xref: /openbmc/linux/fs/eventpoll.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <asm/atomic.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (spinlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a spinlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66  * It is possible to drop the "ep->mtx" and to use the global
67  * mutex "epmutex" (together with "ep->lock") to have it working,
68  * but having "ep->mtx" will make the interface more scalable.
69  * Events that require holding "epmutex" are very rare, while for
70  * normal operations the epoll private "ep->mtx" will guarantee
71  * a better scalability.
72  */
73 
74 /* Epoll private bits inside the event mask */
75 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
76 
77 /* Maximum number of nesting allowed inside epoll sets */
78 #define EP_MAX_NESTS 4
79 
80 /* Maximum msec timeout value storeable in a long int */
81 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
82 
83 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
84 
85 #define EP_UNACTIVE_PTR ((void *) -1L)
86 
87 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
88 
89 struct epoll_filefd {
90 	struct file *file;
91 	int fd;
92 };
93 
94 /*
95  * Structure used to track possible nested calls, for too deep recursions
96  * and loop cycles.
97  */
98 struct nested_call_node {
99 	struct list_head llink;
100 	void *cookie;
101 	int cpu;
102 };
103 
104 /*
105  * This structure is used as collector for nested calls, to check for
106  * maximum recursion dept and loop cycles.
107  */
108 struct nested_calls {
109 	struct list_head tasks_call_list;
110 	spinlock_t lock;
111 };
112 
113 /*
114  * Each file descriptor added to the eventpoll interface will
115  * have an entry of this type linked to the "rbr" RB tree.
116  */
117 struct epitem {
118 	/* RB tree node used to link this structure to the eventpoll RB tree */
119 	struct rb_node rbn;
120 
121 	/* List header used to link this structure to the eventpoll ready list */
122 	struct list_head rdllink;
123 
124 	/*
125 	 * Works together "struct eventpoll"->ovflist in keeping the
126 	 * single linked chain of items.
127 	 */
128 	struct epitem *next;
129 
130 	/* The file descriptor information this item refers to */
131 	struct epoll_filefd ffd;
132 
133 	/* Number of active wait queue attached to poll operations */
134 	int nwait;
135 
136 	/* List containing poll wait queues */
137 	struct list_head pwqlist;
138 
139 	/* The "container" of this item */
140 	struct eventpoll *ep;
141 
142 	/* List header used to link this item to the "struct file" items list */
143 	struct list_head fllink;
144 
145 	/* The structure that describe the interested events and the source fd */
146 	struct epoll_event event;
147 };
148 
149 /*
150  * This structure is stored inside the "private_data" member of the file
151  * structure and rapresent the main data sructure for the eventpoll
152  * interface.
153  */
154 struct eventpoll {
155 	/* Protect the this structure access */
156 	spinlock_t lock;
157 
158 	/*
159 	 * This mutex is used to ensure that files are not removed
160 	 * while epoll is using them. This is held during the event
161 	 * collection loop, the file cleanup path, the epoll file exit
162 	 * code and the ctl operations.
163 	 */
164 	struct mutex mtx;
165 
166 	/* Wait queue used by sys_epoll_wait() */
167 	wait_queue_head_t wq;
168 
169 	/* Wait queue used by file->poll() */
170 	wait_queue_head_t poll_wait;
171 
172 	/* List of ready file descriptors */
173 	struct list_head rdllist;
174 
175 	/* RB tree root used to store monitored fd structs */
176 	struct rb_root rbr;
177 
178 	/*
179 	 * This is a single linked list that chains all the "struct epitem" that
180 	 * happened while transfering ready events to userspace w/out
181 	 * holding ->lock.
182 	 */
183 	struct epitem *ovflist;
184 
185 	/* The user that created the eventpoll descriptor */
186 	struct user_struct *user;
187 };
188 
189 /* Wait structure used by the poll hooks */
190 struct eppoll_entry {
191 	/* List header used to link this structure to the "struct epitem" */
192 	struct list_head llink;
193 
194 	/* The "base" pointer is set to the container "struct epitem" */
195 	struct epitem *base;
196 
197 	/*
198 	 * Wait queue item that will be linked to the target file wait
199 	 * queue head.
200 	 */
201 	wait_queue_t wait;
202 
203 	/* The wait queue head that linked the "wait" wait queue item */
204 	wait_queue_head_t *whead;
205 };
206 
207 /* Wrapper struct used by poll queueing */
208 struct ep_pqueue {
209 	poll_table pt;
210 	struct epitem *epi;
211 };
212 
213 /* Used by the ep_send_events() function as callback private data */
214 struct ep_send_events_data {
215 	int maxevents;
216 	struct epoll_event __user *events;
217 };
218 
219 /*
220  * Configuration options available inside /proc/sys/fs/epoll/
221  */
222 /* Maximum number of epoll watched descriptors, per user */
223 static int max_user_watches __read_mostly;
224 
225 /*
226  * This mutex is used to serialize ep_free() and eventpoll_release_file().
227  */
228 static DEFINE_MUTEX(epmutex);
229 
230 /* Used for safe wake up implementation */
231 static struct nested_calls poll_safewake_ncalls;
232 
233 /* Used to call file's f_op->poll() under the nested calls boundaries */
234 static struct nested_calls poll_readywalk_ncalls;
235 
236 /* Slab cache used to allocate "struct epitem" */
237 static struct kmem_cache *epi_cache __read_mostly;
238 
239 /* Slab cache used to allocate "struct eppoll_entry" */
240 static struct kmem_cache *pwq_cache __read_mostly;
241 
242 #ifdef CONFIG_SYSCTL
243 
244 #include <linux/sysctl.h>
245 
246 static int zero;
247 
248 ctl_table epoll_table[] = {
249 	{
250 		.procname	= "max_user_watches",
251 		.data		= &max_user_watches,
252 		.maxlen		= sizeof(int),
253 		.mode		= 0644,
254 		.proc_handler	= &proc_dointvec_minmax,
255 		.extra1		= &zero,
256 	},
257 	{ .ctl_name = 0 }
258 };
259 #endif /* CONFIG_SYSCTL */
260 
261 
262 /* Setup the structure that is used as key for the RB tree */
263 static inline void ep_set_ffd(struct epoll_filefd *ffd,
264 			      struct file *file, int fd)
265 {
266 	ffd->file = file;
267 	ffd->fd = fd;
268 }
269 
270 /* Compare RB tree keys */
271 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
272 			     struct epoll_filefd *p2)
273 {
274 	return (p1->file > p2->file ? +1:
275 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
276 }
277 
278 /* Tells us if the item is currently linked */
279 static inline int ep_is_linked(struct list_head *p)
280 {
281 	return !list_empty(p);
282 }
283 
284 /* Get the "struct epitem" from a wait queue pointer */
285 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
286 {
287 	return container_of(p, struct eppoll_entry, wait)->base;
288 }
289 
290 /* Get the "struct epitem" from an epoll queue wrapper */
291 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
292 {
293 	return container_of(p, struct ep_pqueue, pt)->epi;
294 }
295 
296 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
297 static inline int ep_op_has_event(int op)
298 {
299 	return op != EPOLL_CTL_DEL;
300 }
301 
302 /* Initialize the poll safe wake up structure */
303 static void ep_nested_calls_init(struct nested_calls *ncalls)
304 {
305 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
306 	spin_lock_init(&ncalls->lock);
307 }
308 
309 /**
310  * ep_call_nested - Perform a bound (possibly) nested call, by checking
311  *                  that the recursion limit is not exceeded, and that
312  *                  the same nested call (by the meaning of same cookie) is
313  *                  no re-entered.
314  *
315  * @ncalls: Pointer to the nested_calls structure to be used for this call.
316  * @max_nests: Maximum number of allowed nesting calls.
317  * @nproc: Nested call core function pointer.
318  * @priv: Opaque data to be passed to the @nproc callback.
319  * @cookie: Cookie to be used to identify this nested call.
320  *
321  * Returns: Returns the code returned by the @nproc callback, or -1 if
322  *          the maximum recursion limit has been exceeded.
323  */
324 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
325 			  int (*nproc)(void *, void *, int), void *priv,
326 			  void *cookie)
327 {
328 	int error, call_nests = 0;
329 	unsigned long flags;
330 	int this_cpu = get_cpu();
331 	struct list_head *lsthead = &ncalls->tasks_call_list;
332 	struct nested_call_node *tncur;
333 	struct nested_call_node tnode;
334 
335 	spin_lock_irqsave(&ncalls->lock, flags);
336 
337 	/*
338 	 * Try to see if the current task is already inside this wakeup call.
339 	 * We use a list here, since the population inside this set is always
340 	 * very much limited.
341 	 */
342 	list_for_each_entry(tncur, lsthead, llink) {
343 		if (tncur->cpu == this_cpu &&
344 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
345 			/*
346 			 * Ops ... loop detected or maximum nest level reached.
347 			 * We abort this wake by breaking the cycle itself.
348 			 */
349 			error = -1;
350 			goto out_unlock;
351 		}
352 	}
353 
354 	/* Add the current task and cookie to the list */
355 	tnode.cpu = this_cpu;
356 	tnode.cookie = cookie;
357 	list_add(&tnode.llink, lsthead);
358 
359 	spin_unlock_irqrestore(&ncalls->lock, flags);
360 
361 	/* Call the nested function */
362 	error = (*nproc)(priv, cookie, call_nests);
363 
364 	/* Remove the current task from the list */
365 	spin_lock_irqsave(&ncalls->lock, flags);
366 	list_del(&tnode.llink);
367  out_unlock:
368 	spin_unlock_irqrestore(&ncalls->lock, flags);
369 
370 	put_cpu();
371 	return error;
372 }
373 
374 #ifdef CONFIG_DEBUG_LOCK_ALLOC
375 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
376 				     unsigned long events, int subclass)
377 {
378 	unsigned long flags;
379 
380 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
381 	wake_up_locked_poll(wqueue, events);
382 	spin_unlock_irqrestore(&wqueue->lock, flags);
383 }
384 #else
385 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
386 				     unsigned long events, int subclass)
387 {
388 	wake_up_poll(wqueue, events);
389 }
390 #endif
391 
392 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
393 {
394 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
395 			  1 + call_nests);
396 	return 0;
397 }
398 
399 /*
400  * Perform a safe wake up of the poll wait list. The problem is that
401  * with the new callback'd wake up system, it is possible that the
402  * poll callback is reentered from inside the call to wake_up() done
403  * on the poll wait queue head. The rule is that we cannot reenter the
404  * wake up code from the same task more than EP_MAX_NESTS times,
405  * and we cannot reenter the same wait queue head at all. This will
406  * enable to have a hierarchy of epoll file descriptor of no more than
407  * EP_MAX_NESTS deep.
408  */
409 static void ep_poll_safewake(wait_queue_head_t *wq)
410 {
411 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
412 		       ep_poll_wakeup_proc, NULL, wq);
413 }
414 
415 /*
416  * This function unregisters poll callbacks from the associated file
417  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
418  * ep_free).
419  */
420 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
421 {
422 	struct list_head *lsthead = &epi->pwqlist;
423 	struct eppoll_entry *pwq;
424 
425 	while (!list_empty(lsthead)) {
426 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
427 
428 		list_del(&pwq->llink);
429 		remove_wait_queue(pwq->whead, &pwq->wait);
430 		kmem_cache_free(pwq_cache, pwq);
431 	}
432 }
433 
434 /**
435  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
436  *                      the scan code, to call f_op->poll(). Also allows for
437  *                      O(NumReady) performance.
438  *
439  * @ep: Pointer to the epoll private data structure.
440  * @sproc: Pointer to the scan callback.
441  * @priv: Private opaque data passed to the @sproc callback.
442  *
443  * Returns: The same integer error code returned by the @sproc callback.
444  */
445 static int ep_scan_ready_list(struct eventpoll *ep,
446 			      int (*sproc)(struct eventpoll *,
447 					   struct list_head *, void *),
448 			      void *priv)
449 {
450 	int error, pwake = 0;
451 	unsigned long flags;
452 	struct epitem *epi, *nepi;
453 	LIST_HEAD(txlist);
454 
455 	/*
456 	 * We need to lock this because we could be hit by
457 	 * eventpoll_release_file() and epoll_ctl().
458 	 */
459 	mutex_lock(&ep->mtx);
460 
461 	/*
462 	 * Steal the ready list, and re-init the original one to the
463 	 * empty list. Also, set ep->ovflist to NULL so that events
464 	 * happening while looping w/out locks, are not lost. We cannot
465 	 * have the poll callback to queue directly on ep->rdllist,
466 	 * because we want the "sproc" callback to be able to do it
467 	 * in a lockless way.
468 	 */
469 	spin_lock_irqsave(&ep->lock, flags);
470 	list_splice_init(&ep->rdllist, &txlist);
471 	ep->ovflist = NULL;
472 	spin_unlock_irqrestore(&ep->lock, flags);
473 
474 	/*
475 	 * Now call the callback function.
476 	 */
477 	error = (*sproc)(ep, &txlist, priv);
478 
479 	spin_lock_irqsave(&ep->lock, flags);
480 	/*
481 	 * During the time we spent inside the "sproc" callback, some
482 	 * other events might have been queued by the poll callback.
483 	 * We re-insert them inside the main ready-list here.
484 	 */
485 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
486 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
487 		/*
488 		 * We need to check if the item is already in the list.
489 		 * During the "sproc" callback execution time, items are
490 		 * queued into ->ovflist but the "txlist" might already
491 		 * contain them, and the list_splice() below takes care of them.
492 		 */
493 		if (!ep_is_linked(&epi->rdllink))
494 			list_add_tail(&epi->rdllink, &ep->rdllist);
495 	}
496 	/*
497 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
498 	 * releasing the lock, events will be queued in the normal way inside
499 	 * ep->rdllist.
500 	 */
501 	ep->ovflist = EP_UNACTIVE_PTR;
502 
503 	/*
504 	 * Quickly re-inject items left on "txlist".
505 	 */
506 	list_splice(&txlist, &ep->rdllist);
507 
508 	if (!list_empty(&ep->rdllist)) {
509 		/*
510 		 * Wake up (if active) both the eventpoll wait list and
511 		 * the ->poll() wait list (delayed after we release the lock).
512 		 */
513 		if (waitqueue_active(&ep->wq))
514 			wake_up_locked(&ep->wq);
515 		if (waitqueue_active(&ep->poll_wait))
516 			pwake++;
517 	}
518 	spin_unlock_irqrestore(&ep->lock, flags);
519 
520 	mutex_unlock(&ep->mtx);
521 
522 	/* We have to call this outside the lock */
523 	if (pwake)
524 		ep_poll_safewake(&ep->poll_wait);
525 
526 	return error;
527 }
528 
529 /*
530  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
531  * all the associated resources. Must be called with "mtx" held.
532  */
533 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
534 {
535 	unsigned long flags;
536 	struct file *file = epi->ffd.file;
537 
538 	/*
539 	 * Removes poll wait queue hooks. We _have_ to do this without holding
540 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
541 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
542 	 * queue head lock when unregistering the wait queue. The wakeup callback
543 	 * will run by holding the wait queue head lock and will call our callback
544 	 * that will try to get "ep->lock".
545 	 */
546 	ep_unregister_pollwait(ep, epi);
547 
548 	/* Remove the current item from the list of epoll hooks */
549 	spin_lock(&file->f_lock);
550 	if (ep_is_linked(&epi->fllink))
551 		list_del_init(&epi->fllink);
552 	spin_unlock(&file->f_lock);
553 
554 	rb_erase(&epi->rbn, &ep->rbr);
555 
556 	spin_lock_irqsave(&ep->lock, flags);
557 	if (ep_is_linked(&epi->rdllink))
558 		list_del_init(&epi->rdllink);
559 	spin_unlock_irqrestore(&ep->lock, flags);
560 
561 	/* At this point it is safe to free the eventpoll item */
562 	kmem_cache_free(epi_cache, epi);
563 
564 	atomic_dec(&ep->user->epoll_watches);
565 
566 	return 0;
567 }
568 
569 static void ep_free(struct eventpoll *ep)
570 {
571 	struct rb_node *rbp;
572 	struct epitem *epi;
573 
574 	/* We need to release all tasks waiting for these file */
575 	if (waitqueue_active(&ep->poll_wait))
576 		ep_poll_safewake(&ep->poll_wait);
577 
578 	/*
579 	 * We need to lock this because we could be hit by
580 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
581 	 * We do not need to hold "ep->mtx" here because the epoll file
582 	 * is on the way to be removed and no one has references to it
583 	 * anymore. The only hit might come from eventpoll_release_file() but
584 	 * holding "epmutex" is sufficent here.
585 	 */
586 	mutex_lock(&epmutex);
587 
588 	/*
589 	 * Walks through the whole tree by unregistering poll callbacks.
590 	 */
591 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
592 		epi = rb_entry(rbp, struct epitem, rbn);
593 
594 		ep_unregister_pollwait(ep, epi);
595 	}
596 
597 	/*
598 	 * Walks through the whole tree by freeing each "struct epitem". At this
599 	 * point we are sure no poll callbacks will be lingering around, and also by
600 	 * holding "epmutex" we can be sure that no file cleanup code will hit
601 	 * us during this operation. So we can avoid the lock on "ep->lock".
602 	 */
603 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
604 		epi = rb_entry(rbp, struct epitem, rbn);
605 		ep_remove(ep, epi);
606 	}
607 
608 	mutex_unlock(&epmutex);
609 	mutex_destroy(&ep->mtx);
610 	free_uid(ep->user);
611 	kfree(ep);
612 }
613 
614 static int ep_eventpoll_release(struct inode *inode, struct file *file)
615 {
616 	struct eventpoll *ep = file->private_data;
617 
618 	if (ep)
619 		ep_free(ep);
620 
621 	return 0;
622 }
623 
624 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
625 			       void *priv)
626 {
627 	struct epitem *epi, *tmp;
628 
629 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
630 		if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
631 		    epi->event.events)
632 			return POLLIN | POLLRDNORM;
633 		else {
634 			/*
635 			 * Item has been dropped into the ready list by the poll
636 			 * callback, but it's not actually ready, as far as
637 			 * caller requested events goes. We can remove it here.
638 			 */
639 			list_del_init(&epi->rdllink);
640 		}
641 	}
642 
643 	return 0;
644 }
645 
646 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
647 {
648 	return ep_scan_ready_list(priv, ep_read_events_proc, NULL);
649 }
650 
651 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
652 {
653 	int pollflags;
654 	struct eventpoll *ep = file->private_data;
655 
656 	/* Insert inside our poll wait queue */
657 	poll_wait(file, &ep->poll_wait, wait);
658 
659 	/*
660 	 * Proceed to find out if wanted events are really available inside
661 	 * the ready list. This need to be done under ep_call_nested()
662 	 * supervision, since the call to f_op->poll() done on listed files
663 	 * could re-enter here.
664 	 */
665 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
666 				   ep_poll_readyevents_proc, ep, ep);
667 
668 	return pollflags != -1 ? pollflags : 0;
669 }
670 
671 /* File callbacks that implement the eventpoll file behaviour */
672 static const struct file_operations eventpoll_fops = {
673 	.release	= ep_eventpoll_release,
674 	.poll		= ep_eventpoll_poll
675 };
676 
677 /* Fast test to see if the file is an evenpoll file */
678 static inline int is_file_epoll(struct file *f)
679 {
680 	return f->f_op == &eventpoll_fops;
681 }
682 
683 /*
684  * This is called from eventpoll_release() to unlink files from the eventpoll
685  * interface. We need to have this facility to cleanup correctly files that are
686  * closed without being removed from the eventpoll interface.
687  */
688 void eventpoll_release_file(struct file *file)
689 {
690 	struct list_head *lsthead = &file->f_ep_links;
691 	struct eventpoll *ep;
692 	struct epitem *epi;
693 
694 	/*
695 	 * We don't want to get "file->f_lock" because it is not
696 	 * necessary. It is not necessary because we're in the "struct file"
697 	 * cleanup path, and this means that noone is using this file anymore.
698 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
699 	 * point, the file counter already went to zero and fget() would fail.
700 	 * The only hit might come from ep_free() but by holding the mutex
701 	 * will correctly serialize the operation. We do need to acquire
702 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
703 	 * from anywhere but ep_free().
704 	 *
705 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
706 	 */
707 	mutex_lock(&epmutex);
708 
709 	while (!list_empty(lsthead)) {
710 		epi = list_first_entry(lsthead, struct epitem, fllink);
711 
712 		ep = epi->ep;
713 		list_del_init(&epi->fllink);
714 		mutex_lock(&ep->mtx);
715 		ep_remove(ep, epi);
716 		mutex_unlock(&ep->mtx);
717 	}
718 
719 	mutex_unlock(&epmutex);
720 }
721 
722 static int ep_alloc(struct eventpoll **pep)
723 {
724 	int error;
725 	struct user_struct *user;
726 	struct eventpoll *ep;
727 
728 	user = get_current_user();
729 	error = -ENOMEM;
730 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
731 	if (unlikely(!ep))
732 		goto free_uid;
733 
734 	spin_lock_init(&ep->lock);
735 	mutex_init(&ep->mtx);
736 	init_waitqueue_head(&ep->wq);
737 	init_waitqueue_head(&ep->poll_wait);
738 	INIT_LIST_HEAD(&ep->rdllist);
739 	ep->rbr = RB_ROOT;
740 	ep->ovflist = EP_UNACTIVE_PTR;
741 	ep->user = user;
742 
743 	*pep = ep;
744 
745 	return 0;
746 
747 free_uid:
748 	free_uid(user);
749 	return error;
750 }
751 
752 /*
753  * Search the file inside the eventpoll tree. The RB tree operations
754  * are protected by the "mtx" mutex, and ep_find() must be called with
755  * "mtx" held.
756  */
757 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
758 {
759 	int kcmp;
760 	struct rb_node *rbp;
761 	struct epitem *epi, *epir = NULL;
762 	struct epoll_filefd ffd;
763 
764 	ep_set_ffd(&ffd, file, fd);
765 	for (rbp = ep->rbr.rb_node; rbp; ) {
766 		epi = rb_entry(rbp, struct epitem, rbn);
767 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
768 		if (kcmp > 0)
769 			rbp = rbp->rb_right;
770 		else if (kcmp < 0)
771 			rbp = rbp->rb_left;
772 		else {
773 			epir = epi;
774 			break;
775 		}
776 	}
777 
778 	return epir;
779 }
780 
781 /*
782  * This is the callback that is passed to the wait queue wakeup
783  * machanism. It is called by the stored file descriptors when they
784  * have events to report.
785  */
786 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
787 {
788 	int pwake = 0;
789 	unsigned long flags;
790 	struct epitem *epi = ep_item_from_wait(wait);
791 	struct eventpoll *ep = epi->ep;
792 
793 	spin_lock_irqsave(&ep->lock, flags);
794 
795 	/*
796 	 * If the event mask does not contain any poll(2) event, we consider the
797 	 * descriptor to be disabled. This condition is likely the effect of the
798 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
799 	 * until the next EPOLL_CTL_MOD will be issued.
800 	 */
801 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
802 		goto out_unlock;
803 
804 	/*
805 	 * Check the events coming with the callback. At this stage, not
806 	 * every device reports the events in the "key" parameter of the
807 	 * callback. We need to be able to handle both cases here, hence the
808 	 * test for "key" != NULL before the event match test.
809 	 */
810 	if (key && !((unsigned long) key & epi->event.events))
811 		goto out_unlock;
812 
813 	/*
814 	 * If we are trasfering events to userspace, we can hold no locks
815 	 * (because we're accessing user memory, and because of linux f_op->poll()
816 	 * semantics). All the events that happens during that period of time are
817 	 * chained in ep->ovflist and requeued later on.
818 	 */
819 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
820 		if (epi->next == EP_UNACTIVE_PTR) {
821 			epi->next = ep->ovflist;
822 			ep->ovflist = epi;
823 		}
824 		goto out_unlock;
825 	}
826 
827 	/* If this file is already in the ready list we exit soon */
828 	if (!ep_is_linked(&epi->rdllink))
829 		list_add_tail(&epi->rdllink, &ep->rdllist);
830 
831 	/*
832 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
833 	 * wait list.
834 	 */
835 	if (waitqueue_active(&ep->wq))
836 		wake_up_locked(&ep->wq);
837 	if (waitqueue_active(&ep->poll_wait))
838 		pwake++;
839 
840 out_unlock:
841 	spin_unlock_irqrestore(&ep->lock, flags);
842 
843 	/* We have to call this outside the lock */
844 	if (pwake)
845 		ep_poll_safewake(&ep->poll_wait);
846 
847 	return 1;
848 }
849 
850 /*
851  * This is the callback that is used to add our wait queue to the
852  * target file wakeup lists.
853  */
854 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
855 				 poll_table *pt)
856 {
857 	struct epitem *epi = ep_item_from_epqueue(pt);
858 	struct eppoll_entry *pwq;
859 
860 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
861 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
862 		pwq->whead = whead;
863 		pwq->base = epi;
864 		add_wait_queue(whead, &pwq->wait);
865 		list_add_tail(&pwq->llink, &epi->pwqlist);
866 		epi->nwait++;
867 	} else {
868 		/* We have to signal that an error occurred */
869 		epi->nwait = -1;
870 	}
871 }
872 
873 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
874 {
875 	int kcmp;
876 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
877 	struct epitem *epic;
878 
879 	while (*p) {
880 		parent = *p;
881 		epic = rb_entry(parent, struct epitem, rbn);
882 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
883 		if (kcmp > 0)
884 			p = &parent->rb_right;
885 		else
886 			p = &parent->rb_left;
887 	}
888 	rb_link_node(&epi->rbn, parent, p);
889 	rb_insert_color(&epi->rbn, &ep->rbr);
890 }
891 
892 /*
893  * Must be called with "mtx" held.
894  */
895 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
896 		     struct file *tfile, int fd)
897 {
898 	int error, revents, pwake = 0;
899 	unsigned long flags;
900 	struct epitem *epi;
901 	struct ep_pqueue epq;
902 
903 	if (unlikely(atomic_read(&ep->user->epoll_watches) >=
904 		     max_user_watches))
905 		return -ENOSPC;
906 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
907 		return -ENOMEM;
908 
909 	/* Item initialization follow here ... */
910 	INIT_LIST_HEAD(&epi->rdllink);
911 	INIT_LIST_HEAD(&epi->fllink);
912 	INIT_LIST_HEAD(&epi->pwqlist);
913 	epi->ep = ep;
914 	ep_set_ffd(&epi->ffd, tfile, fd);
915 	epi->event = *event;
916 	epi->nwait = 0;
917 	epi->next = EP_UNACTIVE_PTR;
918 
919 	/* Initialize the poll table using the queue callback */
920 	epq.epi = epi;
921 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
922 
923 	/*
924 	 * Attach the item to the poll hooks and get current event bits.
925 	 * We can safely use the file* here because its usage count has
926 	 * been increased by the caller of this function. Note that after
927 	 * this operation completes, the poll callback can start hitting
928 	 * the new item.
929 	 */
930 	revents = tfile->f_op->poll(tfile, &epq.pt);
931 
932 	/*
933 	 * We have to check if something went wrong during the poll wait queue
934 	 * install process. Namely an allocation for a wait queue failed due
935 	 * high memory pressure.
936 	 */
937 	error = -ENOMEM;
938 	if (epi->nwait < 0)
939 		goto error_unregister;
940 
941 	/* Add the current item to the list of active epoll hook for this file */
942 	spin_lock(&tfile->f_lock);
943 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
944 	spin_unlock(&tfile->f_lock);
945 
946 	/*
947 	 * Add the current item to the RB tree. All RB tree operations are
948 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
949 	 */
950 	ep_rbtree_insert(ep, epi);
951 
952 	/* We have to drop the new item inside our item list to keep track of it */
953 	spin_lock_irqsave(&ep->lock, flags);
954 
955 	/* If the file is already "ready" we drop it inside the ready list */
956 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
957 		list_add_tail(&epi->rdllink, &ep->rdllist);
958 
959 		/* Notify waiting tasks that events are available */
960 		if (waitqueue_active(&ep->wq))
961 			wake_up_locked(&ep->wq);
962 		if (waitqueue_active(&ep->poll_wait))
963 			pwake++;
964 	}
965 
966 	spin_unlock_irqrestore(&ep->lock, flags);
967 
968 	atomic_inc(&ep->user->epoll_watches);
969 
970 	/* We have to call this outside the lock */
971 	if (pwake)
972 		ep_poll_safewake(&ep->poll_wait);
973 
974 	return 0;
975 
976 error_unregister:
977 	ep_unregister_pollwait(ep, epi);
978 
979 	/*
980 	 * We need to do this because an event could have been arrived on some
981 	 * allocated wait queue. Note that we don't care about the ep->ovflist
982 	 * list, since that is used/cleaned only inside a section bound by "mtx".
983 	 * And ep_insert() is called with "mtx" held.
984 	 */
985 	spin_lock_irqsave(&ep->lock, flags);
986 	if (ep_is_linked(&epi->rdllink))
987 		list_del_init(&epi->rdllink);
988 	spin_unlock_irqrestore(&ep->lock, flags);
989 
990 	kmem_cache_free(epi_cache, epi);
991 
992 	return error;
993 }
994 
995 /*
996  * Modify the interest event mask by dropping an event if the new mask
997  * has a match in the current file status. Must be called with "mtx" held.
998  */
999 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1000 {
1001 	int pwake = 0;
1002 	unsigned int revents;
1003 
1004 	/*
1005 	 * Set the new event interest mask before calling f_op->poll();
1006 	 * otherwise we might miss an event that happens between the
1007 	 * f_op->poll() call and the new event set registering.
1008 	 */
1009 	epi->event.events = event->events;
1010 	epi->event.data = event->data; /* protected by mtx */
1011 
1012 	/*
1013 	 * Get current event bits. We can safely use the file* here because
1014 	 * its usage count has been increased by the caller of this function.
1015 	 */
1016 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1017 
1018 	/*
1019 	 * If the item is "hot" and it is not registered inside the ready
1020 	 * list, push it inside.
1021 	 */
1022 	if (revents & event->events) {
1023 		spin_lock_irq(&ep->lock);
1024 		if (!ep_is_linked(&epi->rdllink)) {
1025 			list_add_tail(&epi->rdllink, &ep->rdllist);
1026 
1027 			/* Notify waiting tasks that events are available */
1028 			if (waitqueue_active(&ep->wq))
1029 				wake_up_locked(&ep->wq);
1030 			if (waitqueue_active(&ep->poll_wait))
1031 				pwake++;
1032 		}
1033 		spin_unlock_irq(&ep->lock);
1034 	}
1035 
1036 	/* We have to call this outside the lock */
1037 	if (pwake)
1038 		ep_poll_safewake(&ep->poll_wait);
1039 
1040 	return 0;
1041 }
1042 
1043 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1044 			       void *priv)
1045 {
1046 	struct ep_send_events_data *esed = priv;
1047 	int eventcnt;
1048 	unsigned int revents;
1049 	struct epitem *epi;
1050 	struct epoll_event __user *uevent;
1051 
1052 	/*
1053 	 * We can loop without lock because we are passed a task private list.
1054 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1055 	 * holding "mtx" during this call.
1056 	 */
1057 	for (eventcnt = 0, uevent = esed->events;
1058 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1059 		epi = list_first_entry(head, struct epitem, rdllink);
1060 
1061 		list_del_init(&epi->rdllink);
1062 
1063 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1064 			epi->event.events;
1065 
1066 		/*
1067 		 * If the event mask intersect the caller-requested one,
1068 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1069 		 * is holding "mtx", so no operations coming from userspace
1070 		 * can change the item.
1071 		 */
1072 		if (revents) {
1073 			if (__put_user(revents, &uevent->events) ||
1074 			    __put_user(epi->event.data, &uevent->data)) {
1075 				list_add(&epi->rdllink, head);
1076 				return eventcnt ? eventcnt : -EFAULT;
1077 			}
1078 			eventcnt++;
1079 			uevent++;
1080 			if (epi->event.events & EPOLLONESHOT)
1081 				epi->event.events &= EP_PRIVATE_BITS;
1082 			else if (!(epi->event.events & EPOLLET)) {
1083 				/*
1084 				 * If this file has been added with Level
1085 				 * Trigger mode, we need to insert back inside
1086 				 * the ready list, so that the next call to
1087 				 * epoll_wait() will check again the events
1088 				 * availability. At this point, noone can insert
1089 				 * into ep->rdllist besides us. The epoll_ctl()
1090 				 * callers are locked out by
1091 				 * ep_scan_ready_list() holding "mtx" and the
1092 				 * poll callback will queue them in ep->ovflist.
1093 				 */
1094 				list_add_tail(&epi->rdllink, &ep->rdllist);
1095 			}
1096 		}
1097 	}
1098 
1099 	return eventcnt;
1100 }
1101 
1102 static int ep_send_events(struct eventpoll *ep,
1103 			  struct epoll_event __user *events, int maxevents)
1104 {
1105 	struct ep_send_events_data esed;
1106 
1107 	esed.maxevents = maxevents;
1108 	esed.events = events;
1109 
1110 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed);
1111 }
1112 
1113 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1114 		   int maxevents, long timeout)
1115 {
1116 	int res, eavail;
1117 	unsigned long flags;
1118 	long jtimeout;
1119 	wait_queue_t wait;
1120 
1121 	/*
1122 	 * Calculate the timeout by checking for the "infinite" value (-1)
1123 	 * and the overflow condition. The passed timeout is in milliseconds,
1124 	 * that why (t * HZ) / 1000.
1125 	 */
1126 	jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
1127 		MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
1128 
1129 retry:
1130 	spin_lock_irqsave(&ep->lock, flags);
1131 
1132 	res = 0;
1133 	if (list_empty(&ep->rdllist)) {
1134 		/*
1135 		 * We don't have any available event to return to the caller.
1136 		 * We need to sleep here, and we will be wake up by
1137 		 * ep_poll_callback() when events will become available.
1138 		 */
1139 		init_waitqueue_entry(&wait, current);
1140 		wait.flags |= WQ_FLAG_EXCLUSIVE;
1141 		__add_wait_queue(&ep->wq, &wait);
1142 
1143 		for (;;) {
1144 			/*
1145 			 * We don't want to sleep if the ep_poll_callback() sends us
1146 			 * a wakeup in between. That's why we set the task state
1147 			 * to TASK_INTERRUPTIBLE before doing the checks.
1148 			 */
1149 			set_current_state(TASK_INTERRUPTIBLE);
1150 			if (!list_empty(&ep->rdllist) || !jtimeout)
1151 				break;
1152 			if (signal_pending(current)) {
1153 				res = -EINTR;
1154 				break;
1155 			}
1156 
1157 			spin_unlock_irqrestore(&ep->lock, flags);
1158 			jtimeout = schedule_timeout(jtimeout);
1159 			spin_lock_irqsave(&ep->lock, flags);
1160 		}
1161 		__remove_wait_queue(&ep->wq, &wait);
1162 
1163 		set_current_state(TASK_RUNNING);
1164 	}
1165 	/* Is it worth to try to dig for events ? */
1166 	eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
1167 
1168 	spin_unlock_irqrestore(&ep->lock, flags);
1169 
1170 	/*
1171 	 * Try to transfer events to user space. In case we get 0 events and
1172 	 * there's still timeout left over, we go trying again in search of
1173 	 * more luck.
1174 	 */
1175 	if (!res && eavail &&
1176 	    !(res = ep_send_events(ep, events, maxevents)) && jtimeout)
1177 		goto retry;
1178 
1179 	return res;
1180 }
1181 
1182 /*
1183  * Open an eventpoll file descriptor.
1184  */
1185 SYSCALL_DEFINE1(epoll_create1, int, flags)
1186 {
1187 	int error;
1188 	struct eventpoll *ep = NULL;
1189 
1190 	/* Check the EPOLL_* constant for consistency.  */
1191 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1192 
1193 	if (flags & ~EPOLL_CLOEXEC)
1194 		return -EINVAL;
1195 	/*
1196 	 * Create the internal data structure ("struct eventpoll").
1197 	 */
1198 	error = ep_alloc(&ep);
1199 	if (error < 0)
1200 		return error;
1201 	/*
1202 	 * Creates all the items needed to setup an eventpoll file. That is,
1203 	 * a file structure and a free file descriptor.
1204 	 */
1205 	error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1206 				 flags & O_CLOEXEC);
1207 	if (error < 0)
1208 		ep_free(ep);
1209 
1210 	return error;
1211 }
1212 
1213 SYSCALL_DEFINE1(epoll_create, int, size)
1214 {
1215 	if (size < 0)
1216 		return -EINVAL;
1217 
1218 	return sys_epoll_create1(0);
1219 }
1220 
1221 /*
1222  * The following function implements the controller interface for
1223  * the eventpoll file that enables the insertion/removal/change of
1224  * file descriptors inside the interest set.
1225  */
1226 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1227 		struct epoll_event __user *, event)
1228 {
1229 	int error;
1230 	struct file *file, *tfile;
1231 	struct eventpoll *ep;
1232 	struct epitem *epi;
1233 	struct epoll_event epds;
1234 
1235 	error = -EFAULT;
1236 	if (ep_op_has_event(op) &&
1237 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1238 		goto error_return;
1239 
1240 	/* Get the "struct file *" for the eventpoll file */
1241 	error = -EBADF;
1242 	file = fget(epfd);
1243 	if (!file)
1244 		goto error_return;
1245 
1246 	/* Get the "struct file *" for the target file */
1247 	tfile = fget(fd);
1248 	if (!tfile)
1249 		goto error_fput;
1250 
1251 	/* The target file descriptor must support poll */
1252 	error = -EPERM;
1253 	if (!tfile->f_op || !tfile->f_op->poll)
1254 		goto error_tgt_fput;
1255 
1256 	/*
1257 	 * We have to check that the file structure underneath the file descriptor
1258 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1259 	 * adding an epoll file descriptor inside itself.
1260 	 */
1261 	error = -EINVAL;
1262 	if (file == tfile || !is_file_epoll(file))
1263 		goto error_tgt_fput;
1264 
1265 	/*
1266 	 * At this point it is safe to assume that the "private_data" contains
1267 	 * our own data structure.
1268 	 */
1269 	ep = file->private_data;
1270 
1271 	mutex_lock(&ep->mtx);
1272 
1273 	/*
1274 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1275 	 * above, we can be sure to be able to use the item looked up by
1276 	 * ep_find() till we release the mutex.
1277 	 */
1278 	epi = ep_find(ep, tfile, fd);
1279 
1280 	error = -EINVAL;
1281 	switch (op) {
1282 	case EPOLL_CTL_ADD:
1283 		if (!epi) {
1284 			epds.events |= POLLERR | POLLHUP;
1285 			error = ep_insert(ep, &epds, tfile, fd);
1286 		} else
1287 			error = -EEXIST;
1288 		break;
1289 	case EPOLL_CTL_DEL:
1290 		if (epi)
1291 			error = ep_remove(ep, epi);
1292 		else
1293 			error = -ENOENT;
1294 		break;
1295 	case EPOLL_CTL_MOD:
1296 		if (epi) {
1297 			epds.events |= POLLERR | POLLHUP;
1298 			error = ep_modify(ep, epi, &epds);
1299 		} else
1300 			error = -ENOENT;
1301 		break;
1302 	}
1303 	mutex_unlock(&ep->mtx);
1304 
1305 error_tgt_fput:
1306 	fput(tfile);
1307 error_fput:
1308 	fput(file);
1309 error_return:
1310 
1311 	return error;
1312 }
1313 
1314 /*
1315  * Implement the event wait interface for the eventpoll file. It is the kernel
1316  * part of the user space epoll_wait(2).
1317  */
1318 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1319 		int, maxevents, int, timeout)
1320 {
1321 	int error;
1322 	struct file *file;
1323 	struct eventpoll *ep;
1324 
1325 	/* The maximum number of event must be greater than zero */
1326 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1327 		return -EINVAL;
1328 
1329 	/* Verify that the area passed by the user is writeable */
1330 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1331 		error = -EFAULT;
1332 		goto error_return;
1333 	}
1334 
1335 	/* Get the "struct file *" for the eventpoll file */
1336 	error = -EBADF;
1337 	file = fget(epfd);
1338 	if (!file)
1339 		goto error_return;
1340 
1341 	/*
1342 	 * We have to check that the file structure underneath the fd
1343 	 * the user passed to us _is_ an eventpoll file.
1344 	 */
1345 	error = -EINVAL;
1346 	if (!is_file_epoll(file))
1347 		goto error_fput;
1348 
1349 	/*
1350 	 * At this point it is safe to assume that the "private_data" contains
1351 	 * our own data structure.
1352 	 */
1353 	ep = file->private_data;
1354 
1355 	/* Time to fish for events ... */
1356 	error = ep_poll(ep, events, maxevents, timeout);
1357 
1358 error_fput:
1359 	fput(file);
1360 error_return:
1361 
1362 	return error;
1363 }
1364 
1365 #ifdef HAVE_SET_RESTORE_SIGMASK
1366 
1367 /*
1368  * Implement the event wait interface for the eventpoll file. It is the kernel
1369  * part of the user space epoll_pwait(2).
1370  */
1371 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1372 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1373 		size_t, sigsetsize)
1374 {
1375 	int error;
1376 	sigset_t ksigmask, sigsaved;
1377 
1378 	/*
1379 	 * If the caller wants a certain signal mask to be set during the wait,
1380 	 * we apply it here.
1381 	 */
1382 	if (sigmask) {
1383 		if (sigsetsize != sizeof(sigset_t))
1384 			return -EINVAL;
1385 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1386 			return -EFAULT;
1387 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1388 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1389 	}
1390 
1391 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1392 
1393 	/*
1394 	 * If we changed the signal mask, we need to restore the original one.
1395 	 * In case we've got a signal while waiting, we do not restore the
1396 	 * signal mask yet, and we allow do_signal() to deliver the signal on
1397 	 * the way back to userspace, before the signal mask is restored.
1398 	 */
1399 	if (sigmask) {
1400 		if (error == -EINTR) {
1401 			memcpy(&current->saved_sigmask, &sigsaved,
1402 			       sizeof(sigsaved));
1403 			set_restore_sigmask();
1404 		} else
1405 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1406 	}
1407 
1408 	return error;
1409 }
1410 
1411 #endif /* HAVE_SET_RESTORE_SIGMASK */
1412 
1413 static int __init eventpoll_init(void)
1414 {
1415 	struct sysinfo si;
1416 
1417 	si_meminfo(&si);
1418 	/*
1419 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1420 	 */
1421 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1422 		EP_ITEM_COST;
1423 
1424 	/* Initialize the structure used to perform safe poll wait head wake ups */
1425 	ep_nested_calls_init(&poll_safewake_ncalls);
1426 
1427 	/* Initialize the structure used to perform file's f_op->poll() calls */
1428 	ep_nested_calls_init(&poll_readywalk_ncalls);
1429 
1430 	/* Allocates slab cache used to allocate "struct epitem" items */
1431 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1432 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1433 
1434 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1435 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1436 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1437 
1438 	return 0;
1439 }
1440 fs_initcall(eventpoll_init);
1441