1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <asm/uaccess.h> 37 #include <asm/system.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <asm/atomic.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (spinlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a spinlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL). 66 * It is possible to drop the "ep->mtx" and to use the global 67 * mutex "epmutex" (together with "ep->lock") to have it working, 68 * but having "ep->mtx" will make the interface more scalable. 69 * Events that require holding "epmutex" are very rare, while for 70 * normal operations the epoll private "ep->mtx" will guarantee 71 * a better scalability. 72 */ 73 74 /* Epoll private bits inside the event mask */ 75 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET) 76 77 /* Maximum number of nesting allowed inside epoll sets */ 78 #define EP_MAX_NESTS 4 79 80 /* Maximum msec timeout value storeable in a long int */ 81 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ) 82 83 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 84 85 #define EP_UNACTIVE_PTR ((void *) -1L) 86 87 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 88 89 struct epoll_filefd { 90 struct file *file; 91 int fd; 92 }; 93 94 /* 95 * Structure used to track possible nested calls, for too deep recursions 96 * and loop cycles. 97 */ 98 struct nested_call_node { 99 struct list_head llink; 100 void *cookie; 101 int cpu; 102 }; 103 104 /* 105 * This structure is used as collector for nested calls, to check for 106 * maximum recursion dept and loop cycles. 107 */ 108 struct nested_calls { 109 struct list_head tasks_call_list; 110 spinlock_t lock; 111 }; 112 113 /* 114 * Each file descriptor added to the eventpoll interface will 115 * have an entry of this type linked to the "rbr" RB tree. 116 */ 117 struct epitem { 118 /* RB tree node used to link this structure to the eventpoll RB tree */ 119 struct rb_node rbn; 120 121 /* List header used to link this structure to the eventpoll ready list */ 122 struct list_head rdllink; 123 124 /* 125 * Works together "struct eventpoll"->ovflist in keeping the 126 * single linked chain of items. 127 */ 128 struct epitem *next; 129 130 /* The file descriptor information this item refers to */ 131 struct epoll_filefd ffd; 132 133 /* Number of active wait queue attached to poll operations */ 134 int nwait; 135 136 /* List containing poll wait queues */ 137 struct list_head pwqlist; 138 139 /* The "container" of this item */ 140 struct eventpoll *ep; 141 142 /* List header used to link this item to the "struct file" items list */ 143 struct list_head fllink; 144 145 /* The structure that describe the interested events and the source fd */ 146 struct epoll_event event; 147 }; 148 149 /* 150 * This structure is stored inside the "private_data" member of the file 151 * structure and rapresent the main data sructure for the eventpoll 152 * interface. 153 */ 154 struct eventpoll { 155 /* Protect the this structure access */ 156 spinlock_t lock; 157 158 /* 159 * This mutex is used to ensure that files are not removed 160 * while epoll is using them. This is held during the event 161 * collection loop, the file cleanup path, the epoll file exit 162 * code and the ctl operations. 163 */ 164 struct mutex mtx; 165 166 /* Wait queue used by sys_epoll_wait() */ 167 wait_queue_head_t wq; 168 169 /* Wait queue used by file->poll() */ 170 wait_queue_head_t poll_wait; 171 172 /* List of ready file descriptors */ 173 struct list_head rdllist; 174 175 /* RB tree root used to store monitored fd structs */ 176 struct rb_root rbr; 177 178 /* 179 * This is a single linked list that chains all the "struct epitem" that 180 * happened while transfering ready events to userspace w/out 181 * holding ->lock. 182 */ 183 struct epitem *ovflist; 184 185 /* The user that created the eventpoll descriptor */ 186 struct user_struct *user; 187 }; 188 189 /* Wait structure used by the poll hooks */ 190 struct eppoll_entry { 191 /* List header used to link this structure to the "struct epitem" */ 192 struct list_head llink; 193 194 /* The "base" pointer is set to the container "struct epitem" */ 195 struct epitem *base; 196 197 /* 198 * Wait queue item that will be linked to the target file wait 199 * queue head. 200 */ 201 wait_queue_t wait; 202 203 /* The wait queue head that linked the "wait" wait queue item */ 204 wait_queue_head_t *whead; 205 }; 206 207 /* Wrapper struct used by poll queueing */ 208 struct ep_pqueue { 209 poll_table pt; 210 struct epitem *epi; 211 }; 212 213 /* Used by the ep_send_events() function as callback private data */ 214 struct ep_send_events_data { 215 int maxevents; 216 struct epoll_event __user *events; 217 }; 218 219 /* 220 * Configuration options available inside /proc/sys/fs/epoll/ 221 */ 222 /* Maximum number of epoll watched descriptors, per user */ 223 static int max_user_watches __read_mostly; 224 225 /* 226 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 227 */ 228 static DEFINE_MUTEX(epmutex); 229 230 /* Used for safe wake up implementation */ 231 static struct nested_calls poll_safewake_ncalls; 232 233 /* Used to call file's f_op->poll() under the nested calls boundaries */ 234 static struct nested_calls poll_readywalk_ncalls; 235 236 /* Slab cache used to allocate "struct epitem" */ 237 static struct kmem_cache *epi_cache __read_mostly; 238 239 /* Slab cache used to allocate "struct eppoll_entry" */ 240 static struct kmem_cache *pwq_cache __read_mostly; 241 242 #ifdef CONFIG_SYSCTL 243 244 #include <linux/sysctl.h> 245 246 static int zero; 247 248 ctl_table epoll_table[] = { 249 { 250 .procname = "max_user_watches", 251 .data = &max_user_watches, 252 .maxlen = sizeof(int), 253 .mode = 0644, 254 .proc_handler = &proc_dointvec_minmax, 255 .extra1 = &zero, 256 }, 257 { .ctl_name = 0 } 258 }; 259 #endif /* CONFIG_SYSCTL */ 260 261 262 /* Setup the structure that is used as key for the RB tree */ 263 static inline void ep_set_ffd(struct epoll_filefd *ffd, 264 struct file *file, int fd) 265 { 266 ffd->file = file; 267 ffd->fd = fd; 268 } 269 270 /* Compare RB tree keys */ 271 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 272 struct epoll_filefd *p2) 273 { 274 return (p1->file > p2->file ? +1: 275 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 276 } 277 278 /* Tells us if the item is currently linked */ 279 static inline int ep_is_linked(struct list_head *p) 280 { 281 return !list_empty(p); 282 } 283 284 /* Get the "struct epitem" from a wait queue pointer */ 285 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 286 { 287 return container_of(p, struct eppoll_entry, wait)->base; 288 } 289 290 /* Get the "struct epitem" from an epoll queue wrapper */ 291 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 292 { 293 return container_of(p, struct ep_pqueue, pt)->epi; 294 } 295 296 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 297 static inline int ep_op_has_event(int op) 298 { 299 return op != EPOLL_CTL_DEL; 300 } 301 302 /* Initialize the poll safe wake up structure */ 303 static void ep_nested_calls_init(struct nested_calls *ncalls) 304 { 305 INIT_LIST_HEAD(&ncalls->tasks_call_list); 306 spin_lock_init(&ncalls->lock); 307 } 308 309 /** 310 * ep_call_nested - Perform a bound (possibly) nested call, by checking 311 * that the recursion limit is not exceeded, and that 312 * the same nested call (by the meaning of same cookie) is 313 * no re-entered. 314 * 315 * @ncalls: Pointer to the nested_calls structure to be used for this call. 316 * @max_nests: Maximum number of allowed nesting calls. 317 * @nproc: Nested call core function pointer. 318 * @priv: Opaque data to be passed to the @nproc callback. 319 * @cookie: Cookie to be used to identify this nested call. 320 * 321 * Returns: Returns the code returned by the @nproc callback, or -1 if 322 * the maximum recursion limit has been exceeded. 323 */ 324 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 325 int (*nproc)(void *, void *, int), void *priv, 326 void *cookie) 327 { 328 int error, call_nests = 0; 329 unsigned long flags; 330 int this_cpu = get_cpu(); 331 struct list_head *lsthead = &ncalls->tasks_call_list; 332 struct nested_call_node *tncur; 333 struct nested_call_node tnode; 334 335 spin_lock_irqsave(&ncalls->lock, flags); 336 337 /* 338 * Try to see if the current task is already inside this wakeup call. 339 * We use a list here, since the population inside this set is always 340 * very much limited. 341 */ 342 list_for_each_entry(tncur, lsthead, llink) { 343 if (tncur->cpu == this_cpu && 344 (tncur->cookie == cookie || ++call_nests > max_nests)) { 345 /* 346 * Ops ... loop detected or maximum nest level reached. 347 * We abort this wake by breaking the cycle itself. 348 */ 349 error = -1; 350 goto out_unlock; 351 } 352 } 353 354 /* Add the current task and cookie to the list */ 355 tnode.cpu = this_cpu; 356 tnode.cookie = cookie; 357 list_add(&tnode.llink, lsthead); 358 359 spin_unlock_irqrestore(&ncalls->lock, flags); 360 361 /* Call the nested function */ 362 error = (*nproc)(priv, cookie, call_nests); 363 364 /* Remove the current task from the list */ 365 spin_lock_irqsave(&ncalls->lock, flags); 366 list_del(&tnode.llink); 367 out_unlock: 368 spin_unlock_irqrestore(&ncalls->lock, flags); 369 370 put_cpu(); 371 return error; 372 } 373 374 #ifdef CONFIG_DEBUG_LOCK_ALLOC 375 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 376 unsigned long events, int subclass) 377 { 378 unsigned long flags; 379 380 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 381 wake_up_locked_poll(wqueue, events); 382 spin_unlock_irqrestore(&wqueue->lock, flags); 383 } 384 #else 385 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 386 unsigned long events, int subclass) 387 { 388 wake_up_poll(wqueue, events); 389 } 390 #endif 391 392 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 393 { 394 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 395 1 + call_nests); 396 return 0; 397 } 398 399 /* 400 * Perform a safe wake up of the poll wait list. The problem is that 401 * with the new callback'd wake up system, it is possible that the 402 * poll callback is reentered from inside the call to wake_up() done 403 * on the poll wait queue head. The rule is that we cannot reenter the 404 * wake up code from the same task more than EP_MAX_NESTS times, 405 * and we cannot reenter the same wait queue head at all. This will 406 * enable to have a hierarchy of epoll file descriptor of no more than 407 * EP_MAX_NESTS deep. 408 */ 409 static void ep_poll_safewake(wait_queue_head_t *wq) 410 { 411 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 412 ep_poll_wakeup_proc, NULL, wq); 413 } 414 415 /* 416 * This function unregisters poll callbacks from the associated file 417 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 418 * ep_free). 419 */ 420 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 421 { 422 struct list_head *lsthead = &epi->pwqlist; 423 struct eppoll_entry *pwq; 424 425 while (!list_empty(lsthead)) { 426 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 427 428 list_del(&pwq->llink); 429 remove_wait_queue(pwq->whead, &pwq->wait); 430 kmem_cache_free(pwq_cache, pwq); 431 } 432 } 433 434 /** 435 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 436 * the scan code, to call f_op->poll(). Also allows for 437 * O(NumReady) performance. 438 * 439 * @ep: Pointer to the epoll private data structure. 440 * @sproc: Pointer to the scan callback. 441 * @priv: Private opaque data passed to the @sproc callback. 442 * 443 * Returns: The same integer error code returned by the @sproc callback. 444 */ 445 static int ep_scan_ready_list(struct eventpoll *ep, 446 int (*sproc)(struct eventpoll *, 447 struct list_head *, void *), 448 void *priv) 449 { 450 int error, pwake = 0; 451 unsigned long flags; 452 struct epitem *epi, *nepi; 453 LIST_HEAD(txlist); 454 455 /* 456 * We need to lock this because we could be hit by 457 * eventpoll_release_file() and epoll_ctl(). 458 */ 459 mutex_lock(&ep->mtx); 460 461 /* 462 * Steal the ready list, and re-init the original one to the 463 * empty list. Also, set ep->ovflist to NULL so that events 464 * happening while looping w/out locks, are not lost. We cannot 465 * have the poll callback to queue directly on ep->rdllist, 466 * because we want the "sproc" callback to be able to do it 467 * in a lockless way. 468 */ 469 spin_lock_irqsave(&ep->lock, flags); 470 list_splice_init(&ep->rdllist, &txlist); 471 ep->ovflist = NULL; 472 spin_unlock_irqrestore(&ep->lock, flags); 473 474 /* 475 * Now call the callback function. 476 */ 477 error = (*sproc)(ep, &txlist, priv); 478 479 spin_lock_irqsave(&ep->lock, flags); 480 /* 481 * During the time we spent inside the "sproc" callback, some 482 * other events might have been queued by the poll callback. 483 * We re-insert them inside the main ready-list here. 484 */ 485 for (nepi = ep->ovflist; (epi = nepi) != NULL; 486 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 487 /* 488 * We need to check if the item is already in the list. 489 * During the "sproc" callback execution time, items are 490 * queued into ->ovflist but the "txlist" might already 491 * contain them, and the list_splice() below takes care of them. 492 */ 493 if (!ep_is_linked(&epi->rdllink)) 494 list_add_tail(&epi->rdllink, &ep->rdllist); 495 } 496 /* 497 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 498 * releasing the lock, events will be queued in the normal way inside 499 * ep->rdllist. 500 */ 501 ep->ovflist = EP_UNACTIVE_PTR; 502 503 /* 504 * Quickly re-inject items left on "txlist". 505 */ 506 list_splice(&txlist, &ep->rdllist); 507 508 if (!list_empty(&ep->rdllist)) { 509 /* 510 * Wake up (if active) both the eventpoll wait list and 511 * the ->poll() wait list (delayed after we release the lock). 512 */ 513 if (waitqueue_active(&ep->wq)) 514 wake_up_locked(&ep->wq); 515 if (waitqueue_active(&ep->poll_wait)) 516 pwake++; 517 } 518 spin_unlock_irqrestore(&ep->lock, flags); 519 520 mutex_unlock(&ep->mtx); 521 522 /* We have to call this outside the lock */ 523 if (pwake) 524 ep_poll_safewake(&ep->poll_wait); 525 526 return error; 527 } 528 529 /* 530 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 531 * all the associated resources. Must be called with "mtx" held. 532 */ 533 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 534 { 535 unsigned long flags; 536 struct file *file = epi->ffd.file; 537 538 /* 539 * Removes poll wait queue hooks. We _have_ to do this without holding 540 * the "ep->lock" otherwise a deadlock might occur. This because of the 541 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 542 * queue head lock when unregistering the wait queue. The wakeup callback 543 * will run by holding the wait queue head lock and will call our callback 544 * that will try to get "ep->lock". 545 */ 546 ep_unregister_pollwait(ep, epi); 547 548 /* Remove the current item from the list of epoll hooks */ 549 spin_lock(&file->f_lock); 550 if (ep_is_linked(&epi->fllink)) 551 list_del_init(&epi->fllink); 552 spin_unlock(&file->f_lock); 553 554 rb_erase(&epi->rbn, &ep->rbr); 555 556 spin_lock_irqsave(&ep->lock, flags); 557 if (ep_is_linked(&epi->rdllink)) 558 list_del_init(&epi->rdllink); 559 spin_unlock_irqrestore(&ep->lock, flags); 560 561 /* At this point it is safe to free the eventpoll item */ 562 kmem_cache_free(epi_cache, epi); 563 564 atomic_dec(&ep->user->epoll_watches); 565 566 return 0; 567 } 568 569 static void ep_free(struct eventpoll *ep) 570 { 571 struct rb_node *rbp; 572 struct epitem *epi; 573 574 /* We need to release all tasks waiting for these file */ 575 if (waitqueue_active(&ep->poll_wait)) 576 ep_poll_safewake(&ep->poll_wait); 577 578 /* 579 * We need to lock this because we could be hit by 580 * eventpoll_release_file() while we're freeing the "struct eventpoll". 581 * We do not need to hold "ep->mtx" here because the epoll file 582 * is on the way to be removed and no one has references to it 583 * anymore. The only hit might come from eventpoll_release_file() but 584 * holding "epmutex" is sufficent here. 585 */ 586 mutex_lock(&epmutex); 587 588 /* 589 * Walks through the whole tree by unregistering poll callbacks. 590 */ 591 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 592 epi = rb_entry(rbp, struct epitem, rbn); 593 594 ep_unregister_pollwait(ep, epi); 595 } 596 597 /* 598 * Walks through the whole tree by freeing each "struct epitem". At this 599 * point we are sure no poll callbacks will be lingering around, and also by 600 * holding "epmutex" we can be sure that no file cleanup code will hit 601 * us during this operation. So we can avoid the lock on "ep->lock". 602 */ 603 while ((rbp = rb_first(&ep->rbr)) != NULL) { 604 epi = rb_entry(rbp, struct epitem, rbn); 605 ep_remove(ep, epi); 606 } 607 608 mutex_unlock(&epmutex); 609 mutex_destroy(&ep->mtx); 610 free_uid(ep->user); 611 kfree(ep); 612 } 613 614 static int ep_eventpoll_release(struct inode *inode, struct file *file) 615 { 616 struct eventpoll *ep = file->private_data; 617 618 if (ep) 619 ep_free(ep); 620 621 return 0; 622 } 623 624 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 625 void *priv) 626 { 627 struct epitem *epi, *tmp; 628 629 list_for_each_entry_safe(epi, tmp, head, rdllink) { 630 if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & 631 epi->event.events) 632 return POLLIN | POLLRDNORM; 633 else { 634 /* 635 * Item has been dropped into the ready list by the poll 636 * callback, but it's not actually ready, as far as 637 * caller requested events goes. We can remove it here. 638 */ 639 list_del_init(&epi->rdllink); 640 } 641 } 642 643 return 0; 644 } 645 646 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 647 { 648 return ep_scan_ready_list(priv, ep_read_events_proc, NULL); 649 } 650 651 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 652 { 653 int pollflags; 654 struct eventpoll *ep = file->private_data; 655 656 /* Insert inside our poll wait queue */ 657 poll_wait(file, &ep->poll_wait, wait); 658 659 /* 660 * Proceed to find out if wanted events are really available inside 661 * the ready list. This need to be done under ep_call_nested() 662 * supervision, since the call to f_op->poll() done on listed files 663 * could re-enter here. 664 */ 665 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 666 ep_poll_readyevents_proc, ep, ep); 667 668 return pollflags != -1 ? pollflags : 0; 669 } 670 671 /* File callbacks that implement the eventpoll file behaviour */ 672 static const struct file_operations eventpoll_fops = { 673 .release = ep_eventpoll_release, 674 .poll = ep_eventpoll_poll 675 }; 676 677 /* Fast test to see if the file is an evenpoll file */ 678 static inline int is_file_epoll(struct file *f) 679 { 680 return f->f_op == &eventpoll_fops; 681 } 682 683 /* 684 * This is called from eventpoll_release() to unlink files from the eventpoll 685 * interface. We need to have this facility to cleanup correctly files that are 686 * closed without being removed from the eventpoll interface. 687 */ 688 void eventpoll_release_file(struct file *file) 689 { 690 struct list_head *lsthead = &file->f_ep_links; 691 struct eventpoll *ep; 692 struct epitem *epi; 693 694 /* 695 * We don't want to get "file->f_lock" because it is not 696 * necessary. It is not necessary because we're in the "struct file" 697 * cleanup path, and this means that noone is using this file anymore. 698 * So, for example, epoll_ctl() cannot hit here since if we reach this 699 * point, the file counter already went to zero and fget() would fail. 700 * The only hit might come from ep_free() but by holding the mutex 701 * will correctly serialize the operation. We do need to acquire 702 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 703 * from anywhere but ep_free(). 704 * 705 * Besides, ep_remove() acquires the lock, so we can't hold it here. 706 */ 707 mutex_lock(&epmutex); 708 709 while (!list_empty(lsthead)) { 710 epi = list_first_entry(lsthead, struct epitem, fllink); 711 712 ep = epi->ep; 713 list_del_init(&epi->fllink); 714 mutex_lock(&ep->mtx); 715 ep_remove(ep, epi); 716 mutex_unlock(&ep->mtx); 717 } 718 719 mutex_unlock(&epmutex); 720 } 721 722 static int ep_alloc(struct eventpoll **pep) 723 { 724 int error; 725 struct user_struct *user; 726 struct eventpoll *ep; 727 728 user = get_current_user(); 729 error = -ENOMEM; 730 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 731 if (unlikely(!ep)) 732 goto free_uid; 733 734 spin_lock_init(&ep->lock); 735 mutex_init(&ep->mtx); 736 init_waitqueue_head(&ep->wq); 737 init_waitqueue_head(&ep->poll_wait); 738 INIT_LIST_HEAD(&ep->rdllist); 739 ep->rbr = RB_ROOT; 740 ep->ovflist = EP_UNACTIVE_PTR; 741 ep->user = user; 742 743 *pep = ep; 744 745 return 0; 746 747 free_uid: 748 free_uid(user); 749 return error; 750 } 751 752 /* 753 * Search the file inside the eventpoll tree. The RB tree operations 754 * are protected by the "mtx" mutex, and ep_find() must be called with 755 * "mtx" held. 756 */ 757 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 758 { 759 int kcmp; 760 struct rb_node *rbp; 761 struct epitem *epi, *epir = NULL; 762 struct epoll_filefd ffd; 763 764 ep_set_ffd(&ffd, file, fd); 765 for (rbp = ep->rbr.rb_node; rbp; ) { 766 epi = rb_entry(rbp, struct epitem, rbn); 767 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 768 if (kcmp > 0) 769 rbp = rbp->rb_right; 770 else if (kcmp < 0) 771 rbp = rbp->rb_left; 772 else { 773 epir = epi; 774 break; 775 } 776 } 777 778 return epir; 779 } 780 781 /* 782 * This is the callback that is passed to the wait queue wakeup 783 * machanism. It is called by the stored file descriptors when they 784 * have events to report. 785 */ 786 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 787 { 788 int pwake = 0; 789 unsigned long flags; 790 struct epitem *epi = ep_item_from_wait(wait); 791 struct eventpoll *ep = epi->ep; 792 793 spin_lock_irqsave(&ep->lock, flags); 794 795 /* 796 * If the event mask does not contain any poll(2) event, we consider the 797 * descriptor to be disabled. This condition is likely the effect of the 798 * EPOLLONESHOT bit that disables the descriptor when an event is received, 799 * until the next EPOLL_CTL_MOD will be issued. 800 */ 801 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 802 goto out_unlock; 803 804 /* 805 * Check the events coming with the callback. At this stage, not 806 * every device reports the events in the "key" parameter of the 807 * callback. We need to be able to handle both cases here, hence the 808 * test for "key" != NULL before the event match test. 809 */ 810 if (key && !((unsigned long) key & epi->event.events)) 811 goto out_unlock; 812 813 /* 814 * If we are trasfering events to userspace, we can hold no locks 815 * (because we're accessing user memory, and because of linux f_op->poll() 816 * semantics). All the events that happens during that period of time are 817 * chained in ep->ovflist and requeued later on. 818 */ 819 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 820 if (epi->next == EP_UNACTIVE_PTR) { 821 epi->next = ep->ovflist; 822 ep->ovflist = epi; 823 } 824 goto out_unlock; 825 } 826 827 /* If this file is already in the ready list we exit soon */ 828 if (!ep_is_linked(&epi->rdllink)) 829 list_add_tail(&epi->rdllink, &ep->rdllist); 830 831 /* 832 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 833 * wait list. 834 */ 835 if (waitqueue_active(&ep->wq)) 836 wake_up_locked(&ep->wq); 837 if (waitqueue_active(&ep->poll_wait)) 838 pwake++; 839 840 out_unlock: 841 spin_unlock_irqrestore(&ep->lock, flags); 842 843 /* We have to call this outside the lock */ 844 if (pwake) 845 ep_poll_safewake(&ep->poll_wait); 846 847 return 1; 848 } 849 850 /* 851 * This is the callback that is used to add our wait queue to the 852 * target file wakeup lists. 853 */ 854 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 855 poll_table *pt) 856 { 857 struct epitem *epi = ep_item_from_epqueue(pt); 858 struct eppoll_entry *pwq; 859 860 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 861 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 862 pwq->whead = whead; 863 pwq->base = epi; 864 add_wait_queue(whead, &pwq->wait); 865 list_add_tail(&pwq->llink, &epi->pwqlist); 866 epi->nwait++; 867 } else { 868 /* We have to signal that an error occurred */ 869 epi->nwait = -1; 870 } 871 } 872 873 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 874 { 875 int kcmp; 876 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 877 struct epitem *epic; 878 879 while (*p) { 880 parent = *p; 881 epic = rb_entry(parent, struct epitem, rbn); 882 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 883 if (kcmp > 0) 884 p = &parent->rb_right; 885 else 886 p = &parent->rb_left; 887 } 888 rb_link_node(&epi->rbn, parent, p); 889 rb_insert_color(&epi->rbn, &ep->rbr); 890 } 891 892 /* 893 * Must be called with "mtx" held. 894 */ 895 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 896 struct file *tfile, int fd) 897 { 898 int error, revents, pwake = 0; 899 unsigned long flags; 900 struct epitem *epi; 901 struct ep_pqueue epq; 902 903 if (unlikely(atomic_read(&ep->user->epoll_watches) >= 904 max_user_watches)) 905 return -ENOSPC; 906 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 907 return -ENOMEM; 908 909 /* Item initialization follow here ... */ 910 INIT_LIST_HEAD(&epi->rdllink); 911 INIT_LIST_HEAD(&epi->fllink); 912 INIT_LIST_HEAD(&epi->pwqlist); 913 epi->ep = ep; 914 ep_set_ffd(&epi->ffd, tfile, fd); 915 epi->event = *event; 916 epi->nwait = 0; 917 epi->next = EP_UNACTIVE_PTR; 918 919 /* Initialize the poll table using the queue callback */ 920 epq.epi = epi; 921 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 922 923 /* 924 * Attach the item to the poll hooks and get current event bits. 925 * We can safely use the file* here because its usage count has 926 * been increased by the caller of this function. Note that after 927 * this operation completes, the poll callback can start hitting 928 * the new item. 929 */ 930 revents = tfile->f_op->poll(tfile, &epq.pt); 931 932 /* 933 * We have to check if something went wrong during the poll wait queue 934 * install process. Namely an allocation for a wait queue failed due 935 * high memory pressure. 936 */ 937 error = -ENOMEM; 938 if (epi->nwait < 0) 939 goto error_unregister; 940 941 /* Add the current item to the list of active epoll hook for this file */ 942 spin_lock(&tfile->f_lock); 943 list_add_tail(&epi->fllink, &tfile->f_ep_links); 944 spin_unlock(&tfile->f_lock); 945 946 /* 947 * Add the current item to the RB tree. All RB tree operations are 948 * protected by "mtx", and ep_insert() is called with "mtx" held. 949 */ 950 ep_rbtree_insert(ep, epi); 951 952 /* We have to drop the new item inside our item list to keep track of it */ 953 spin_lock_irqsave(&ep->lock, flags); 954 955 /* If the file is already "ready" we drop it inside the ready list */ 956 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 957 list_add_tail(&epi->rdllink, &ep->rdllist); 958 959 /* Notify waiting tasks that events are available */ 960 if (waitqueue_active(&ep->wq)) 961 wake_up_locked(&ep->wq); 962 if (waitqueue_active(&ep->poll_wait)) 963 pwake++; 964 } 965 966 spin_unlock_irqrestore(&ep->lock, flags); 967 968 atomic_inc(&ep->user->epoll_watches); 969 970 /* We have to call this outside the lock */ 971 if (pwake) 972 ep_poll_safewake(&ep->poll_wait); 973 974 return 0; 975 976 error_unregister: 977 ep_unregister_pollwait(ep, epi); 978 979 /* 980 * We need to do this because an event could have been arrived on some 981 * allocated wait queue. Note that we don't care about the ep->ovflist 982 * list, since that is used/cleaned only inside a section bound by "mtx". 983 * And ep_insert() is called with "mtx" held. 984 */ 985 spin_lock_irqsave(&ep->lock, flags); 986 if (ep_is_linked(&epi->rdllink)) 987 list_del_init(&epi->rdllink); 988 spin_unlock_irqrestore(&ep->lock, flags); 989 990 kmem_cache_free(epi_cache, epi); 991 992 return error; 993 } 994 995 /* 996 * Modify the interest event mask by dropping an event if the new mask 997 * has a match in the current file status. Must be called with "mtx" held. 998 */ 999 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1000 { 1001 int pwake = 0; 1002 unsigned int revents; 1003 1004 /* 1005 * Set the new event interest mask before calling f_op->poll(); 1006 * otherwise we might miss an event that happens between the 1007 * f_op->poll() call and the new event set registering. 1008 */ 1009 epi->event.events = event->events; 1010 epi->event.data = event->data; /* protected by mtx */ 1011 1012 /* 1013 * Get current event bits. We can safely use the file* here because 1014 * its usage count has been increased by the caller of this function. 1015 */ 1016 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 1017 1018 /* 1019 * If the item is "hot" and it is not registered inside the ready 1020 * list, push it inside. 1021 */ 1022 if (revents & event->events) { 1023 spin_lock_irq(&ep->lock); 1024 if (!ep_is_linked(&epi->rdllink)) { 1025 list_add_tail(&epi->rdllink, &ep->rdllist); 1026 1027 /* Notify waiting tasks that events are available */ 1028 if (waitqueue_active(&ep->wq)) 1029 wake_up_locked(&ep->wq); 1030 if (waitqueue_active(&ep->poll_wait)) 1031 pwake++; 1032 } 1033 spin_unlock_irq(&ep->lock); 1034 } 1035 1036 /* We have to call this outside the lock */ 1037 if (pwake) 1038 ep_poll_safewake(&ep->poll_wait); 1039 1040 return 0; 1041 } 1042 1043 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1044 void *priv) 1045 { 1046 struct ep_send_events_data *esed = priv; 1047 int eventcnt; 1048 unsigned int revents; 1049 struct epitem *epi; 1050 struct epoll_event __user *uevent; 1051 1052 /* 1053 * We can loop without lock because we are passed a task private list. 1054 * Items cannot vanish during the loop because ep_scan_ready_list() is 1055 * holding "mtx" during this call. 1056 */ 1057 for (eventcnt = 0, uevent = esed->events; 1058 !list_empty(head) && eventcnt < esed->maxevents;) { 1059 epi = list_first_entry(head, struct epitem, rdllink); 1060 1061 list_del_init(&epi->rdllink); 1062 1063 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & 1064 epi->event.events; 1065 1066 /* 1067 * If the event mask intersect the caller-requested one, 1068 * deliver the event to userspace. Again, ep_scan_ready_list() 1069 * is holding "mtx", so no operations coming from userspace 1070 * can change the item. 1071 */ 1072 if (revents) { 1073 if (__put_user(revents, &uevent->events) || 1074 __put_user(epi->event.data, &uevent->data)) { 1075 list_add(&epi->rdllink, head); 1076 return eventcnt ? eventcnt : -EFAULT; 1077 } 1078 eventcnt++; 1079 uevent++; 1080 if (epi->event.events & EPOLLONESHOT) 1081 epi->event.events &= EP_PRIVATE_BITS; 1082 else if (!(epi->event.events & EPOLLET)) { 1083 /* 1084 * If this file has been added with Level 1085 * Trigger mode, we need to insert back inside 1086 * the ready list, so that the next call to 1087 * epoll_wait() will check again the events 1088 * availability. At this point, noone can insert 1089 * into ep->rdllist besides us. The epoll_ctl() 1090 * callers are locked out by 1091 * ep_scan_ready_list() holding "mtx" and the 1092 * poll callback will queue them in ep->ovflist. 1093 */ 1094 list_add_tail(&epi->rdllink, &ep->rdllist); 1095 } 1096 } 1097 } 1098 1099 return eventcnt; 1100 } 1101 1102 static int ep_send_events(struct eventpoll *ep, 1103 struct epoll_event __user *events, int maxevents) 1104 { 1105 struct ep_send_events_data esed; 1106 1107 esed.maxevents = maxevents; 1108 esed.events = events; 1109 1110 return ep_scan_ready_list(ep, ep_send_events_proc, &esed); 1111 } 1112 1113 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1114 int maxevents, long timeout) 1115 { 1116 int res, eavail; 1117 unsigned long flags; 1118 long jtimeout; 1119 wait_queue_t wait; 1120 1121 /* 1122 * Calculate the timeout by checking for the "infinite" value (-1) 1123 * and the overflow condition. The passed timeout is in milliseconds, 1124 * that why (t * HZ) / 1000. 1125 */ 1126 jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ? 1127 MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000; 1128 1129 retry: 1130 spin_lock_irqsave(&ep->lock, flags); 1131 1132 res = 0; 1133 if (list_empty(&ep->rdllist)) { 1134 /* 1135 * We don't have any available event to return to the caller. 1136 * We need to sleep here, and we will be wake up by 1137 * ep_poll_callback() when events will become available. 1138 */ 1139 init_waitqueue_entry(&wait, current); 1140 wait.flags |= WQ_FLAG_EXCLUSIVE; 1141 __add_wait_queue(&ep->wq, &wait); 1142 1143 for (;;) { 1144 /* 1145 * We don't want to sleep if the ep_poll_callback() sends us 1146 * a wakeup in between. That's why we set the task state 1147 * to TASK_INTERRUPTIBLE before doing the checks. 1148 */ 1149 set_current_state(TASK_INTERRUPTIBLE); 1150 if (!list_empty(&ep->rdllist) || !jtimeout) 1151 break; 1152 if (signal_pending(current)) { 1153 res = -EINTR; 1154 break; 1155 } 1156 1157 spin_unlock_irqrestore(&ep->lock, flags); 1158 jtimeout = schedule_timeout(jtimeout); 1159 spin_lock_irqsave(&ep->lock, flags); 1160 } 1161 __remove_wait_queue(&ep->wq, &wait); 1162 1163 set_current_state(TASK_RUNNING); 1164 } 1165 /* Is it worth to try to dig for events ? */ 1166 eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 1167 1168 spin_unlock_irqrestore(&ep->lock, flags); 1169 1170 /* 1171 * Try to transfer events to user space. In case we get 0 events and 1172 * there's still timeout left over, we go trying again in search of 1173 * more luck. 1174 */ 1175 if (!res && eavail && 1176 !(res = ep_send_events(ep, events, maxevents)) && jtimeout) 1177 goto retry; 1178 1179 return res; 1180 } 1181 1182 /* 1183 * Open an eventpoll file descriptor. 1184 */ 1185 SYSCALL_DEFINE1(epoll_create1, int, flags) 1186 { 1187 int error; 1188 struct eventpoll *ep = NULL; 1189 1190 /* Check the EPOLL_* constant for consistency. */ 1191 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1192 1193 if (flags & ~EPOLL_CLOEXEC) 1194 return -EINVAL; 1195 /* 1196 * Create the internal data structure ("struct eventpoll"). 1197 */ 1198 error = ep_alloc(&ep); 1199 if (error < 0) 1200 return error; 1201 /* 1202 * Creates all the items needed to setup an eventpoll file. That is, 1203 * a file structure and a free file descriptor. 1204 */ 1205 error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep, 1206 flags & O_CLOEXEC); 1207 if (error < 0) 1208 ep_free(ep); 1209 1210 return error; 1211 } 1212 1213 SYSCALL_DEFINE1(epoll_create, int, size) 1214 { 1215 if (size < 0) 1216 return -EINVAL; 1217 1218 return sys_epoll_create1(0); 1219 } 1220 1221 /* 1222 * The following function implements the controller interface for 1223 * the eventpoll file that enables the insertion/removal/change of 1224 * file descriptors inside the interest set. 1225 */ 1226 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1227 struct epoll_event __user *, event) 1228 { 1229 int error; 1230 struct file *file, *tfile; 1231 struct eventpoll *ep; 1232 struct epitem *epi; 1233 struct epoll_event epds; 1234 1235 error = -EFAULT; 1236 if (ep_op_has_event(op) && 1237 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1238 goto error_return; 1239 1240 /* Get the "struct file *" for the eventpoll file */ 1241 error = -EBADF; 1242 file = fget(epfd); 1243 if (!file) 1244 goto error_return; 1245 1246 /* Get the "struct file *" for the target file */ 1247 tfile = fget(fd); 1248 if (!tfile) 1249 goto error_fput; 1250 1251 /* The target file descriptor must support poll */ 1252 error = -EPERM; 1253 if (!tfile->f_op || !tfile->f_op->poll) 1254 goto error_tgt_fput; 1255 1256 /* 1257 * We have to check that the file structure underneath the file descriptor 1258 * the user passed to us _is_ an eventpoll file. And also we do not permit 1259 * adding an epoll file descriptor inside itself. 1260 */ 1261 error = -EINVAL; 1262 if (file == tfile || !is_file_epoll(file)) 1263 goto error_tgt_fput; 1264 1265 /* 1266 * At this point it is safe to assume that the "private_data" contains 1267 * our own data structure. 1268 */ 1269 ep = file->private_data; 1270 1271 mutex_lock(&ep->mtx); 1272 1273 /* 1274 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1275 * above, we can be sure to be able to use the item looked up by 1276 * ep_find() till we release the mutex. 1277 */ 1278 epi = ep_find(ep, tfile, fd); 1279 1280 error = -EINVAL; 1281 switch (op) { 1282 case EPOLL_CTL_ADD: 1283 if (!epi) { 1284 epds.events |= POLLERR | POLLHUP; 1285 error = ep_insert(ep, &epds, tfile, fd); 1286 } else 1287 error = -EEXIST; 1288 break; 1289 case EPOLL_CTL_DEL: 1290 if (epi) 1291 error = ep_remove(ep, epi); 1292 else 1293 error = -ENOENT; 1294 break; 1295 case EPOLL_CTL_MOD: 1296 if (epi) { 1297 epds.events |= POLLERR | POLLHUP; 1298 error = ep_modify(ep, epi, &epds); 1299 } else 1300 error = -ENOENT; 1301 break; 1302 } 1303 mutex_unlock(&ep->mtx); 1304 1305 error_tgt_fput: 1306 fput(tfile); 1307 error_fput: 1308 fput(file); 1309 error_return: 1310 1311 return error; 1312 } 1313 1314 /* 1315 * Implement the event wait interface for the eventpoll file. It is the kernel 1316 * part of the user space epoll_wait(2). 1317 */ 1318 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1319 int, maxevents, int, timeout) 1320 { 1321 int error; 1322 struct file *file; 1323 struct eventpoll *ep; 1324 1325 /* The maximum number of event must be greater than zero */ 1326 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1327 return -EINVAL; 1328 1329 /* Verify that the area passed by the user is writeable */ 1330 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { 1331 error = -EFAULT; 1332 goto error_return; 1333 } 1334 1335 /* Get the "struct file *" for the eventpoll file */ 1336 error = -EBADF; 1337 file = fget(epfd); 1338 if (!file) 1339 goto error_return; 1340 1341 /* 1342 * We have to check that the file structure underneath the fd 1343 * the user passed to us _is_ an eventpoll file. 1344 */ 1345 error = -EINVAL; 1346 if (!is_file_epoll(file)) 1347 goto error_fput; 1348 1349 /* 1350 * At this point it is safe to assume that the "private_data" contains 1351 * our own data structure. 1352 */ 1353 ep = file->private_data; 1354 1355 /* Time to fish for events ... */ 1356 error = ep_poll(ep, events, maxevents, timeout); 1357 1358 error_fput: 1359 fput(file); 1360 error_return: 1361 1362 return error; 1363 } 1364 1365 #ifdef HAVE_SET_RESTORE_SIGMASK 1366 1367 /* 1368 * Implement the event wait interface for the eventpoll file. It is the kernel 1369 * part of the user space epoll_pwait(2). 1370 */ 1371 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 1372 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 1373 size_t, sigsetsize) 1374 { 1375 int error; 1376 sigset_t ksigmask, sigsaved; 1377 1378 /* 1379 * If the caller wants a certain signal mask to be set during the wait, 1380 * we apply it here. 1381 */ 1382 if (sigmask) { 1383 if (sigsetsize != sizeof(sigset_t)) 1384 return -EINVAL; 1385 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1386 return -EFAULT; 1387 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 1388 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1389 } 1390 1391 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1392 1393 /* 1394 * If we changed the signal mask, we need to restore the original one. 1395 * In case we've got a signal while waiting, we do not restore the 1396 * signal mask yet, and we allow do_signal() to deliver the signal on 1397 * the way back to userspace, before the signal mask is restored. 1398 */ 1399 if (sigmask) { 1400 if (error == -EINTR) { 1401 memcpy(¤t->saved_sigmask, &sigsaved, 1402 sizeof(sigsaved)); 1403 set_restore_sigmask(); 1404 } else 1405 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1406 } 1407 1408 return error; 1409 } 1410 1411 #endif /* HAVE_SET_RESTORE_SIGMASK */ 1412 1413 static int __init eventpoll_init(void) 1414 { 1415 struct sysinfo si; 1416 1417 si_meminfo(&si); 1418 /* 1419 * Allows top 4% of lomem to be allocated for epoll watches (per user). 1420 */ 1421 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 1422 EP_ITEM_COST; 1423 1424 /* Initialize the structure used to perform safe poll wait head wake ups */ 1425 ep_nested_calls_init(&poll_safewake_ncalls); 1426 1427 /* Initialize the structure used to perform file's f_op->poll() calls */ 1428 ep_nested_calls_init(&poll_readywalk_ncalls); 1429 1430 /* Allocates slab cache used to allocate "struct epitem" items */ 1431 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 1432 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1433 1434 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 1435 pwq_cache = kmem_cache_create("eventpoll_pwq", 1436 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 1437 1438 return 0; 1439 } 1440 fs_initcall(eventpoll_init); 1441