xref: /openbmc/linux/fs/eventpoll.c (revision bf070bb0)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/signal.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 #include <net/busy_poll.h>
46 
47 /*
48  * LOCKING:
49  * There are three level of locking required by epoll :
50  *
51  * 1) epmutex (mutex)
52  * 2) ep->mtx (mutex)
53  * 3) ep->lock (spinlock)
54  *
55  * The acquire order is the one listed above, from 1 to 3.
56  * We need a spinlock (ep->lock) because we manipulate objects
57  * from inside the poll callback, that might be triggered from
58  * a wake_up() that in turn might be called from IRQ context.
59  * So we can't sleep inside the poll callback and hence we need
60  * a spinlock. During the event transfer loop (from kernel to
61  * user space) we could end up sleeping due a copy_to_user(), so
62  * we need a lock that will allow us to sleep. This lock is a
63  * mutex (ep->mtx). It is acquired during the event transfer loop,
64  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65  * Then we also need a global mutex to serialize eventpoll_release_file()
66  * and ep_free().
67  * This mutex is acquired by ep_free() during the epoll file
68  * cleanup path and it is also acquired by eventpoll_release_file()
69  * if a file has been pushed inside an epoll set and it is then
70  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71  * It is also acquired when inserting an epoll fd onto another epoll
72  * fd. We do this so that we walk the epoll tree and ensure that this
73  * insertion does not create a cycle of epoll file descriptors, which
74  * could lead to deadlock. We need a global mutex to prevent two
75  * simultaneous inserts (A into B and B into A) from racing and
76  * constructing a cycle without either insert observing that it is
77  * going to.
78  * It is necessary to acquire multiple "ep->mtx"es at once in the
79  * case when one epoll fd is added to another. In this case, we
80  * always acquire the locks in the order of nesting (i.e. after
81  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82  * before e2->mtx). Since we disallow cycles of epoll file
83  * descriptors, this ensures that the mutexes are well-ordered. In
84  * order to communicate this nesting to lockdep, when walking a tree
85  * of epoll file descriptors, we use the current recursion depth as
86  * the lockdep subkey.
87  * It is possible to drop the "ep->mtx" and to use the global
88  * mutex "epmutex" (together with "ep->lock") to have it working,
89  * but having "ep->mtx" will make the interface more scalable.
90  * Events that require holding "epmutex" are very rare, while for
91  * normal operations the epoll private "ep->mtx" will guarantee
92  * a better scalability.
93  */
94 
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
97 
98 #define EPOLLINOUT_BITS (POLLIN | POLLOUT)
99 
100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \
101 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
102 
103 /* Maximum number of nesting allowed inside epoll sets */
104 #define EP_MAX_NESTS 4
105 
106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
107 
108 #define EP_UNACTIVE_PTR ((void *) -1L)
109 
110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
111 
112 struct epoll_filefd {
113 	struct file *file;
114 	int fd;
115 } __packed;
116 
117 /*
118  * Structure used to track possible nested calls, for too deep recursions
119  * and loop cycles.
120  */
121 struct nested_call_node {
122 	struct list_head llink;
123 	void *cookie;
124 	void *ctx;
125 };
126 
127 /*
128  * This structure is used as collector for nested calls, to check for
129  * maximum recursion dept and loop cycles.
130  */
131 struct nested_calls {
132 	struct list_head tasks_call_list;
133 	spinlock_t lock;
134 };
135 
136 /*
137  * Each file descriptor added to the eventpoll interface will
138  * have an entry of this type linked to the "rbr" RB tree.
139  * Avoid increasing the size of this struct, there can be many thousands
140  * of these on a server and we do not want this to take another cache line.
141  */
142 struct epitem {
143 	union {
144 		/* RB tree node links this structure to the eventpoll RB tree */
145 		struct rb_node rbn;
146 		/* Used to free the struct epitem */
147 		struct rcu_head rcu;
148 	};
149 
150 	/* List header used to link this structure to the eventpoll ready list */
151 	struct list_head rdllink;
152 
153 	/*
154 	 * Works together "struct eventpoll"->ovflist in keeping the
155 	 * single linked chain of items.
156 	 */
157 	struct epitem *next;
158 
159 	/* The file descriptor information this item refers to */
160 	struct epoll_filefd ffd;
161 
162 	/* Number of active wait queue attached to poll operations */
163 	int nwait;
164 
165 	/* List containing poll wait queues */
166 	struct list_head pwqlist;
167 
168 	/* The "container" of this item */
169 	struct eventpoll *ep;
170 
171 	/* List header used to link this item to the "struct file" items list */
172 	struct list_head fllink;
173 
174 	/* wakeup_source used when EPOLLWAKEUP is set */
175 	struct wakeup_source __rcu *ws;
176 
177 	/* The structure that describe the interested events and the source fd */
178 	struct epoll_event event;
179 };
180 
181 /*
182  * This structure is stored inside the "private_data" member of the file
183  * structure and represents the main data structure for the eventpoll
184  * interface.
185  */
186 struct eventpoll {
187 	/* Protect the access to this structure */
188 	spinlock_t lock;
189 
190 	/*
191 	 * This mutex is used to ensure that files are not removed
192 	 * while epoll is using them. This is held during the event
193 	 * collection loop, the file cleanup path, the epoll file exit
194 	 * code and the ctl operations.
195 	 */
196 	struct mutex mtx;
197 
198 	/* Wait queue used by sys_epoll_wait() */
199 	wait_queue_head_t wq;
200 
201 	/* Wait queue used by file->poll() */
202 	wait_queue_head_t poll_wait;
203 
204 	/* List of ready file descriptors */
205 	struct list_head rdllist;
206 
207 	/* RB tree root used to store monitored fd structs */
208 	struct rb_root_cached rbr;
209 
210 	/*
211 	 * This is a single linked list that chains all the "struct epitem" that
212 	 * happened while transferring ready events to userspace w/out
213 	 * holding ->lock.
214 	 */
215 	struct epitem *ovflist;
216 
217 	/* wakeup_source used when ep_scan_ready_list is running */
218 	struct wakeup_source *ws;
219 
220 	/* The user that created the eventpoll descriptor */
221 	struct user_struct *user;
222 
223 	struct file *file;
224 
225 	/* used to optimize loop detection check */
226 	int visited;
227 	struct list_head visited_list_link;
228 
229 #ifdef CONFIG_NET_RX_BUSY_POLL
230 	/* used to track busy poll napi_id */
231 	unsigned int napi_id;
232 #endif
233 };
234 
235 /* Wait structure used by the poll hooks */
236 struct eppoll_entry {
237 	/* List header used to link this structure to the "struct epitem" */
238 	struct list_head llink;
239 
240 	/* The "base" pointer is set to the container "struct epitem" */
241 	struct epitem *base;
242 
243 	/*
244 	 * Wait queue item that will be linked to the target file wait
245 	 * queue head.
246 	 */
247 	wait_queue_entry_t wait;
248 
249 	/* The wait queue head that linked the "wait" wait queue item */
250 	wait_queue_head_t *whead;
251 };
252 
253 /* Wrapper struct used by poll queueing */
254 struct ep_pqueue {
255 	poll_table pt;
256 	struct epitem *epi;
257 };
258 
259 /* Used by the ep_send_events() function as callback private data */
260 struct ep_send_events_data {
261 	int maxevents;
262 	struct epoll_event __user *events;
263 };
264 
265 /*
266  * Configuration options available inside /proc/sys/fs/epoll/
267  */
268 /* Maximum number of epoll watched descriptors, per user */
269 static long max_user_watches __read_mostly;
270 
271 /*
272  * This mutex is used to serialize ep_free() and eventpoll_release_file().
273  */
274 static DEFINE_MUTEX(epmutex);
275 
276 /* Used to check for epoll file descriptor inclusion loops */
277 static struct nested_calls poll_loop_ncalls;
278 
279 /* Slab cache used to allocate "struct epitem" */
280 static struct kmem_cache *epi_cache __read_mostly;
281 
282 /* Slab cache used to allocate "struct eppoll_entry" */
283 static struct kmem_cache *pwq_cache __read_mostly;
284 
285 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
286 static LIST_HEAD(visited_list);
287 
288 /*
289  * List of files with newly added links, where we may need to limit the number
290  * of emanating paths. Protected by the epmutex.
291  */
292 static LIST_HEAD(tfile_check_list);
293 
294 #ifdef CONFIG_SYSCTL
295 
296 #include <linux/sysctl.h>
297 
298 static long zero;
299 static long long_max = LONG_MAX;
300 
301 struct ctl_table epoll_table[] = {
302 	{
303 		.procname	= "max_user_watches",
304 		.data		= &max_user_watches,
305 		.maxlen		= sizeof(max_user_watches),
306 		.mode		= 0644,
307 		.proc_handler	= proc_doulongvec_minmax,
308 		.extra1		= &zero,
309 		.extra2		= &long_max,
310 	},
311 	{ }
312 };
313 #endif /* CONFIG_SYSCTL */
314 
315 static const struct file_operations eventpoll_fops;
316 
317 static inline int is_file_epoll(struct file *f)
318 {
319 	return f->f_op == &eventpoll_fops;
320 }
321 
322 /* Setup the structure that is used as key for the RB tree */
323 static inline void ep_set_ffd(struct epoll_filefd *ffd,
324 			      struct file *file, int fd)
325 {
326 	ffd->file = file;
327 	ffd->fd = fd;
328 }
329 
330 /* Compare RB tree keys */
331 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
332 			     struct epoll_filefd *p2)
333 {
334 	return (p1->file > p2->file ? +1:
335 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
336 }
337 
338 /* Tells us if the item is currently linked */
339 static inline int ep_is_linked(struct list_head *p)
340 {
341 	return !list_empty(p);
342 }
343 
344 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
345 {
346 	return container_of(p, struct eppoll_entry, wait);
347 }
348 
349 /* Get the "struct epitem" from a wait queue pointer */
350 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
351 {
352 	return container_of(p, struct eppoll_entry, wait)->base;
353 }
354 
355 /* Get the "struct epitem" from an epoll queue wrapper */
356 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
357 {
358 	return container_of(p, struct ep_pqueue, pt)->epi;
359 }
360 
361 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
362 static inline int ep_op_has_event(int op)
363 {
364 	return op != EPOLL_CTL_DEL;
365 }
366 
367 /* Initialize the poll safe wake up structure */
368 static void ep_nested_calls_init(struct nested_calls *ncalls)
369 {
370 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
371 	spin_lock_init(&ncalls->lock);
372 }
373 
374 /**
375  * ep_events_available - Checks if ready events might be available.
376  *
377  * @ep: Pointer to the eventpoll context.
378  *
379  * Returns: Returns a value different than zero if ready events are available,
380  *          or zero otherwise.
381  */
382 static inline int ep_events_available(struct eventpoll *ep)
383 {
384 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
385 }
386 
387 #ifdef CONFIG_NET_RX_BUSY_POLL
388 static bool ep_busy_loop_end(void *p, unsigned long start_time)
389 {
390 	struct eventpoll *ep = p;
391 
392 	return ep_events_available(ep) || busy_loop_timeout(start_time);
393 }
394 #endif /* CONFIG_NET_RX_BUSY_POLL */
395 
396 /*
397  * Busy poll if globally on and supporting sockets found && no events,
398  * busy loop will return if need_resched or ep_events_available.
399  *
400  * we must do our busy polling with irqs enabled
401  */
402 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
403 {
404 #ifdef CONFIG_NET_RX_BUSY_POLL
405 	unsigned int napi_id = READ_ONCE(ep->napi_id);
406 
407 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
408 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
409 #endif
410 }
411 
412 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
413 {
414 #ifdef CONFIG_NET_RX_BUSY_POLL
415 	if (ep->napi_id)
416 		ep->napi_id = 0;
417 #endif
418 }
419 
420 /*
421  * Set epoll busy poll NAPI ID from sk.
422  */
423 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
424 {
425 #ifdef CONFIG_NET_RX_BUSY_POLL
426 	struct eventpoll *ep;
427 	unsigned int napi_id;
428 	struct socket *sock;
429 	struct sock *sk;
430 	int err;
431 
432 	if (!net_busy_loop_on())
433 		return;
434 
435 	sock = sock_from_file(epi->ffd.file, &err);
436 	if (!sock)
437 		return;
438 
439 	sk = sock->sk;
440 	if (!sk)
441 		return;
442 
443 	napi_id = READ_ONCE(sk->sk_napi_id);
444 	ep = epi->ep;
445 
446 	/* Non-NAPI IDs can be rejected
447 	 *	or
448 	 * Nothing to do if we already have this ID
449 	 */
450 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
451 		return;
452 
453 	/* record NAPI ID for use in next busy poll */
454 	ep->napi_id = napi_id;
455 #endif
456 }
457 
458 /**
459  * ep_call_nested - Perform a bound (possibly) nested call, by checking
460  *                  that the recursion limit is not exceeded, and that
461  *                  the same nested call (by the meaning of same cookie) is
462  *                  no re-entered.
463  *
464  * @ncalls: Pointer to the nested_calls structure to be used for this call.
465  * @max_nests: Maximum number of allowed nesting calls.
466  * @nproc: Nested call core function pointer.
467  * @priv: Opaque data to be passed to the @nproc callback.
468  * @cookie: Cookie to be used to identify this nested call.
469  * @ctx: This instance context.
470  *
471  * Returns: Returns the code returned by the @nproc callback, or -1 if
472  *          the maximum recursion limit has been exceeded.
473  */
474 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
475 			  int (*nproc)(void *, void *, int), void *priv,
476 			  void *cookie, void *ctx)
477 {
478 	int error, call_nests = 0;
479 	unsigned long flags;
480 	struct list_head *lsthead = &ncalls->tasks_call_list;
481 	struct nested_call_node *tncur;
482 	struct nested_call_node tnode;
483 
484 	spin_lock_irqsave(&ncalls->lock, flags);
485 
486 	/*
487 	 * Try to see if the current task is already inside this wakeup call.
488 	 * We use a list here, since the population inside this set is always
489 	 * very much limited.
490 	 */
491 	list_for_each_entry(tncur, lsthead, llink) {
492 		if (tncur->ctx == ctx &&
493 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
494 			/*
495 			 * Ops ... loop detected or maximum nest level reached.
496 			 * We abort this wake by breaking the cycle itself.
497 			 */
498 			error = -1;
499 			goto out_unlock;
500 		}
501 	}
502 
503 	/* Add the current task and cookie to the list */
504 	tnode.ctx = ctx;
505 	tnode.cookie = cookie;
506 	list_add(&tnode.llink, lsthead);
507 
508 	spin_unlock_irqrestore(&ncalls->lock, flags);
509 
510 	/* Call the nested function */
511 	error = (*nproc)(priv, cookie, call_nests);
512 
513 	/* Remove the current task from the list */
514 	spin_lock_irqsave(&ncalls->lock, flags);
515 	list_del(&tnode.llink);
516 out_unlock:
517 	spin_unlock_irqrestore(&ncalls->lock, flags);
518 
519 	return error;
520 }
521 
522 /*
523  * As described in commit 0ccf831cb lockdep: annotate epoll
524  * the use of wait queues used by epoll is done in a very controlled
525  * manner. Wake ups can nest inside each other, but are never done
526  * with the same locking. For example:
527  *
528  *   dfd = socket(...);
529  *   efd1 = epoll_create();
530  *   efd2 = epoll_create();
531  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
532  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
533  *
534  * When a packet arrives to the device underneath "dfd", the net code will
535  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
536  * callback wakeup entry on that queue, and the wake_up() performed by the
537  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
538  * (efd1) notices that it may have some event ready, so it needs to wake up
539  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
540  * that ends up in another wake_up(), after having checked about the
541  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
542  * avoid stack blasting.
543  *
544  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
545  * this special case of epoll.
546  */
547 #ifdef CONFIG_DEBUG_LOCK_ALLOC
548 
549 static struct nested_calls poll_safewake_ncalls;
550 
551 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
552 {
553 	unsigned long flags;
554 	wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
555 
556 	spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
557 	wake_up_locked_poll(wqueue, POLLIN);
558 	spin_unlock_irqrestore(&wqueue->lock, flags);
559 
560 	return 0;
561 }
562 
563 static void ep_poll_safewake(wait_queue_head_t *wq)
564 {
565 	int this_cpu = get_cpu();
566 
567 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
568 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
569 
570 	put_cpu();
571 }
572 
573 #else
574 
575 static void ep_poll_safewake(wait_queue_head_t *wq)
576 {
577 	wake_up_poll(wq, POLLIN);
578 }
579 
580 #endif
581 
582 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
583 {
584 	wait_queue_head_t *whead;
585 
586 	rcu_read_lock();
587 	/*
588 	 * If it is cleared by POLLFREE, it should be rcu-safe.
589 	 * If we read NULL we need a barrier paired with
590 	 * smp_store_release() in ep_poll_callback(), otherwise
591 	 * we rely on whead->lock.
592 	 */
593 	whead = smp_load_acquire(&pwq->whead);
594 	if (whead)
595 		remove_wait_queue(whead, &pwq->wait);
596 	rcu_read_unlock();
597 }
598 
599 /*
600  * This function unregisters poll callbacks from the associated file
601  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
602  * ep_free).
603  */
604 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
605 {
606 	struct list_head *lsthead = &epi->pwqlist;
607 	struct eppoll_entry *pwq;
608 
609 	while (!list_empty(lsthead)) {
610 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
611 
612 		list_del(&pwq->llink);
613 		ep_remove_wait_queue(pwq);
614 		kmem_cache_free(pwq_cache, pwq);
615 	}
616 }
617 
618 /* call only when ep->mtx is held */
619 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
620 {
621 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
622 }
623 
624 /* call only when ep->mtx is held */
625 static inline void ep_pm_stay_awake(struct epitem *epi)
626 {
627 	struct wakeup_source *ws = ep_wakeup_source(epi);
628 
629 	if (ws)
630 		__pm_stay_awake(ws);
631 }
632 
633 static inline bool ep_has_wakeup_source(struct epitem *epi)
634 {
635 	return rcu_access_pointer(epi->ws) ? true : false;
636 }
637 
638 /* call when ep->mtx cannot be held (ep_poll_callback) */
639 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
640 {
641 	struct wakeup_source *ws;
642 
643 	rcu_read_lock();
644 	ws = rcu_dereference(epi->ws);
645 	if (ws)
646 		__pm_stay_awake(ws);
647 	rcu_read_unlock();
648 }
649 
650 /**
651  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
652  *                      the scan code, to call f_op->poll(). Also allows for
653  *                      O(NumReady) performance.
654  *
655  * @ep: Pointer to the epoll private data structure.
656  * @sproc: Pointer to the scan callback.
657  * @priv: Private opaque data passed to the @sproc callback.
658  * @depth: The current depth of recursive f_op->poll calls.
659  * @ep_locked: caller already holds ep->mtx
660  *
661  * Returns: The same integer error code returned by the @sproc callback.
662  */
663 static int ep_scan_ready_list(struct eventpoll *ep,
664 			      int (*sproc)(struct eventpoll *,
665 					   struct list_head *, void *),
666 			      void *priv, int depth, bool ep_locked)
667 {
668 	int error, pwake = 0;
669 	unsigned long flags;
670 	struct epitem *epi, *nepi;
671 	LIST_HEAD(txlist);
672 
673 	/*
674 	 * We need to lock this because we could be hit by
675 	 * eventpoll_release_file() and epoll_ctl().
676 	 */
677 
678 	if (!ep_locked)
679 		mutex_lock_nested(&ep->mtx, depth);
680 
681 	/*
682 	 * Steal the ready list, and re-init the original one to the
683 	 * empty list. Also, set ep->ovflist to NULL so that events
684 	 * happening while looping w/out locks, are not lost. We cannot
685 	 * have the poll callback to queue directly on ep->rdllist,
686 	 * because we want the "sproc" callback to be able to do it
687 	 * in a lockless way.
688 	 */
689 	spin_lock_irqsave(&ep->lock, flags);
690 	list_splice_init(&ep->rdllist, &txlist);
691 	ep->ovflist = NULL;
692 	spin_unlock_irqrestore(&ep->lock, flags);
693 
694 	/*
695 	 * Now call the callback function.
696 	 */
697 	error = (*sproc)(ep, &txlist, priv);
698 
699 	spin_lock_irqsave(&ep->lock, flags);
700 	/*
701 	 * During the time we spent inside the "sproc" callback, some
702 	 * other events might have been queued by the poll callback.
703 	 * We re-insert them inside the main ready-list here.
704 	 */
705 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
706 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
707 		/*
708 		 * We need to check if the item is already in the list.
709 		 * During the "sproc" callback execution time, items are
710 		 * queued into ->ovflist but the "txlist" might already
711 		 * contain them, and the list_splice() below takes care of them.
712 		 */
713 		if (!ep_is_linked(&epi->rdllink)) {
714 			list_add_tail(&epi->rdllink, &ep->rdllist);
715 			ep_pm_stay_awake(epi);
716 		}
717 	}
718 	/*
719 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
720 	 * releasing the lock, events will be queued in the normal way inside
721 	 * ep->rdllist.
722 	 */
723 	ep->ovflist = EP_UNACTIVE_PTR;
724 
725 	/*
726 	 * Quickly re-inject items left on "txlist".
727 	 */
728 	list_splice(&txlist, &ep->rdllist);
729 	__pm_relax(ep->ws);
730 
731 	if (!list_empty(&ep->rdllist)) {
732 		/*
733 		 * Wake up (if active) both the eventpoll wait list and
734 		 * the ->poll() wait list (delayed after we release the lock).
735 		 */
736 		if (waitqueue_active(&ep->wq))
737 			wake_up_locked(&ep->wq);
738 		if (waitqueue_active(&ep->poll_wait))
739 			pwake++;
740 	}
741 	spin_unlock_irqrestore(&ep->lock, flags);
742 
743 	if (!ep_locked)
744 		mutex_unlock(&ep->mtx);
745 
746 	/* We have to call this outside the lock */
747 	if (pwake)
748 		ep_poll_safewake(&ep->poll_wait);
749 
750 	return error;
751 }
752 
753 static void epi_rcu_free(struct rcu_head *head)
754 {
755 	struct epitem *epi = container_of(head, struct epitem, rcu);
756 	kmem_cache_free(epi_cache, epi);
757 }
758 
759 /*
760  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
761  * all the associated resources. Must be called with "mtx" held.
762  */
763 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
764 {
765 	unsigned long flags;
766 	struct file *file = epi->ffd.file;
767 
768 	/*
769 	 * Removes poll wait queue hooks. We _have_ to do this without holding
770 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
771 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
772 	 * queue head lock when unregistering the wait queue. The wakeup callback
773 	 * will run by holding the wait queue head lock and will call our callback
774 	 * that will try to get "ep->lock".
775 	 */
776 	ep_unregister_pollwait(ep, epi);
777 
778 	/* Remove the current item from the list of epoll hooks */
779 	spin_lock(&file->f_lock);
780 	list_del_rcu(&epi->fllink);
781 	spin_unlock(&file->f_lock);
782 
783 	rb_erase_cached(&epi->rbn, &ep->rbr);
784 
785 	spin_lock_irqsave(&ep->lock, flags);
786 	if (ep_is_linked(&epi->rdllink))
787 		list_del_init(&epi->rdllink);
788 	spin_unlock_irqrestore(&ep->lock, flags);
789 
790 	wakeup_source_unregister(ep_wakeup_source(epi));
791 	/*
792 	 * At this point it is safe to free the eventpoll item. Use the union
793 	 * field epi->rcu, since we are trying to minimize the size of
794 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
795 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
796 	 * use of the rbn field.
797 	 */
798 	call_rcu(&epi->rcu, epi_rcu_free);
799 
800 	atomic_long_dec(&ep->user->epoll_watches);
801 
802 	return 0;
803 }
804 
805 static void ep_free(struct eventpoll *ep)
806 {
807 	struct rb_node *rbp;
808 	struct epitem *epi;
809 
810 	/* We need to release all tasks waiting for these file */
811 	if (waitqueue_active(&ep->poll_wait))
812 		ep_poll_safewake(&ep->poll_wait);
813 
814 	/*
815 	 * We need to lock this because we could be hit by
816 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
817 	 * We do not need to hold "ep->mtx" here because the epoll file
818 	 * is on the way to be removed and no one has references to it
819 	 * anymore. The only hit might come from eventpoll_release_file() but
820 	 * holding "epmutex" is sufficient here.
821 	 */
822 	mutex_lock(&epmutex);
823 
824 	/*
825 	 * Walks through the whole tree by unregistering poll callbacks.
826 	 */
827 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
828 		epi = rb_entry(rbp, struct epitem, rbn);
829 
830 		ep_unregister_pollwait(ep, epi);
831 		cond_resched();
832 	}
833 
834 	/*
835 	 * Walks through the whole tree by freeing each "struct epitem". At this
836 	 * point we are sure no poll callbacks will be lingering around, and also by
837 	 * holding "epmutex" we can be sure that no file cleanup code will hit
838 	 * us during this operation. So we can avoid the lock on "ep->lock".
839 	 * We do not need to lock ep->mtx, either, we only do it to prevent
840 	 * a lockdep warning.
841 	 */
842 	mutex_lock(&ep->mtx);
843 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
844 		epi = rb_entry(rbp, struct epitem, rbn);
845 		ep_remove(ep, epi);
846 		cond_resched();
847 	}
848 	mutex_unlock(&ep->mtx);
849 
850 	mutex_unlock(&epmutex);
851 	mutex_destroy(&ep->mtx);
852 	free_uid(ep->user);
853 	wakeup_source_unregister(ep->ws);
854 	kfree(ep);
855 }
856 
857 static int ep_eventpoll_release(struct inode *inode, struct file *file)
858 {
859 	struct eventpoll *ep = file->private_data;
860 
861 	if (ep)
862 		ep_free(ep);
863 
864 	return 0;
865 }
866 
867 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
868 			       void *priv);
869 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
870 				 poll_table *pt);
871 
872 /*
873  * Differs from ep_eventpoll_poll() in that internal callers already have
874  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
875  * is correctly annotated.
876  */
877 static unsigned int ep_item_poll(struct epitem *epi, poll_table *pt, int depth)
878 {
879 	struct eventpoll *ep;
880 	bool locked;
881 
882 	pt->_key = epi->event.events;
883 	if (!is_file_epoll(epi->ffd.file))
884 		return epi->ffd.file->f_op->poll(epi->ffd.file, pt) &
885 		       epi->event.events;
886 
887 	ep = epi->ffd.file->private_data;
888 	poll_wait(epi->ffd.file, &ep->poll_wait, pt);
889 	locked = pt && (pt->_qproc == ep_ptable_queue_proc);
890 
891 	return ep_scan_ready_list(epi->ffd.file->private_data,
892 				  ep_read_events_proc, &depth, depth,
893 				  locked) & epi->event.events;
894 }
895 
896 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
897 			       void *priv)
898 {
899 	struct epitem *epi, *tmp;
900 	poll_table pt;
901 	int depth = *(int *)priv;
902 
903 	init_poll_funcptr(&pt, NULL);
904 	depth++;
905 
906 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
907 		if (ep_item_poll(epi, &pt, depth)) {
908 			return POLLIN | POLLRDNORM;
909 		} else {
910 			/*
911 			 * Item has been dropped into the ready list by the poll
912 			 * callback, but it's not actually ready, as far as
913 			 * caller requested events goes. We can remove it here.
914 			 */
915 			__pm_relax(ep_wakeup_source(epi));
916 			list_del_init(&epi->rdllink);
917 		}
918 	}
919 
920 	return 0;
921 }
922 
923 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
924 {
925 	struct eventpoll *ep = file->private_data;
926 	int depth = 0;
927 
928 	/* Insert inside our poll wait queue */
929 	poll_wait(file, &ep->poll_wait, wait);
930 
931 	/*
932 	 * Proceed to find out if wanted events are really available inside
933 	 * the ready list.
934 	 */
935 	return ep_scan_ready_list(ep, ep_read_events_proc,
936 				  &depth, depth, false);
937 }
938 
939 #ifdef CONFIG_PROC_FS
940 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
941 {
942 	struct eventpoll *ep = f->private_data;
943 	struct rb_node *rbp;
944 
945 	mutex_lock(&ep->mtx);
946 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
947 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
948 		struct inode *inode = file_inode(epi->ffd.file);
949 
950 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
951 			   " pos:%lli ino:%lx sdev:%x\n",
952 			   epi->ffd.fd, epi->event.events,
953 			   (long long)epi->event.data,
954 			   (long long)epi->ffd.file->f_pos,
955 			   inode->i_ino, inode->i_sb->s_dev);
956 		if (seq_has_overflowed(m))
957 			break;
958 	}
959 	mutex_unlock(&ep->mtx);
960 }
961 #endif
962 
963 /* File callbacks that implement the eventpoll file behaviour */
964 static const struct file_operations eventpoll_fops = {
965 #ifdef CONFIG_PROC_FS
966 	.show_fdinfo	= ep_show_fdinfo,
967 #endif
968 	.release	= ep_eventpoll_release,
969 	.poll		= ep_eventpoll_poll,
970 	.llseek		= noop_llseek,
971 };
972 
973 /*
974  * This is called from eventpoll_release() to unlink files from the eventpoll
975  * interface. We need to have this facility to cleanup correctly files that are
976  * closed without being removed from the eventpoll interface.
977  */
978 void eventpoll_release_file(struct file *file)
979 {
980 	struct eventpoll *ep;
981 	struct epitem *epi, *next;
982 
983 	/*
984 	 * We don't want to get "file->f_lock" because it is not
985 	 * necessary. It is not necessary because we're in the "struct file"
986 	 * cleanup path, and this means that no one is using this file anymore.
987 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
988 	 * point, the file counter already went to zero and fget() would fail.
989 	 * The only hit might come from ep_free() but by holding the mutex
990 	 * will correctly serialize the operation. We do need to acquire
991 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
992 	 * from anywhere but ep_free().
993 	 *
994 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
995 	 */
996 	mutex_lock(&epmutex);
997 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
998 		ep = epi->ep;
999 		mutex_lock_nested(&ep->mtx, 0);
1000 		ep_remove(ep, epi);
1001 		mutex_unlock(&ep->mtx);
1002 	}
1003 	mutex_unlock(&epmutex);
1004 }
1005 
1006 static int ep_alloc(struct eventpoll **pep)
1007 {
1008 	int error;
1009 	struct user_struct *user;
1010 	struct eventpoll *ep;
1011 
1012 	user = get_current_user();
1013 	error = -ENOMEM;
1014 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1015 	if (unlikely(!ep))
1016 		goto free_uid;
1017 
1018 	spin_lock_init(&ep->lock);
1019 	mutex_init(&ep->mtx);
1020 	init_waitqueue_head(&ep->wq);
1021 	init_waitqueue_head(&ep->poll_wait);
1022 	INIT_LIST_HEAD(&ep->rdllist);
1023 	ep->rbr = RB_ROOT_CACHED;
1024 	ep->ovflist = EP_UNACTIVE_PTR;
1025 	ep->user = user;
1026 
1027 	*pep = ep;
1028 
1029 	return 0;
1030 
1031 free_uid:
1032 	free_uid(user);
1033 	return error;
1034 }
1035 
1036 /*
1037  * Search the file inside the eventpoll tree. The RB tree operations
1038  * are protected by the "mtx" mutex, and ep_find() must be called with
1039  * "mtx" held.
1040  */
1041 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1042 {
1043 	int kcmp;
1044 	struct rb_node *rbp;
1045 	struct epitem *epi, *epir = NULL;
1046 	struct epoll_filefd ffd;
1047 
1048 	ep_set_ffd(&ffd, file, fd);
1049 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1050 		epi = rb_entry(rbp, struct epitem, rbn);
1051 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1052 		if (kcmp > 0)
1053 			rbp = rbp->rb_right;
1054 		else if (kcmp < 0)
1055 			rbp = rbp->rb_left;
1056 		else {
1057 			epir = epi;
1058 			break;
1059 		}
1060 	}
1061 
1062 	return epir;
1063 }
1064 
1065 #ifdef CONFIG_CHECKPOINT_RESTORE
1066 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1067 {
1068 	struct rb_node *rbp;
1069 	struct epitem *epi;
1070 
1071 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1072 		epi = rb_entry(rbp, struct epitem, rbn);
1073 		if (epi->ffd.fd == tfd) {
1074 			if (toff == 0)
1075 				return epi;
1076 			else
1077 				toff--;
1078 		}
1079 		cond_resched();
1080 	}
1081 
1082 	return NULL;
1083 }
1084 
1085 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1086 				     unsigned long toff)
1087 {
1088 	struct file *file_raw;
1089 	struct eventpoll *ep;
1090 	struct epitem *epi;
1091 
1092 	if (!is_file_epoll(file))
1093 		return ERR_PTR(-EINVAL);
1094 
1095 	ep = file->private_data;
1096 
1097 	mutex_lock(&ep->mtx);
1098 	epi = ep_find_tfd(ep, tfd, toff);
1099 	if (epi)
1100 		file_raw = epi->ffd.file;
1101 	else
1102 		file_raw = ERR_PTR(-ENOENT);
1103 	mutex_unlock(&ep->mtx);
1104 
1105 	return file_raw;
1106 }
1107 #endif /* CONFIG_CHECKPOINT_RESTORE */
1108 
1109 /*
1110  * This is the callback that is passed to the wait queue wakeup
1111  * mechanism. It is called by the stored file descriptors when they
1112  * have events to report.
1113  */
1114 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1115 {
1116 	int pwake = 0;
1117 	unsigned long flags;
1118 	struct epitem *epi = ep_item_from_wait(wait);
1119 	struct eventpoll *ep = epi->ep;
1120 	int ewake = 0;
1121 
1122 	spin_lock_irqsave(&ep->lock, flags);
1123 
1124 	ep_set_busy_poll_napi_id(epi);
1125 
1126 	/*
1127 	 * If the event mask does not contain any poll(2) event, we consider the
1128 	 * descriptor to be disabled. This condition is likely the effect of the
1129 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1130 	 * until the next EPOLL_CTL_MOD will be issued.
1131 	 */
1132 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1133 		goto out_unlock;
1134 
1135 	/*
1136 	 * Check the events coming with the callback. At this stage, not
1137 	 * every device reports the events in the "key" parameter of the
1138 	 * callback. We need to be able to handle both cases here, hence the
1139 	 * test for "key" != NULL before the event match test.
1140 	 */
1141 	if (key && !((unsigned long) key & epi->event.events))
1142 		goto out_unlock;
1143 
1144 	/*
1145 	 * If we are transferring events to userspace, we can hold no locks
1146 	 * (because we're accessing user memory, and because of linux f_op->poll()
1147 	 * semantics). All the events that happen during that period of time are
1148 	 * chained in ep->ovflist and requeued later on.
1149 	 */
1150 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1151 		if (epi->next == EP_UNACTIVE_PTR) {
1152 			epi->next = ep->ovflist;
1153 			ep->ovflist = epi;
1154 			if (epi->ws) {
1155 				/*
1156 				 * Activate ep->ws since epi->ws may get
1157 				 * deactivated at any time.
1158 				 */
1159 				__pm_stay_awake(ep->ws);
1160 			}
1161 
1162 		}
1163 		goto out_unlock;
1164 	}
1165 
1166 	/* If this file is already in the ready list we exit soon */
1167 	if (!ep_is_linked(&epi->rdllink)) {
1168 		list_add_tail(&epi->rdllink, &ep->rdllist);
1169 		ep_pm_stay_awake_rcu(epi);
1170 	}
1171 
1172 	/*
1173 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1174 	 * wait list.
1175 	 */
1176 	if (waitqueue_active(&ep->wq)) {
1177 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1178 					!((unsigned long)key & POLLFREE)) {
1179 			switch ((unsigned long)key & EPOLLINOUT_BITS) {
1180 			case POLLIN:
1181 				if (epi->event.events & POLLIN)
1182 					ewake = 1;
1183 				break;
1184 			case POLLOUT:
1185 				if (epi->event.events & POLLOUT)
1186 					ewake = 1;
1187 				break;
1188 			case 0:
1189 				ewake = 1;
1190 				break;
1191 			}
1192 		}
1193 		wake_up_locked(&ep->wq);
1194 	}
1195 	if (waitqueue_active(&ep->poll_wait))
1196 		pwake++;
1197 
1198 out_unlock:
1199 	spin_unlock_irqrestore(&ep->lock, flags);
1200 
1201 	/* We have to call this outside the lock */
1202 	if (pwake)
1203 		ep_poll_safewake(&ep->poll_wait);
1204 
1205 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1206 		ewake = 1;
1207 
1208 	if ((unsigned long)key & POLLFREE) {
1209 		/*
1210 		 * If we race with ep_remove_wait_queue() it can miss
1211 		 * ->whead = NULL and do another remove_wait_queue() after
1212 		 * us, so we can't use __remove_wait_queue().
1213 		 */
1214 		list_del_init(&wait->entry);
1215 		/*
1216 		 * ->whead != NULL protects us from the race with ep_free()
1217 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1218 		 * held by the caller. Once we nullify it, nothing protects
1219 		 * ep/epi or even wait.
1220 		 */
1221 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1222 	}
1223 
1224 	return ewake;
1225 }
1226 
1227 /*
1228  * This is the callback that is used to add our wait queue to the
1229  * target file wakeup lists.
1230  */
1231 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1232 				 poll_table *pt)
1233 {
1234 	struct epitem *epi = ep_item_from_epqueue(pt);
1235 	struct eppoll_entry *pwq;
1236 
1237 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1238 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1239 		pwq->whead = whead;
1240 		pwq->base = epi;
1241 		if (epi->event.events & EPOLLEXCLUSIVE)
1242 			add_wait_queue_exclusive(whead, &pwq->wait);
1243 		else
1244 			add_wait_queue(whead, &pwq->wait);
1245 		list_add_tail(&pwq->llink, &epi->pwqlist);
1246 		epi->nwait++;
1247 	} else {
1248 		/* We have to signal that an error occurred */
1249 		epi->nwait = -1;
1250 	}
1251 }
1252 
1253 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1254 {
1255 	int kcmp;
1256 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1257 	struct epitem *epic;
1258 	bool leftmost = true;
1259 
1260 	while (*p) {
1261 		parent = *p;
1262 		epic = rb_entry(parent, struct epitem, rbn);
1263 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1264 		if (kcmp > 0) {
1265 			p = &parent->rb_right;
1266 			leftmost = false;
1267 		} else
1268 			p = &parent->rb_left;
1269 	}
1270 	rb_link_node(&epi->rbn, parent, p);
1271 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1272 }
1273 
1274 
1275 
1276 #define PATH_ARR_SIZE 5
1277 /*
1278  * These are the number paths of length 1 to 5, that we are allowing to emanate
1279  * from a single file of interest. For example, we allow 1000 paths of length
1280  * 1, to emanate from each file of interest. This essentially represents the
1281  * potential wakeup paths, which need to be limited in order to avoid massive
1282  * uncontrolled wakeup storms. The common use case should be a single ep which
1283  * is connected to n file sources. In this case each file source has 1 path
1284  * of length 1. Thus, the numbers below should be more than sufficient. These
1285  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1286  * and delete can't add additional paths. Protected by the epmutex.
1287  */
1288 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1289 static int path_count[PATH_ARR_SIZE];
1290 
1291 static int path_count_inc(int nests)
1292 {
1293 	/* Allow an arbitrary number of depth 1 paths */
1294 	if (nests == 0)
1295 		return 0;
1296 
1297 	if (++path_count[nests] > path_limits[nests])
1298 		return -1;
1299 	return 0;
1300 }
1301 
1302 static void path_count_init(void)
1303 {
1304 	int i;
1305 
1306 	for (i = 0; i < PATH_ARR_SIZE; i++)
1307 		path_count[i] = 0;
1308 }
1309 
1310 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1311 {
1312 	int error = 0;
1313 	struct file *file = priv;
1314 	struct file *child_file;
1315 	struct epitem *epi;
1316 
1317 	/* CTL_DEL can remove links here, but that can't increase our count */
1318 	rcu_read_lock();
1319 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1320 		child_file = epi->ep->file;
1321 		if (is_file_epoll(child_file)) {
1322 			if (list_empty(&child_file->f_ep_links)) {
1323 				if (path_count_inc(call_nests)) {
1324 					error = -1;
1325 					break;
1326 				}
1327 			} else {
1328 				error = ep_call_nested(&poll_loop_ncalls,
1329 							EP_MAX_NESTS,
1330 							reverse_path_check_proc,
1331 							child_file, child_file,
1332 							current);
1333 			}
1334 			if (error != 0)
1335 				break;
1336 		} else {
1337 			printk(KERN_ERR "reverse_path_check_proc: "
1338 				"file is not an ep!\n");
1339 		}
1340 	}
1341 	rcu_read_unlock();
1342 	return error;
1343 }
1344 
1345 /**
1346  * reverse_path_check - The tfile_check_list is list of file *, which have
1347  *                      links that are proposed to be newly added. We need to
1348  *                      make sure that those added links don't add too many
1349  *                      paths such that we will spend all our time waking up
1350  *                      eventpoll objects.
1351  *
1352  * Returns: Returns zero if the proposed links don't create too many paths,
1353  *	    -1 otherwise.
1354  */
1355 static int reverse_path_check(void)
1356 {
1357 	int error = 0;
1358 	struct file *current_file;
1359 
1360 	/* let's call this for all tfiles */
1361 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1362 		path_count_init();
1363 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1364 					reverse_path_check_proc, current_file,
1365 					current_file, current);
1366 		if (error)
1367 			break;
1368 	}
1369 	return error;
1370 }
1371 
1372 static int ep_create_wakeup_source(struct epitem *epi)
1373 {
1374 	const char *name;
1375 	struct wakeup_source *ws;
1376 
1377 	if (!epi->ep->ws) {
1378 		epi->ep->ws = wakeup_source_register("eventpoll");
1379 		if (!epi->ep->ws)
1380 			return -ENOMEM;
1381 	}
1382 
1383 	name = epi->ffd.file->f_path.dentry->d_name.name;
1384 	ws = wakeup_source_register(name);
1385 
1386 	if (!ws)
1387 		return -ENOMEM;
1388 	rcu_assign_pointer(epi->ws, ws);
1389 
1390 	return 0;
1391 }
1392 
1393 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1394 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1395 {
1396 	struct wakeup_source *ws = ep_wakeup_source(epi);
1397 
1398 	RCU_INIT_POINTER(epi->ws, NULL);
1399 
1400 	/*
1401 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1402 	 * used internally by wakeup_source_remove, too (called by
1403 	 * wakeup_source_unregister), so we cannot use call_rcu
1404 	 */
1405 	synchronize_rcu();
1406 	wakeup_source_unregister(ws);
1407 }
1408 
1409 /*
1410  * Must be called with "mtx" held.
1411  */
1412 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1413 		     struct file *tfile, int fd, int full_check)
1414 {
1415 	int error, revents, pwake = 0;
1416 	unsigned long flags;
1417 	long user_watches;
1418 	struct epitem *epi;
1419 	struct ep_pqueue epq;
1420 
1421 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1422 	if (unlikely(user_watches >= max_user_watches))
1423 		return -ENOSPC;
1424 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1425 		return -ENOMEM;
1426 
1427 	/* Item initialization follow here ... */
1428 	INIT_LIST_HEAD(&epi->rdllink);
1429 	INIT_LIST_HEAD(&epi->fllink);
1430 	INIT_LIST_HEAD(&epi->pwqlist);
1431 	epi->ep = ep;
1432 	ep_set_ffd(&epi->ffd, tfile, fd);
1433 	epi->event = *event;
1434 	epi->nwait = 0;
1435 	epi->next = EP_UNACTIVE_PTR;
1436 	if (epi->event.events & EPOLLWAKEUP) {
1437 		error = ep_create_wakeup_source(epi);
1438 		if (error)
1439 			goto error_create_wakeup_source;
1440 	} else {
1441 		RCU_INIT_POINTER(epi->ws, NULL);
1442 	}
1443 
1444 	/* Initialize the poll table using the queue callback */
1445 	epq.epi = epi;
1446 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1447 
1448 	/*
1449 	 * Attach the item to the poll hooks and get current event bits.
1450 	 * We can safely use the file* here because its usage count has
1451 	 * been increased by the caller of this function. Note that after
1452 	 * this operation completes, the poll callback can start hitting
1453 	 * the new item.
1454 	 */
1455 	revents = ep_item_poll(epi, &epq.pt, 1);
1456 
1457 	/*
1458 	 * We have to check if something went wrong during the poll wait queue
1459 	 * install process. Namely an allocation for a wait queue failed due
1460 	 * high memory pressure.
1461 	 */
1462 	error = -ENOMEM;
1463 	if (epi->nwait < 0)
1464 		goto error_unregister;
1465 
1466 	/* Add the current item to the list of active epoll hook for this file */
1467 	spin_lock(&tfile->f_lock);
1468 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1469 	spin_unlock(&tfile->f_lock);
1470 
1471 	/*
1472 	 * Add the current item to the RB tree. All RB tree operations are
1473 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1474 	 */
1475 	ep_rbtree_insert(ep, epi);
1476 
1477 	/* now check if we've created too many backpaths */
1478 	error = -EINVAL;
1479 	if (full_check && reverse_path_check())
1480 		goto error_remove_epi;
1481 
1482 	/* We have to drop the new item inside our item list to keep track of it */
1483 	spin_lock_irqsave(&ep->lock, flags);
1484 
1485 	/* record NAPI ID of new item if present */
1486 	ep_set_busy_poll_napi_id(epi);
1487 
1488 	/* If the file is already "ready" we drop it inside the ready list */
1489 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1490 		list_add_tail(&epi->rdllink, &ep->rdllist);
1491 		ep_pm_stay_awake(epi);
1492 
1493 		/* Notify waiting tasks that events are available */
1494 		if (waitqueue_active(&ep->wq))
1495 			wake_up_locked(&ep->wq);
1496 		if (waitqueue_active(&ep->poll_wait))
1497 			pwake++;
1498 	}
1499 
1500 	spin_unlock_irqrestore(&ep->lock, flags);
1501 
1502 	atomic_long_inc(&ep->user->epoll_watches);
1503 
1504 	/* We have to call this outside the lock */
1505 	if (pwake)
1506 		ep_poll_safewake(&ep->poll_wait);
1507 
1508 	return 0;
1509 
1510 error_remove_epi:
1511 	spin_lock(&tfile->f_lock);
1512 	list_del_rcu(&epi->fllink);
1513 	spin_unlock(&tfile->f_lock);
1514 
1515 	rb_erase_cached(&epi->rbn, &ep->rbr);
1516 
1517 error_unregister:
1518 	ep_unregister_pollwait(ep, epi);
1519 
1520 	/*
1521 	 * We need to do this because an event could have been arrived on some
1522 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1523 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1524 	 * And ep_insert() is called with "mtx" held.
1525 	 */
1526 	spin_lock_irqsave(&ep->lock, flags);
1527 	if (ep_is_linked(&epi->rdllink))
1528 		list_del_init(&epi->rdllink);
1529 	spin_unlock_irqrestore(&ep->lock, flags);
1530 
1531 	wakeup_source_unregister(ep_wakeup_source(epi));
1532 
1533 error_create_wakeup_source:
1534 	kmem_cache_free(epi_cache, epi);
1535 
1536 	return error;
1537 }
1538 
1539 /*
1540  * Modify the interest event mask by dropping an event if the new mask
1541  * has a match in the current file status. Must be called with "mtx" held.
1542  */
1543 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1544 {
1545 	int pwake = 0;
1546 	unsigned int revents;
1547 	poll_table pt;
1548 
1549 	init_poll_funcptr(&pt, NULL);
1550 
1551 	/*
1552 	 * Set the new event interest mask before calling f_op->poll();
1553 	 * otherwise we might miss an event that happens between the
1554 	 * f_op->poll() call and the new event set registering.
1555 	 */
1556 	epi->event.events = event->events; /* need barrier below */
1557 	epi->event.data = event->data; /* protected by mtx */
1558 	if (epi->event.events & EPOLLWAKEUP) {
1559 		if (!ep_has_wakeup_source(epi))
1560 			ep_create_wakeup_source(epi);
1561 	} else if (ep_has_wakeup_source(epi)) {
1562 		ep_destroy_wakeup_source(epi);
1563 	}
1564 
1565 	/*
1566 	 * The following barrier has two effects:
1567 	 *
1568 	 * 1) Flush epi changes above to other CPUs.  This ensures
1569 	 *    we do not miss events from ep_poll_callback if an
1570 	 *    event occurs immediately after we call f_op->poll().
1571 	 *    We need this because we did not take ep->lock while
1572 	 *    changing epi above (but ep_poll_callback does take
1573 	 *    ep->lock).
1574 	 *
1575 	 * 2) We also need to ensure we do not miss _past_ events
1576 	 *    when calling f_op->poll().  This barrier also
1577 	 *    pairs with the barrier in wq_has_sleeper (see
1578 	 *    comments for wq_has_sleeper).
1579 	 *
1580 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1581 	 * (or both) will notice the readiness of an item.
1582 	 */
1583 	smp_mb();
1584 
1585 	/*
1586 	 * Get current event bits. We can safely use the file* here because
1587 	 * its usage count has been increased by the caller of this function.
1588 	 */
1589 	revents = ep_item_poll(epi, &pt, 1);
1590 
1591 	/*
1592 	 * If the item is "hot" and it is not registered inside the ready
1593 	 * list, push it inside.
1594 	 */
1595 	if (revents & event->events) {
1596 		spin_lock_irq(&ep->lock);
1597 		if (!ep_is_linked(&epi->rdllink)) {
1598 			list_add_tail(&epi->rdllink, &ep->rdllist);
1599 			ep_pm_stay_awake(epi);
1600 
1601 			/* Notify waiting tasks that events are available */
1602 			if (waitqueue_active(&ep->wq))
1603 				wake_up_locked(&ep->wq);
1604 			if (waitqueue_active(&ep->poll_wait))
1605 				pwake++;
1606 		}
1607 		spin_unlock_irq(&ep->lock);
1608 	}
1609 
1610 	/* We have to call this outside the lock */
1611 	if (pwake)
1612 		ep_poll_safewake(&ep->poll_wait);
1613 
1614 	return 0;
1615 }
1616 
1617 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1618 			       void *priv)
1619 {
1620 	struct ep_send_events_data *esed = priv;
1621 	int eventcnt;
1622 	unsigned int revents;
1623 	struct epitem *epi;
1624 	struct epoll_event __user *uevent;
1625 	struct wakeup_source *ws;
1626 	poll_table pt;
1627 
1628 	init_poll_funcptr(&pt, NULL);
1629 
1630 	/*
1631 	 * We can loop without lock because we are passed a task private list.
1632 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1633 	 * holding "mtx" during this call.
1634 	 */
1635 	for (eventcnt = 0, uevent = esed->events;
1636 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1637 		epi = list_first_entry(head, struct epitem, rdllink);
1638 
1639 		/*
1640 		 * Activate ep->ws before deactivating epi->ws to prevent
1641 		 * triggering auto-suspend here (in case we reactive epi->ws
1642 		 * below).
1643 		 *
1644 		 * This could be rearranged to delay the deactivation of epi->ws
1645 		 * instead, but then epi->ws would temporarily be out of sync
1646 		 * with ep_is_linked().
1647 		 */
1648 		ws = ep_wakeup_source(epi);
1649 		if (ws) {
1650 			if (ws->active)
1651 				__pm_stay_awake(ep->ws);
1652 			__pm_relax(ws);
1653 		}
1654 
1655 		list_del_init(&epi->rdllink);
1656 
1657 		revents = ep_item_poll(epi, &pt, 1);
1658 
1659 		/*
1660 		 * If the event mask intersect the caller-requested one,
1661 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1662 		 * is holding "mtx", so no operations coming from userspace
1663 		 * can change the item.
1664 		 */
1665 		if (revents) {
1666 			if (__put_user(revents, &uevent->events) ||
1667 			    __put_user(epi->event.data, &uevent->data)) {
1668 				list_add(&epi->rdllink, head);
1669 				ep_pm_stay_awake(epi);
1670 				return eventcnt ? eventcnt : -EFAULT;
1671 			}
1672 			eventcnt++;
1673 			uevent++;
1674 			if (epi->event.events & EPOLLONESHOT)
1675 				epi->event.events &= EP_PRIVATE_BITS;
1676 			else if (!(epi->event.events & EPOLLET)) {
1677 				/*
1678 				 * If this file has been added with Level
1679 				 * Trigger mode, we need to insert back inside
1680 				 * the ready list, so that the next call to
1681 				 * epoll_wait() will check again the events
1682 				 * availability. At this point, no one can insert
1683 				 * into ep->rdllist besides us. The epoll_ctl()
1684 				 * callers are locked out by
1685 				 * ep_scan_ready_list() holding "mtx" and the
1686 				 * poll callback will queue them in ep->ovflist.
1687 				 */
1688 				list_add_tail(&epi->rdllink, &ep->rdllist);
1689 				ep_pm_stay_awake(epi);
1690 			}
1691 		}
1692 	}
1693 
1694 	return eventcnt;
1695 }
1696 
1697 static int ep_send_events(struct eventpoll *ep,
1698 			  struct epoll_event __user *events, int maxevents)
1699 {
1700 	struct ep_send_events_data esed;
1701 
1702 	esed.maxevents = maxevents;
1703 	esed.events = events;
1704 
1705 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1706 }
1707 
1708 static inline struct timespec64 ep_set_mstimeout(long ms)
1709 {
1710 	struct timespec64 now, ts = {
1711 		.tv_sec = ms / MSEC_PER_SEC,
1712 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1713 	};
1714 
1715 	ktime_get_ts64(&now);
1716 	return timespec64_add_safe(now, ts);
1717 }
1718 
1719 /**
1720  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1721  *           event buffer.
1722  *
1723  * @ep: Pointer to the eventpoll context.
1724  * @events: Pointer to the userspace buffer where the ready events should be
1725  *          stored.
1726  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1727  * @timeout: Maximum timeout for the ready events fetch operation, in
1728  *           milliseconds. If the @timeout is zero, the function will not block,
1729  *           while if the @timeout is less than zero, the function will block
1730  *           until at least one event has been retrieved (or an error
1731  *           occurred).
1732  *
1733  * Returns: Returns the number of ready events which have been fetched, or an
1734  *          error code, in case of error.
1735  */
1736 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1737 		   int maxevents, long timeout)
1738 {
1739 	int res = 0, eavail, timed_out = 0;
1740 	unsigned long flags;
1741 	u64 slack = 0;
1742 	wait_queue_entry_t wait;
1743 	ktime_t expires, *to = NULL;
1744 
1745 	if (timeout > 0) {
1746 		struct timespec64 end_time = ep_set_mstimeout(timeout);
1747 
1748 		slack = select_estimate_accuracy(&end_time);
1749 		to = &expires;
1750 		*to = timespec64_to_ktime(end_time);
1751 	} else if (timeout == 0) {
1752 		/*
1753 		 * Avoid the unnecessary trip to the wait queue loop, if the
1754 		 * caller specified a non blocking operation.
1755 		 */
1756 		timed_out = 1;
1757 		spin_lock_irqsave(&ep->lock, flags);
1758 		goto check_events;
1759 	}
1760 
1761 fetch_events:
1762 
1763 	if (!ep_events_available(ep))
1764 		ep_busy_loop(ep, timed_out);
1765 
1766 	spin_lock_irqsave(&ep->lock, flags);
1767 
1768 	if (!ep_events_available(ep)) {
1769 		/*
1770 		 * Busy poll timed out.  Drop NAPI ID for now, we can add
1771 		 * it back in when we have moved a socket with a valid NAPI
1772 		 * ID onto the ready list.
1773 		 */
1774 		ep_reset_busy_poll_napi_id(ep);
1775 
1776 		/*
1777 		 * We don't have any available event to return to the caller.
1778 		 * We need to sleep here, and we will be wake up by
1779 		 * ep_poll_callback() when events will become available.
1780 		 */
1781 		init_waitqueue_entry(&wait, current);
1782 		__add_wait_queue_exclusive(&ep->wq, &wait);
1783 
1784 		for (;;) {
1785 			/*
1786 			 * We don't want to sleep if the ep_poll_callback() sends us
1787 			 * a wakeup in between. That's why we set the task state
1788 			 * to TASK_INTERRUPTIBLE before doing the checks.
1789 			 */
1790 			set_current_state(TASK_INTERRUPTIBLE);
1791 			/*
1792 			 * Always short-circuit for fatal signals to allow
1793 			 * threads to make a timely exit without the chance of
1794 			 * finding more events available and fetching
1795 			 * repeatedly.
1796 			 */
1797 			if (fatal_signal_pending(current)) {
1798 				res = -EINTR;
1799 				break;
1800 			}
1801 			if (ep_events_available(ep) || timed_out)
1802 				break;
1803 			if (signal_pending(current)) {
1804 				res = -EINTR;
1805 				break;
1806 			}
1807 
1808 			spin_unlock_irqrestore(&ep->lock, flags);
1809 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1810 				timed_out = 1;
1811 
1812 			spin_lock_irqsave(&ep->lock, flags);
1813 		}
1814 
1815 		__remove_wait_queue(&ep->wq, &wait);
1816 		__set_current_state(TASK_RUNNING);
1817 	}
1818 check_events:
1819 	/* Is it worth to try to dig for events ? */
1820 	eavail = ep_events_available(ep);
1821 
1822 	spin_unlock_irqrestore(&ep->lock, flags);
1823 
1824 	/*
1825 	 * Try to transfer events to user space. In case we get 0 events and
1826 	 * there's still timeout left over, we go trying again in search of
1827 	 * more luck.
1828 	 */
1829 	if (!res && eavail &&
1830 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1831 		goto fetch_events;
1832 
1833 	return res;
1834 }
1835 
1836 /**
1837  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1838  *                      API, to verify that adding an epoll file inside another
1839  *                      epoll structure, does not violate the constraints, in
1840  *                      terms of closed loops, or too deep chains (which can
1841  *                      result in excessive stack usage).
1842  *
1843  * @priv: Pointer to the epoll file to be currently checked.
1844  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1845  *          data structure pointer.
1846  * @call_nests: Current dept of the @ep_call_nested() call stack.
1847  *
1848  * Returns: Returns zero if adding the epoll @file inside current epoll
1849  *          structure @ep does not violate the constraints, or -1 otherwise.
1850  */
1851 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1852 {
1853 	int error = 0;
1854 	struct file *file = priv;
1855 	struct eventpoll *ep = file->private_data;
1856 	struct eventpoll *ep_tovisit;
1857 	struct rb_node *rbp;
1858 	struct epitem *epi;
1859 
1860 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1861 	ep->visited = 1;
1862 	list_add(&ep->visited_list_link, &visited_list);
1863 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1864 		epi = rb_entry(rbp, struct epitem, rbn);
1865 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1866 			ep_tovisit = epi->ffd.file->private_data;
1867 			if (ep_tovisit->visited)
1868 				continue;
1869 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1870 					ep_loop_check_proc, epi->ffd.file,
1871 					ep_tovisit, current);
1872 			if (error != 0)
1873 				break;
1874 		} else {
1875 			/*
1876 			 * If we've reached a file that is not associated with
1877 			 * an ep, then we need to check if the newly added
1878 			 * links are going to add too many wakeup paths. We do
1879 			 * this by adding it to the tfile_check_list, if it's
1880 			 * not already there, and calling reverse_path_check()
1881 			 * during ep_insert().
1882 			 */
1883 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1884 				list_add(&epi->ffd.file->f_tfile_llink,
1885 					 &tfile_check_list);
1886 		}
1887 	}
1888 	mutex_unlock(&ep->mtx);
1889 
1890 	return error;
1891 }
1892 
1893 /**
1894  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1895  *                 another epoll file (represented by @ep) does not create
1896  *                 closed loops or too deep chains.
1897  *
1898  * @ep: Pointer to the epoll private data structure.
1899  * @file: Pointer to the epoll file to be checked.
1900  *
1901  * Returns: Returns zero if adding the epoll @file inside current epoll
1902  *          structure @ep does not violate the constraints, or -1 otherwise.
1903  */
1904 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1905 {
1906 	int ret;
1907 	struct eventpoll *ep_cur, *ep_next;
1908 
1909 	ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1910 			      ep_loop_check_proc, file, ep, current);
1911 	/* clear visited list */
1912 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1913 							visited_list_link) {
1914 		ep_cur->visited = 0;
1915 		list_del(&ep_cur->visited_list_link);
1916 	}
1917 	return ret;
1918 }
1919 
1920 static void clear_tfile_check_list(void)
1921 {
1922 	struct file *file;
1923 
1924 	/* first clear the tfile_check_list */
1925 	while (!list_empty(&tfile_check_list)) {
1926 		file = list_first_entry(&tfile_check_list, struct file,
1927 					f_tfile_llink);
1928 		list_del_init(&file->f_tfile_llink);
1929 	}
1930 	INIT_LIST_HEAD(&tfile_check_list);
1931 }
1932 
1933 /*
1934  * Open an eventpoll file descriptor.
1935  */
1936 SYSCALL_DEFINE1(epoll_create1, int, flags)
1937 {
1938 	int error, fd;
1939 	struct eventpoll *ep = NULL;
1940 	struct file *file;
1941 
1942 	/* Check the EPOLL_* constant for consistency.  */
1943 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1944 
1945 	if (flags & ~EPOLL_CLOEXEC)
1946 		return -EINVAL;
1947 	/*
1948 	 * Create the internal data structure ("struct eventpoll").
1949 	 */
1950 	error = ep_alloc(&ep);
1951 	if (error < 0)
1952 		return error;
1953 	/*
1954 	 * Creates all the items needed to setup an eventpoll file. That is,
1955 	 * a file structure and a free file descriptor.
1956 	 */
1957 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1958 	if (fd < 0) {
1959 		error = fd;
1960 		goto out_free_ep;
1961 	}
1962 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1963 				 O_RDWR | (flags & O_CLOEXEC));
1964 	if (IS_ERR(file)) {
1965 		error = PTR_ERR(file);
1966 		goto out_free_fd;
1967 	}
1968 	ep->file = file;
1969 	fd_install(fd, file);
1970 	return fd;
1971 
1972 out_free_fd:
1973 	put_unused_fd(fd);
1974 out_free_ep:
1975 	ep_free(ep);
1976 	return error;
1977 }
1978 
1979 SYSCALL_DEFINE1(epoll_create, int, size)
1980 {
1981 	if (size <= 0)
1982 		return -EINVAL;
1983 
1984 	return sys_epoll_create1(0);
1985 }
1986 
1987 /*
1988  * The following function implements the controller interface for
1989  * the eventpoll file that enables the insertion/removal/change of
1990  * file descriptors inside the interest set.
1991  */
1992 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1993 		struct epoll_event __user *, event)
1994 {
1995 	int error;
1996 	int full_check = 0;
1997 	struct fd f, tf;
1998 	struct eventpoll *ep;
1999 	struct epitem *epi;
2000 	struct epoll_event epds;
2001 	struct eventpoll *tep = NULL;
2002 
2003 	error = -EFAULT;
2004 	if (ep_op_has_event(op) &&
2005 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2006 		goto error_return;
2007 
2008 	error = -EBADF;
2009 	f = fdget(epfd);
2010 	if (!f.file)
2011 		goto error_return;
2012 
2013 	/* Get the "struct file *" for the target file */
2014 	tf = fdget(fd);
2015 	if (!tf.file)
2016 		goto error_fput;
2017 
2018 	/* The target file descriptor must support poll */
2019 	error = -EPERM;
2020 	if (!tf.file->f_op->poll)
2021 		goto error_tgt_fput;
2022 
2023 	/* Check if EPOLLWAKEUP is allowed */
2024 	if (ep_op_has_event(op))
2025 		ep_take_care_of_epollwakeup(&epds);
2026 
2027 	/*
2028 	 * We have to check that the file structure underneath the file descriptor
2029 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2030 	 * adding an epoll file descriptor inside itself.
2031 	 */
2032 	error = -EINVAL;
2033 	if (f.file == tf.file || !is_file_epoll(f.file))
2034 		goto error_tgt_fput;
2035 
2036 	/*
2037 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2038 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2039 	 * Also, we do not currently supported nested exclusive wakeups.
2040 	 */
2041 	if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2042 		if (op == EPOLL_CTL_MOD)
2043 			goto error_tgt_fput;
2044 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2045 				(epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2046 			goto error_tgt_fput;
2047 	}
2048 
2049 	/*
2050 	 * At this point it is safe to assume that the "private_data" contains
2051 	 * our own data structure.
2052 	 */
2053 	ep = f.file->private_data;
2054 
2055 	/*
2056 	 * When we insert an epoll file descriptor, inside another epoll file
2057 	 * descriptor, there is the change of creating closed loops, which are
2058 	 * better be handled here, than in more critical paths. While we are
2059 	 * checking for loops we also determine the list of files reachable
2060 	 * and hang them on the tfile_check_list, so we can check that we
2061 	 * haven't created too many possible wakeup paths.
2062 	 *
2063 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2064 	 * the epoll file descriptor is attaching directly to a wakeup source,
2065 	 * unless the epoll file descriptor is nested. The purpose of taking the
2066 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2067 	 * deep wakeup paths from forming in parallel through multiple
2068 	 * EPOLL_CTL_ADD operations.
2069 	 */
2070 	mutex_lock_nested(&ep->mtx, 0);
2071 	if (op == EPOLL_CTL_ADD) {
2072 		if (!list_empty(&f.file->f_ep_links) ||
2073 						is_file_epoll(tf.file)) {
2074 			full_check = 1;
2075 			mutex_unlock(&ep->mtx);
2076 			mutex_lock(&epmutex);
2077 			if (is_file_epoll(tf.file)) {
2078 				error = -ELOOP;
2079 				if (ep_loop_check(ep, tf.file) != 0) {
2080 					clear_tfile_check_list();
2081 					goto error_tgt_fput;
2082 				}
2083 			} else
2084 				list_add(&tf.file->f_tfile_llink,
2085 							&tfile_check_list);
2086 			mutex_lock_nested(&ep->mtx, 0);
2087 			if (is_file_epoll(tf.file)) {
2088 				tep = tf.file->private_data;
2089 				mutex_lock_nested(&tep->mtx, 1);
2090 			}
2091 		}
2092 	}
2093 
2094 	/*
2095 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2096 	 * above, we can be sure to be able to use the item looked up by
2097 	 * ep_find() till we release the mutex.
2098 	 */
2099 	epi = ep_find(ep, tf.file, fd);
2100 
2101 	error = -EINVAL;
2102 	switch (op) {
2103 	case EPOLL_CTL_ADD:
2104 		if (!epi) {
2105 			epds.events |= POLLERR | POLLHUP;
2106 			error = ep_insert(ep, &epds, tf.file, fd, full_check);
2107 		} else
2108 			error = -EEXIST;
2109 		if (full_check)
2110 			clear_tfile_check_list();
2111 		break;
2112 	case EPOLL_CTL_DEL:
2113 		if (epi)
2114 			error = ep_remove(ep, epi);
2115 		else
2116 			error = -ENOENT;
2117 		break;
2118 	case EPOLL_CTL_MOD:
2119 		if (epi) {
2120 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2121 				epds.events |= POLLERR | POLLHUP;
2122 				error = ep_modify(ep, epi, &epds);
2123 			}
2124 		} else
2125 			error = -ENOENT;
2126 		break;
2127 	}
2128 	if (tep != NULL)
2129 		mutex_unlock(&tep->mtx);
2130 	mutex_unlock(&ep->mtx);
2131 
2132 error_tgt_fput:
2133 	if (full_check)
2134 		mutex_unlock(&epmutex);
2135 
2136 	fdput(tf);
2137 error_fput:
2138 	fdput(f);
2139 error_return:
2140 
2141 	return error;
2142 }
2143 
2144 /*
2145  * Implement the event wait interface for the eventpoll file. It is the kernel
2146  * part of the user space epoll_wait(2).
2147  */
2148 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2149 		int, maxevents, int, timeout)
2150 {
2151 	int error;
2152 	struct fd f;
2153 	struct eventpoll *ep;
2154 
2155 	/* The maximum number of event must be greater than zero */
2156 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2157 		return -EINVAL;
2158 
2159 	/* Verify that the area passed by the user is writeable */
2160 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
2161 		return -EFAULT;
2162 
2163 	/* Get the "struct file *" for the eventpoll file */
2164 	f = fdget(epfd);
2165 	if (!f.file)
2166 		return -EBADF;
2167 
2168 	/*
2169 	 * We have to check that the file structure underneath the fd
2170 	 * the user passed to us _is_ an eventpoll file.
2171 	 */
2172 	error = -EINVAL;
2173 	if (!is_file_epoll(f.file))
2174 		goto error_fput;
2175 
2176 	/*
2177 	 * At this point it is safe to assume that the "private_data" contains
2178 	 * our own data structure.
2179 	 */
2180 	ep = f.file->private_data;
2181 
2182 	/* Time to fish for events ... */
2183 	error = ep_poll(ep, events, maxevents, timeout);
2184 
2185 error_fput:
2186 	fdput(f);
2187 	return error;
2188 }
2189 
2190 /*
2191  * Implement the event wait interface for the eventpoll file. It is the kernel
2192  * part of the user space epoll_pwait(2).
2193  */
2194 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2195 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2196 		size_t, sigsetsize)
2197 {
2198 	int error;
2199 	sigset_t ksigmask, sigsaved;
2200 
2201 	/*
2202 	 * If the caller wants a certain signal mask to be set during the wait,
2203 	 * we apply it here.
2204 	 */
2205 	if (sigmask) {
2206 		if (sigsetsize != sizeof(sigset_t))
2207 			return -EINVAL;
2208 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2209 			return -EFAULT;
2210 		sigsaved = current->blocked;
2211 		set_current_blocked(&ksigmask);
2212 	}
2213 
2214 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
2215 
2216 	/*
2217 	 * If we changed the signal mask, we need to restore the original one.
2218 	 * In case we've got a signal while waiting, we do not restore the
2219 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2220 	 * the way back to userspace, before the signal mask is restored.
2221 	 */
2222 	if (sigmask) {
2223 		if (error == -EINTR) {
2224 			memcpy(&current->saved_sigmask, &sigsaved,
2225 			       sizeof(sigsaved));
2226 			set_restore_sigmask();
2227 		} else
2228 			set_current_blocked(&sigsaved);
2229 	}
2230 
2231 	return error;
2232 }
2233 
2234 #ifdef CONFIG_COMPAT
2235 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2236 			struct epoll_event __user *, events,
2237 			int, maxevents, int, timeout,
2238 			const compat_sigset_t __user *, sigmask,
2239 			compat_size_t, sigsetsize)
2240 {
2241 	long err;
2242 	sigset_t ksigmask, sigsaved;
2243 
2244 	/*
2245 	 * If the caller wants a certain signal mask to be set during the wait,
2246 	 * we apply it here.
2247 	 */
2248 	if (sigmask) {
2249 		if (sigsetsize != sizeof(compat_sigset_t))
2250 			return -EINVAL;
2251 		if (get_compat_sigset(&ksigmask, sigmask))
2252 			return -EFAULT;
2253 		sigsaved = current->blocked;
2254 		set_current_blocked(&ksigmask);
2255 	}
2256 
2257 	err = sys_epoll_wait(epfd, events, maxevents, timeout);
2258 
2259 	/*
2260 	 * If we changed the signal mask, we need to restore the original one.
2261 	 * In case we've got a signal while waiting, we do not restore the
2262 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2263 	 * the way back to userspace, before the signal mask is restored.
2264 	 */
2265 	if (sigmask) {
2266 		if (err == -EINTR) {
2267 			memcpy(&current->saved_sigmask, &sigsaved,
2268 			       sizeof(sigsaved));
2269 			set_restore_sigmask();
2270 		} else
2271 			set_current_blocked(&sigsaved);
2272 	}
2273 
2274 	return err;
2275 }
2276 #endif
2277 
2278 static int __init eventpoll_init(void)
2279 {
2280 	struct sysinfo si;
2281 
2282 	si_meminfo(&si);
2283 	/*
2284 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2285 	 */
2286 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2287 		EP_ITEM_COST;
2288 	BUG_ON(max_user_watches < 0);
2289 
2290 	/*
2291 	 * Initialize the structure used to perform epoll file descriptor
2292 	 * inclusion loops checks.
2293 	 */
2294 	ep_nested_calls_init(&poll_loop_ncalls);
2295 
2296 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2297 	/* Initialize the structure used to perform safe poll wait head wake ups */
2298 	ep_nested_calls_init(&poll_safewake_ncalls);
2299 #endif
2300 
2301 	/*
2302 	 * We can have many thousands of epitems, so prevent this from
2303 	 * using an extra cache line on 64-bit (and smaller) CPUs
2304 	 */
2305 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2306 
2307 	/* Allocates slab cache used to allocate "struct epitem" items */
2308 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2309 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2310 
2311 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2312 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2313 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2314 
2315 	return 0;
2316 }
2317 fs_initcall(eventpoll_init);
2318