. 1753 */ 1754 revents = ep_item_poll(epi, &pt, 1); 1755 if (!revents) 1756 continue; 1757 1758 if (__put_user(revents, &uevent->events) || 1759 __put_user(epi->event.data, &uevent->data)) { 1760 list_add(&epi->rdllink, head); 1761 ep_pm_stay_awake(epi); 1762 if (!esed->res) 1763 esed->res = -EFAULT; 1764 return 0; 1765 } 1766 esed->res++; 1767 uevent++; 1768 if (epi->event.events & EPOLLONESHOT) 1769 epi->event.events &= EP_PRIVATE_BITS; 1770 else if (!(epi->event.events & EPOLLET)) { 1771 /* 1772 * If this file has been added with Level 1773 * Trigger mode, we need to insert back inside 1774 * the ready list, so that the next call to 1775 * epoll_wait() will check again the events 1776 * availability. At this point, no one can insert 1777 * into ep->rdllist besides us. The epoll_ctl() 1778 * callers are locked out by 1779 * ep_scan_ready_list() holding "mtx" and the 1780 * poll callback will queue them in ep->ovflist. 1781 */ 1782 list_add_tail(&epi->rdllink, &ep->rdllist); 1783 ep_pm_stay_awake(epi); 1784 } 1785 } 1786 1787 return 0; 1788 } 1789 1790 static int ep_send_events(struct eventpoll *ep, 1791 struct epoll_event __user *events, int maxevents) 1792 { 1793 struct ep_send_events_data esed; 1794 1795 esed.maxevents = maxevents; 1796 esed.events = events; 1797 1798 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1799 return esed.res; 1800 } 1801 1802 static inline struct timespec64 ep_set_mstimeout(long ms) 1803 { 1804 struct timespec64 now, ts = { 1805 .tv_sec = ms / MSEC_PER_SEC, 1806 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1807 }; 1808 1809 ktime_get_ts64(&now); 1810 return timespec64_add_safe(now, ts); 1811 } 1812 1813 /** 1814 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1815 * event buffer. 1816 * 1817 * @ep: Pointer to the eventpoll context. 1818 * @events: Pointer to the userspace buffer where the ready events should be 1819 * stored. 1820 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1821 * @timeout: Maximum timeout for the ready events fetch operation, in 1822 * milliseconds. If the @timeout is zero, the function will not block, 1823 * while if the @timeout is less than zero, the function will block 1824 * until at least one event has been retrieved (or an error 1825 * occurred). 1826 * 1827 * Returns: Returns the number of ready events which have been fetched, or an 1828 * error code, in case of error. 1829 */ 1830 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1831 int maxevents, long timeout) 1832 { 1833 int res = 0, eavail, timed_out = 0; 1834 u64 slack = 0; 1835 bool waiter = false; 1836 wait_queue_entry_t wait; 1837 ktime_t expires, *to = NULL; 1838 1839 lockdep_assert_irqs_enabled(); 1840 1841 if (timeout > 0) { 1842 struct timespec64 end_time = ep_set_mstimeout(timeout); 1843 1844 slack = select_estimate_accuracy(&end_time); 1845 to = &expires; 1846 *to = timespec64_to_ktime(end_time); 1847 } else if (timeout == 0) { 1848 /* 1849 * Avoid the unnecessary trip to the wait queue loop, if the 1850 * caller specified a non blocking operation. We still need 1851 * lock because we could race and not see an epi being added 1852 * to the ready list while in irq callback. Thus incorrectly 1853 * returning 0 back to userspace. 1854 */ 1855 timed_out = 1; 1856 1857 write_lock_irq(&ep->lock); 1858 eavail = ep_events_available(ep); 1859 write_unlock_irq(&ep->lock); 1860 1861 goto send_events; 1862 } 1863 1864 fetch_events: 1865 1866 if (!ep_events_available(ep)) 1867 ep_busy_loop(ep, timed_out); 1868 1869 eavail = ep_events_available(ep); 1870 if (eavail) 1871 goto send_events; 1872 1873 /* 1874 * Busy poll timed out. Drop NAPI ID for now, we can add 1875 * it back in when we have moved a socket with a valid NAPI 1876 * ID onto the ready list. 1877 */ 1878 ep_reset_busy_poll_napi_id(ep); 1879 1880 /* 1881 * We don't have any available event to return to the caller. We need 1882 * to sleep here, and we will be woken by ep_poll_callback() when events 1883 * become available. 1884 */ 1885 if (!waiter) { 1886 waiter = true; 1887 init_waitqueue_entry(&wait, current); 1888 1889 spin_lock_irq(&ep->wq.lock); 1890 __add_wait_queue_exclusive(&ep->wq, &wait); 1891 spin_unlock_irq(&ep->wq.lock); 1892 } 1893 1894 for (;;) { 1895 /* 1896 * We don't want to sleep if the ep_poll_callback() sends us 1897 * a wakeup in between. That's why we set the task state 1898 * to TASK_INTERRUPTIBLE before doing the checks. 1899 */ 1900 set_current_state(TASK_INTERRUPTIBLE); 1901 /* 1902 * Always short-circuit for fatal signals to allow 1903 * threads to make a timely exit without the chance of 1904 * finding more events available and fetching 1905 * repeatedly. 1906 */ 1907 if (fatal_signal_pending(current)) { 1908 res = -EINTR; 1909 break; 1910 } 1911 1912 eavail = ep_events_available(ep); 1913 if (eavail) 1914 break; 1915 if (signal_pending(current)) { 1916 res = -EINTR; 1917 break; 1918 } 1919 1920 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) { 1921 timed_out = 1; 1922 break; 1923 } 1924 } 1925 1926 __set_current_state(TASK_RUNNING); 1927 1928 send_events: 1929 /* 1930 * Try to transfer events to user space. In case we get 0 events and 1931 * there's still timeout left over, we go trying again in search of 1932 * more luck. 1933 */ 1934 if (!res && eavail && 1935 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1936 goto fetch_events; 1937 1938 if (waiter) { 1939 spin_lock_irq(&ep->wq.lock); 1940 __remove_wait_queue(&ep->wq, &wait); 1941 spin_unlock_irq(&ep->wq.lock); 1942 } 1943 1944 return res; 1945 } 1946 1947 /** 1948 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1949 * API, to verify that adding an epoll file inside another 1950 * epoll structure, does not violate the constraints, in 1951 * terms of closed loops, or too deep chains (which can 1952 * result in excessive stack usage). 1953 * 1954 * @priv: Pointer to the epoll file to be currently checked. 1955 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1956 * data structure pointer. 1957 * @call_nests: Current dept of the @ep_call_nested() call stack. 1958 * 1959 * Returns: Returns zero if adding the epoll @file inside current epoll 1960 * structure @ep does not violate the constraints, or -1 otherwise. 1961 */ 1962 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1963 { 1964 int error = 0; 1965 struct file *file = priv; 1966 struct eventpoll *ep = file->private_data; 1967 struct eventpoll *ep_tovisit; 1968 struct rb_node *rbp; 1969 struct epitem *epi; 1970 1971 mutex_lock_nested(&ep->mtx, call_nests + 1); 1972 ep->visited = 1; 1973 list_add(&ep->visited_list_link, &visited_list); 1974 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1975 epi = rb_entry(rbp, struct epitem, rbn); 1976 if (unlikely(is_file_epoll(epi->ffd.file))) { 1977 ep_tovisit = epi->ffd.file->private_data; 1978 if (ep_tovisit->visited) 1979 continue; 1980 error = ep_call_nested(&poll_loop_ncalls, 1981 ep_loop_check_proc, epi->ffd.file, 1982 ep_tovisit, current); 1983 if (error != 0) 1984 break; 1985 } else { 1986 /* 1987 * If we've reached a file that is not associated with 1988 * an ep, then we need to check if the newly added 1989 * links are going to add too many wakeup paths. We do 1990 * this by adding it to the tfile_check_list, if it's 1991 * not already there, and calling reverse_path_check() 1992 * during ep_insert(). 1993 */ 1994 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1995 list_add(&epi->ffd.file->f_tfile_llink, 1996 &tfile_check_list); 1997 } 1998 } 1999 mutex_unlock(&ep->mtx); 2000 2001 return error; 2002 } 2003 2004 /** 2005 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 2006 * another epoll file (represented by @ep) does not create 2007 * closed loops or too deep chains. 2008 * 2009 * @ep: Pointer to the epoll private data structure. 2010 * @file: Pointer to the epoll file to be checked. 2011 * 2012 * Returns: Returns zero if adding the epoll @file inside current epoll 2013 * structure @ep does not violate the constraints, or -1 otherwise. 2014 */ 2015 static int ep_loop_check(struct eventpoll *ep, struct file *file) 2016 { 2017 int ret; 2018 struct eventpoll *ep_cur, *ep_next; 2019 2020 ret = ep_call_nested(&poll_loop_ncalls, 2021 ep_loop_check_proc, file, ep, current); 2022 /* clear visited list */ 2023 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 2024 visited_list_link) { 2025 ep_cur->visited = 0; 2026 list_del(&ep_cur->visited_list_link); 2027 } 2028 return ret; 2029 } 2030 2031 static void clear_tfile_check_list(void) 2032 { 2033 struct file *file; 2034 2035 /* first clear the tfile_check_list */ 2036 while (!list_empty(&tfile_check_list)) { 2037 file = list_first_entry(&tfile_check_list, struct file, 2038 f_tfile_llink); 2039 list_del_init(&file->f_tfile_llink); 2040 } 2041 INIT_LIST_HEAD(&tfile_check_list); 2042 } 2043 2044 /* 2045 * Open an eventpoll file descriptor. 2046 */ 2047 static int do_epoll_create(int flags) 2048 { 2049 int error, fd; 2050 struct eventpoll *ep = NULL; 2051 struct file *file; 2052 2053 /* Check the EPOLL_* constant for consistency. */ 2054 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2055 2056 if (flags & ~EPOLL_CLOEXEC) 2057 return -EINVAL; 2058 /* 2059 * Create the internal data structure ("struct eventpoll"). 2060 */ 2061 error = ep_alloc(&ep); 2062 if (error < 0) 2063 return error; 2064 /* 2065 * Creates all the items needed to setup an eventpoll file. That is, 2066 * a file structure and a free file descriptor. 2067 */ 2068 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2069 if (fd < 0) { 2070 error = fd; 2071 goto out_free_ep; 2072 } 2073 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2074 O_RDWR | (flags & O_CLOEXEC)); 2075 if (IS_ERR(file)) { 2076 error = PTR_ERR(file); 2077 goto out_free_fd; 2078 } 2079 ep->file = file; 2080 fd_install(fd, file); 2081 return fd; 2082 2083 out_free_fd: 2084 put_unused_fd(fd); 2085 out_free_ep: 2086 ep_free(ep); 2087 return error; 2088 } 2089 2090 SYSCALL_DEFINE1(epoll_create1, int, flags) 2091 { 2092 return do_epoll_create(flags); 2093 } 2094 2095 SYSCALL_DEFINE1(epoll_create, int, size) 2096 { 2097 if (size <= 0) 2098 return -EINVAL; 2099 2100 return do_epoll_create(0); 2101 } 2102 2103 /* 2104 * The following function implements the controller interface for 2105 * the eventpoll file that enables the insertion/removal/change of 2106 * file descriptors inside the interest set. 2107 */ 2108 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2109 struct epoll_event __user *, event) 2110 { 2111 int error; 2112 int full_check = 0; 2113 struct fd f, tf; 2114 struct eventpoll *ep; 2115 struct epitem *epi; 2116 struct epoll_event epds; 2117 struct eventpoll *tep = NULL; 2118 2119 error = -EFAULT; 2120 if (ep_op_has_event(op) && 2121 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2122 goto error_return; 2123 2124 error = -EBADF; 2125 f = fdget(epfd); 2126 if (!f.file) 2127 goto error_return; 2128 2129 /* Get the "struct file *" for the target file */ 2130 tf = fdget(fd); 2131 if (!tf.file) 2132 goto error_fput; 2133 2134 /* The target file descriptor must support poll */ 2135 error = -EPERM; 2136 if (!file_can_poll(tf.file)) 2137 goto error_tgt_fput; 2138 2139 /* Check if EPOLLWAKEUP is allowed */ 2140 if (ep_op_has_event(op)) 2141 ep_take_care_of_epollwakeup(&epds); 2142 2143 /* 2144 * We have to check that the file structure underneath the file descriptor 2145 * the user passed to us _is_ an eventpoll file. And also we do not permit 2146 * adding an epoll file descriptor inside itself. 2147 */ 2148 error = -EINVAL; 2149 if (f.file == tf.file || !is_file_epoll(f.file)) 2150 goto error_tgt_fput; 2151 2152 /* 2153 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2154 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2155 * Also, we do not currently supported nested exclusive wakeups. 2156 */ 2157 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) { 2158 if (op == EPOLL_CTL_MOD) 2159 goto error_tgt_fput; 2160 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2161 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS))) 2162 goto error_tgt_fput; 2163 } 2164 2165 /* 2166 * At this point it is safe to assume that the "private_data" contains 2167 * our own data structure. 2168 */ 2169 ep = f.file->private_data; 2170 2171 /* 2172 * When we insert an epoll file descriptor, inside another epoll file 2173 * descriptor, there is the change of creating closed loops, which are 2174 * better be handled here, than in more critical paths. While we are 2175 * checking for loops we also determine the list of files reachable 2176 * and hang them on the tfile_check_list, so we can check that we 2177 * haven't created too many possible wakeup paths. 2178 * 2179 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2180 * the epoll file descriptor is attaching directly to a wakeup source, 2181 * unless the epoll file descriptor is nested. The purpose of taking the 2182 * 'epmutex' on add is to prevent complex toplogies such as loops and 2183 * deep wakeup paths from forming in parallel through multiple 2184 * EPOLL_CTL_ADD operations. 2185 */ 2186 mutex_lock_nested(&ep->mtx, 0); 2187 if (op == EPOLL_CTL_ADD) { 2188 if (!list_empty(&f.file->f_ep_links) || 2189 is_file_epoll(tf.file)) { 2190 full_check = 1; 2191 mutex_unlock(&ep->mtx); 2192 mutex_lock(&epmutex); 2193 if (is_file_epoll(tf.file)) { 2194 error = -ELOOP; 2195 if (ep_loop_check(ep, tf.file) != 0) { 2196 clear_tfile_check_list(); 2197 goto error_tgt_fput; 2198 } 2199 } else 2200 list_add(&tf.file->f_tfile_llink, 2201 &tfile_check_list); 2202 mutex_lock_nested(&ep->mtx, 0); 2203 if (is_file_epoll(tf.file)) { 2204 tep = tf.file->private_data; 2205 mutex_lock_nested(&tep->mtx, 1); 2206 } 2207 } 2208 } 2209 2210 /* 2211 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 2212 * above, we can be sure to be able to use the item looked up by 2213 * ep_find() till we release the mutex. 2214 */ 2215 epi = ep_find(ep, tf.file, fd); 2216 2217 error = -EINVAL; 2218 switch (op) { 2219 case EPOLL_CTL_ADD: 2220 if (!epi) { 2221 epds.events |= EPOLLERR | EPOLLHUP; 2222 error = ep_insert(ep, &epds, tf.file, fd, full_check); 2223 } else 2224 error = -EEXIST; 2225 if (full_check) 2226 clear_tfile_check_list(); 2227 break; 2228 case EPOLL_CTL_DEL: 2229 if (epi) 2230 error = ep_remove(ep, epi); 2231 else 2232 error = -ENOENT; 2233 break; 2234 case EPOLL_CTL_MOD: 2235 if (epi) { 2236 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2237 epds.events |= EPOLLERR | EPOLLHUP; 2238 error = ep_modify(ep, epi, &epds); 2239 } 2240 } else 2241 error = -ENOENT; 2242 break; 2243 } 2244 if (tep != NULL) 2245 mutex_unlock(&tep->mtx); 2246 mutex_unlock(&ep->mtx); 2247 2248 error_tgt_fput: 2249 if (full_check) 2250 mutex_unlock(&epmutex); 2251 2252 fdput(tf); 2253 error_fput: 2254 fdput(f); 2255 error_return: 2256 2257 return error; 2258 } 2259 2260 /* 2261 * Implement the event wait interface for the eventpoll file. It is the kernel 2262 * part of the user space epoll_wait(2). 2263 */ 2264 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2265 int maxevents, int timeout) 2266 { 2267 int error; 2268 struct fd f; 2269 struct eventpoll *ep; 2270 2271 /* The maximum number of event must be greater than zero */ 2272 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2273 return -EINVAL; 2274 2275 /* Verify that the area passed by the user is writeable */ 2276 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2277 return -EFAULT; 2278 2279 /* Get the "struct file *" for the eventpoll file */ 2280 f = fdget(epfd); 2281 if (!f.file) 2282 return -EBADF; 2283 2284 /* 2285 * We have to check that the file structure underneath the fd 2286 * the user passed to us _is_ an eventpoll file. 2287 */ 2288 error = -EINVAL; 2289 if (!is_file_epoll(f.file)) 2290 goto error_fput; 2291 2292 /* 2293 * At this point it is safe to assume that the "private_data" contains 2294 * our own data structure. 2295 */ 2296 ep = f.file->private_data; 2297 2298 /* Time to fish for events ... */ 2299 error = ep_poll(ep, events, maxevents, timeout); 2300 2301 error_fput: 2302 fdput(f); 2303 return error; 2304 } 2305 2306 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2307 int, maxevents, int, timeout) 2308 { 2309 return do_epoll_wait(epfd, events, maxevents, timeout); 2310 } 2311 2312 /* 2313 * Implement the event wait interface for the eventpoll file. It is the kernel 2314 * part of the user space epoll_pwait(2). 2315 */ 2316 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2317 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2318 size_t, sigsetsize) 2319 { 2320 int error; 2321 sigset_t ksigmask, sigsaved; 2322 2323 /* 2324 * If the caller wants a certain signal mask to be set during the wait, 2325 * we apply it here. 2326 */ 2327 error = set_user_sigmask(sigmask, &ksigmask, &sigsaved, sigsetsize); 2328 if (error) 2329 return error; 2330 2331 error = do_epoll_wait(epfd, events, maxevents, timeout); 2332 2333 restore_user_sigmask(sigmask, &sigsaved); 2334 2335 return error; 2336 } 2337 2338 #ifdef CONFIG_COMPAT 2339 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2340 struct epoll_event __user *, events, 2341 int, maxevents, int, timeout, 2342 const compat_sigset_t __user *, sigmask, 2343 compat_size_t, sigsetsize) 2344 { 2345 long err; 2346 sigset_t ksigmask, sigsaved; 2347 2348 /* 2349 * If the caller wants a certain signal mask to be set during the wait, 2350 * we apply it here. 2351 */ 2352 err = set_compat_user_sigmask(sigmask, &ksigmask, &sigsaved, sigsetsize); 2353 if (err) 2354 return err; 2355 2356 err = do_epoll_wait(epfd, events, maxevents, timeout); 2357 2358 restore_user_sigmask(sigmask, &sigsaved); 2359 2360 return err; 2361 } 2362 #endif 2363 2364 static int __init eventpoll_init(void) 2365 { 2366 struct sysinfo si; 2367 2368 si_meminfo(&si); 2369 /* 2370 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2371 */ 2372 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2373 EP_ITEM_COST; 2374 BUG_ON(max_user_watches < 0); 2375 2376 /* 2377 * Initialize the structure used to perform epoll file descriptor 2378 * inclusion loops checks. 2379 */ 2380 ep_nested_calls_init(&poll_loop_ncalls); 2381 2382 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2383 /* Initialize the structure used to perform safe poll wait head wake ups */ 2384 ep_nested_calls_init(&poll_safewake_ncalls); 2385 #endif 2386 2387 /* 2388 * We can have many thousands of epitems, so prevent this from 2389 * using an extra cache line on 64-bit (and smaller) CPUs 2390 */ 2391 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2392 2393 /* Allocates slab cache used to allocate "struct epitem" items */ 2394 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2395 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2396 2397 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2398 pwq_cache = kmem_cache_create("eventpoll_pwq", 2399 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2400 2401 return 0; 2402 } 2403 fs_initcall(eventpoll_init); 2404