xref: /openbmc/linux/fs/eventpoll.c (revision b737eecd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (rwlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a rwlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66  * It is also acquired when inserting an epoll fd onto another epoll
67  * fd. We do this so that we walk the epoll tree and ensure that this
68  * insertion does not create a cycle of epoll file descriptors, which
69  * could lead to deadlock. We need a global mutex to prevent two
70  * simultaneous inserts (A into B and B into A) from racing and
71  * constructing a cycle without either insert observing that it is
72  * going to.
73  * It is necessary to acquire multiple "ep->mtx"es at once in the
74  * case when one epoll fd is added to another. In this case, we
75  * always acquire the locks in the order of nesting (i.e. after
76  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77  * before e2->mtx). Since we disallow cycles of epoll file
78  * descriptors, this ensures that the mutexes are well-ordered. In
79  * order to communicate this nesting to lockdep, when walking a tree
80  * of epoll file descriptors, we use the current recursion depth as
81  * the lockdep subkey.
82  * It is possible to drop the "ep->mtx" and to use the global
83  * mutex "epmutex" (together with "ep->lock") to have it working,
84  * but having "ep->mtx" will make the interface more scalable.
85  * Events that require holding "epmutex" are very rare, while for
86  * normal operations the epoll private "ep->mtx" will guarantee
87  * a better scalability.
88  */
89 
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
92 
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
94 
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97 
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100 
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104 
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 
107 struct epoll_filefd {
108 	struct file *file;
109 	int fd;
110 } __packed;
111 
112 /* Wait structure used by the poll hooks */
113 struct eppoll_entry {
114 	/* List header used to link this structure to the "struct epitem" */
115 	struct eppoll_entry *next;
116 
117 	/* The "base" pointer is set to the container "struct epitem" */
118 	struct epitem *base;
119 
120 	/*
121 	 * Wait queue item that will be linked to the target file wait
122 	 * queue head.
123 	 */
124 	wait_queue_entry_t wait;
125 
126 	/* The wait queue head that linked the "wait" wait queue item */
127 	wait_queue_head_t *whead;
128 };
129 
130 /*
131  * Each file descriptor added to the eventpoll interface will
132  * have an entry of this type linked to the "rbr" RB tree.
133  * Avoid increasing the size of this struct, there can be many thousands
134  * of these on a server and we do not want this to take another cache line.
135  */
136 struct epitem {
137 	union {
138 		/* RB tree node links this structure to the eventpoll RB tree */
139 		struct rb_node rbn;
140 		/* Used to free the struct epitem */
141 		struct rcu_head rcu;
142 	};
143 
144 	/* List header used to link this structure to the eventpoll ready list */
145 	struct list_head rdllink;
146 
147 	/*
148 	 * Works together "struct eventpoll"->ovflist in keeping the
149 	 * single linked chain of items.
150 	 */
151 	struct epitem *next;
152 
153 	/* The file descriptor information this item refers to */
154 	struct epoll_filefd ffd;
155 
156 	/* List containing poll wait queues */
157 	struct eppoll_entry *pwqlist;
158 
159 	/* The "container" of this item */
160 	struct eventpoll *ep;
161 
162 	/* List header used to link this item to the "struct file" items list */
163 	struct hlist_node fllink;
164 
165 	/* wakeup_source used when EPOLLWAKEUP is set */
166 	struct wakeup_source __rcu *ws;
167 
168 	/* The structure that describe the interested events and the source fd */
169 	struct epoll_event event;
170 };
171 
172 /*
173  * This structure is stored inside the "private_data" member of the file
174  * structure and represents the main data structure for the eventpoll
175  * interface.
176  */
177 struct eventpoll {
178 	/*
179 	 * This mutex is used to ensure that files are not removed
180 	 * while epoll is using them. This is held during the event
181 	 * collection loop, the file cleanup path, the epoll file exit
182 	 * code and the ctl operations.
183 	 */
184 	struct mutex mtx;
185 
186 	/* Wait queue used by sys_epoll_wait() */
187 	wait_queue_head_t wq;
188 
189 	/* Wait queue used by file->poll() */
190 	wait_queue_head_t poll_wait;
191 
192 	/* List of ready file descriptors */
193 	struct list_head rdllist;
194 
195 	/* Lock which protects rdllist and ovflist */
196 	rwlock_t lock;
197 
198 	/* RB tree root used to store monitored fd structs */
199 	struct rb_root_cached rbr;
200 
201 	/*
202 	 * This is a single linked list that chains all the "struct epitem" that
203 	 * happened while transferring ready events to userspace w/out
204 	 * holding ->lock.
205 	 */
206 	struct epitem *ovflist;
207 
208 	/* wakeup_source used when ep_scan_ready_list is running */
209 	struct wakeup_source *ws;
210 
211 	/* The user that created the eventpoll descriptor */
212 	struct user_struct *user;
213 
214 	struct file *file;
215 
216 	/* used to optimize loop detection check */
217 	u64 gen;
218 	struct hlist_head refs;
219 
220 #ifdef CONFIG_NET_RX_BUSY_POLL
221 	/* used to track busy poll napi_id */
222 	unsigned int napi_id;
223 #endif
224 
225 #ifdef CONFIG_DEBUG_LOCK_ALLOC
226 	/* tracks wakeup nests for lockdep validation */
227 	u8 nests;
228 #endif
229 };
230 
231 /* Wrapper struct used by poll queueing */
232 struct ep_pqueue {
233 	poll_table pt;
234 	struct epitem *epi;
235 };
236 
237 /*
238  * Configuration options available inside /proc/sys/fs/epoll/
239  */
240 /* Maximum number of epoll watched descriptors, per user */
241 static long max_user_watches __read_mostly;
242 
243 /*
244  * This mutex is used to serialize ep_free() and eventpoll_release_file().
245  */
246 static DEFINE_MUTEX(epmutex);
247 
248 static u64 loop_check_gen = 0;
249 
250 /* Used to check for epoll file descriptor inclusion loops */
251 static struct eventpoll *inserting_into;
252 
253 /* Slab cache used to allocate "struct epitem" */
254 static struct kmem_cache *epi_cache __read_mostly;
255 
256 /* Slab cache used to allocate "struct eppoll_entry" */
257 static struct kmem_cache *pwq_cache __read_mostly;
258 
259 /*
260  * List of files with newly added links, where we may need to limit the number
261  * of emanating paths. Protected by the epmutex.
262  */
263 struct epitems_head {
264 	struct hlist_head epitems;
265 	struct epitems_head *next;
266 };
267 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
268 
269 static struct kmem_cache *ephead_cache __read_mostly;
270 
271 static inline void free_ephead(struct epitems_head *head)
272 {
273 	if (head)
274 		kmem_cache_free(ephead_cache, head);
275 }
276 
277 static void list_file(struct file *file)
278 {
279 	struct epitems_head *head;
280 
281 	head = container_of(file->f_ep, struct epitems_head, epitems);
282 	if (!head->next) {
283 		head->next = tfile_check_list;
284 		tfile_check_list = head;
285 	}
286 }
287 
288 static void unlist_file(struct epitems_head *head)
289 {
290 	struct epitems_head *to_free = head;
291 	struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
292 	if (p) {
293 		struct epitem *epi= container_of(p, struct epitem, fllink);
294 		spin_lock(&epi->ffd.file->f_lock);
295 		if (!hlist_empty(&head->epitems))
296 			to_free = NULL;
297 		head->next = NULL;
298 		spin_unlock(&epi->ffd.file->f_lock);
299 	}
300 	free_ephead(to_free);
301 }
302 
303 #ifdef CONFIG_SYSCTL
304 
305 #include <linux/sysctl.h>
306 
307 static long long_zero;
308 static long long_max = LONG_MAX;
309 
310 struct ctl_table epoll_table[] = {
311 	{
312 		.procname	= "max_user_watches",
313 		.data		= &max_user_watches,
314 		.maxlen		= sizeof(max_user_watches),
315 		.mode		= 0644,
316 		.proc_handler	= proc_doulongvec_minmax,
317 		.extra1		= &long_zero,
318 		.extra2		= &long_max,
319 	},
320 	{ }
321 };
322 #endif /* CONFIG_SYSCTL */
323 
324 static const struct file_operations eventpoll_fops;
325 
326 static inline int is_file_epoll(struct file *f)
327 {
328 	return f->f_op == &eventpoll_fops;
329 }
330 
331 /* Setup the structure that is used as key for the RB tree */
332 static inline void ep_set_ffd(struct epoll_filefd *ffd,
333 			      struct file *file, int fd)
334 {
335 	ffd->file = file;
336 	ffd->fd = fd;
337 }
338 
339 /* Compare RB tree keys */
340 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
341 			     struct epoll_filefd *p2)
342 {
343 	return (p1->file > p2->file ? +1:
344 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
345 }
346 
347 /* Tells us if the item is currently linked */
348 static inline int ep_is_linked(struct epitem *epi)
349 {
350 	return !list_empty(&epi->rdllink);
351 }
352 
353 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
354 {
355 	return container_of(p, struct eppoll_entry, wait);
356 }
357 
358 /* Get the "struct epitem" from a wait queue pointer */
359 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
360 {
361 	return container_of(p, struct eppoll_entry, wait)->base;
362 }
363 
364 /**
365  * ep_events_available - Checks if ready events might be available.
366  *
367  * @ep: Pointer to the eventpoll context.
368  *
369  * Returns: Returns a value different than zero if ready events are available,
370  *          or zero otherwise.
371  */
372 static inline int ep_events_available(struct eventpoll *ep)
373 {
374 	return !list_empty_careful(&ep->rdllist) ||
375 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
376 }
377 
378 #ifdef CONFIG_NET_RX_BUSY_POLL
379 static bool ep_busy_loop_end(void *p, unsigned long start_time)
380 {
381 	struct eventpoll *ep = p;
382 
383 	return ep_events_available(ep) || busy_loop_timeout(start_time);
384 }
385 
386 /*
387  * Busy poll if globally on and supporting sockets found && no events,
388  * busy loop will return if need_resched or ep_events_available.
389  *
390  * we must do our busy polling with irqs enabled
391  */
392 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
393 {
394 	unsigned int napi_id = READ_ONCE(ep->napi_id);
395 
396 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
397 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
398 			       BUSY_POLL_BUDGET);
399 		if (ep_events_available(ep))
400 			return true;
401 		/*
402 		 * Busy poll timed out.  Drop NAPI ID for now, we can add
403 		 * it back in when we have moved a socket with a valid NAPI
404 		 * ID onto the ready list.
405 		 */
406 		ep->napi_id = 0;
407 		return false;
408 	}
409 	return false;
410 }
411 
412 /*
413  * Set epoll busy poll NAPI ID from sk.
414  */
415 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
416 {
417 	struct eventpoll *ep;
418 	unsigned int napi_id;
419 	struct socket *sock;
420 	struct sock *sk;
421 
422 	if (!net_busy_loop_on())
423 		return;
424 
425 	sock = sock_from_file(epi->ffd.file);
426 	if (!sock)
427 		return;
428 
429 	sk = sock->sk;
430 	if (!sk)
431 		return;
432 
433 	napi_id = READ_ONCE(sk->sk_napi_id);
434 	ep = epi->ep;
435 
436 	/* Non-NAPI IDs can be rejected
437 	 *	or
438 	 * Nothing to do if we already have this ID
439 	 */
440 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
441 		return;
442 
443 	/* record NAPI ID for use in next busy poll */
444 	ep->napi_id = napi_id;
445 }
446 
447 #else
448 
449 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
450 {
451 	return false;
452 }
453 
454 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
455 {
456 }
457 
458 #endif /* CONFIG_NET_RX_BUSY_POLL */
459 
460 /*
461  * As described in commit 0ccf831cb lockdep: annotate epoll
462  * the use of wait queues used by epoll is done in a very controlled
463  * manner. Wake ups can nest inside each other, but are never done
464  * with the same locking. For example:
465  *
466  *   dfd = socket(...);
467  *   efd1 = epoll_create();
468  *   efd2 = epoll_create();
469  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
470  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
471  *
472  * When a packet arrives to the device underneath "dfd", the net code will
473  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
474  * callback wakeup entry on that queue, and the wake_up() performed by the
475  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
476  * (efd1) notices that it may have some event ready, so it needs to wake up
477  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
478  * that ends up in another wake_up(), after having checked about the
479  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
480  * avoid stack blasting.
481  *
482  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
483  * this special case of epoll.
484  */
485 #ifdef CONFIG_DEBUG_LOCK_ALLOC
486 
487 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
488 {
489 	struct eventpoll *ep_src;
490 	unsigned long flags;
491 	u8 nests = 0;
492 
493 	/*
494 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
495 	 * it might be natural to create a per-cpu nest count. However, since
496 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
497 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
498 	 * protected. Thus, we are introducing a per eventpoll nest field.
499 	 * If we are not being call from ep_poll_callback(), epi is NULL and
500 	 * we are at the first level of nesting, 0. Otherwise, we are being
501 	 * called from ep_poll_callback() and if a previous wakeup source is
502 	 * not an epoll file itself, we are at depth 1 since the wakeup source
503 	 * is depth 0. If the wakeup source is a previous epoll file in the
504 	 * wakeup chain then we use its nests value and record ours as
505 	 * nests + 1. The previous epoll file nests value is stable since its
506 	 * already holding its own poll_wait.lock.
507 	 */
508 	if (epi) {
509 		if ((is_file_epoll(epi->ffd.file))) {
510 			ep_src = epi->ffd.file->private_data;
511 			nests = ep_src->nests;
512 		} else {
513 			nests = 1;
514 		}
515 	}
516 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
517 	ep->nests = nests + 1;
518 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
519 	ep->nests = 0;
520 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
521 }
522 
523 #else
524 
525 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
526 {
527 	wake_up_poll(&ep->poll_wait, EPOLLIN);
528 }
529 
530 #endif
531 
532 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
533 {
534 	wait_queue_head_t *whead;
535 
536 	rcu_read_lock();
537 	/*
538 	 * If it is cleared by POLLFREE, it should be rcu-safe.
539 	 * If we read NULL we need a barrier paired with
540 	 * smp_store_release() in ep_poll_callback(), otherwise
541 	 * we rely on whead->lock.
542 	 */
543 	whead = smp_load_acquire(&pwq->whead);
544 	if (whead)
545 		remove_wait_queue(whead, &pwq->wait);
546 	rcu_read_unlock();
547 }
548 
549 /*
550  * This function unregisters poll callbacks from the associated file
551  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
552  * ep_free).
553  */
554 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
555 {
556 	struct eppoll_entry **p = &epi->pwqlist;
557 	struct eppoll_entry *pwq;
558 
559 	while ((pwq = *p) != NULL) {
560 		*p = pwq->next;
561 		ep_remove_wait_queue(pwq);
562 		kmem_cache_free(pwq_cache, pwq);
563 	}
564 }
565 
566 /* call only when ep->mtx is held */
567 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
568 {
569 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
570 }
571 
572 /* call only when ep->mtx is held */
573 static inline void ep_pm_stay_awake(struct epitem *epi)
574 {
575 	struct wakeup_source *ws = ep_wakeup_source(epi);
576 
577 	if (ws)
578 		__pm_stay_awake(ws);
579 }
580 
581 static inline bool ep_has_wakeup_source(struct epitem *epi)
582 {
583 	return rcu_access_pointer(epi->ws) ? true : false;
584 }
585 
586 /* call when ep->mtx cannot be held (ep_poll_callback) */
587 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
588 {
589 	struct wakeup_source *ws;
590 
591 	rcu_read_lock();
592 	ws = rcu_dereference(epi->ws);
593 	if (ws)
594 		__pm_stay_awake(ws);
595 	rcu_read_unlock();
596 }
597 
598 
599 /*
600  * ep->mutex needs to be held because we could be hit by
601  * eventpoll_release_file() and epoll_ctl().
602  */
603 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
604 {
605 	/*
606 	 * Steal the ready list, and re-init the original one to the
607 	 * empty list. Also, set ep->ovflist to NULL so that events
608 	 * happening while looping w/out locks, are not lost. We cannot
609 	 * have the poll callback to queue directly on ep->rdllist,
610 	 * because we want the "sproc" callback to be able to do it
611 	 * in a lockless way.
612 	 */
613 	lockdep_assert_irqs_enabled();
614 	write_lock_irq(&ep->lock);
615 	list_splice_init(&ep->rdllist, txlist);
616 	WRITE_ONCE(ep->ovflist, NULL);
617 	write_unlock_irq(&ep->lock);
618 }
619 
620 static void ep_done_scan(struct eventpoll *ep,
621 			 struct list_head *txlist)
622 {
623 	struct epitem *epi, *nepi;
624 
625 	write_lock_irq(&ep->lock);
626 	/*
627 	 * During the time we spent inside the "sproc" callback, some
628 	 * other events might have been queued by the poll callback.
629 	 * We re-insert them inside the main ready-list here.
630 	 */
631 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
632 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
633 		/*
634 		 * We need to check if the item is already in the list.
635 		 * During the "sproc" callback execution time, items are
636 		 * queued into ->ovflist but the "txlist" might already
637 		 * contain them, and the list_splice() below takes care of them.
638 		 */
639 		if (!ep_is_linked(epi)) {
640 			/*
641 			 * ->ovflist is LIFO, so we have to reverse it in order
642 			 * to keep in FIFO.
643 			 */
644 			list_add(&epi->rdllink, &ep->rdllist);
645 			ep_pm_stay_awake(epi);
646 		}
647 	}
648 	/*
649 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
650 	 * releasing the lock, events will be queued in the normal way inside
651 	 * ep->rdllist.
652 	 */
653 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
654 
655 	/*
656 	 * Quickly re-inject items left on "txlist".
657 	 */
658 	list_splice(txlist, &ep->rdllist);
659 	__pm_relax(ep->ws);
660 	write_unlock_irq(&ep->lock);
661 }
662 
663 static void epi_rcu_free(struct rcu_head *head)
664 {
665 	struct epitem *epi = container_of(head, struct epitem, rcu);
666 	kmem_cache_free(epi_cache, epi);
667 }
668 
669 /*
670  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
671  * all the associated resources. Must be called with "mtx" held.
672  */
673 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
674 {
675 	struct file *file = epi->ffd.file;
676 	struct epitems_head *to_free;
677 	struct hlist_head *head;
678 
679 	lockdep_assert_irqs_enabled();
680 
681 	/*
682 	 * Removes poll wait queue hooks.
683 	 */
684 	ep_unregister_pollwait(ep, epi);
685 
686 	/* Remove the current item from the list of epoll hooks */
687 	spin_lock(&file->f_lock);
688 	to_free = NULL;
689 	head = file->f_ep;
690 	if (head->first == &epi->fllink && !epi->fllink.next) {
691 		file->f_ep = NULL;
692 		if (!is_file_epoll(file)) {
693 			struct epitems_head *v;
694 			v = container_of(head, struct epitems_head, epitems);
695 			if (!smp_load_acquire(&v->next))
696 				to_free = v;
697 		}
698 	}
699 	hlist_del_rcu(&epi->fllink);
700 	spin_unlock(&file->f_lock);
701 	free_ephead(to_free);
702 
703 	rb_erase_cached(&epi->rbn, &ep->rbr);
704 
705 	write_lock_irq(&ep->lock);
706 	if (ep_is_linked(epi))
707 		list_del_init(&epi->rdllink);
708 	write_unlock_irq(&ep->lock);
709 
710 	wakeup_source_unregister(ep_wakeup_source(epi));
711 	/*
712 	 * At this point it is safe to free the eventpoll item. Use the union
713 	 * field epi->rcu, since we are trying to minimize the size of
714 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
715 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
716 	 * use of the rbn field.
717 	 */
718 	call_rcu(&epi->rcu, epi_rcu_free);
719 
720 	atomic_long_dec(&ep->user->epoll_watches);
721 
722 	return 0;
723 }
724 
725 static void ep_free(struct eventpoll *ep)
726 {
727 	struct rb_node *rbp;
728 	struct epitem *epi;
729 
730 	/* We need to release all tasks waiting for these file */
731 	if (waitqueue_active(&ep->poll_wait))
732 		ep_poll_safewake(ep, NULL);
733 
734 	/*
735 	 * We need to lock this because we could be hit by
736 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
737 	 * We do not need to hold "ep->mtx" here because the epoll file
738 	 * is on the way to be removed and no one has references to it
739 	 * anymore. The only hit might come from eventpoll_release_file() but
740 	 * holding "epmutex" is sufficient here.
741 	 */
742 	mutex_lock(&epmutex);
743 
744 	/*
745 	 * Walks through the whole tree by unregistering poll callbacks.
746 	 */
747 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
748 		epi = rb_entry(rbp, struct epitem, rbn);
749 
750 		ep_unregister_pollwait(ep, epi);
751 		cond_resched();
752 	}
753 
754 	/*
755 	 * Walks through the whole tree by freeing each "struct epitem". At this
756 	 * point we are sure no poll callbacks will be lingering around, and also by
757 	 * holding "epmutex" we can be sure that no file cleanup code will hit
758 	 * us during this operation. So we can avoid the lock on "ep->lock".
759 	 * We do not need to lock ep->mtx, either, we only do it to prevent
760 	 * a lockdep warning.
761 	 */
762 	mutex_lock(&ep->mtx);
763 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
764 		epi = rb_entry(rbp, struct epitem, rbn);
765 		ep_remove(ep, epi);
766 		cond_resched();
767 	}
768 	mutex_unlock(&ep->mtx);
769 
770 	mutex_unlock(&epmutex);
771 	mutex_destroy(&ep->mtx);
772 	free_uid(ep->user);
773 	wakeup_source_unregister(ep->ws);
774 	kfree(ep);
775 }
776 
777 static int ep_eventpoll_release(struct inode *inode, struct file *file)
778 {
779 	struct eventpoll *ep = file->private_data;
780 
781 	if (ep)
782 		ep_free(ep);
783 
784 	return 0;
785 }
786 
787 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
788 
789 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
790 {
791 	struct eventpoll *ep = file->private_data;
792 	LIST_HEAD(txlist);
793 	struct epitem *epi, *tmp;
794 	poll_table pt;
795 	__poll_t res = 0;
796 
797 	init_poll_funcptr(&pt, NULL);
798 
799 	/* Insert inside our poll wait queue */
800 	poll_wait(file, &ep->poll_wait, wait);
801 
802 	/*
803 	 * Proceed to find out if wanted events are really available inside
804 	 * the ready list.
805 	 */
806 	mutex_lock_nested(&ep->mtx, depth);
807 	ep_start_scan(ep, &txlist);
808 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
809 		if (ep_item_poll(epi, &pt, depth + 1)) {
810 			res = EPOLLIN | EPOLLRDNORM;
811 			break;
812 		} else {
813 			/*
814 			 * Item has been dropped into the ready list by the poll
815 			 * callback, but it's not actually ready, as far as
816 			 * caller requested events goes. We can remove it here.
817 			 */
818 			__pm_relax(ep_wakeup_source(epi));
819 			list_del_init(&epi->rdllink);
820 		}
821 	}
822 	ep_done_scan(ep, &txlist);
823 	mutex_unlock(&ep->mtx);
824 	return res;
825 }
826 
827 /*
828  * Differs from ep_eventpoll_poll() in that internal callers already have
829  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
830  * is correctly annotated.
831  */
832 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
833 				 int depth)
834 {
835 	struct file *file = epi->ffd.file;
836 	__poll_t res;
837 
838 	pt->_key = epi->event.events;
839 	if (!is_file_epoll(file))
840 		res = vfs_poll(file, pt);
841 	else
842 		res = __ep_eventpoll_poll(file, pt, depth);
843 	return res & epi->event.events;
844 }
845 
846 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
847 {
848 	return __ep_eventpoll_poll(file, wait, 0);
849 }
850 
851 #ifdef CONFIG_PROC_FS
852 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
853 {
854 	struct eventpoll *ep = f->private_data;
855 	struct rb_node *rbp;
856 
857 	mutex_lock(&ep->mtx);
858 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
859 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
860 		struct inode *inode = file_inode(epi->ffd.file);
861 
862 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
863 			   " pos:%lli ino:%lx sdev:%x\n",
864 			   epi->ffd.fd, epi->event.events,
865 			   (long long)epi->event.data,
866 			   (long long)epi->ffd.file->f_pos,
867 			   inode->i_ino, inode->i_sb->s_dev);
868 		if (seq_has_overflowed(m))
869 			break;
870 	}
871 	mutex_unlock(&ep->mtx);
872 }
873 #endif
874 
875 /* File callbacks that implement the eventpoll file behaviour */
876 static const struct file_operations eventpoll_fops = {
877 #ifdef CONFIG_PROC_FS
878 	.show_fdinfo	= ep_show_fdinfo,
879 #endif
880 	.release	= ep_eventpoll_release,
881 	.poll		= ep_eventpoll_poll,
882 	.llseek		= noop_llseek,
883 };
884 
885 /*
886  * This is called from eventpoll_release() to unlink files from the eventpoll
887  * interface. We need to have this facility to cleanup correctly files that are
888  * closed without being removed from the eventpoll interface.
889  */
890 void eventpoll_release_file(struct file *file)
891 {
892 	struct eventpoll *ep;
893 	struct epitem *epi;
894 	struct hlist_node *next;
895 
896 	/*
897 	 * We don't want to get "file->f_lock" because it is not
898 	 * necessary. It is not necessary because we're in the "struct file"
899 	 * cleanup path, and this means that no one is using this file anymore.
900 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
901 	 * point, the file counter already went to zero and fget() would fail.
902 	 * The only hit might come from ep_free() but by holding the mutex
903 	 * will correctly serialize the operation. We do need to acquire
904 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
905 	 * from anywhere but ep_free().
906 	 *
907 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
908 	 */
909 	mutex_lock(&epmutex);
910 	if (unlikely(!file->f_ep)) {
911 		mutex_unlock(&epmutex);
912 		return;
913 	}
914 	hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) {
915 		ep = epi->ep;
916 		mutex_lock_nested(&ep->mtx, 0);
917 		ep_remove(ep, epi);
918 		mutex_unlock(&ep->mtx);
919 	}
920 	mutex_unlock(&epmutex);
921 }
922 
923 static int ep_alloc(struct eventpoll **pep)
924 {
925 	int error;
926 	struct user_struct *user;
927 	struct eventpoll *ep;
928 
929 	user = get_current_user();
930 	error = -ENOMEM;
931 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
932 	if (unlikely(!ep))
933 		goto free_uid;
934 
935 	mutex_init(&ep->mtx);
936 	rwlock_init(&ep->lock);
937 	init_waitqueue_head(&ep->wq);
938 	init_waitqueue_head(&ep->poll_wait);
939 	INIT_LIST_HEAD(&ep->rdllist);
940 	ep->rbr = RB_ROOT_CACHED;
941 	ep->ovflist = EP_UNACTIVE_PTR;
942 	ep->user = user;
943 
944 	*pep = ep;
945 
946 	return 0;
947 
948 free_uid:
949 	free_uid(user);
950 	return error;
951 }
952 
953 /*
954  * Search the file inside the eventpoll tree. The RB tree operations
955  * are protected by the "mtx" mutex, and ep_find() must be called with
956  * "mtx" held.
957  */
958 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
959 {
960 	int kcmp;
961 	struct rb_node *rbp;
962 	struct epitem *epi, *epir = NULL;
963 	struct epoll_filefd ffd;
964 
965 	ep_set_ffd(&ffd, file, fd);
966 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
967 		epi = rb_entry(rbp, struct epitem, rbn);
968 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
969 		if (kcmp > 0)
970 			rbp = rbp->rb_right;
971 		else if (kcmp < 0)
972 			rbp = rbp->rb_left;
973 		else {
974 			epir = epi;
975 			break;
976 		}
977 	}
978 
979 	return epir;
980 }
981 
982 #ifdef CONFIG_KCMP
983 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
984 {
985 	struct rb_node *rbp;
986 	struct epitem *epi;
987 
988 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
989 		epi = rb_entry(rbp, struct epitem, rbn);
990 		if (epi->ffd.fd == tfd) {
991 			if (toff == 0)
992 				return epi;
993 			else
994 				toff--;
995 		}
996 		cond_resched();
997 	}
998 
999 	return NULL;
1000 }
1001 
1002 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1003 				     unsigned long toff)
1004 {
1005 	struct file *file_raw;
1006 	struct eventpoll *ep;
1007 	struct epitem *epi;
1008 
1009 	if (!is_file_epoll(file))
1010 		return ERR_PTR(-EINVAL);
1011 
1012 	ep = file->private_data;
1013 
1014 	mutex_lock(&ep->mtx);
1015 	epi = ep_find_tfd(ep, tfd, toff);
1016 	if (epi)
1017 		file_raw = epi->ffd.file;
1018 	else
1019 		file_raw = ERR_PTR(-ENOENT);
1020 	mutex_unlock(&ep->mtx);
1021 
1022 	return file_raw;
1023 }
1024 #endif /* CONFIG_KCMP */
1025 
1026 /**
1027  * Adds a new entry to the tail of the list in a lockless way, i.e.
1028  * multiple CPUs are allowed to call this function concurrently.
1029  *
1030  * Beware: it is necessary to prevent any other modifications of the
1031  *         existing list until all changes are completed, in other words
1032  *         concurrent list_add_tail_lockless() calls should be protected
1033  *         with a read lock, where write lock acts as a barrier which
1034  *         makes sure all list_add_tail_lockless() calls are fully
1035  *         completed.
1036  *
1037  *        Also an element can be locklessly added to the list only in one
1038  *        direction i.e. either to the tail either to the head, otherwise
1039  *        concurrent access will corrupt the list.
1040  *
1041  * Returns %false if element has been already added to the list, %true
1042  * otherwise.
1043  */
1044 static inline bool list_add_tail_lockless(struct list_head *new,
1045 					  struct list_head *head)
1046 {
1047 	struct list_head *prev;
1048 
1049 	/*
1050 	 * This is simple 'new->next = head' operation, but cmpxchg()
1051 	 * is used in order to detect that same element has been just
1052 	 * added to the list from another CPU: the winner observes
1053 	 * new->next == new.
1054 	 */
1055 	if (cmpxchg(&new->next, new, head) != new)
1056 		return false;
1057 
1058 	/*
1059 	 * Initially ->next of a new element must be updated with the head
1060 	 * (we are inserting to the tail) and only then pointers are atomically
1061 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1062 	 * updated before pointers are actually swapped and pointers are
1063 	 * swapped before prev->next is updated.
1064 	 */
1065 
1066 	prev = xchg(&head->prev, new);
1067 
1068 	/*
1069 	 * It is safe to modify prev->next and new->prev, because a new element
1070 	 * is added only to the tail and new->next is updated before XCHG.
1071 	 */
1072 
1073 	prev->next = new;
1074 	new->prev = prev;
1075 
1076 	return true;
1077 }
1078 
1079 /**
1080  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1081  * i.e. multiple CPUs are allowed to call this function concurrently.
1082  *
1083  * Returns %false if epi element has been already chained, %true otherwise.
1084  */
1085 static inline bool chain_epi_lockless(struct epitem *epi)
1086 {
1087 	struct eventpoll *ep = epi->ep;
1088 
1089 	/* Fast preliminary check */
1090 	if (epi->next != EP_UNACTIVE_PTR)
1091 		return false;
1092 
1093 	/* Check that the same epi has not been just chained from another CPU */
1094 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1095 		return false;
1096 
1097 	/* Atomically exchange tail */
1098 	epi->next = xchg(&ep->ovflist, epi);
1099 
1100 	return true;
1101 }
1102 
1103 /*
1104  * This is the callback that is passed to the wait queue wakeup
1105  * mechanism. It is called by the stored file descriptors when they
1106  * have events to report.
1107  *
1108  * This callback takes a read lock in order not to content with concurrent
1109  * events from another file descriptors, thus all modifications to ->rdllist
1110  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1111  * ep_scan_ready_list(), which stops all list modifications and guarantees
1112  * that lists state is seen correctly.
1113  *
1114  * Another thing worth to mention is that ep_poll_callback() can be called
1115  * concurrently for the same @epi from different CPUs if poll table was inited
1116  * with several wait queues entries.  Plural wakeup from different CPUs of a
1117  * single wait queue is serialized by wq.lock, but the case when multiple wait
1118  * queues are used should be detected accordingly.  This is detected using
1119  * cmpxchg() operation.
1120  */
1121 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1122 {
1123 	int pwake = 0;
1124 	struct epitem *epi = ep_item_from_wait(wait);
1125 	struct eventpoll *ep = epi->ep;
1126 	__poll_t pollflags = key_to_poll(key);
1127 	unsigned long flags;
1128 	int ewake = 0;
1129 
1130 	read_lock_irqsave(&ep->lock, flags);
1131 
1132 	ep_set_busy_poll_napi_id(epi);
1133 
1134 	/*
1135 	 * If the event mask does not contain any poll(2) event, we consider the
1136 	 * descriptor to be disabled. This condition is likely the effect of the
1137 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1138 	 * until the next EPOLL_CTL_MOD will be issued.
1139 	 */
1140 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1141 		goto out_unlock;
1142 
1143 	/*
1144 	 * Check the events coming with the callback. At this stage, not
1145 	 * every device reports the events in the "key" parameter of the
1146 	 * callback. We need to be able to handle both cases here, hence the
1147 	 * test for "key" != NULL before the event match test.
1148 	 */
1149 	if (pollflags && !(pollflags & epi->event.events))
1150 		goto out_unlock;
1151 
1152 	/*
1153 	 * If we are transferring events to userspace, we can hold no locks
1154 	 * (because we're accessing user memory, and because of linux f_op->poll()
1155 	 * semantics). All the events that happen during that period of time are
1156 	 * chained in ep->ovflist and requeued later on.
1157 	 */
1158 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1159 		if (chain_epi_lockless(epi))
1160 			ep_pm_stay_awake_rcu(epi);
1161 	} else if (!ep_is_linked(epi)) {
1162 		/* In the usual case, add event to ready list. */
1163 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1164 			ep_pm_stay_awake_rcu(epi);
1165 	}
1166 
1167 	/*
1168 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1169 	 * wait list.
1170 	 */
1171 	if (waitqueue_active(&ep->wq)) {
1172 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1173 					!(pollflags & POLLFREE)) {
1174 			switch (pollflags & EPOLLINOUT_BITS) {
1175 			case EPOLLIN:
1176 				if (epi->event.events & EPOLLIN)
1177 					ewake = 1;
1178 				break;
1179 			case EPOLLOUT:
1180 				if (epi->event.events & EPOLLOUT)
1181 					ewake = 1;
1182 				break;
1183 			case 0:
1184 				ewake = 1;
1185 				break;
1186 			}
1187 		}
1188 		wake_up(&ep->wq);
1189 	}
1190 	if (waitqueue_active(&ep->poll_wait))
1191 		pwake++;
1192 
1193 out_unlock:
1194 	read_unlock_irqrestore(&ep->lock, flags);
1195 
1196 	/* We have to call this outside the lock */
1197 	if (pwake)
1198 		ep_poll_safewake(ep, epi);
1199 
1200 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1201 		ewake = 1;
1202 
1203 	if (pollflags & POLLFREE) {
1204 		/*
1205 		 * If we race with ep_remove_wait_queue() it can miss
1206 		 * ->whead = NULL and do another remove_wait_queue() after
1207 		 * us, so we can't use __remove_wait_queue().
1208 		 */
1209 		list_del_init(&wait->entry);
1210 		/*
1211 		 * ->whead != NULL protects us from the race with ep_free()
1212 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1213 		 * held by the caller. Once we nullify it, nothing protects
1214 		 * ep/epi or even wait.
1215 		 */
1216 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1217 	}
1218 
1219 	return ewake;
1220 }
1221 
1222 /*
1223  * This is the callback that is used to add our wait queue to the
1224  * target file wakeup lists.
1225  */
1226 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1227 				 poll_table *pt)
1228 {
1229 	struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1230 	struct epitem *epi = epq->epi;
1231 	struct eppoll_entry *pwq;
1232 
1233 	if (unlikely(!epi))	// an earlier allocation has failed
1234 		return;
1235 
1236 	pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1237 	if (unlikely(!pwq)) {
1238 		epq->epi = NULL;
1239 		return;
1240 	}
1241 
1242 	init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1243 	pwq->whead = whead;
1244 	pwq->base = epi;
1245 	if (epi->event.events & EPOLLEXCLUSIVE)
1246 		add_wait_queue_exclusive(whead, &pwq->wait);
1247 	else
1248 		add_wait_queue(whead, &pwq->wait);
1249 	pwq->next = epi->pwqlist;
1250 	epi->pwqlist = pwq;
1251 }
1252 
1253 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1254 {
1255 	int kcmp;
1256 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1257 	struct epitem *epic;
1258 	bool leftmost = true;
1259 
1260 	while (*p) {
1261 		parent = *p;
1262 		epic = rb_entry(parent, struct epitem, rbn);
1263 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1264 		if (kcmp > 0) {
1265 			p = &parent->rb_right;
1266 			leftmost = false;
1267 		} else
1268 			p = &parent->rb_left;
1269 	}
1270 	rb_link_node(&epi->rbn, parent, p);
1271 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1272 }
1273 
1274 
1275 
1276 #define PATH_ARR_SIZE 5
1277 /*
1278  * These are the number paths of length 1 to 5, that we are allowing to emanate
1279  * from a single file of interest. For example, we allow 1000 paths of length
1280  * 1, to emanate from each file of interest. This essentially represents the
1281  * potential wakeup paths, which need to be limited in order to avoid massive
1282  * uncontrolled wakeup storms. The common use case should be a single ep which
1283  * is connected to n file sources. In this case each file source has 1 path
1284  * of length 1. Thus, the numbers below should be more than sufficient. These
1285  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1286  * and delete can't add additional paths. Protected by the epmutex.
1287  */
1288 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1289 static int path_count[PATH_ARR_SIZE];
1290 
1291 static int path_count_inc(int nests)
1292 {
1293 	/* Allow an arbitrary number of depth 1 paths */
1294 	if (nests == 0)
1295 		return 0;
1296 
1297 	if (++path_count[nests] > path_limits[nests])
1298 		return -1;
1299 	return 0;
1300 }
1301 
1302 static void path_count_init(void)
1303 {
1304 	int i;
1305 
1306 	for (i = 0; i < PATH_ARR_SIZE; i++)
1307 		path_count[i] = 0;
1308 }
1309 
1310 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1311 {
1312 	int error = 0;
1313 	struct epitem *epi;
1314 
1315 	if (depth > EP_MAX_NESTS) /* too deep nesting */
1316 		return -1;
1317 
1318 	/* CTL_DEL can remove links here, but that can't increase our count */
1319 	hlist_for_each_entry_rcu(epi, refs, fllink) {
1320 		struct hlist_head *refs = &epi->ep->refs;
1321 		if (hlist_empty(refs))
1322 			error = path_count_inc(depth);
1323 		else
1324 			error = reverse_path_check_proc(refs, depth + 1);
1325 		if (error != 0)
1326 			break;
1327 	}
1328 	return error;
1329 }
1330 
1331 /**
1332  * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1333  *                      links that are proposed to be newly added. We need to
1334  *                      make sure that those added links don't add too many
1335  *                      paths such that we will spend all our time waking up
1336  *                      eventpoll objects.
1337  *
1338  * Returns: Returns zero if the proposed links don't create too many paths,
1339  *	    -1 otherwise.
1340  */
1341 static int reverse_path_check(void)
1342 {
1343 	struct epitems_head *p;
1344 
1345 	for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1346 		int error;
1347 		path_count_init();
1348 		rcu_read_lock();
1349 		error = reverse_path_check_proc(&p->epitems, 0);
1350 		rcu_read_unlock();
1351 		if (error)
1352 			return error;
1353 	}
1354 	return 0;
1355 }
1356 
1357 static int ep_create_wakeup_source(struct epitem *epi)
1358 {
1359 	struct name_snapshot n;
1360 	struct wakeup_source *ws;
1361 
1362 	if (!epi->ep->ws) {
1363 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1364 		if (!epi->ep->ws)
1365 			return -ENOMEM;
1366 	}
1367 
1368 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1369 	ws = wakeup_source_register(NULL, n.name.name);
1370 	release_dentry_name_snapshot(&n);
1371 
1372 	if (!ws)
1373 		return -ENOMEM;
1374 	rcu_assign_pointer(epi->ws, ws);
1375 
1376 	return 0;
1377 }
1378 
1379 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1380 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1381 {
1382 	struct wakeup_source *ws = ep_wakeup_source(epi);
1383 
1384 	RCU_INIT_POINTER(epi->ws, NULL);
1385 
1386 	/*
1387 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1388 	 * used internally by wakeup_source_remove, too (called by
1389 	 * wakeup_source_unregister), so we cannot use call_rcu
1390 	 */
1391 	synchronize_rcu();
1392 	wakeup_source_unregister(ws);
1393 }
1394 
1395 static int attach_epitem(struct file *file, struct epitem *epi)
1396 {
1397 	struct epitems_head *to_free = NULL;
1398 	struct hlist_head *head = NULL;
1399 	struct eventpoll *ep = NULL;
1400 
1401 	if (is_file_epoll(file))
1402 		ep = file->private_data;
1403 
1404 	if (ep) {
1405 		head = &ep->refs;
1406 	} else if (!READ_ONCE(file->f_ep)) {
1407 allocate:
1408 		to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1409 		if (!to_free)
1410 			return -ENOMEM;
1411 		head = &to_free->epitems;
1412 	}
1413 	spin_lock(&file->f_lock);
1414 	if (!file->f_ep) {
1415 		if (unlikely(!head)) {
1416 			spin_unlock(&file->f_lock);
1417 			goto allocate;
1418 		}
1419 		file->f_ep = head;
1420 		to_free = NULL;
1421 	}
1422 	hlist_add_head_rcu(&epi->fllink, file->f_ep);
1423 	spin_unlock(&file->f_lock);
1424 	free_ephead(to_free);
1425 	return 0;
1426 }
1427 
1428 /*
1429  * Must be called with "mtx" held.
1430  */
1431 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1432 		     struct file *tfile, int fd, int full_check)
1433 {
1434 	int error, pwake = 0;
1435 	__poll_t revents;
1436 	long user_watches;
1437 	struct epitem *epi;
1438 	struct ep_pqueue epq;
1439 	struct eventpoll *tep = NULL;
1440 
1441 	if (is_file_epoll(tfile))
1442 		tep = tfile->private_data;
1443 
1444 	lockdep_assert_irqs_enabled();
1445 
1446 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1447 	if (unlikely(user_watches >= max_user_watches))
1448 		return -ENOSPC;
1449 	if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL)))
1450 		return -ENOMEM;
1451 
1452 	/* Item initialization follow here ... */
1453 	INIT_LIST_HEAD(&epi->rdllink);
1454 	epi->ep = ep;
1455 	ep_set_ffd(&epi->ffd, tfile, fd);
1456 	epi->event = *event;
1457 	epi->next = EP_UNACTIVE_PTR;
1458 
1459 	if (tep)
1460 		mutex_lock_nested(&tep->mtx, 1);
1461 	/* Add the current item to the list of active epoll hook for this file */
1462 	if (unlikely(attach_epitem(tfile, epi) < 0)) {
1463 		kmem_cache_free(epi_cache, epi);
1464 		if (tep)
1465 			mutex_unlock(&tep->mtx);
1466 		return -ENOMEM;
1467 	}
1468 
1469 	if (full_check && !tep)
1470 		list_file(tfile);
1471 
1472 	atomic_long_inc(&ep->user->epoll_watches);
1473 
1474 	/*
1475 	 * Add the current item to the RB tree. All RB tree operations are
1476 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1477 	 */
1478 	ep_rbtree_insert(ep, epi);
1479 	if (tep)
1480 		mutex_unlock(&tep->mtx);
1481 
1482 	/* now check if we've created too many backpaths */
1483 	if (unlikely(full_check && reverse_path_check())) {
1484 		ep_remove(ep, epi);
1485 		return -EINVAL;
1486 	}
1487 
1488 	if (epi->event.events & EPOLLWAKEUP) {
1489 		error = ep_create_wakeup_source(epi);
1490 		if (error) {
1491 			ep_remove(ep, epi);
1492 			return error;
1493 		}
1494 	}
1495 
1496 	/* Initialize the poll table using the queue callback */
1497 	epq.epi = epi;
1498 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1499 
1500 	/*
1501 	 * Attach the item to the poll hooks and get current event bits.
1502 	 * We can safely use the file* here because its usage count has
1503 	 * been increased by the caller of this function. Note that after
1504 	 * this operation completes, the poll callback can start hitting
1505 	 * the new item.
1506 	 */
1507 	revents = ep_item_poll(epi, &epq.pt, 1);
1508 
1509 	/*
1510 	 * We have to check if something went wrong during the poll wait queue
1511 	 * install process. Namely an allocation for a wait queue failed due
1512 	 * high memory pressure.
1513 	 */
1514 	if (unlikely(!epq.epi)) {
1515 		ep_remove(ep, epi);
1516 		return -ENOMEM;
1517 	}
1518 
1519 	/* We have to drop the new item inside our item list to keep track of it */
1520 	write_lock_irq(&ep->lock);
1521 
1522 	/* record NAPI ID of new item if present */
1523 	ep_set_busy_poll_napi_id(epi);
1524 
1525 	/* If the file is already "ready" we drop it inside the ready list */
1526 	if (revents && !ep_is_linked(epi)) {
1527 		list_add_tail(&epi->rdllink, &ep->rdllist);
1528 		ep_pm_stay_awake(epi);
1529 
1530 		/* Notify waiting tasks that events are available */
1531 		if (waitqueue_active(&ep->wq))
1532 			wake_up(&ep->wq);
1533 		if (waitqueue_active(&ep->poll_wait))
1534 			pwake++;
1535 	}
1536 
1537 	write_unlock_irq(&ep->lock);
1538 
1539 	/* We have to call this outside the lock */
1540 	if (pwake)
1541 		ep_poll_safewake(ep, NULL);
1542 
1543 	return 0;
1544 }
1545 
1546 /*
1547  * Modify the interest event mask by dropping an event if the new mask
1548  * has a match in the current file status. Must be called with "mtx" held.
1549  */
1550 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1551 		     const struct epoll_event *event)
1552 {
1553 	int pwake = 0;
1554 	poll_table pt;
1555 
1556 	lockdep_assert_irqs_enabled();
1557 
1558 	init_poll_funcptr(&pt, NULL);
1559 
1560 	/*
1561 	 * Set the new event interest mask before calling f_op->poll();
1562 	 * otherwise we might miss an event that happens between the
1563 	 * f_op->poll() call and the new event set registering.
1564 	 */
1565 	epi->event.events = event->events; /* need barrier below */
1566 	epi->event.data = event->data; /* protected by mtx */
1567 	if (epi->event.events & EPOLLWAKEUP) {
1568 		if (!ep_has_wakeup_source(epi))
1569 			ep_create_wakeup_source(epi);
1570 	} else if (ep_has_wakeup_source(epi)) {
1571 		ep_destroy_wakeup_source(epi);
1572 	}
1573 
1574 	/*
1575 	 * The following barrier has two effects:
1576 	 *
1577 	 * 1) Flush epi changes above to other CPUs.  This ensures
1578 	 *    we do not miss events from ep_poll_callback if an
1579 	 *    event occurs immediately after we call f_op->poll().
1580 	 *    We need this because we did not take ep->lock while
1581 	 *    changing epi above (but ep_poll_callback does take
1582 	 *    ep->lock).
1583 	 *
1584 	 * 2) We also need to ensure we do not miss _past_ events
1585 	 *    when calling f_op->poll().  This barrier also
1586 	 *    pairs with the barrier in wq_has_sleeper (see
1587 	 *    comments for wq_has_sleeper).
1588 	 *
1589 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1590 	 * (or both) will notice the readiness of an item.
1591 	 */
1592 	smp_mb();
1593 
1594 	/*
1595 	 * Get current event bits. We can safely use the file* here because
1596 	 * its usage count has been increased by the caller of this function.
1597 	 * If the item is "hot" and it is not registered inside the ready
1598 	 * list, push it inside.
1599 	 */
1600 	if (ep_item_poll(epi, &pt, 1)) {
1601 		write_lock_irq(&ep->lock);
1602 		if (!ep_is_linked(epi)) {
1603 			list_add_tail(&epi->rdllink, &ep->rdllist);
1604 			ep_pm_stay_awake(epi);
1605 
1606 			/* Notify waiting tasks that events are available */
1607 			if (waitqueue_active(&ep->wq))
1608 				wake_up(&ep->wq);
1609 			if (waitqueue_active(&ep->poll_wait))
1610 				pwake++;
1611 		}
1612 		write_unlock_irq(&ep->lock);
1613 	}
1614 
1615 	/* We have to call this outside the lock */
1616 	if (pwake)
1617 		ep_poll_safewake(ep, NULL);
1618 
1619 	return 0;
1620 }
1621 
1622 static int ep_send_events(struct eventpoll *ep,
1623 			  struct epoll_event __user *events, int maxevents)
1624 {
1625 	struct epitem *epi, *tmp;
1626 	LIST_HEAD(txlist);
1627 	poll_table pt;
1628 	int res = 0;
1629 
1630 	/*
1631 	 * Always short-circuit for fatal signals to allow threads to make a
1632 	 * timely exit without the chance of finding more events available and
1633 	 * fetching repeatedly.
1634 	 */
1635 	if (fatal_signal_pending(current))
1636 		return -EINTR;
1637 
1638 	init_poll_funcptr(&pt, NULL);
1639 
1640 	mutex_lock(&ep->mtx);
1641 	ep_start_scan(ep, &txlist);
1642 
1643 	/*
1644 	 * We can loop without lock because we are passed a task private list.
1645 	 * Items cannot vanish during the loop we are holding ep->mtx.
1646 	 */
1647 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1648 		struct wakeup_source *ws;
1649 		__poll_t revents;
1650 
1651 		if (res >= maxevents)
1652 			break;
1653 
1654 		/*
1655 		 * Activate ep->ws before deactivating epi->ws to prevent
1656 		 * triggering auto-suspend here (in case we reactive epi->ws
1657 		 * below).
1658 		 *
1659 		 * This could be rearranged to delay the deactivation of epi->ws
1660 		 * instead, but then epi->ws would temporarily be out of sync
1661 		 * with ep_is_linked().
1662 		 */
1663 		ws = ep_wakeup_source(epi);
1664 		if (ws) {
1665 			if (ws->active)
1666 				__pm_stay_awake(ep->ws);
1667 			__pm_relax(ws);
1668 		}
1669 
1670 		list_del_init(&epi->rdllink);
1671 
1672 		/*
1673 		 * If the event mask intersect the caller-requested one,
1674 		 * deliver the event to userspace. Again, we are holding ep->mtx,
1675 		 * so no operations coming from userspace can change the item.
1676 		 */
1677 		revents = ep_item_poll(epi, &pt, 1);
1678 		if (!revents)
1679 			continue;
1680 
1681 		if (__put_user(revents, &events->events) ||
1682 		    __put_user(epi->event.data, &events->data)) {
1683 			list_add(&epi->rdllink, &txlist);
1684 			ep_pm_stay_awake(epi);
1685 			if (!res)
1686 				res = -EFAULT;
1687 			break;
1688 		}
1689 		res++;
1690 		events++;
1691 		if (epi->event.events & EPOLLONESHOT)
1692 			epi->event.events &= EP_PRIVATE_BITS;
1693 		else if (!(epi->event.events & EPOLLET)) {
1694 			/*
1695 			 * If this file has been added with Level
1696 			 * Trigger mode, we need to insert back inside
1697 			 * the ready list, so that the next call to
1698 			 * epoll_wait() will check again the events
1699 			 * availability. At this point, no one can insert
1700 			 * into ep->rdllist besides us. The epoll_ctl()
1701 			 * callers are locked out by
1702 			 * ep_scan_ready_list() holding "mtx" and the
1703 			 * poll callback will queue them in ep->ovflist.
1704 			 */
1705 			list_add_tail(&epi->rdllink, &ep->rdllist);
1706 			ep_pm_stay_awake(epi);
1707 		}
1708 	}
1709 	ep_done_scan(ep, &txlist);
1710 	mutex_unlock(&ep->mtx);
1711 
1712 	return res;
1713 }
1714 
1715 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1716 {
1717 	struct timespec64 now;
1718 
1719 	if (ms < 0)
1720 		return NULL;
1721 
1722 	if (!ms) {
1723 		to->tv_sec = 0;
1724 		to->tv_nsec = 0;
1725 		return to;
1726 	}
1727 
1728 	to->tv_sec = ms / MSEC_PER_SEC;
1729 	to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1730 
1731 	ktime_get_ts64(&now);
1732 	*to = timespec64_add_safe(now, *to);
1733 	return to;
1734 }
1735 
1736 /**
1737  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1738  *           event buffer.
1739  *
1740  * @ep: Pointer to the eventpoll context.
1741  * @events: Pointer to the userspace buffer where the ready events should be
1742  *          stored.
1743  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1744  * @timeout: Maximum timeout for the ready events fetch operation, in
1745  *           timespec. If the timeout is zero, the function will not block,
1746  *           while if the @timeout ptr is NULL, the function will block
1747  *           until at least one event has been retrieved (or an error
1748  *           occurred).
1749  *
1750  * Returns: Returns the number of ready events which have been fetched, or an
1751  *          error code, in case of error.
1752  */
1753 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1754 		   int maxevents, struct timespec64 *timeout)
1755 {
1756 	int res, eavail, timed_out = 0;
1757 	u64 slack = 0;
1758 	wait_queue_entry_t wait;
1759 	ktime_t expires, *to = NULL;
1760 
1761 	lockdep_assert_irqs_enabled();
1762 
1763 	if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1764 		slack = select_estimate_accuracy(timeout);
1765 		to = &expires;
1766 		*to = timespec64_to_ktime(*timeout);
1767 	} else if (timeout) {
1768 		/*
1769 		 * Avoid the unnecessary trip to the wait queue loop, if the
1770 		 * caller specified a non blocking operation.
1771 		 */
1772 		timed_out = 1;
1773 	}
1774 
1775 	/*
1776 	 * This call is racy: We may or may not see events that are being added
1777 	 * to the ready list under the lock (e.g., in IRQ callbacks). For, cases
1778 	 * with a non-zero timeout, this thread will check the ready list under
1779 	 * lock and will added to the wait queue.  For, cases with a zero
1780 	 * timeout, the user by definition should not care and will have to
1781 	 * recheck again.
1782 	 */
1783 	eavail = ep_events_available(ep);
1784 
1785 	while (1) {
1786 		if (eavail) {
1787 			/*
1788 			 * Try to transfer events to user space. In case we get
1789 			 * 0 events and there's still timeout left over, we go
1790 			 * trying again in search of more luck.
1791 			 */
1792 			res = ep_send_events(ep, events, maxevents);
1793 			if (res)
1794 				return res;
1795 		}
1796 
1797 		if (timed_out)
1798 			return 0;
1799 
1800 		eavail = ep_busy_loop(ep, timed_out);
1801 		if (eavail)
1802 			continue;
1803 
1804 		if (signal_pending(current))
1805 			return -EINTR;
1806 
1807 		/*
1808 		 * Internally init_wait() uses autoremove_wake_function(),
1809 		 * thus wait entry is removed from the wait queue on each
1810 		 * wakeup. Why it is important? In case of several waiters
1811 		 * each new wakeup will hit the next waiter, giving it the
1812 		 * chance to harvest new event. Otherwise wakeup can be
1813 		 * lost. This is also good performance-wise, because on
1814 		 * normal wakeup path no need to call __remove_wait_queue()
1815 		 * explicitly, thus ep->lock is not taken, which halts the
1816 		 * event delivery.
1817 		 */
1818 		init_wait(&wait);
1819 
1820 		write_lock_irq(&ep->lock);
1821 		/*
1822 		 * Barrierless variant, waitqueue_active() is called under
1823 		 * the same lock on wakeup ep_poll_callback() side, so it
1824 		 * is safe to avoid an explicit barrier.
1825 		 */
1826 		__set_current_state(TASK_INTERRUPTIBLE);
1827 
1828 		/*
1829 		 * Do the final check under the lock. ep_scan_ready_list()
1830 		 * plays with two lists (->rdllist and ->ovflist) and there
1831 		 * is always a race when both lists are empty for short
1832 		 * period of time although events are pending, so lock is
1833 		 * important.
1834 		 */
1835 		eavail = ep_events_available(ep);
1836 		if (!eavail)
1837 			__add_wait_queue_exclusive(&ep->wq, &wait);
1838 
1839 		write_unlock_irq(&ep->lock);
1840 
1841 		if (!eavail)
1842 			timed_out = !schedule_hrtimeout_range(to, slack,
1843 							      HRTIMER_MODE_ABS);
1844 		__set_current_state(TASK_RUNNING);
1845 
1846 		/*
1847 		 * We were woken up, thus go and try to harvest some events.
1848 		 * If timed out and still on the wait queue, recheck eavail
1849 		 * carefully under lock, below.
1850 		 */
1851 		eavail = 1;
1852 
1853 		if (!list_empty_careful(&wait.entry)) {
1854 			write_lock_irq(&ep->lock);
1855 			/*
1856 			 * If the thread timed out and is not on the wait queue,
1857 			 * it means that the thread was woken up after its
1858 			 * timeout expired before it could reacquire the lock.
1859 			 * Thus, when wait.entry is empty, it needs to harvest
1860 			 * events.
1861 			 */
1862 			if (timed_out)
1863 				eavail = list_empty(&wait.entry);
1864 			__remove_wait_queue(&ep->wq, &wait);
1865 			write_unlock_irq(&ep->lock);
1866 		}
1867 	}
1868 }
1869 
1870 /**
1871  * ep_loop_check_proc - verify that adding an epoll file inside another
1872  *                      epoll structure, does not violate the constraints, in
1873  *                      terms of closed loops, or too deep chains (which can
1874  *                      result in excessive stack usage).
1875  *
1876  * @priv: Pointer to the epoll file to be currently checked.
1877  * @depth: Current depth of the path being checked.
1878  *
1879  * Returns: Returns zero if adding the epoll @file inside current epoll
1880  *          structure @ep does not violate the constraints, or -1 otherwise.
1881  */
1882 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1883 {
1884 	int error = 0;
1885 	struct rb_node *rbp;
1886 	struct epitem *epi;
1887 
1888 	mutex_lock_nested(&ep->mtx, depth + 1);
1889 	ep->gen = loop_check_gen;
1890 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1891 		epi = rb_entry(rbp, struct epitem, rbn);
1892 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1893 			struct eventpoll *ep_tovisit;
1894 			ep_tovisit = epi->ffd.file->private_data;
1895 			if (ep_tovisit->gen == loop_check_gen)
1896 				continue;
1897 			if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1898 				error = -1;
1899 			else
1900 				error = ep_loop_check_proc(ep_tovisit, depth + 1);
1901 			if (error != 0)
1902 				break;
1903 		} else {
1904 			/*
1905 			 * If we've reached a file that is not associated with
1906 			 * an ep, then we need to check if the newly added
1907 			 * links are going to add too many wakeup paths. We do
1908 			 * this by adding it to the tfile_check_list, if it's
1909 			 * not already there, and calling reverse_path_check()
1910 			 * during ep_insert().
1911 			 */
1912 			list_file(epi->ffd.file);
1913 		}
1914 	}
1915 	mutex_unlock(&ep->mtx);
1916 
1917 	return error;
1918 }
1919 
1920 /**
1921  * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
1922  *                 into another epoll file (represented by @from) does not create
1923  *                 closed loops or too deep chains.
1924  *
1925  * @from: Pointer to the epoll we are inserting into.
1926  * @to: Pointer to the epoll to be inserted.
1927  *
1928  * Returns: Returns zero if adding the epoll @to inside the epoll @from
1929  * does not violate the constraints, or -1 otherwise.
1930  */
1931 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
1932 {
1933 	inserting_into = ep;
1934 	return ep_loop_check_proc(to, 0);
1935 }
1936 
1937 static void clear_tfile_check_list(void)
1938 {
1939 	rcu_read_lock();
1940 	while (tfile_check_list != EP_UNACTIVE_PTR) {
1941 		struct epitems_head *head = tfile_check_list;
1942 		tfile_check_list = head->next;
1943 		unlist_file(head);
1944 	}
1945 	rcu_read_unlock();
1946 }
1947 
1948 /*
1949  * Open an eventpoll file descriptor.
1950  */
1951 static int do_epoll_create(int flags)
1952 {
1953 	int error, fd;
1954 	struct eventpoll *ep = NULL;
1955 	struct file *file;
1956 
1957 	/* Check the EPOLL_* constant for consistency.  */
1958 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1959 
1960 	if (flags & ~EPOLL_CLOEXEC)
1961 		return -EINVAL;
1962 	/*
1963 	 * Create the internal data structure ("struct eventpoll").
1964 	 */
1965 	error = ep_alloc(&ep);
1966 	if (error < 0)
1967 		return error;
1968 	/*
1969 	 * Creates all the items needed to setup an eventpoll file. That is,
1970 	 * a file structure and a free file descriptor.
1971 	 */
1972 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1973 	if (fd < 0) {
1974 		error = fd;
1975 		goto out_free_ep;
1976 	}
1977 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1978 				 O_RDWR | (flags & O_CLOEXEC));
1979 	if (IS_ERR(file)) {
1980 		error = PTR_ERR(file);
1981 		goto out_free_fd;
1982 	}
1983 	ep->file = file;
1984 	fd_install(fd, file);
1985 	return fd;
1986 
1987 out_free_fd:
1988 	put_unused_fd(fd);
1989 out_free_ep:
1990 	ep_free(ep);
1991 	return error;
1992 }
1993 
1994 SYSCALL_DEFINE1(epoll_create1, int, flags)
1995 {
1996 	return do_epoll_create(flags);
1997 }
1998 
1999 SYSCALL_DEFINE1(epoll_create, int, size)
2000 {
2001 	if (size <= 0)
2002 		return -EINVAL;
2003 
2004 	return do_epoll_create(0);
2005 }
2006 
2007 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2008 				   bool nonblock)
2009 {
2010 	if (!nonblock) {
2011 		mutex_lock_nested(mutex, depth);
2012 		return 0;
2013 	}
2014 	if (mutex_trylock(mutex))
2015 		return 0;
2016 	return -EAGAIN;
2017 }
2018 
2019 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2020 		 bool nonblock)
2021 {
2022 	int error;
2023 	int full_check = 0;
2024 	struct fd f, tf;
2025 	struct eventpoll *ep;
2026 	struct epitem *epi;
2027 	struct eventpoll *tep = NULL;
2028 
2029 	error = -EBADF;
2030 	f = fdget(epfd);
2031 	if (!f.file)
2032 		goto error_return;
2033 
2034 	/* Get the "struct file *" for the target file */
2035 	tf = fdget(fd);
2036 	if (!tf.file)
2037 		goto error_fput;
2038 
2039 	/* The target file descriptor must support poll */
2040 	error = -EPERM;
2041 	if (!file_can_poll(tf.file))
2042 		goto error_tgt_fput;
2043 
2044 	/* Check if EPOLLWAKEUP is allowed */
2045 	if (ep_op_has_event(op))
2046 		ep_take_care_of_epollwakeup(epds);
2047 
2048 	/*
2049 	 * We have to check that the file structure underneath the file descriptor
2050 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2051 	 * adding an epoll file descriptor inside itself.
2052 	 */
2053 	error = -EINVAL;
2054 	if (f.file == tf.file || !is_file_epoll(f.file))
2055 		goto error_tgt_fput;
2056 
2057 	/*
2058 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2059 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2060 	 * Also, we do not currently supported nested exclusive wakeups.
2061 	 */
2062 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2063 		if (op == EPOLL_CTL_MOD)
2064 			goto error_tgt_fput;
2065 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2066 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2067 			goto error_tgt_fput;
2068 	}
2069 
2070 	/*
2071 	 * At this point it is safe to assume that the "private_data" contains
2072 	 * our own data structure.
2073 	 */
2074 	ep = f.file->private_data;
2075 
2076 	/*
2077 	 * When we insert an epoll file descriptor, inside another epoll file
2078 	 * descriptor, there is the change of creating closed loops, which are
2079 	 * better be handled here, than in more critical paths. While we are
2080 	 * checking for loops we also determine the list of files reachable
2081 	 * and hang them on the tfile_check_list, so we can check that we
2082 	 * haven't created too many possible wakeup paths.
2083 	 *
2084 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2085 	 * the epoll file descriptor is attaching directly to a wakeup source,
2086 	 * unless the epoll file descriptor is nested. The purpose of taking the
2087 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2088 	 * deep wakeup paths from forming in parallel through multiple
2089 	 * EPOLL_CTL_ADD operations.
2090 	 */
2091 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2092 	if (error)
2093 		goto error_tgt_fput;
2094 	if (op == EPOLL_CTL_ADD) {
2095 		if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2096 		    is_file_epoll(tf.file)) {
2097 			mutex_unlock(&ep->mtx);
2098 			error = epoll_mutex_lock(&epmutex, 0, nonblock);
2099 			if (error)
2100 				goto error_tgt_fput;
2101 			loop_check_gen++;
2102 			full_check = 1;
2103 			if (is_file_epoll(tf.file)) {
2104 				tep = tf.file->private_data;
2105 				error = -ELOOP;
2106 				if (ep_loop_check(ep, tep) != 0)
2107 					goto error_tgt_fput;
2108 			}
2109 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2110 			if (error)
2111 				goto error_tgt_fput;
2112 		}
2113 	}
2114 
2115 	/*
2116 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2117 	 * above, we can be sure to be able to use the item looked up by
2118 	 * ep_find() till we release the mutex.
2119 	 */
2120 	epi = ep_find(ep, tf.file, fd);
2121 
2122 	error = -EINVAL;
2123 	switch (op) {
2124 	case EPOLL_CTL_ADD:
2125 		if (!epi) {
2126 			epds->events |= EPOLLERR | EPOLLHUP;
2127 			error = ep_insert(ep, epds, tf.file, fd, full_check);
2128 		} else
2129 			error = -EEXIST;
2130 		break;
2131 	case EPOLL_CTL_DEL:
2132 		if (epi)
2133 			error = ep_remove(ep, epi);
2134 		else
2135 			error = -ENOENT;
2136 		break;
2137 	case EPOLL_CTL_MOD:
2138 		if (epi) {
2139 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2140 				epds->events |= EPOLLERR | EPOLLHUP;
2141 				error = ep_modify(ep, epi, epds);
2142 			}
2143 		} else
2144 			error = -ENOENT;
2145 		break;
2146 	}
2147 	mutex_unlock(&ep->mtx);
2148 
2149 error_tgt_fput:
2150 	if (full_check) {
2151 		clear_tfile_check_list();
2152 		loop_check_gen++;
2153 		mutex_unlock(&epmutex);
2154 	}
2155 
2156 	fdput(tf);
2157 error_fput:
2158 	fdput(f);
2159 error_return:
2160 
2161 	return error;
2162 }
2163 
2164 /*
2165  * The following function implements the controller interface for
2166  * the eventpoll file that enables the insertion/removal/change of
2167  * file descriptors inside the interest set.
2168  */
2169 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2170 		struct epoll_event __user *, event)
2171 {
2172 	struct epoll_event epds;
2173 
2174 	if (ep_op_has_event(op) &&
2175 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2176 		return -EFAULT;
2177 
2178 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2179 }
2180 
2181 /*
2182  * Implement the event wait interface for the eventpoll file. It is the kernel
2183  * part of the user space epoll_wait(2).
2184  */
2185 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2186 			 int maxevents, struct timespec64 *to)
2187 {
2188 	int error;
2189 	struct fd f;
2190 	struct eventpoll *ep;
2191 
2192 	/* The maximum number of event must be greater than zero */
2193 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2194 		return -EINVAL;
2195 
2196 	/* Verify that the area passed by the user is writeable */
2197 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2198 		return -EFAULT;
2199 
2200 	/* Get the "struct file *" for the eventpoll file */
2201 	f = fdget(epfd);
2202 	if (!f.file)
2203 		return -EBADF;
2204 
2205 	/*
2206 	 * We have to check that the file structure underneath the fd
2207 	 * the user passed to us _is_ an eventpoll file.
2208 	 */
2209 	error = -EINVAL;
2210 	if (!is_file_epoll(f.file))
2211 		goto error_fput;
2212 
2213 	/*
2214 	 * At this point it is safe to assume that the "private_data" contains
2215 	 * our own data structure.
2216 	 */
2217 	ep = f.file->private_data;
2218 
2219 	/* Time to fish for events ... */
2220 	error = ep_poll(ep, events, maxevents, to);
2221 
2222 error_fput:
2223 	fdput(f);
2224 	return error;
2225 }
2226 
2227 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2228 		int, maxevents, int, timeout)
2229 {
2230 	struct timespec64 to;
2231 
2232 	return do_epoll_wait(epfd, events, maxevents,
2233 			     ep_timeout_to_timespec(&to, timeout));
2234 }
2235 
2236 /*
2237  * Implement the event wait interface for the eventpoll file. It is the kernel
2238  * part of the user space epoll_pwait(2).
2239  */
2240 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2241 			  int maxevents, struct timespec64 *to,
2242 			  const sigset_t __user *sigmask, size_t sigsetsize)
2243 {
2244 	int error;
2245 
2246 	/*
2247 	 * If the caller wants a certain signal mask to be set during the wait,
2248 	 * we apply it here.
2249 	 */
2250 	error = set_user_sigmask(sigmask, sigsetsize);
2251 	if (error)
2252 		return error;
2253 
2254 	error = do_epoll_wait(epfd, events, maxevents, to);
2255 
2256 	restore_saved_sigmask_unless(error == -EINTR);
2257 
2258 	return error;
2259 }
2260 
2261 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2262 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2263 		size_t, sigsetsize)
2264 {
2265 	struct timespec64 to;
2266 
2267 	return do_epoll_pwait(epfd, events, maxevents,
2268 			      ep_timeout_to_timespec(&to, timeout),
2269 			      sigmask, sigsetsize);
2270 }
2271 
2272 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2273 		int, maxevents, const struct __kernel_timespec __user *, timeout,
2274 		const sigset_t __user *, sigmask, size_t, sigsetsize)
2275 {
2276 	struct timespec64 ts, *to = NULL;
2277 
2278 	if (timeout) {
2279 		if (get_timespec64(&ts, timeout))
2280 			return -EFAULT;
2281 		to = &ts;
2282 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2283 			return -EINVAL;
2284 	}
2285 
2286 	return do_epoll_pwait(epfd, events, maxevents, to,
2287 			      sigmask, sigsetsize);
2288 }
2289 
2290 #ifdef CONFIG_COMPAT
2291 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2292 				 int maxevents, struct timespec64 *timeout,
2293 				 const compat_sigset_t __user *sigmask,
2294 				 compat_size_t sigsetsize)
2295 {
2296 	long err;
2297 
2298 	/*
2299 	 * If the caller wants a certain signal mask to be set during the wait,
2300 	 * we apply it here.
2301 	 */
2302 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2303 	if (err)
2304 		return err;
2305 
2306 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2307 
2308 	restore_saved_sigmask_unless(err == -EINTR);
2309 
2310 	return err;
2311 }
2312 
2313 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2314 		       struct epoll_event __user *, events,
2315 		       int, maxevents, int, timeout,
2316 		       const compat_sigset_t __user *, sigmask,
2317 		       compat_size_t, sigsetsize)
2318 {
2319 	struct timespec64 to;
2320 
2321 	return do_compat_epoll_pwait(epfd, events, maxevents,
2322 				     ep_timeout_to_timespec(&to, timeout),
2323 				     sigmask, sigsetsize);
2324 }
2325 
2326 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2327 		       struct epoll_event __user *, events,
2328 		       int, maxevents,
2329 		       const struct __kernel_timespec __user *, timeout,
2330 		       const compat_sigset_t __user *, sigmask,
2331 		       compat_size_t, sigsetsize)
2332 {
2333 	struct timespec64 ts, *to = NULL;
2334 
2335 	if (timeout) {
2336 		if (get_timespec64(&ts, timeout))
2337 			return -EFAULT;
2338 		to = &ts;
2339 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2340 			return -EINVAL;
2341 	}
2342 
2343 	return do_compat_epoll_pwait(epfd, events, maxevents, to,
2344 				     sigmask, sigsetsize);
2345 }
2346 
2347 #endif
2348 
2349 static int __init eventpoll_init(void)
2350 {
2351 	struct sysinfo si;
2352 
2353 	si_meminfo(&si);
2354 	/*
2355 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2356 	 */
2357 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2358 		EP_ITEM_COST;
2359 	BUG_ON(max_user_watches < 0);
2360 
2361 	/*
2362 	 * We can have many thousands of epitems, so prevent this from
2363 	 * using an extra cache line on 64-bit (and smaller) CPUs
2364 	 */
2365 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2366 
2367 	/* Allocates slab cache used to allocate "struct epitem" items */
2368 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2369 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2370 
2371 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2372 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2373 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2374 
2375 	ephead_cache = kmem_cache_create("ep_head",
2376 		sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2377 
2378 	return 0;
2379 }
2380 fs_initcall(eventpoll_init);
2381